WO2002012905A1 - Beschleunigungssensor - Google Patents

Beschleunigungssensor Download PDF

Info

Publication number
WO2002012905A1
WO2002012905A1 PCT/DE2001/002754 DE0102754W WO0212905A1 WO 2002012905 A1 WO2002012905 A1 WO 2002012905A1 DE 0102754 W DE0102754 W DE 0102754W WO 0212905 A1 WO0212905 A1 WO 0212905A1
Authority
WO
WIPO (PCT)
Prior art keywords
stops
spring
acceleration sensor
sensor
sensor according
Prior art date
Application number
PCT/DE2001/002754
Other languages
English (en)
French (fr)
Inventor
Michael Offenberg
Dirk Scholz
Falk Herrmann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2002012905A1 publication Critical patent/WO2002012905A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0814Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for translational movement of the mass, e.g. shuttle type

Definitions

  • the invention relates to a micromechanical acceleration sensor with at least two sensor structures that are movable relative to one another, form capacitors and have Y stops, and a spring system on the face side that has X stops.
  • at least two sensor structures with surface parts arranged parallel to one another form a capacitor or capacitor space, the capacitance of which changes with a relative movement of the two sensor structures.
  • One or more sensor structures are fixed on a substrate, while a further sensor structure is arranged to be movable and spring-loaded in the measuring direction.
  • An acceleration process of the micromechanical acceleration sensor leads to an offset of the movably arranged sensor structure and thus to a change in the distances between the potential areas. The The resulting change in capacitance is ultimately used in the form of a voltage signal for evaluation.
  • An acceleration sensor or a structure of an acceleration sensor is already known from US Pat. No. 5,542,295.
  • this acceleration sensor three sensor structures are provided, a middle sensor structure being arranged to be movable.
  • two O-springs formed by the sensor structure are provided on both end faces.
  • stops are provided within the transfer springs, which limit a possible deflection movement of the movably arranged sensor structure to two thirds of the distance between the potential surfaces. If an acceleration of the sensor in the Z direction, i.e. perpendicular to the image plane, occurs simultaneously during an acceleration in the X and / or Y direction, it is possible for the stops to rest above or below the sensor structure and there due to the rigidity stick or jam the structure.
  • the object of the invention is to design and arrange a micromechanical acceleration sensor in such a way that the risk of jamming within the structure is reduced.
  • the spring system consists of at least two spring elements closed in cross section. This ensures that the deflection of the movable sensor structure upon acceleration in the Z direction by the telescopic twisting of the double spring system (see Figure 1, 2b) is limited and the resulting force is reduced or absorbed.
  • the edge region of the movable structure, the right side according to FIG. 2b, is arranged in a fixed manner, so that this edge region has no Z deflection or height offset h.
  • the height offset h of the mass towards the edge area is reduced via the spring system.
  • a height offset h in the Z direction within the spring system, beyond the structure height and thus the risk of mechanical jamming is thus reduced.
  • the spring element consists of two spaced-apart legs that form a self-contained, ring-shaped or box-shaped frame or each spring element consists of a self-contained, circular, oval-shaped or box-shaped frame that has a cross-section is also circular, oval or box-shaped.
  • Sufficient stiffness of the spring element in the Z direction can thus be ensured on the one hand, and on the other hand the spring stiffness in the X direction can be defined according to the design or sensitivity of the sensor.
  • one or more symmetrically arranged X stops acting in the X direction are provided within the spring element.
  • the X-stops avoid the risk of sticking, which can arise due to the potential differences. Furthermore, they reduce the contact area with regard to jamming when accelerating in the Z direction. The deflection in the Z direction approaches zero in the edge area, because here it is fixed movable structure. The X-stops arranged there therefore do not experience the maximum Z-amplitude, such as. B. the center of the movable structure, so that mechanical jamming is excluded.
  • the spring element is designed without a stop or the legs form stops.
  • the stops are wedge-shaped in cross section or have a chamfer in the Y direction.
  • stops consist of two spaced-apart, parallel webs arranged or running on the inner surface of the spring elements.
  • FIG. 1 shows a schematic view of the sensor structure from above with a double U spring
  • FIG. 2a shows a sectional view from the side along the line A-A in the idle state
  • Figure 2b is a sectional view from the side along the line A-A at the time of an XZ acceleration.
  • 1 denotes an acceleration sensor.
  • the acceleration sensor 1 has two sensor structures 3, 3 ', which are arranged to be movable relative to one another, i. H. one of the sensor structures is fixed on a substrate and the other is movable.
  • the fixed sensor structure 3 ' is connected to a substrate, not shown, and essentially forms the edge region of the sensor structure.
  • the fixed sensor structure 3 ′′ has numerous parallel rod-shaped sections arranged electrodes 9 ', which together with electrodes 9 of the movable sensor structure 3 form capacitor surfaces 13 or capacitor spaces 10.
  • the electrodes 9, 9 ' alternately engage without contact, so that the greatest possible potential is created between them in accordance with the installation space.
  • the capacitor surfaces 13 have a variable distance e from one another which is dependent on the acceleration.
  • the movable sensor structure 3 is arranged in the central region of the sensor structure. In addition to its electrodes 9, it has a mass 11 and a spring system or various spring elements 4.
  • the spring elements 4 are designed as double U-springs 5 and have a rectangular, closed cross section.
  • the legs of a U-spring are connected to those of the adjacent U-spring.
  • Two such double U-springs 5 are arranged or provided next to one another or in parallel, which are connected in the central region via two webs 12 running parallel to them.
  • the respective double U spring 5 has X stops 2 acting in the X direction, which limit movement of the legs 6 in the X direction.
  • the X-stops 2 are rectangular and have a distance a from one another in the X direction.
  • the mass 11 is equipped, according to FIG. 1, on its two end faces with Y stops 2 ′ acting in the Y direction, which limit movement in the Y direction.
  • Y stops 2 ′ acting in the Y direction, which limit movement in the Y direction.
  • Y stops 2 'assigned to the fixed sensor structure 3' in the edge region of the sensor 1 are provided.
  • FIG. 2a In the sectional view according to Figure 2a is in the upper
  • an offset h of the movable sensor structure 3 is shown, which occurs due to an acceleration of the sensor in the X and Z directions, that is to say perpendicular to the image plane according to FIG. 1.
  • the distance a between the X stops 2 is reduced due to the acceleration of the sensor in the X direction, so that there is no contact between the stops 2.
  • the acceleration in the Z direction results in a deformation or twisting of the double U spring 5, 5 ', so that this results in a height offset h between the movable and fixed sensor structure 3, 3' in the Z direction. Due to two double U-springs 5, 5 'arranged next to one another, the height offset h within the sensor structure 3 or within the spring structure is reduced in steps.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pressure Sensors (AREA)

Abstract

Die Erfindung bezieht sich auf einen mikromechanischen Beschleunigungssensor (1) mit mindestens zwei relativ zueinander beweglich angeordneten, Kapazitäten bildenden und X-Y-Anschläge (2, 2') aufweisenden Sensorstrukturen (3, 3') und einem stirnseitigen Federsystem (4'), wobei das Federsystem (4') aus mindestens zwei im Querschnitt geschlossenen Federelementen (4) besteht. Die Federelemente haben die Form einer Doppel-U-Feder, deren Schenkel miteinander verbunden sind und sind im mittleren Bereich über Stege verbunden. Sie weisen integrierte X-Anschläge auf. Der Höhenunterschied benachbarter Elemente wird so verringert, ein mechanisches Verklemmen wird ausgeschlossen.

Description

Beschleunigungssensor
Oberflächenmikromechanische Beschleunigungssensoren finden seit einigen Jahren vielfältig Anwendung im Kfz-Bereich für Airbag-Systeme, Fahrdynamikregelungen oder ABS. Von großer Bedeutung beim Einsatz solcher Sensoren in sicherheitsrelevanten Systemen ist die Gewährleistung der Funktionsfähigkeit nach einer mechanischen Überbeanspruchung durch Beschleunigungen oberhalb des Meßbereichs. Ein besonderes technisches Problem bei solchen Sensoren mit horizontaler Detektionsrichtung stellt die Widerstandsfähigkeit gegenüber Beschleunigungen senkrecht zur Detektionsrichtung dar, die so genannte Fallfestigkeit.
Die Erfindung bezieht sich auf einen mikromechanischen Beschleunigungssensor mit mindestens zwei relativ zueinander beweglich angeordneten, Kapazitäten bildenden und Y-Anschläge aufweisenden Sensorstrukturen und einem stirnseitigen, X-Anschläge aufweisenden Federsystem. Hierbei bilden mindestens zwei Sensorstrukturen mit parallel zueinander angeordneten Flächenteilen einen Kondensator bzw. Kondensatorraum, dessen Kapazität sich bei einer Relativbewegung der beiden Sensorstrukturen ändert. Eine oder mehrere Sensorstrukturen sind auf einem Substrat fixiert, während eine weitere Sensorstruktur beweglich und in Meßrichtung gefedert angeordnet ist. Durch einen Beschleunigungsvorgang des mikromechanischen Beschleunigungssensors kommt es zu einem Versatz der beweglich angeordneten Sensorstruktur und damit zu einer Änderung der Abstände zwischen den Potentialflächen. Die resultierende Änderung der Kapazität wird letztlich in Form eines Spannungssignals zur Auswertung herangezogen.
Es ist bereits ein Beschleunigungssensor bzw. eine Struktur eines Beschleunigungssensors aus der US 5 542 295 bekannt. Bei diesem Beschleunigungssensor sind drei Sensorstrukturen vorgesehen, wobei eine mittlere Sensorstruktur beweglich angeordnet ist. Damit die beweglich angeordnete Sensorstruktur nach dem Beschleunigungsvorgang bzw. der Auslenkbewegung wieder ihre ursprüngliche Position erreicht, sind an beiden Stirnseiten jeweils zwei durch die Sensorstruktur gebildete Ü-Federn vorgesehen. Gemäß Figur 2 sind innerhalb der Ü-Federn Anschläge vorgesehen, die eine mögliche Auslenkbewegung der beweglich angeordneten Sensorstruktur auf zwei Drittel des Abstands zwischen den Potentialflächen begrenzen. Kommt es nun während einer Beschleunigung in X- und/oder Y-Richtung gleichzeitig zu einer Beschleunigung des Sensors in Z-Richtung, also senkrecht zur Bildebene, so ist es möglich, daß die Anschläge oberhalb oder unterhalb der Sensorstruktur aufliegen und dort aufgrund der Steifigkeit der Struktur haften bzw. verklemmen.
Der Erfindung liegt die Aufgabe zugrunde, einen mikromechanischen Beschleunigungssensor derart auszubilden und anzuordnen, daß die Gefahr einer Verklemmung innerhalb der Struktur vermindert wird.
Gelöst wird die Aufgabe erfindungsgemäß dadurch, daß das Federsystem aus mindestens zwei im Querschnitt geschlossenen Federelementen besteht. Hierdurch wird erreicht, daß die Auslenkung der beweglichen Sensorstruktur bei einer Beschleunigung in Z-Richtung durch die teleskopartige Verwindung des doppelten Federsystems (siehe Figur 1, 2b) begrenzt und die entstehende Massekraft abgebaut bzw. aufgenommen wird. Der Randbereich der beweglichen Struktur, gemäß Figur 2b die rechte Seite, ist fest angeordnet, so dass dieser Randbereich keine Z- Auslenkung bzw. keinen Höhenversatz h aufweist. Über das Federsystem wird der Höhenversatz h der Masse zum Randbereich hin abgebaut. Ein Höhenversatz h in Z-Richtung innerhalb des Federsystems, über die Strukturhöhe hinaus und damit die Gefahr eines mechanischen Verklemmens wird somit vermindert.
Vorteilhaft ist es hierzu, daß das Federelement aus zwei mit Abstand zueinander angeordneten Schenkeln besteht, die einen in sich geschlossenen, ringförmigen oder kastenförmigen Rahmen bilden bzw. ein jedes Federelement aus einem in sich geschlossenen, kreisförmigen, ovalförmigen oder kastenförmigen Rahmen besteht, der im Querschnitt ebenfalls kreisförmig, ovalförmig oder kastenförmig ausgebildet ist. Somit kann zum einen eine ausreichende Steifigkeit des Federelements in Z-Richtung gewährleistet werden und zum anderen die Federsteifigkeit in X-Richtung entsprechend der Ausbildung bzw. Sensibilität des Sensors definiert werden.
Ferner ist es vorteilhaft, daß innerhalb des Federelements ein oder mehrere symmetrisch angeordnete in X-Richtung wirkende X-Anschläge vorgesehen sind. Die X-Anschläge vermeiden die Gefahr des sog. Sticking, das aufgrund der Potentialunterschiede entstehen kann. Weiterhin vermindern sie die Kontaktfläche im Hinblick auf eine Verklemmung bei einer Beschleunigung in Z-Richtung. Die Auslenkung in Z- Richtung geht im Randbereich gegen Null, denn hier ist die bewegliche Struktur befestigt. Die dort angeordneten X- Anschlägen erfahren demnach nicht die maximale Z-Amplitude, wie z. B. das Zentrum der beweglichen Struktur, so daß ein mechanischen Verklemmen ausgeschlossen ist.
Vorteilhaft ist es auch, daß zwischen einem Abstand a des Anschlags der Schenkel eines Federelements und dem Abstand e der Potentialflächen folgender Zusammenhang gilt:
a < -e 2
Somit wird ein Berühren der Potentialflächen bzw. der Kondensatorflächen verhindert.
Gemäß einer bevorzugten Ausführungsform der erfindungsgemäßen Lösung ist schließlich vorgesehen, daß das Federelement anschlagfrei ausgebildet ist oder die Schenkel Anschläge bilden. In diesem Fall ist es von Bedeutung, daß zwischen einem Abstand b der Schenkel eines Federelements und dem Abstand e der Potentialflächen folgender Zusammenhang gilt:
b ≤ -β
2
Ein Berühren der Potentialflächen bzw. der Kondensatorflächen wird somit verhindert.
Ferner ist es vorteilhaft, daß weitere Anschläge in Y- Richtung in einem Randbereich des Sensors angeordnet sind.
Im Zusammenhang mit der erfindungsgemäßen Ausbildung und Anordnung ist es von Vorteil, daß die Anschläge im Querschnitt keilförmig ausgebildet sind oder eine Fase in Y-Richtung aufweisen. Somit wird im Fall der kritischen Z- Beschleunigung ein Abrutschen der dann gegeneinander verklemmten bzw. aufeinander aufliegenden Anschläge gewährleistet .
Vorteilhaft ist es ferner, daß die Anschläge aus zwei mit Abstand zueinander angeordneten, parallel verlaufenden, an der Innenfläche der Federelemente angeordneten bzw. verlaufenden Stegen bestehen.
Weitere Vorteile und Einzelheiten der Erfindung sind in den Patentansprüchen und in der Beschreibung erläutert und in den Figuren dargestellt. Es zeigt:
Figur 1 eine schematische Ansicht der Sensorstruktur von oben mit Doppel-U- Feder,
Figur 2a eine Schnittdarstellung von der Seite gemäß der Linie A-A im Ruhezustand,
Figur 2b eine Schnittdarstellung von der Seite gemäß der Linie A-A im Zeitpunkt einer XZ-Beschleunigung.
In Figur 1 ist mit 1 ein Beschleunigungssensor bezeichnet. Der Beschleunigungssensor 1 weist zwei Sensorstrukturen 3, 3' auf, die beweglich zueinander angeordnet sind, d. h. eine der Sensorstrukturen ist dabei fest auf einem Substrat und die andere beweglich angeordnet .
Die fest angeordnete Sensorstruktur 3' ist mit einem nicht dargestellten Substrat verbunden und bildet im Wesentlichen den Randbereich der Sensorstruktur. Nach innen zum Zentrum des Sensors hin weist die feste Sensorstruktur 3" zahlreiche in der Schnittdarstellung stabförmige, parallel angeordnete Elektroden 9' auf, die zusammen mit Elektroden 9 der beweglichen Sensorstruktur 3 Kondensatorflächen 13 bzw. Kondensatorzwischenräume 10 bilden. Die Elektroden 9, 9' greifen abwechselnd berührungslos ineinander, so daß entsprechend dem Bauraum ein möglichst großes Potential zwischen ihnen entsteht. Die Kondensatorflächen 13 weisen einen von der Beschleunigung abhängigen, variablen Abstand e untereinander auf.
Im mittleren Bereich der Sensorstruktur ist die bewegliche Sensorstruktur 3 angeordnet. Sie weist neben ihren Elektroden 9 eine Masse 11 und ein Federsystem bzw. verschiedene Federelemente 4 auf.
Die Federelemente 4 sind als Doppel-U-Feder 5 ausgebildet und weisen einen rechteckigen, geschlossenen Querschnitt auf. Hierzu sind die Schenkel einer U-Feder mit denen der benachbarten U-Feder verbunden. Es sind zwei derartige Doppel-U-Federn 5 nebeneinander bzw. parallel angeordnet bzw. vorgesehen, die im mittleren Bereich über zwei senkrecht dazu, parallel verlaufende Stege 12 verbunden sind. Neben diesen Stegen weist die jeweilige Doppel-U- Feder 5 in X-Richtung wirkende X-Anschläge 2 auf, die eine Bewegung der Schenkel 6 in X-Richtung begrenzen. Die X- Anschläge 2 sind rechteckförmig ausgebildet und weisen zueinander in X-Richtung einen Abstand a auf.
Die Masse 11 ist gemäß Figur 1 an ihren beiden Stirnseiten mit in Y-Richtung wirkenden Y-Anschlägen 2 ' ausgestattet, die eine Bewegung in Y-Richtung begrenzen. Hierzu sind an der festen Sensorstruktur 3' im Randbereich des Sensors 1 zugeordnete Y-Anschläge 2' vorgesehen. In der Schnittdarstellung gemäß Figur 2a ist in der oberen
Abbildung die Ruhelage des Sensors 1 dargestellt. Die X-
Anschläge 2 der Doppel-U-Feder 5, 5' weisen hierbei den Abstand a auf.
In der unteren Abbildung (Figur 2b) ist ein Versatz h der beweglichen Sensorstruktur 3 dargestellt, der aufgrund einer Beschleunigung des Sensors in X- und in Z-Richtung, also senkrecht zur Bildebene gemäß Figur 1, erfolgt. Der Abstand a der X-Anschläge 2 ist aufgrund der Beschleunigung des Sensors in X-Richtung reduziert, so daß es zwischen den Anschläge 2 zu keiner Berührung kommt. Die Beschleunigung in Z-Richtung hat eine Verformung bzw. Verwindung der Doppel-U-Feder 5, 5' zur Folge, so daß es hierdurch zu einem Höhenversatz h zwischen beweglicher und fester Sensorstruktur 3, 3' in Z-Richtung kommt. Aufgrund von zwei nebeneinander angeordneten Doppel-U-Federn 5, 5' wird der Höhenversatz h innerhalb der Sensorstruktur 3 bzw. innerhalb der Federstruktur stufenartig abgebaut. Da die Doppel-U-Federn 5, 5' am Randbereich, also zur festen Struktur hin angeordnet sind, wird der Höhenversatz h dort gegen Null hin auslaufen. Ein Höhenversatz h zwischen direkt benachbarten Teilen der Doppel-U-Feder 5, 5', der zu einer Überlappung führen könnte, d. h. ein Versatz in der Höhe des Profils, ist somit an dieser Stelle ausgeschlossen.

Claims

Patentansprüche
Mikromechanischer Beschleunigungssensor (1) mit mindestens zwei relativ zueinander beweglich angeordneten, Kapazitäten bildenden und X-Y- Anschläge (2,
2') aufweisenden
Sensorstrukturen (3, 3') und einem stirnseitigen, X-Anschläge aufweisenden Federsystem (4'), dadurch gekennzeichnet, daß das Federsystem (4') aus mindestens zwei im Querschnitt geschlossenen Federelementen (4) besteht.
Beschleunigungssensor nach Anspruch 1, dadurch gekennzeichnet, daß das Federelement (4) aus zumindest zwei mit Abstand zueinander angeordneten Schenkeln (6) besteht, die in sich einen geschlossenen, ringförmigen oder kastenförmigen Rahmen bilden.
3. Beschleunigungssensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß innerhalb des Federelements (4) ein oder mehrere in X-Richtung wirkende X-Anschläge vorgesehen sind. Beschleunigungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen einem Abstand a des Anschlags (2) der Schenkel (6) eines Federelements (4) und dem Abstand e der Potentialflächen (7) folgender Zusammenhang gilt:
a <
5. Beschleunigungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Federelement (4) anschlagfrei ausgebildet ist oder die Schenkel (6) Anschläge bilden.
6. Beschleunigungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen einem Abstand b der Schenkel (6) eines Federelements (4) und dem Abstand e der Potentialflächen (7) folgender Zusammenhang gilt:
b < Beschleunigungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die X-Anschläge (2) im Querschnitt keilförmig ausgebildet sind oder eine Fase in Y-Richtung aufweisen.
Beschleunigungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Anschläge (2, 2') aus zwei mit Abstand zueinander angeordneten, parallel verlaufenden, an der Innenfläche der Federelemente (4) angeordneten Stegen bestehen.
Beschleunigungssensor nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein jedes Federelement (4) aus einem in sich geschlossenen, kreisförmigen, ovalförmigen oder kastenförmigen Rahmen besteht, der im Querschnitt ebenfalls kreisförmig, ovalförmig oder kastenförmig ausgebildet ist.
PCT/DE2001/002754 2000-08-09 2001-07-20 Beschleunigungssensor WO2002012905A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000138761 DE10038761A1 (de) 2000-08-09 2000-08-09 Beschleunigungssensor
DE10038761.6 2000-08-09

Publications (1)

Publication Number Publication Date
WO2002012905A1 true WO2002012905A1 (de) 2002-02-14

Family

ID=7651779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/002754 WO2002012905A1 (de) 2000-08-09 2001-07-20 Beschleunigungssensor

Country Status (2)

Country Link
DE (1) DE10038761A1 (de)
WO (1) WO2002012905A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084303A1 (de) * 2001-04-12 2002-10-24 Robert Bosch Gmbh Vorrichtung zur messung einer beschleunigung und/oder einer drehrate
WO2005059569A2 (en) * 2003-12-15 2005-06-30 Honeywell International Inc. Internally shock caged serpentine flexure for micro-machined accelerometer
CN104297523A (zh) * 2013-07-17 2015-01-21 精工爱普生株式会社 功能元件、电子设备及移动体

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7036374B2 (en) * 2002-01-25 2006-05-02 William Thomas Pike Micro-machined suspension plate with integral proof mass for use in a seismometer or other device
GB2440352B (en) * 2006-07-25 2008-10-15 Schlumberger Holdings Flexural disc fiber optic sensor and method of forming same
DE102009026476A1 (de) 2009-05-26 2010-12-02 Robert Bosch Gmbh Mikromechanische Struktur

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542295A (en) * 1994-12-01 1996-08-06 Analog Devices, Inc. Apparatus to minimize stiction in micromachined structures
DE19817357A1 (de) * 1998-04-18 1999-10-21 Bosch Gmbh Robert Mikromechanisches Bauelement
US6065341A (en) * 1998-02-18 2000-05-23 Denso Corporation Semiconductor physical quantity sensor with stopper portion

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5542295A (en) * 1994-12-01 1996-08-06 Analog Devices, Inc. Apparatus to minimize stiction in micromachined structures
US6065341A (en) * 1998-02-18 2000-05-23 Denso Corporation Semiconductor physical quantity sensor with stopper portion
DE19817357A1 (de) * 1998-04-18 1999-10-21 Bosch Gmbh Robert Mikromechanisches Bauelement

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002084303A1 (de) * 2001-04-12 2002-10-24 Robert Bosch Gmbh Vorrichtung zur messung einer beschleunigung und/oder einer drehrate
WO2005059569A2 (en) * 2003-12-15 2005-06-30 Honeywell International Inc. Internally shock caged serpentine flexure for micro-machined accelerometer
WO2005059569A3 (en) * 2003-12-15 2005-10-13 Honeywell Int Inc Internally shock caged serpentine flexure for micro-machined accelerometer
US7013730B2 (en) 2003-12-15 2006-03-21 Honeywell International, Inc. Internally shock caged serpentine flexure for micro-machined accelerometer
US7024933B2 (en) 2003-12-15 2006-04-11 Honeywell International, Inc. Internally shock caged serpentine flexure for micro-machined accelerometer
CN104297523A (zh) * 2013-07-17 2015-01-21 精工爱普生株式会社 功能元件、电子设备及移动体

Also Published As

Publication number Publication date
DE10038761A1 (de) 2002-02-21

Similar Documents

Publication Publication Date Title
DE19930779B4 (de) Mikromechanisches Bauelement
DE19817357B4 (de) Mikromechanisches Bauelement
EP1379884B1 (de) Sensor
DE102007047592B4 (de) Beschleunigungssensor
EP2394177B1 (de) Beschleunigungssensor und verfahren zum betreiben eines beschleunigungssensors
DE102008041327B4 (de) Dreiachsiger Beschleunigungssensor
EP2102666A1 (de) Beschleunigungssensor mit kammelektroden
DE102009029248A1 (de) Mikromechanisches System zum Erfassen einer Beschleunigung
DE102008040855A1 (de) Dreiachsiger Beschleunigungssensor
WO2008071479A2 (de) Mikromechanischer z-sensor
DE102008001863A1 (de) Beschleunigungssensor mit umgreifender seismischer Masse
DE10225714A1 (de) Mehrachsiger monolithischer Beschleunigungssensor
DE102011076008B4 (de) Kraftaufnehmer, insbesondere Wägezelle
DE19520004A1 (de) Beschleunigungssensor
DE4126100A1 (de) Mikromechanischer drehbeschleunigungssensor
EP1451043A1 (de) Sensoranordnung
WO2002012905A1 (de) Beschleunigungssensor
EP1529217B1 (de) Mikromechanisches bauelement
DE102020211922A1 (de) Mikromechanische Struktur und mikromechanischer Sensor
DE10350536B3 (de) Verfahren zur Verringerung des Einflusses des Substratpotentials auf das Ausgangssignal eines mikromechanischen Sensors
DE102008054553B4 (de) Beschleunigungssensor
WO1998011443A1 (de) Sensor zur kapazitiven aufnahme einer beschleunigung
EP2331974A1 (de) Sensor und verfahren zur herstellung eines sensors
DE102005021282A1 (de) Fußgängerschutzvorrichtung mit integriertem Sensor
WO2007017324A1 (de) Mikromechanisches bauelement mit anschlag

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP