WO2002012577A1 - Method for reducing the oxygen and oxide content in cobalt to procuce cobalt sputtering targets - Google Patents

Method for reducing the oxygen and oxide content in cobalt to procuce cobalt sputtering targets Download PDF

Info

Publication number
WO2002012577A1
WO2002012577A1 PCT/US2001/024396 US0124396W WO0212577A1 WO 2002012577 A1 WO2002012577 A1 WO 2002012577A1 US 0124396 W US0124396 W US 0124396W WO 0212577 A1 WO0212577 A1 WO 0212577A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
oxygen
recited
oxygen content
content
Prior art date
Application number
PCT/US2001/024396
Other languages
English (en)
French (fr)
Inventor
Hao Zhang
Original Assignee
Tosoh Smd, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Smd, Inc. filed Critical Tosoh Smd, Inc.
Priority to US10/343,286 priority Critical patent/US6827759B2/en
Priority to KR10-2003-7001516A priority patent/KR20030019645A/ko
Priority to EP01963786A priority patent/EP1307600A4/de
Publication of WO2002012577A1 publication Critical patent/WO2002012577A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/06Refining
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/053Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/058Alloys based on nickel or cobalt based on nickel with chromium without Mo and W
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Definitions

  • the present invention relates to a method for reducing the oxygen content and oxide inclusion content in cobalt to produce a low-oxygen cobalt sputter target having a low oxide inclusion content, and to the sputter target assemblies made therefrom.
  • Cathodic sputtering is widely used for depositing thin layers, or films, of materials from sputter targets onto desired substrates.
  • a cathode assembly including the sputter target is placed together with an anode in a chamber filled with an inert gas, preferably argon.
  • the desired substrate is positioned in the chamber near the anode with a receiving surface oriented normally to a path between the cathode assembly and the anode.
  • a high voltage electric field is applied across the cathode assembly and the anode.
  • Electrons ejected from the cathode assembly ionize the inert gas.
  • the electrical field then propels positively charged ions of the inert gas against a sputtering surface of the sputter target. Material dislodged from the sputter target by the ion bombardment traverses the chamber and deposits to form the thin layer, or film, on the receiving surface of the substrate.
  • cobalt (Co) sputter targets sputter deposition of cobalt thin films is a crucial step in forming thin and uniform cobalt suicide films.
  • a typical CoSi 2 salicide (a self-aligned suicide) process involves sputter deposition of Co thin films on silicon wafers, followed by rapid thermal processing (RTP) to form CoSi at intermediate temperatures, and sequentially to form CoSi 2 at elevated temperatures.
  • RTP rapid thermal processing
  • cobalt suicides have low resistivity, excellent chemical stability, inertness to nitrogen and low formation temperature and are considered an alternative to TiSi 2 for use as a contact in ultra-large scale integration (ULSi).
  • Cobalt ingots from which cobalt targets typically are made, contain a certain amount of oxide inclusions such as cobalt oxides, cobalt-titanium oxides, etc. These oxide inclusions, or metal defects, cause arcing during sputtering deposition and create metal particles on the substrate (i.e. silicon wafers) onto which the cobalt is sputtered thereby significantly reducing the yields of the cobalt metallization.
  • oxide inclusions such as cobalt oxides, cobalt-titanium oxides, etc.
  • wppm weight parts per million
  • the present invention provides a method to reduce the oxygen content and the oxide inclusion content in cobalt to produce a low-oxygen cobalt sputter target having a low oxide inclusion content, and to the sputter target assemblies produced therefrom.
  • the method for reducing the oxygen content and the oxide inclusion content in cobalt are separate processes which may be combined in successive order to produce a low-oxygen cobalt sputter target having a low oxide inclusion content.
  • the reduction in oxygen content preferably is performed prior to reducing the oxide inclusion content. Accordingly, the artisan will appreciate that one process can be performed without the other depending upon whether a reduction in oxygen or oxide inclusions is preferred in a desired cobalt sputter target.
  • Reducing the oxygen content and oxide inclusion content in cobalt to produce low- oxygen cobalt sputter targets having low oxide inclusion contents reduces the arcing and the metal defects found with conventional high-oxygen cobalt sputter targets during sputtering.
  • the method for reducing the oxygen content in cobalt to produce a low-oxygen cobalt sputter target includes the steps of providing cobalt (eg. electrolytic deposit cobalt melting stock).
  • the cobalt stock can be either low (eg. 3N5) or high-purity cobalt (eg. 4N5, 5N5, and 6N).
  • a degassing agent, preferably carbon, more preferably carbon graphite powder, is mixed with the cobalt wherein the carbon, preferably, is present in an amount of 50-150 wppm of the mixture. The mixture is heated and degassed.
  • the heating occurs above the melting point of the cobalt, preferably about 50 to 400 degrees F above the melting point, to form a melted cobalt mixture wherein the carbon and initial oxygen content react to produce a second lower oxygen content. Without the addition of the carbon, the oxygen content would increase.
  • the solidified cobalt now is suitable for shaping into a desired sputter target or is ready for oxide inclusion reduction.
  • the oxide inclusion reduction method involves reducing oxide inclusions at a certain oxygen level, preferably no greater than 1000 wppm, by using certain fabrication and heat treatment steps. These steps include first providing cobalt having an initial oxide inclusion content, an initial oxygen content, and defining a first thickness.
  • the cobalt can be either low (eg. 3N5) or high-purity cobalt (eg. 4N5, 5N5, and 6N). Accordingly, the cobalt may comprise the solidified cobalt from the oxygen reduction method.
  • the cobalt is heated at a temperature below its melting point, preferably at about 2000 degrees F.
  • the cobalt then is hot pressed such that the pressure reduces the first thickness to form a hot pressed cobalt defining a second thickness.
  • the hot pressed cobalt then is heated at a temperature below the melting point thereof, preferably at about 1800 degrees F.
  • the cobalt is hot rolled such that the rolling further reduces the second thickness to form a hot rolled cobalt defining a third thickness.
  • the oxide inclusions are broken into extremely small particles. These particles then dissociate to cobalt and oxygen.
  • the dissociated oxygen is dissolved by cobalt. Accordingly, the hot rolled cobalt contains a second oxide inclusion content lower than the initial oxide inclusion content. The rolled cobalt now is suitable for shaping into a desired sputter target.
  • one object of the invention is to provide a method for reducing the oxygen content and the oxide inclusion content in cobalt to produce low-oxygen cobalt sputter targets having low oxide inclusion contents.
  • Another object of the invention is to reduce the arcing and metal defects associated with high-oxygen cobalt sputter targets during sputtering.
  • Another object of the invention is to produce a sputter target assembly having a low-oxygen cobalt sputter target with a low oxide inclusion content.
  • Fig. 1 is a graph showing arc counts during cobalt sputtering as a function of oxygen content in cobalt targets
  • Fig. 2 is a graph showing the resultant oxygen and carbon contents in cobalt ingots as a function of added carbon powder
  • the present invention relates to producing cobalt having a low- oxygen and a low oxide inclusion content for use as a sputter target thereby reducing the arcing and metal defects during sputtering commonly associated with high- oxygen cobalt sputter targets.
  • the method for reducing the oxygen content and the oxide inclusion content in cobalt are separate processes which may be combined in successive order to produce a low-oxygen cobalt sputter target having a low oxide inclusion content.
  • the reduction in oxygen content method preferably is performed prior to reducing the oxide inclusion content. Accordingly, the artisan will appreciate that one process may be performed without the other depending upon whether a reduction in oxygen or oxide inclusions is preferred.
  • the method for reducing the oxygen content in cobalt to produce a low-oxygen cobalt sputter target includes the first step of providing cobalt (eg. electrolytic deposit cobalt melting stock).
  • cobalt eg. electrolytic deposit cobalt melting stock.
  • the cobalt stock can be either low (eg.
  • High-purity cobalt eg. 4N5, 5N5, and 6N
  • Low-purity cobalt stock can be purchased from Falcon Bridge, a Norwegian company, and the high-purity stock can be purchased from Japan Metals Chemicals (JMC) located in Japan.
  • JMC Japan Metals Chemicals
  • a degassing agent preferably carbon, more preferably carbon powder
  • a high-purity carbon powder is most preferred to avoid contamination by impurities.
  • One such type of high-purity carbon powder is HP 6N graphite powder which can be purchased from Alfa located in the USA.
  • the mixing can be performed in a crucible, preferably made of zirconium oxide, wherein the carbon is present in a preferred amount of 50-150 wppm of the mixture, more preferably 50-100 wppm.
  • the mixture is placed into a furnace and heated and degassed.
  • the degassing is performed via vacuum with the vacuum having a pressure of about 5 x 10 -5 to 1 x 10 -4 Torr.
  • the heating occurs above the melting point of the cobalt, preferably about 50 to 400 degrees F above the melting point, for about Vz hour to form a melted cobalt mixture wherein the carbon and initial oxygen content react to produce a second lower oxygen content.
  • the oxygen in the molten cobalt reacts with the carbon particles to form CO 2 and CO gasses, which then become gas bubbles and eventually release from the molten cobalt into the vacuum chamber. Adding carbon significantly decreases the oxygen content. Accordingly, the resultant oxygen and carbon contents strongly depend on how much carbon is used.
  • the oxygen content would increase considerably.
  • the temperature in the furnace is reduced to about 50 degrees F above the melting point of the cobalt after the initial Vz hour. Then the melted cobalt mixture is poured into a mold while still under vacuum. The temperature of the mold is held below the melting point of the cobalt so that the cobalt can solidify. The melted mixture then cools in the mold for about 2 hours to produce a solidified cobalt having the lower oxygen content.
  • Fig. 2 shows the resultant oxygen and carbon contents as a function of added carbon.
  • the oxygen content varies from 170 to 410 wppm when there is no degassing agent (i.e. carbon) added.
  • the resultant oxygen content in the cobalt ranges from 5 to 30 wppm, and the resultant carbon content in the cobalt ranges from less than 10 to 25 wpm.
  • the amount of added carbon is > 150 wppm, there is too much remaining carbon in the cobalt material.
  • the high level of remaining carbon also can cause problems during sputtering. Therefore, the optimum carbon addition is from 50 to 150 wppm.
  • the solidified cobalt now is suitable for shaping into a desired sputter target or is ready for oxide inclusion reduction.
  • this method involves reducing oxide inclusions at a certain oxygen level, preferably no greater than 1000 wppm, by using certain fabrication and heat treatment steps. These steps include providing cobalt having an initial oxide inclusion content, an initial oxygen content, and defining a first thickness.
  • the cobalt can be either low (eg. 3N5) or high-purity cobalt (eg. 4N5, 5N5, and 6N) and may comprise the solidified cobalt produced from the above oxygen reduction method.
  • the oxide inclusion content typically is measured using optical metallography and scanning electron microscope/energy dispersion spectrum (SEM/EDS).
  • the cobalt is heated at a temperature below its melting point, preferably at about 2000 degrees F for about 2 hours.
  • the cobalt then is hot pressed such that the pressure reduces the first thickness, preferably by about 50%, in about 1 minute to form a hot pressed cobalt defining a second thickness.
  • the hot pressed cobalt then is heated at a temperature below the melting point thereof, preferably at about 1800 degrees F for about 1 hour.
  • the cobalt is hot rolled in a roller at room temperature such that the rolling further reduces the second thickness, preferably by about 60-70%, to form a hot rolled cobalt defining a third thickness. Accordingly, at such temperatures and at the stress provided by the press and roller, the oxide inclusions are broken into extremely small particles. These particles then dissociate to cobalt and oxygen. Finally, the dissociated oxygen is dissolved by cobalt. Accordingly, the hot rolled cobalt contains a second oxide inclusion content lower than the initial oxide inclusion content. Notably, after fabrication, the oxide inclusions significantly decrease, if not disappear altogether. The rolled cobalt now is suitable for shaping into a desired sputter target.
  • the low-oxygen and low oxide inclusion cobalt produced by the above processes are used as cobalt sputter targets to reduce the arcing and metal defects during sputtering deposition commonly associated with high-oxygen cobalt targets.
  • These low-oxygen targets having low oxide inclusions are best used with metallic backing plates comprising copper, aluminum, and alloys thereof.
  • the invention thereby is capable of producing sputtering targets comprising Co having less than about 170 wppm of oxygen therein.
  • the targets include less than 100 wppm oxygen with amounts of less than 50 wppm oxygen being most preferred. (All pp calculations are based upon the total weight of the target).
  • the cobalt/degassing agent admixture that is used in the disclosed process to form lowered oxide inclusion amounts is a Co/C admixture wherein C is present in an amount of about 1-150 wppm based on the weight of the admixture, preferably in an amount of about 50-150 wppm and most preferably about 50 - 100 wppm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
PCT/US2001/024396 2000-08-03 2001-08-03 Method for reducing the oxygen and oxide content in cobalt to procuce cobalt sputtering targets WO2002012577A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/343,286 US6827759B2 (en) 2001-08-03 2001-08-03 Method for reducing the oxygen and oxide content in cobalt to produce cobalt sputtering targets
KR10-2003-7001516A KR20030019645A (ko) 2000-08-03 2001-08-03 코발트 스퍼터링 타깃을 생성하기 위해 코발트 중의 산소및 산화물 함량을 감소시키는 방법
EP01963786A EP1307600A4 (de) 2000-08-03 2001-08-03 Verfahren zur reduktion von sauerstoff- und oxidgehalt in kobaltzur herstellung von kobalt-sputteringtargets

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US22279500P 2000-08-03 2000-08-03
US60/222,795 2000-08-03

Publications (1)

Publication Number Publication Date
WO2002012577A1 true WO2002012577A1 (en) 2002-02-14

Family

ID=22833707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/024396 WO2002012577A1 (en) 2000-08-03 2001-08-03 Method for reducing the oxygen and oxide content in cobalt to procuce cobalt sputtering targets

Country Status (3)

Country Link
EP (1) EP1307600A4 (de)
KR (1) KR20030019645A (de)
WO (1) WO2002012577A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818119B2 (en) 2000-06-30 2004-11-16 Honeywell International Inc. Method for processing metals

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5810983A (en) * 1995-03-14 1998-09-22 Japan Energy Corporation High purity cobalt sputtering targets
US6123783A (en) * 1997-02-06 2000-09-26 Heraeus, Inc. Magnetic data-storage targets and methods for preparation
US6129900A (en) * 1991-02-15 2000-10-10 Sumitomo Electric Industries, Ltd. Process for the synthesis of diamond
US20010001438A1 (en) * 1997-08-26 2001-05-24 Robert S. Cole Et Al High purity cobalt sputter target and process of manufacturing the same
US6251337B1 (en) * 1999-09-13 2001-06-26 Acton Materials, Inc. Apparatus and method for treating a particulate material within a rotating retort

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1288189A (de) * 1971-03-29 1972-09-06
JPH07252565A (ja) * 1994-03-14 1995-10-03 Mitsubishi Steel Mfg Co Ltd 磁気記録媒体用コバルト基合金およびその製造方法
JP3360033B2 (ja) * 1998-10-22 2002-12-24 日新製鋼株式会社 シャドウマスク用Fe−Ni合金及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129900A (en) * 1991-02-15 2000-10-10 Sumitomo Electric Industries, Ltd. Process for the synthesis of diamond
US5810983A (en) * 1995-03-14 1998-09-22 Japan Energy Corporation High purity cobalt sputtering targets
US6123783A (en) * 1997-02-06 2000-09-26 Heraeus, Inc. Magnetic data-storage targets and methods for preparation
US20010001438A1 (en) * 1997-08-26 2001-05-24 Robert S. Cole Et Al High purity cobalt sputter target and process of manufacturing the same
US6251337B1 (en) * 1999-09-13 2001-06-26 Acton Materials, Inc. Apparatus and method for treating a particulate material within a rotating retort

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1307600A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6818119B2 (en) 2000-06-30 2004-11-16 Honeywell International Inc. Method for processing metals
US6843896B2 (en) 2000-06-30 2005-01-18 Honeywell International Inc. Apparatus for processing metals

Also Published As

Publication number Publication date
KR20030019645A (ko) 2003-03-06
EP1307600A1 (de) 2003-05-07
EP1307600A4 (de) 2007-01-24

Similar Documents

Publication Publication Date Title
EP1585844B1 (de) Pulvermetallurgisch gefertigtes sputtertarget und herstellungsverfahren dafür
US6139701A (en) Copper target for sputter deposition
US10557195B2 (en) Sputtering target and/or coil, and process for producing same
KR100499173B1 (ko) 낮은 투자율을 갖는 코발트 스퍼터 타깃을 제조하는 방법
EP2837710B1 (de) Verfahren zur herstellung eines hochreinen kupfer-mangan-legierungs-sputtertarget
US20160254128A1 (en) Sputtering target and process for producing it
US20130233706A1 (en) Al-based alloy sputtering target and production method of same
JP4415303B2 (ja) 薄膜形成用スパッタリングターゲット
US7138350B2 (en) MgO vapor deposition material and method for preparation thereof
EP3339469A1 (de) Ti-ta-legierungssputtertarget und herstellungsverfahren dafür
US6827759B2 (en) Method for reducing the oxygen and oxide content in cobalt to produce cobalt sputtering targets
WO2002012577A1 (en) Method for reducing the oxygen and oxide content in cobalt to procuce cobalt sputtering targets
JP3701553B2 (ja) 蒸着用Ti−V合金製ターゲット材およびその製法
JPH07320608A (ja) 接点材料の製造方法
JPH1161392A (ja) Ru薄膜形成用スパッタリングターゲットの製造方法
JP2004137580A (ja) イリジウムスパッタリングターゲットの製造方法及びその方法で得られたターゲット
EP1091015A1 (de) SPUTTERTARGET AUS Co-Ti-LEGIERUNG UND VERFAHREN ZU DESSEN HERSTELLUNG
TW202419652A (zh) 含碳金屬靶材的製造方法
JP2003226958A (ja) MgO蒸着材およびその製造方法
JP2003226959A (ja) MgO蒸着材およびその製造方法
JP2000256841A (ja) スパッタリングターゲット、配線膜および電子部品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10343286

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020037001516

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001963786

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020037001516

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001963786

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP