WO2002010715A1 - Procede pour tester la resistance d'un corps solide a l'alternance gel-degel et/ou gel-sel de degel - Google Patents
Procede pour tester la resistance d'un corps solide a l'alternance gel-degel et/ou gel-sel de degel Download PDFInfo
- Publication number
- WO2002010715A1 WO2002010715A1 PCT/EP2001/008587 EP0108587W WO0210715A1 WO 2002010715 A1 WO2002010715 A1 WO 2002010715A1 EP 0108587 W EP0108587 W EP 0108587W WO 0210715 A1 WO0210715 A1 WO 0210715A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frost
- thaw
- solid
- moisture content
- dew
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 238000012360 testing method Methods 0.000 title claims abstract description 36
- 239000007787 solid Substances 0.000 title claims abstract description 35
- 150000003839 salts Chemical class 0.000 title claims abstract description 11
- 239000011148 porous material Substances 0.000 claims abstract description 19
- 230000001143 conditioned effect Effects 0.000 claims abstract description 5
- 238000010521 absorption reaction Methods 0.000 claims description 13
- 230000002596 correlated effect Effects 0.000 claims description 5
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 239000000463 material Substances 0.000 abstract description 12
- 238000005259 measurement Methods 0.000 abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 238000010998 test method Methods 0.000 description 6
- 230000000875 corresponding effect Effects 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 238000007710 freezing Methods 0.000 description 3
- 230000008014 freezing Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000012085 test solution Substances 0.000 description 3
- 238000010257 thawing Methods 0.000 description 3
- 239000004568 cement Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003912 environmental pollution Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 206010021113 Hypothermia Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002631 hypothermal effect Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N17/00—Investigating resistance of materials to the weather, to corrosion, or to light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/38—Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
- G01N33/383—Concrete or cement
Definitions
- the invention relates to a method for testing the frost-thaw resistance and / or the frost-thaw salt resistance of a solid, wherein a solid to be tested is conditioned for the subsequent frost-thaw load and the conditioned solid of a cyclic frost-thaw - Exposure is exposed.
- Such methods are known from DE 3928130 C2 and DE 19626111 Cl from the applicant.
- the resistance test of porous solids has so far comprised two process steps: 1. the simulation of the external attack corresponding to the environmental pollution;
- the damage When determining the damage, two types of damage can be distinguished: a) the external damage; it is determined by the maintenance. An example is described in DE 3928130 C2 and is defined in the literature as a CDF test (Capillary Suction of Deicing Chemicals and Freeze Thaw Test); and b) internal damage; it manifests itself in various physical material properties, such as a decrease in strength or elastic modulus or change in length and similar physical quantities.
- the internal damage can be determined using the method according to DE 19626111 Cl or the CIF test based thereon.
- the present invention is intended to supplement and expand known methods of the type mentioned at the outset and, in the course of the frost-thaw resistance or frost-thaw salt resistance test, convey additional knowledge about essential material properties.
- the construction materials in particular the ceramic-mineral materials, such as concrete, brick, natural stone or the like, are porous.
- the degree of saturation and the pore size distribution play a decisive role in resistance to frost-thaw attack. It is known that in the so-called gel pores, which are characterized by a diameter below about 100 Nm, the freezing point is lowered by surface forces, and the smaller the pore becomes, the more so. This lowering of the freezing point can reach up to -60 ° C. With a corresponding pore size distribution, considerable amounts of unfrozen water remain in this gel pore area even below -20 ° C.
- a cyclical frost-thaw change which is characteristic of practically all test methods, does not simulate a fatigue fracture, as has been previously postulated in the literature, but is the prerequisite for the micro-ice lens pump to draw a quantity of water into the test specimen that is well above goes beyond the degree of saturation. If a critical degree of saturation is reached in this way, a few freeze-thaw cycles are sufficient to sustainably damage the material.
- This model concept is applied by the invention to known test methods with cyclic freeze-thaw loads.
- the invention is characterized in that the moisture content and / or the change in moisture content of the solid to be tested is determined as a function of the alternating frost-thaw load.
- the determination of the moisture absorption supplements the known test methods of the type mentioned at the beginning and provides clearly reproducible results both with regard to the tightness of the material, the suction power of the micro ice lens pump and the size of the pore space.
- the moisture content is corrected by the mass which has weathered in the course of the alternating frost-thaw load.
- the moisture absorption can therefore be determined precisely.
- Several measurements with the repeated frost-thaw load also make it possible to determine the speed of moisture absorption and thus statements about the tightness of the material and the suction power of the micro ice lenses.
- the moisture content determined is preferably correlated to the damage to the solid body that has occurred.
- the moisture content determined is preferably correlated to the internal damage to the solid.
- a preferred embodiment of the invention is characterized in that a damage curve is recorded and a kink point of the damage curve is determined as a function of the duration of the frost-thaw load and that the kink point is used as a measure of the technologically free pore space of the solid.
- Fig. 2a shows the change in the relative dynamic modulus of elasticity corresponding to the internal damage, i.e. CIF test as a function of the test time (only for the freeze-thaw load); 2b the moisture absorption also over the test time; Fig. 2c, the change in the dynamic modulus of elasticity as a function of moisture absorption and the diagram of FIG. 2b with reversed coordinates.
- 1 illustrates the sequence of an example of the method according to the invention in the course of testing the frost-thaw resistance or the frost-thaw salt resistance of solid bodies.
- the known CDF process (DE 3928130 C2) or CIF process (DE 19626111 Cl) is used as a starting point; the additional method steps (Nl, N2) can, however, also be transferred to other known test methods in the same way.
- FIG. 1A The pretreatment of the test specimen is illustrated in FIG. 1A. After drying at 20 ° C and 60% RH the test solution reaches the specimen at 20 ° C isothermally by capillary suction. In this stage of the process, the absorption of the test solution or the moisture content can already be determined - optional and in addition to the actual frost-thaw resistance measurement.
- the test specimen is exposed to a cyclic freeze-thaw load (cooling from + 20 ° C to - 20 ° C with - 10 K / h; maintaining the temperature at - 20 ° C for three hours; heating to + 20 ° C with 10 K / h; hold at + 20 ° C for one hour).
- the weathering is determined after predetermined frost-thaw load changes (FIG. 1 B).
- First loosely adhering parts are loosened in the ultrasonic bath.
- the weathered material is filtered off, dried and weighed.
- the internal damage to the test specimen is determined in the CIF test (FIG. 1D) by the ultrasound transit time (or by measuring the change in length or by measuring the natural frequency or another method).
- the change in the dynamic modulus of elasticity is calculated and used as a damage criterion. Parts released in this process are collected and assigned to the next measurement.
- the method step according to the invention is integrated into this known method of carrying out frost-thaw agent testing, as is shown schematically in the outline square in FIG. 1.
- the change in mass is determined as a result of taking up test solution during the freeze-thaw alternating load (Nl in Fig.l).
- the change in mass is corrected by the weathered mass.
- the measurement of the internal damage is therefore combined in the example of the invention described with the measurement of the weathering in order to determine the corrected mass change as an additional measured value.
- FIG. 2 shows characteristic curves for an evaluation in the combined CDF / CIF test.
- the test specimens are dried at 20 ° C and 60% relative humidity (r.L.) and rewetted by isothermal capillary suction for seven days (Fig. 1A). This period is shown on the time axis as a negative value. The value zero therefore corresponds to the start of the freeze-thaw alternating load, which takes place with two cycles per day in the process described here.
- 2a shows in this method the change in the dynamic modulus of elasticity corresponding to the internal damage, recorded by the CIF test as a function of the test time (only for the freeze-thaw load).
- 2b also shows the moisture uptake over the test time. It can clearly be seen that, as a result of the alternating frost-thaw load, considerable additional moisture absorption takes place.
- the change in the dynamic modulus of elasticity as a function of moisture absorption can also be plotted from the data according to FIGS. 2a and 2b. This is shown in Fig. 2c.
- the moisture absorption is plotted on the abscissa and the change in modulus of elasticity on the ordinate.
- the curve according to FIG. 2b was recorded as a comparison curve in FIG. 2c, but with reversed coordinates, the moisture uptake being plotted along the abscissa and the time along the ordinate.
- the dynamic modulus of elasticity drops rapidly from a certain moisture content. This means that the damage progresses rapidly from the associated kink point in the moisture content. Up to this moisture content only the Micro ice lens pump and saturates the solid (e.g. made of concrete) without significant damage.
- the diagram according to FIG. 2c provides information about the following physical quantities:
- the moisture content at which the test specimen begins to damage (this characterizes the pore space which is still filled with air even after isothermal capillary suction and can serve as an escape space for ice formation).
- the invention shows new ways of testing solids, in particular concrete solids in the event of freeze-thaw alternating loads, which in particular allow conclusions to be drawn about the pore size and pore distribution and the internal damage to the test body. This also enables an improved and application-related selection of additives and thus a more reliable manufacture of the solid body even before the described method for testing the frost-thaw resistance or frost-thaw salt resistance of solid bodies is carried out.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Ecology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Environmental Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Ceramic Engineering (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001282021A AU2001282021A1 (en) | 2000-08-02 | 2001-07-25 | Method for testing the frost- dew resistance and/or frost - dew salt resistance on a solid body |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2000138047 DE10038047A1 (de) | 2000-08-02 | 2000-08-02 | Verfahren zum Prüfen des Frost-Tau-Widerstands und/oder des Frost-Tausalz-Widerstands eines Festkörpers |
DE10038047.6 | 2000-08-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002010715A1 true WO2002010715A1 (fr) | 2002-02-07 |
Family
ID=7651308
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2001/008587 WO2002010715A1 (fr) | 2000-08-02 | 2001-07-25 | Procede pour tester la resistance d'un corps solide a l'alternance gel-degel et/ou gel-sel de degel |
Country Status (3)
Country | Link |
---|---|
AU (1) | AU2001282021A1 (fr) |
DE (1) | DE10038047A1 (fr) |
WO (1) | WO2002010715A1 (fr) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013075584A1 (fr) * | 2011-11-23 | 2013-05-30 | 山东高速青岛公路有限公司 | Procédé pour surveillance en ligne en temps réel d'endommagement de gel-dégel de béton |
CN103293091A (zh) * | 2013-05-21 | 2013-09-11 | 青海省交通科学研究所 | 一种盐富集环境下水泥混凝土自然腐蚀特性的试验方法 |
CZ304120B6 (cs) * | 2011-12-20 | 2013-11-06 | Prírodovedecká fakulta Univerzity Karlovy v Praze | Zpusob identifikace regelacních cyklu |
JP2017161235A (ja) * | 2016-03-07 | 2017-09-14 | 太平洋セメント株式会社 | インターロッキングブロックの凍結融解試験方法 |
CN108709980A (zh) * | 2018-07-03 | 2018-10-26 | 三峡大学 | 一种混凝土室内快速冻融循环与自然冻融循环关系的确定方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113933188B (zh) * | 2021-10-14 | 2023-07-07 | 北京建筑大学 | 建筑垃圾再生骨料沥青混凝土冻融疲劳性能的试验方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3928130A1 (de) * | 1989-08-25 | 1991-02-28 | Max Prof Dr Rer Nat Dr Setzer | Verfahren zur pruefung des widerstands von werkstoffen oder bauteilen gegen den kombinierten angriff von frost-tau-wechsel und waessriger loesung |
JPH0674884A (ja) * | 1992-08-26 | 1994-03-18 | Sekisui House Ltd | 外装建材試験方法及び試験装置 |
-
2000
- 2000-08-02 DE DE2000138047 patent/DE10038047A1/de not_active Withdrawn
-
2001
- 2001-07-25 WO PCT/EP2001/008587 patent/WO2002010715A1/fr active Application Filing
- 2001-07-25 AU AU2001282021A patent/AU2001282021A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3928130A1 (de) * | 1989-08-25 | 1991-02-28 | Max Prof Dr Rer Nat Dr Setzer | Verfahren zur pruefung des widerstands von werkstoffen oder bauteilen gegen den kombinierten angriff von frost-tau-wechsel und waessriger loesung |
JPH0674884A (ja) * | 1992-08-26 | 1994-03-18 | Sekisui House Ltd | 外装建材試験方法及び試験装置 |
Non-Patent Citations (7)
Title |
---|
BETON, no. 7, 2000, pages 396 * |
DATABASE FACHWISSEN BAU [online] Verlag Bau + Technik; AUBERG, RAINER: "Zuverlässige Prüfung des Frost- und Frost-Tausalz-Widerstands von Beton mit dem CDF- und CIF-Test", XP002184950, retrieved from HTTP://WWW.VERLAGBT.DE/ * |
MITTEILUNGEN AUS DEM INSTITUT FUER BAUPHYSIK UND MATERIALWISSENSCHAFT, vol. 6, February 1999 (1999-02-01), ISBN: 3-8265-4716-0 * |
PATENT ABSTRACTS OF JAPAN vol. 018, no. 315 (P - 1755) 15 June 1994 (1994-06-15) * |
R. AUBERG, S. PALECKI, M.J. SETZER: "Zerstörungsfreie Prüfung der inneren Schädigung von Beton durch Frostangriff", DEUTSCHE GESELLSCHAFT FÜR ZERSTÖRUNGSFREIE PRÜFUNG, FACHTAGUNG BAUWERKSDIAGNOSE - PRAKTISCHE ANWENDUNGEN ZERSTÖRUNGSFREIER PRÜFUNGEN, DGZFP-BERICHTSBAND 66 CD, PLAKAT 31, 21 January 1999 (1999-01-21) - 22 January 1999 (1999-01-22), Neue Messe München, pages 365 - 371, XP002184948, Retrieved from the Internet <URL:http://www.dgzfp.de/doc/Berichtsbaende/BB_66-CD/bb66_p31.pdf> [retrieved on 20011206] * |
SETZER ET AL., MINUTES OF RILEM TC-IDC, 25 June 1998 (1998-06-25) - 26 June 1998 (1998-06-26), Tromso, Norway, XP002184949, Retrieved from the Internet <URL:http://ntbkup.ibpmw.uni-essen.de/tcidc/dateien/Meeting2.htm> [retrieved on 20011206] * |
SETZER M J ET AL: "CIF-TEST - PRUEFVERFAHREN DES FROSTWIDERSTANDS VON BETON CAPILLARY SUCTION - INTERNAL DAMAGE AND FREEZE THAW TEST", BETONWERK + FERTIGTEIL TECHNIK, BAUVERLAG GMBH. WIESBADEN, DE, vol. 64, no. 4, April 1998 (1998-04-01), pages 94 - 105, XP001026055, ISSN: 0373-4331 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013075584A1 (fr) * | 2011-11-23 | 2013-05-30 | 山东高速青岛公路有限公司 | Procédé pour surveillance en ligne en temps réel d'endommagement de gel-dégel de béton |
US9465022B2 (en) | 2011-11-23 | 2016-10-11 | Tsinghua University | Method for real-time on-line monitoring of concrete freeze-thaw damage |
CZ304120B6 (cs) * | 2011-12-20 | 2013-11-06 | Prírodovedecká fakulta Univerzity Karlovy v Praze | Zpusob identifikace regelacních cyklu |
CN103293091A (zh) * | 2013-05-21 | 2013-09-11 | 青海省交通科学研究所 | 一种盐富集环境下水泥混凝土自然腐蚀特性的试验方法 |
JP2017161235A (ja) * | 2016-03-07 | 2017-09-14 | 太平洋セメント株式会社 | インターロッキングブロックの凍結融解試験方法 |
CN108709980A (zh) * | 2018-07-03 | 2018-10-26 | 三峡大学 | 一种混凝土室内快速冻融循环与自然冻融循环关系的确定方法 |
Also Published As
Publication number | Publication date |
---|---|
AU2001282021A1 (en) | 2002-02-13 |
DE10038047A1 (de) | 2002-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0907884B1 (fr) | Procede d'essai de la resistance aux cycles gel-degel de solides | |
Pezo et al. | Prediction models of resilient modulus for nongranular materials | |
Bonicelli et al. | Laboratory analysis for investigating the impact of compaction on the properties of pervious concrete mixtures for road pavements | |
Heinzen et al. | Factors influencing dispersive clays and methods of identification | |
WO2002010715A1 (fr) | Procede pour tester la resistance d'un corps solide a l'alternance gel-degel et/ou gel-sel de degel | |
DE4219034A1 (de) | Verbesserung der Frost-Tausalz-Beständigkeit von Betonkonstruktionen | |
Jones et al. | Internal curing of high performance concrete using lightweight aggregates and other techniques. | |
Sauer et al. | Deformation of lime modified clay after freeze-thaw | |
Razouki | Long–term soaking effect on strength and deformation characteristics of a gypsiferous subgrade soil | |
DE69004960T2 (de) | Verfahren und gerät zur messung vor ort der quellcharakteristik von böden. | |
EP1273902A2 (fr) | Dispositif et procédé pour mesurer la perméabilité au gaz d'un matériau de construction | |
DE102010017468B4 (de) | Kontinuierliche Dehnungsmessung bei Prüfung des Einflusses der Alkali-Kieselsäure-Reaktion auf Gefügeveränderungen in Betonen | |
DE102008032629A1 (de) | Vorrichtung und Verfahren für die Überwachung und Online-Steuerung von kathodischen Korrosionsschutzanlagen | |
DE3409453A1 (de) | Verfahren zur zerstoerungsfreien bestimmung des feuchtigkeitsgehalts von koerpern aus festen, poroesen materialien | |
O'Connor et al. | Microcharacteristics of chemically stabilized granular materials | |
DE19948882A1 (de) | Verfahren zur Prüfung des Frost-Tau-Widerstands von Festkörpern | |
DE102010017466A1 (de) | Messverfahren der Alkali-Kieselsäure-Reaktion in Betonen mittels kontinuierlicher Schallemmisionsanalyse und Ultraschallmessung | |
DE10328471B4 (de) | Verfahren zur Ermittlung anhand von Gefrierproben der in situ vor dem Gefrierprozess vorliegenden Kennzahlen Dichte, Wassergehalt, Luftporenanteil und Sättigungszahl von wassergesättigten Bereichen kohäsionsloser Böden | |
DE102021134241B4 (de) | Verfahren zur Herstellung eines Lockergesteinsprobekörpers und statisches Triaxialgerät | |
DE69705801T2 (de) | Verfahren zur Oberflächenbehandlung und bei dem Verfahren verwendbare Messmethode | |
DE19919352C1 (de) | Verfahren zur Messung des Drucksetzungsverhaltens eines vorzugsweise kohäsionslosen Lockergesteins | |
Agustian et al. | Undrained cyclic shear behaviour of reconstituted scoria deposit | |
Gräf et al. | Influence of water cement ratio and curing on the permeability and structure of hardened cement paste and concrete | |
Delfosse-Ribay et al. | Comparison of creep behaviour and fatigue behaviour of grouted sand | |
DE19519275A1 (de) | Meßverfahren zur Ermittlung der Beständigkeit von Ziegeln und anderen porösen Baumaterialien gegen Frost-Tauwechsel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |