WO2002011814A1 - Soupape avec cylindre et piston pour un respirateur - Google Patents

Soupape avec cylindre et piston pour un respirateur Download PDF

Info

Publication number
WO2002011814A1
WO2002011814A1 PCT/TR2001/000035 TR0100035W WO0211814A1 WO 2002011814 A1 WO2002011814 A1 WO 2002011814A1 TR 0100035 W TR0100035 W TR 0100035W WO 0211814 A1 WO0211814 A1 WO 0211814A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspiration
piston
hole
expiration
gas
Prior art date
Application number
PCT/TR2001/000035
Other languages
German (de)
English (en)
Inventor
Mustafa ÖZBEK
Original Assignee
Oezbek Mustafa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oezbek Mustafa filed Critical Oezbek Mustafa
Priority to AU2001276810A priority Critical patent/AU2001276810A1/en
Publication of WO2002011814A1 publication Critical patent/WO2002011814A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B9/00Component parts for respiratory or breathing apparatus
    • A62B9/02Valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/204Proportional used for inhalation control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • A61M16/205Proportional used for exhalation control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0856Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in more than one plane perpendicular to the axis of the plug

Definitions

  • a downsized valve can be an important part of making a downsized ventilator.
  • the dead space during ventilation can be very small.
  • the corresponding parts of the ventilator e.g. B. the valve, as close as possible to the patient, human or animal.
  • the invented valve for respirator can be downsized with little technical effort, so that this valve for respirator can be connected very close to the patient's airway.
  • small variations of this valve make it possible to change the temporal course of the gas flow curve that arises during artificial inspiration and expiration.
  • the relationship between the duration of inspiration and expiration has the following known meaning: In ventilation, a sufficiently long expiration time should be preferred compared to the duration of inspiration. If this is not the case, positive end-expiratory lung pressure can occur - for this reason, greater pressure must be generated in the lungs during inspiration in order to supply sufficient gas volume to the lungs - there is a risk of overpressure, overexpansion and damage to the lungs. This danger, which depends on a fixed and unsuitable ratio between the inspiration and expiration times, exists when ventilating with the miniature ventilator from Greenberg, patent no. US4437461. Furthermore, according to the description by Greenberg (US4437461), the relationship between the inspiration and expiration times cannot be set.
  • FIG. 1 shows an exemplary piston for the valve and the piston rod.
  • 2 and 3 show two transverse cross sections of the valve in different planes.
  • 4-8 show longitudinal cross sections of the valve in different positions of the piston.
  • the degrees of rotation of the piston in the representations are: 0 ° for FIGS. 2-4, approx. -40 ° for FIG. 5, approx. -60 ° for FIG. 6, approx. -140 ° for the FIGS. 7 and approx. -240 ° for FIG. 8.
  • the cross sections in FIGS. 2-4 show an unchanged piston position of the valve.
  • the piston (1) of the valve is embedded in the cylinder bore (2); this piston (1) is rotated about the axis.
  • the piston (1) has three surfaces (5, 6, 7).
  • the second surface (7) fits into the cylinder bore (2). But the first and third surfaces (5, 6) do not fit in the cylinder bore (2).
  • the input space (3) and the output space (4) are separated from each other by the piston (1).
  • the piston (1) is connected to the piston rod (8) which is cylindrical.
  • One cylinder cover (9) delimits the entrance space (3), the other cylinder cover (10) on the rod side delimits the exit space (4).
  • the piston rod (8) goes through the cylinder cover (10). The permanent rotation of the piston (1) can be guaranteed with a motor.
  • the cylinder housing (11) has four access holes (12, 13, 14, 15). These holes are called gas inlet holes (12), inspiration holes (13), expiration holes (14) and gas outlet holes (15).
  • the gas inlet hole (12) is always open to the inlet chamber (3), and the gas outlet hole (15) to the outlet chamber (4).
  • the gas outlet hole (15) is also open to the atmosphere.
  • the inspiration hole (13) to the entrance space (3) is open or closed; the second surface (7) of the piston (1) can close the inspiration hole (13); A corresponding position of the piston (1) causes the first surface (5) to open the inspiration hole (13).
  • the expiration hole (14) to the exit space (4) is open or closed; the second surface (7) can also close the expiration hole (14); the third surface (6) causes the expiration hole (14) to open during the rotation of the piston (1).
  • the inspiration hole (13) and expiration hole (14) are connected to two arms of a T-piece (16).
  • the third arm of the T-piece (16) is connected to the patient's airway (17).
  • the expiration hole (14) and the inspiration hole (13) are closed. This ensures that there is no short circuit due to the T-piece (16) located between the inspiration and expiration holes (13, 14).
  • the inspiration hole (13) is open while the expiration hole (14) is still closed.
  • the gas pressure in the entrance space (3) creates a gas flow that flows through the inspiration hole (13) and the T-piece (16) into the lungs.
  • FIG. 8 The position of the piston (1), which is shown in FIG. 8, differs from the position of the piston (1) in FIG. 4. However, FIG. 8 also represents an expiration phase and FIG. 4 In this phase, the gas can flow from the lungs through the exit space (4) and through the gas exit hole (15) into the atmosphere.
  • the respiration number in a certain time depends on the angular velocity of the piston (1).
  • a 360 ° rotation of the piston (1) is called a full rotation.
  • the duration for a "full rotation” is a "period” and "1 / the period” is the frequency of respiration.
  • the number of rotations of the piston (1) per unit of time can be varied.
  • the positions of the boundary lines (18, 19, 20, 21) of the surfaces (5, 6, 7) in FIGS. 1-3 have the following functional meanings: As long as the angular velocity of this rotating piston (1) remains constant, the rotation time is from the boundary line 20 to 21 is longer than the rotation period from the boundary line 18 to 19 - because the circular arc between the boundary lines 20 and 21 is longer than the circular arc between the boundary lines 18 and 19. Thus the duration in which the expiration hole (14) is open remains longer than the duration in which the inspiration hole (13) is open. This means that the duration for the expiration is longer than the duration for the artificial inspiration, as long as the angular velocity of the piston (1) remains constant.
  • 1-8 show an exemplary piston (1); the ratio between the duration of inspiration and expiration is approximately “1: 2.5” (see FIGS. 1-3)
  • the length of the circular arc between the boundary lines (18, 19) of the first surface (5) can be different in order to vary the duration of inspiration.
  • the length of the circular arc between the boundary lines (20, 21) of the third surface (6) can also be constructed differently in order to vary the duration of the expiration.
  • the relationship between the duration of artificial inspiration and the duration of expiration can be changed by changing the angular velocity of the piston (1) accordingly within a period.
  • the above-mentioned ratio can be increased or decreased. e.g. if the rotation speed within the inspiration is faster, the inspiration time becomes even shorter than in comparison to the expiration time in which the rotation speed is relatively slow.
  • This manipulation requires regulation of the speed of rotation of the motor.
  • the size of the gas flow that flows into the lungs depends on the gas pressure that prevails in the entrance space (3). It is clear that no large pressure values can be desired in the entrance room (3) so that there is no risk of overpressure in the lungs. Overextension occurs; provided there is a suitable relationship between the duration of inspiration and expiration. In addition, this size of the gas flow depends on the shape of the entrance space (3); the shape and the rotation-dependent position of the first surface (5) of the piston (1) play a particularly important role here; the first surface (5) can be constructed concave, convex, wave-like or flat, etc., as desired, in order to change the resistance to the current of inspiration. In parallel, the course of the curve of the inspiration flow is manipulated.
  • the duration of the artificial inspiration is determined by the length of the circular arc (Fig. 1, 2) between the boundary lines (18, 19).
  • the shape of the third surface (6) can also be concave, convex, undulating, or flat, etc., if desired, in order to manipulate the time course of the curve of the expiratory flow.
  • the expiration time is determined by the length of the circular arc (Fig. 1, 3) between the boundary lines (20, 21).
  • the volume of gas entering the lungs depends on the shape of the first surface (5) and the duration of inspiration.
  • the volume of gas flowing into the atmosphere depends on the shape of the third surface (6) and on the duration of the expiration.

Abstract

Soupape qui possède un alésage (2) dans lequel tourne un piston (1). Ce piston (1) possède trois surfaces (5, 6, 7). Le boîtier (11) de cylindre possède quatre orifices (12, 13, 14, 15) de passage de gaz. L'orifice d'inspiration (13), l'orifice d'expiration (14) et les voies respiratoires (17) du patient sont raccordées aux bras d'une pièce en T (16). La deuxième surface (7) du piston (1) épouse la forme de l'alésage (2) du cylindre, tandis que la première surface (5) et la troisième surface (6) n'épousent pas la forme de l'alésage (2). Selon la position du piston rotatif (1), l'orifice d'inspiration (13) et / ou l'orifice d'expiration (14) sont fermés par la deuxième surface (7). En cas de vitesse angulaire constante du piston (1), la durée d'ouverture de l'orifice d'expiration (14) est plus longue que la durée d'ouverture de l'orifice d'inspiration (13). Mais les durées d'inspiration et d'expiration peuvent être réglées en fonction de la structure du piston (1). Dans l'alésage (2) du cylindre sont formées deux chambres (3, 4) séparées l'une de l'autre : la chambre d'entrée (3) et la chambre de sortie (4). Une source de gaz d'inspiration est raccordée à la chambre d'entrée (13) par l'intermédiaire de l'orifice d'entrée de gaz (12). Lorsque l'orifice d'inspiration (13) est ouvert, la pression au sein de la chambre d'entrée (3) provoque un flux d'inspiration artificiel. Lorsque l'orifice d'expiration (14) est ouvert, le gaz peut être évacué des poumons par la chambre de sortie (4) et s'échapper dans l'atmosphère par l'orifice de sortie de gaz (15).
PCT/TR2001/000035 2000-08-09 2001-08-01 Soupape avec cylindre et piston pour un respirateur WO2002011814A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001276810A AU2001276810A1 (en) 2000-08-09 2001-08-01 Valve with a cylinder and a piston, for a respirator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TR2000/02340A TR200002340A2 (tr) 2000-08-09 2000-08-09 Respiratör için silindir ve pistonlu valf.
TR2000/02340 2000-08-09

Publications (1)

Publication Number Publication Date
WO2002011814A1 true WO2002011814A1 (fr) 2002-02-14

Family

ID=21622637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2001/000035 WO2002011814A1 (fr) 2000-08-09 2001-08-01 Soupape avec cylindre et piston pour un respirateur

Country Status (3)

Country Link
AU (1) AU2001276810A1 (fr)
TR (1) TR200002340A2 (fr)
WO (1) WO2002011814A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845451A1 (fr) * 2002-10-03 2004-04-09 Air Liquide Vanne de regulation de debit a la demande a double entree

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1247784B (de) * 1962-03-12 1967-08-17 Raymond Jacques Schlumpf Drehschieber
US4171697A (en) * 1976-10-29 1979-10-23 Arion Henri G Respirator
US4437461A (en) 1982-04-16 1984-03-20 Greenberg Mitchell H Valve respirator device
EP0240059A1 (fr) * 1986-03-19 1987-10-07 Van der Helm, Hermanus Cornelis Soupape rotative de décharge de pression
EP0884507A1 (fr) * 1997-06-12 1998-12-16 AB Markaryds Metallarmatur Soupape à voies multiples

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1247784B (de) * 1962-03-12 1967-08-17 Raymond Jacques Schlumpf Drehschieber
US4171697A (en) * 1976-10-29 1979-10-23 Arion Henri G Respirator
US4437461A (en) 1982-04-16 1984-03-20 Greenberg Mitchell H Valve respirator device
EP0240059A1 (fr) * 1986-03-19 1987-10-07 Van der Helm, Hermanus Cornelis Soupape rotative de décharge de pression
EP0884507A1 (fr) * 1997-06-12 1998-12-16 AB Markaryds Metallarmatur Soupape à voies multiples

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845451A1 (fr) * 2002-10-03 2004-04-09 Air Liquide Vanne de regulation de debit a la demande a double entree
WO2004031631A2 (fr) * 2002-10-03 2004-04-15 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claud Vanne de regulation de debit
WO2004031631A3 (fr) * 2002-10-03 2004-06-17 Air Liquide Vanne de regulation de debit
US7637280B2 (en) 2002-10-03 2009-12-29 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes George Claude Dual-inlet selective flow regulating valve

Also Published As

Publication number Publication date
AU2001276810A1 (en) 2002-02-18
TR200002340A3 (tr) 2001-02-21
TR200002340A2 (tr) 2001-02-21

Similar Documents

Publication Publication Date Title
DE69333268T2 (de) Schaltkreis zur Erkennung der Ein/Ausatmungsphase eines Atemzyklusses
DE10126807C2 (de) Inhalationstherapiegerät mit einem Ventil zur Begrenzung des Inspirationsflusses
EP1960025B1 (fr) Systeme de conduits flexibles pour appareils respiratoires
DE69917527T2 (de) Durchflussmengen-Regelventil, insbesondere für begaste Flüssigkeiten
DE69924399T2 (de) Trainingsvorrichtung mit veränderlicher belastung für die atemmuskeln
DE4204159A1 (de) Wiederbelebungsgeraet mit einem die stroemungsrichtung kontrollierenden ventil mit einem inneren "peep"-justierventil
DE2314356A1 (de) Beatmungsgeraet
DE3822950C2 (fr)
EP1025874A1 (fr) Valve de trachéotomie
DE202007019350U1 (de) Systeme zum Absenken des Ausatmungsdrucks in einem Maskensystem
DE2318007A1 (de) Apparat zur klimatisierung der luft in einem raum
DE2745309A1 (de) Beatmungsgeraet
DE2915683A1 (de) Ausatmungsventil fuer ein atmungsgeraet oder ein sonstiges zum wiederbelebungsgebrauch passendes geraet
DE10046872B4 (de) Atmungsunterstützungsvorrichtung
DE2541303B2 (de) Handbetätigter Lungenventilationsapparat mit einer selbst ausweitenden Blase
DE69834941T2 (de) Sprechventilanordnung
DE2647343A1 (de) Direkt wirkendes beatmungsgeraet
DE2111241A1 (de) Atmungsgeraet mit einer Atmungsmaske
DD159396A1 (de) Ventil fuer atmungsgeraete
DE2647378A1 (de) Steuerung eines direkt wirkenden beatmungsgeraets
DE202005008359U1 (de) Tracheostomarohr mit Ventileinrichtung
WO2002011814A1 (fr) Soupape avec cylindre et piston pour un respirateur
EP0385250A2 (fr) Procédé et dispositif pour l'administration de gaz de respiration
DE2458017A1 (de) Ventil fuer atmungsgeraete
DE867439C (de) Wiederbelebungsgeraet

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP