WO2002008118A1 - Production d'hydrogene a partir d'aluminium, d'eau et d'hydroxyde de sodium - Google Patents
Production d'hydrogene a partir d'aluminium, d'eau et d'hydroxyde de sodium Download PDFInfo
- Publication number
- WO2002008118A1 WO2002008118A1 PCT/CA2001/001021 CA0101021W WO0208118A1 WO 2002008118 A1 WO2002008118 A1 WO 2002008118A1 CA 0101021 W CA0101021 W CA 0101021W WO 0208118 A1 WO0208118 A1 WO 0208118A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- aluminum
- catalyst
- hydrogen gas
- reaction
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 98
- 229910001868 water Inorganic materials 0.000 title claims abstract description 98
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 94
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 82
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title description 38
- 239000001257 hydrogen Substances 0.000 title description 31
- 229910052739 hydrogen Inorganic materials 0.000 title description 31
- 239000000446 fuel Substances 0.000 claims abstract description 64
- 238000006243 chemical reaction Methods 0.000 claims abstract description 58
- 238000000034 method Methods 0.000 claims abstract description 42
- 230000008569 process Effects 0.000 claims abstract description 32
- 239000003054 catalyst Substances 0.000 claims abstract description 22
- 239000007789 gas Substances 0.000 claims description 46
- 230000007246 mechanism Effects 0.000 claims description 21
- 239000002699 waste material Substances 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 9
- 239000011888 foil Substances 0.000 claims description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 3
- 238000011049 filling Methods 0.000 claims description 2
- 238000007654 immersion Methods 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 15
- 238000002474 experimental method Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000008188 pellet Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 6
- 238000005338 heat storage Methods 0.000 description 6
- 239000011777 magnesium Substances 0.000 description 6
- 229910052749 magnesium Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000010411 cooking Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000010893 paper waste Substances 0.000 description 3
- 229910001388 sodium aluminate Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000005555 metalworking Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000009736 wetting Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 206010015137 Eructation Diseases 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229940024548 aluminum oxide Drugs 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000010791 domestic waste Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000003517 fume Substances 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000004868 gas analysis Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229910000103 lithium hydride Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000003923 scrap metal Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002915 spent fuel radioactive waste Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000002916 wood waste Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/0006—Controlling or regulating processes
- B01J19/002—Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J16/00—Chemical processes in general for reacting liquids with non- particulate solids, e.g. sheet material; Apparatus specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J7/00—Apparatus for generating gases
- B01J7/02—Apparatus for generating gases by wet methods
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/08—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents with metals
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01F—COMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
- C01F7/00—Compounds of aluminium
- C01F7/02—Aluminium oxide; Aluminium hydroxide; Aluminates
- C01F7/42—Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation
- C01F7/428—Preparation of aluminium oxide or hydroxide from metallic aluminium, e.g. by oxidation by oxidation in an aqueous solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00051—Controlling the temperature
- B01J2219/00054—Controlling or regulating the heat exchange system
- B01J2219/00056—Controlling or regulating the heat exchange system involving measured parameters
- B01J2219/00065—Pressure measurement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00162—Controlling or regulating processes controlling the pressure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00193—Sensing a parameter
- B01J2219/00195—Sensing a parameter of the reaction system
- B01J2219/002—Sensing a parameter of the reaction system inside the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00211—Control algorithm comparing a sensed parameter with a pre-set value
- B01J2219/00218—Dynamically variable (in-line) parameter values
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00191—Control algorithm
- B01J2219/00222—Control algorithm taking actions
- B01J2219/00227—Control algorithm taking actions modifying the operating conditions
- B01J2219/00229—Control algorithm taking actions modifying the operating conditions of the reaction system
- B01J2219/00234—Control algorithm taking actions modifying the operating conditions of the reaction system inside the reactor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00049—Controlling or regulating processes
- B01J2219/00245—Avoiding undesirable reactions or side-effects
- B01J2219/0027—Pressure relief
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Definitions
- This invention relates to the production of hydrogen gas from aluminum, water, and sodium hydroxide as catalyst, and to an apparatus for carrying out the method.
- compositions for generating hydrogen comprise any metal which can form an hydroxide when it is brought into contact with a solution of a suitable hydroxide.
- a suitable hydroxide For example, aluminum is reacted with sodium hydroxide to release hydrogen and produce sodium aluminate.
- the preferred magnesium composition comprises magnesium, and one or more metals selected from the group consisting of iron, zinc, chromium, aluminum and manganese.
- the device has a reaction chamber containing a fuel composition that is reactive with water.
- the fuel composition includes a main fuel part of magnesium and aluminum in a molar ratio of 1 :2, and the second part is composed of lithium hydride, magnesium and aluminum in equal molar ratio.
- the process for producing hydrogen gas according to the present invention consists of reacting aluminum with water in the presence of sodium hydroxide as a catalyst. This process is advantageous for being carried out at room temperature and for producing large quantities of heat and hydrogen gas at high purity.
- a process for producing heat, light and hydrogen gas comprises the steps of providing an expandable receptacle; partly filling the expandable receptacle with water and introducing an aluminum element and a catalyst in the water.
- the process also comprises the steps of partly sealing the expandable receptacle and reacting the aluminum element with the water. Then, the expandable receptacle is expanded and contracted in response to more or less pressure therein, and by the same action, the fuel element is emerged out or immersed into the water.
- This method is advantageous for providing the ability to control the intensity of the reaction between the water and the aluminum element in response to the pressure generated inside the expandable receptacle by the reaction.
- the aluminum element comprises a coiled strip of aluminum having several layers set vertically in the water.
- the hydrogen gas raising to the top ofthe water causes a partial vacuum between the layers of the coiled strip, to absorb more water through the bottom of the coiled strip, thereby promoting an effective wetting ofthe aluminum element.
- an apparatus for producing heat, light and hydrogen gas comprising essentially an expandable receptacle having an upper end, a central portion and a fuel element suspended to the upper end and inside the central portion.
- the apparatus also has means for raising and lowering the fuel element in the central portion in response to more or less pressure inside the expandable receptacle, respectively.
- the apparatus according to the present invention uses the pressure and temperature of a reaction occurring between a fuel element and the water contained therein to control the degree of immersion of a fuel element in the water and consequently to control the intensity and duration ofthe reaction between the fuel element and the water.
- the apparatus comprises a timer mechanism and latch means responsive to the timer mechanism for timely raising the fuel element out ofthe water contained in the receptacle.
- the processes and apparatus according to the present invention are practical and safe for use by the general public to generate heat, light and hydrogen gas in power outage situations for example, or in remote locations where electricity is not available. Furthermore, the method and apparatus according to the present invention use aluminum waste readily available in domestic garbage and metal working shops, to promote recycling and energy conservation.
- a process for producing alumina comprising the step of reacting aluminum with water in the presence of a catalyst wherein the catalyst is sodium hydroxide.
- This process is advantageous for extracting available energy from a reaction between aluminum waste and water, and for simultaneously producing a basic material which can be reused for manufacturing new aluminum.
- FIG. 1 is a side view of the preferred energy production apparatus, also referred to herein as the hydrogen generator;
- FIG. 2 is a cross-section view of the energy production apparatus illustrating a mode of operation thereof when the fuel cartridge is entirely immersed in water;
- FIG. 3 is another cross-section view of the energy production apparatus with the fuel cartridge in a raised position when pressure inside the apparatus force the bellows ofthe apparatus to expand;
- FIG. 4 illustrates yet another cross-section view ofthe energy production apparatus with the timer mechanism in an unlatched mode causing a spring to pull the cartridge out ofthe water;
- FIG.5 is a schematic diagram ofthe preferred gas handling manifold and a burner plate mounted on the energy production apparatus
- FIG. 6 is a side view of the upper fuel support portion of the energy production apparatus
- FIG. 7 illustrates a side view of a preferred burner plate and an optional heat storage device for use with the energy production apparatus
- FIG. 8 is a top view of the preferred timer mechanism for use with the energy production apparatus
- FIG. 9 is a partial cross-section view through the timer mechanism along line 9-9 in FIG. 8.;
- FIG. 10 illustrates a first arrangement for a fuel cartridge for use with the energy production apparatus;
- FIG. 11 illustrates a second arrangement for a fuel unit for use with the energy production apparatus
- FIG. 12 illustrates one form for the fuel pellet for use with the energy production apparatus
- FIG. 13 illustrates a third arrangement for a fuel unit for use with the energy production apparatus.
- FIG. 14 illustrates a graph of temperature over time for a typical hydrogen gas production reaction.
- the production of hydrogen gas according to the present invention is obtained by a reaction of aluminum with water in the presence of sodium hydroxide (NaOH) as a catalyst.
- the reaction produces a large amount of heat and hydrogen gas.
- the catalyst is mixed with tap water in a proportion of about 225 g. per liter of water.
- the sodium hydroxide content of the catalytic solution is preferably about 18% by weight.
- the catalyst is not chemically consumed in the process.
- the aluminum used in the reaction comprises aluminum foil, electrical wire, beverage cans and other similar aluminum waste.
- the intensity ofthe reaction depends upon the surface of contact between the aluminum and water.
- Aluminum foil for example reacts faster than a heavy gauge aluminum wire, and aluminum in a powdered form reacts instantly to produce hydrogen gas.
- the volume of water displaced by the gas produced was measured and corrected to a gas volume at standard temperature and pressure (STP). Atmospheric pressure on that day was obtained from a local weather office. The corrected volume of gas produced was compared to the theoretical quantity of hydrogen gas, which would be obtained according to the equation,
- Table 2 shows that the purity of the hydrogen collected in the second sample was 98%. This is close to what was theoretically expected. The lower 92% concentration observed in the first sample was probably due to the fact the system was not completely purged with hydrogen before the sample was taken. By the time the second sample was taken, most of the air had been purged from the tube and the reaction bottle.
- reaction bottle was placed in a water bath before the aluminum was added to the water, and the hydrogen produced was bubbled through the bath water.
- the temperature of the bath and the catalytic solution were measured before and after the reaction, and at about four minutes after the reaction was completed.
- the water equivalent of the plastic containers for absorbing heat and their specific heat were determined experimentally by adding a known quantity of hot water to the reaction system at room temperature and then calculating the heat transfer based on the final temperature.
- FIGS. 1 and 2 an energy production apparatus according to the preferred embodiment of the present invention is illustrated therein.
- the energy production apparatus also referred to herein as the hydrogen generator 20 is illustrated in these figures in its entirety.
- the hydrogen generator 20 uses water and aluminum particles as fuel, and sodium hydroxide (NaOH) as a catalyst and a surface conditioner to reduce the formation of oxide layers on the aluminum particles.
- the sodium hydroxide may be mixed or otherwise closely associated with the aluminum particles in a sufficient amount to ensure complete reaction of the aluminum particles with water in an energy production period. Further discussion on the incorporation of sodium hydroxide with the aluminum particles will be provided later, especially when making reference to FIGS.
- the hydrogen generator 20 comprises firstly a receptacle 22 having a first closable fill opening 24, a sight glass 26 for monitoring the level of water therein, and a second closable larger opening 28 in a central upper region thereof.
- the receptacle 22 also preferably has a cleanout bung 30 through its bottom surface to facilitate the periodic removal ofthe reaction byproducts such as alumina.
- the receptacle 22 is filled with water 32, to a level of between half and three-quarter of its capacity.
- a fuel cartridge 34 hanging from a vertical tube 36 is immersed into the water 32 for causing a chemical reaction to occur with the water, and for producing heat and hydrogen gas.
- the fuel cartridge 34 is supported in a perforated basket 38 affixed to the vertical tube 36.
- the vertical tube 36 is connected to a gas handling manifold 40 mounted above the receptacle 22, and has a series of holes 42 therein for admitting the hydrogen gas into the gas handling manifold 40.
- An annular cap 44 is also provided for mounting over the upper central opening 28 of the receptable.
- Several clasps 46 are provided around the annular cap 44 for securing the annular cap 44 in a sealing manner to the upper central opening 28.
- the upper central opening 28 has a dimension to accommodate the insertion of the fuel cartridge 34 and the basket 38 inside the receptacle 22.
- the clasps 46 may be replaced by other closure means for quickly and easily removing the annular cap 44, for replacing a spent fuel cartridge for example.
- a bellows 48 having an interior region communicating with the receptacle 22 such that the expansion and retraction ofthe bellows are relative to the pressure inside the receptable.
- a timer mechanism 50 Atop the bellows 48, there is provided a timer mechanism 50, the operation of which will be described later.
- the gas handling manifold 40 is affixed to the upper portion ofthe vertical tube 36 above the timer mechanism 50.
- the annular cap 44, the bellows 48, the timer mechanism 50 and the gas handling manifold 40 define with the receptable 22 a closable space for containing and controlling the hydrogen gas being generated inside the receptacle 22.
- a burner plate 60 is mounted over the gas handling manifold 40.
- the gas handling manifold 40 has conduit means communicating with the burner plate 60.
- a series of orifices are provided in the burner plate 60 to allow the burning of hydrogen gas for cooking food for example in a similar manner as is known of gas stoves.
- the illustrations show a side view of the burner plate 60 it will be appreciated that the burner plate 60 is preferably a circular plate similar to those mounted on common gas stoves.
- the gas handling manifold 40 also has a selector valve 62 and a gas outlet fitting 64 communicating with the selector valve 62.
- the selector valve 62 is operable for selectively directing the hydrogen gas to the burner plate 60 or to the outlet fitting 64.
- the appliance may have a water filter 72 thereon if needed or a check valve 74 to prevent any backflow of gas into the receptacle 22 at the end of an energy production period.
- a typical energy production period is known to have a heating phase 'A' during which the temperature inside the receptacle 22 rises; an active phase 'B' during which the temperature inside the receptacle 22 is preferably kept at around 85° C, and a cooling phase 'C during which the reaction gradually stops.
- a heating phase 'A' during which the temperature inside the receptacle 22 rises
- an active phase 'B' during which the temperature inside the receptacle 22 is preferably kept at around 85° C
- a cooling phase 'C during which the reaction gradually stops.
- the heating phase 'A' can be shortened by introducing a fuel pellet 80 inside the receptacle 22, through the fill opening 24.
- the fuel pellet 80 preferably contains very fine aluminum particles such as saw dust and filings for examples, compressed with waste paper bits that are impregnated with sodium hydroxide in a dry form.
- the small aluminum particles of the pellet 80 are known to be highly reactive with water to generate a burst of heat which causes the water temperature to approach the ideal temperature 'T' quickly, and to accelerate a reaction ofthe water with the larger fuel cartridge 34.
- Another fuel pellet 80 may also be introduced in the receptacle during the cooling phase 'C to prolong the duration of an energy production period.
- a fuel cartridge 34 having a volume of about one liter, that is about 500 ml of aluminum and about 500 ml of paper filler material impregnated with sodium hydroxide in a dry form, immersed in 10 liters of water is believed to be sufficient for producing heat and maintaining a reaction for about two hours, in which the active phase is about one hour, and the heating and cooling phases are about one-half hour each. It is believed that the amount of hydrogen gas produced during the active phase 'B' is sufficient for cooking food on the burner plate 60.
- FIG. 3 the operation of the bellows 48 is illustrated therein. When the reaction enters its active phase, the heat and pressure generated inside the receptacle 22 rise. The increase in pressure inside the receptacle 22 causes the bellows 48 to expand upward as illustrated in FIG. 3.
- the expansion of the bellows 34 causes the fuel cartridge 34 to be lifted toward an upper region ofthe receptacle 22, and by the same doing, causes the water level to fall in the receptacle 22.
- the contact surface between water and the fuel cartridge 34 is thereby greatly reduced.
- the reaction is slowed down and the pressure and temperature inside the receptacle 22 are consequently also reduced.
- the bellows 48 collapses to re-immerse the fuel cartridge 34 and to resume the active reaction phase.
- the energy production apparatus 20 Given the structure ofthe energy production apparatus 20 according to the preferred embodiment, it is believed possible to calibrate the characteristics ofthe bellows 48 for use with a specific size of receptacle 22 and a specific size of fuel cartridge 34, to precisely control the pressure and temperature of a reaction, such that the apparatus 20 will be practical and safe for use by the general public.
- the timer mechanism 50 is provided for further improving the safety ofthe hydrogen generator 20.
- the timer mechanism 50 is used for lifting the fuel cartridge 34 above the water 32 after a set time period, even when the bellows 48 remains in a collapsed mode.
- the reaction inside the receptacle 22 can thereby be manually stopped or caused to terminate at a set time period by adjusting a knob 90 relative to a dial 92.
- the preferred timer mechanism 50 comprises a coil spring 94 mounted over the vertical tube 36 and an annular spring-abutment plate 96 affixed to the vertical tube 36 above the spring 94 for retaining the vertical tube 36 at a fixed position relative to the upper end ofthe spring 94.
- the spring 94 is set in a cylindrical pocket 98 extending downward through the timer mechanism 50.
- the depth ofthe pocket 98 is sufficient to accommodate the spring 94 in a compressed form when the timer mechanism is in a latched mode.
- a seal 100 is affixed to the bottom portion ofthe pocket 98 around the vertical tube 36, for allowing a sliding movement of the vertical tube 36 through the timer mechanism 50, under the action ofthe spring 94, and for preventing hydrogen gas from leaking out ofthe bellows 48.
- One or more latch tabs 102 are movably connected to the timer mechanism 50 and are linked to the operation of the selector knob 90. When the burner plate 60 is pushed down to immerse the fuel cartridge 34 in water, the latch tabs 102 engage with the annular spring-abutment plate 96 to keep the spring 94 in a compressed state inside the cylindrical pocket 98.
- the linkages, the clockwork and other components mounted inside the timer mechanism 50 have not been illustrated herein for being common to those knowledgeable in latches and locks.
- the clockwork is a mechanical device not requiring electric power.
- the latched tabs 102 are in a latching position when the timer knob 90 is set at any time value, and are in an unlatching position when the knob 90 is set at or reaches zero (0) time on the dial 92.
- the gas handling manifold 40 comprises a first set of conduits 110 extending from the vertical tube 36 to the selector valve 62, to a pressure relief valve 112, and to a flow control valve 114; a second set of conduits 116 extending from the selector valve 62 to the burner plate 60; and a third conduit 118 extending from the selector valve 62 to the outlet fitting 64.
- the burner plate 60 has a plurality of gas orifices 120 therein, and each gas orifice is preferably surrounded by one or more air inj ection holes 122 to admit oxygen around the gas orifice 120 during the burning of hydrogen gas.
- a minimum amount of hydrogen gas is always directed to the gas orifices 120 to be burnt.
- the burning of this minimum amount of gas provides a visual indication ofthe operation of the apparatus 20, and prevents any accumulation of hydrogen gas in the room in which the apparatus is being used.
- a flow control valve 114 is provided in the gas handling manifold 40, and has a fourth conduit 124 bypassing the selector valve 62. Therefore, when the selector valve 62 is set to direct the hydrogen gas to the outlet fitting 64, a minimum amount of gas is still allowed through the flow control valve 114 and to the gas orifices 120 ofthe burner plate 60.
- the flow control valve 114 is preferably an adjustable type such that it can be opened fully to bypass both the selector valve 62 and the pressure relief valve 112, to obtain a larger flame 126 at the center ofthe burner plate 60 if needed.
- the pressure relief valve 112 is provided to further improve the safety of the apparatus, as will be understood from the following description.
- the pressure relief valve 112 monitors the pressure inside the vertical tube 36 and releases a pressure over an unsafe level, to a whistle 128 which has an outlet opening positioned near one of the gas orifices 120.
- the gas flowing from the whistle 128 may thereby be readily ignited by the flame above that orifice 120, to provide a visual indication of an abnormal operation ofthe apparatus.
- the sound ofthe whistle 128 is yet another sign to alert a user of an over pressure inside the receptacle 22, and to urge that user to set the knob 90 to zero time to cause the timer mechanism 50 to raise the fuel cartridge 34 out ofthe water.
- the burner plate 60 preferably has a pair of handles 130 affixed thereto to manipulate the upper portion of the apparatus 20 when the clasps 46 are released and the basket 38 is lifted out ofthe receptacle 22.
- a gas filter 132 may also be installed over the gas admitting holes 42, for preventing any accumulation of reaction byproducts inside the vertical tube 36.
- the vertical tube 36 may be filled with an appropriate granular filtering medium for example for preventing reaction byproducts from reaching the gas handling manifold 40.
- a pressure gauge 134 may also be provided on the annular cap 44 or at another convenient location allowing a communication with the receptacle 22, for visually monitoring the development of a reaction occurring inside the apparatus.
- the burner plate 60 is shown supporting a heat storage device 140, for storing heat during the operation ofthe apparatus 20.
- the heat storage device 140 is used for prolonging the beneficial effect of an energy production period when the apparatus 20 is used to heat a camp in the wilderness, or a household during a power outage period for example.
- the preferred heat storage device 140 comprises a copper plate 142, supported on legs 144, above the burner plate 60, and a perforated dome- shape enclosure 146 enclosing one or more rocks 148 laid over the upper portion ofthe copper plate 142.
- the heat storage device 140 is removable from the burner plate 60 and is preferably used whenever the burner plate 60 is not used for cooking food.
- the receptacle 22 is preferably made of steel or similar heat conductive material for radiating heat during the entire energy production period.
- the inside diameter ofthe bellows 48 is sufficiently large, 15-25 cm for example, and the spring 94 is calibrated such that the weight of the heat storage device 140 or the weight of a common cooking pot (not shown) which may be set on the burner plate 60 does not significantly affect the operation ofthe bellows 48 or ofthe timer mechanism 50.
- FIGS. 10-13 several arrangements are proposed for preparing the fuel elements required for use in the hydrogen generator 20 according to the preferred embodiment.
- the fuel bundle 34 is preferably prepared by overlaying a thin strip of aluminum 150 over a sheet of embossed paper 152 impregnated with sodium hydroxide in a dry form. The aluminum sheet and the paper layer are coiled together to form a cylindrical shape.
- the preferred cartridge 34 is loosely coiled such that water may be readily absorbed between the layers of the cartridge.
- the advantage of a loosely coiled cartridge 34 is that the water is allowed to seep into the entire cartridge at once to create an intense reaction, and reduce the duration ofthe heating phase 'A' ofthe reaction as illustrated in FIG. 14.
- Another advantage of the cartridge 34 as described above is that when the layers ofthe coil are set vertically, the hydrogen gas generated between the layers rises up and creates a vacuum between the layers at the lower end ofthe cartridge 34 to admit more water from the lower end of the cartridge. This phenomenon is advantageous for wetting the aluminum strip quickly, entirely and continuously.
- the preferred fuel cartridge 34 is packaged in a sealed envelope that has an indication as to its duration, potential heat energy and volume of hydrogen gas to be produced by it.
- FIG. 11 Another preferred fuel unit 160 having a loose content in a bag-like envelope is illustrated in FIG. 11.
- the envelope 162 is water-permeable, and the loose content comprises aluminum turning, aluminum saw dust and filings, aluminum shreds and other aluminum waste particles 164 as normally found in a metal working shop, or as available from scrap metal vendors.
- the waste aluminum is obtained by shredding food or drink containers for example, the waste material is preferably pre-treated to at least partly remove a protective coating on this aluminum material.
- the loose content ofthe fuel unit 160 also comprises waste paper bits 166 impregnated with sodium hydroxide and dried.
- the paper bits 166 are made of waste newsprint or similar recyclable paper waste.
- the paper bits 166 preferably have sizes and quantities similar to the aluminum particles, and are mixed with the aluminum particles 164. The presence of the paper bits 166 prevents the fusion of the aluminum particles 164 together and ensures a continuous absorption of water throughout the loose content of the fuel unit 160.
- the fuel unit 160 is also preferably manufactured and labelled as to indicate its expected energy production period.
- the fuel pellet 80 as illustrated in FIGS. 2 and 12, and as previously described contains very fine aluminum particles such as saw dust and filings for example, to provide a better water contact and a more intense reaction.
- One or two fuel pellets 80 are preferably packaged in a sealed envelope and distributed as reaction accelerators with each fuel cartridge 34, or with each fuel unit 160 sold.
- a third preferred arrangement for a fuel element usable in the apparatus 20 according to the preferred embodiment is illustrated in FIG.
- the fuel measure 170 is preferably comprised of a perforated container 172 filled with aluminum waste 164 and paper bits 166 as previously described.
- the fuel measure 170 described herein is recommended and is preferably used with a nominal quantity of sodium hydroxide 174 set over the fuel measure 170.
- the sodium hydroxide 174 may be compressed into a tablet form as illustrated for easy handling and storage. It may be used in a powder form contained in a water-permeable sachet (not shown), or may be kept in a sealed container and sprinkled generously over the water 32 before introducing the fuel measure 170 into the water 32.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Fuel Cell (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001276204A AU2001276204A1 (en) | 2000-07-20 | 2001-07-13 | Hydrogen production from aluminum water and sodium hydroxide |
EP01953713A EP1301433A1 (fr) | 2000-07-20 | 2001-07-13 | Production d'hydrogene a partir d'aluminium, d'eau et d'hydroxyde de sodium |
IS6671A IS6671A (is) | 2000-07-20 | 2003-01-06 | Framleiðsla vetnis úr áli, vatni og natríumhydroxíði |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA002314403A CA2314403C (fr) | 1999-07-28 | 2000-07-20 | Production d'hydrogene a partir de l'aluminium, eau et hydroxide de sodium en tant que catalyseur |
CA2,314,403 | 2000-07-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002008118A1 true WO2002008118A1 (fr) | 2002-01-31 |
Family
ID=4166761
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2001/001021 WO2002008118A1 (fr) | 2000-07-20 | 2001-07-13 | Production d'hydrogene a partir d'aluminium, d'eau et d'hydroxyde de sodium |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1301433A1 (fr) |
AU (1) | AU2001276204A1 (fr) |
IS (1) | IS6671A (fr) |
WO (1) | WO2002008118A1 (fr) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004052775A1 (fr) * | 2002-12-12 | 2004-06-24 | Erling Reidar Andersen | Procede de production d'hydrogene |
WO2005049485A1 (fr) * | 2003-11-14 | 2005-06-02 | Integrated Fuel Cell Technologies, Inc. | Generateur de gaz a autoregulation et procede associe |
EP1749796A1 (fr) * | 2005-07-25 | 2007-02-07 | Air Products and Chemicals, Inc. | Procédé de production d'hydrogène |
KR100842810B1 (ko) * | 2008-01-04 | 2008-07-01 | 한국과학기술원 | 블록 공중합체와 금속의 산화반응을 이용한 수소의제조방법 |
DE102007028625A1 (de) | 2006-12-26 | 2008-07-03 | Samsung Electro-Mechanics Co., Ltd., Suwon | Brennstoffzelle mit Wasserstoffspeichertank |
US20080318096A1 (en) * | 2007-06-18 | 2008-12-25 | Samsung Electro-Mechanics Co., Ltd. | Hydrogen generating apparatus and fuel cell power generation system |
KR100878401B1 (ko) * | 2006-10-02 | 2009-01-13 | 삼성전기주식회사 | 수소발생장치 및 이를 갖는 연료전지 |
KR100900664B1 (ko) * | 2006-11-22 | 2009-06-01 | 삼성전기주식회사 | 수소발생방법과 장치 및 이를 갖는 연료전지 |
US7803349B1 (en) | 2005-06-08 | 2010-09-28 | University Of Central Florida Research Foundation, Inc. | Method and apparatus for hydrogen production from water |
US20130098250A1 (en) * | 2010-10-18 | 2013-04-25 | Miz Co., Ltd. | Hydrogen adding equipment for living organism applicable fluid |
WO2014062833A1 (fr) * | 2012-10-16 | 2014-04-24 | Helton Bill W | Catalyseurs de production d'hydrogène et systèmes et procédés associés |
FR3009297A1 (fr) * | 2013-08-01 | 2015-02-06 | Gerard Yves Francois Montel | Generateur d'hydrogene par frottement d'aluminium |
US9522371B2 (en) | 2012-05-07 | 2016-12-20 | Encite Llc | Self-regulating gas generator and method |
US20170101311A1 (en) * | 2015-10-12 | 2017-04-13 | Cavendish Energy | System and Method to Produce Hydrogen |
WO2024097986A3 (fr) * | 2022-11-04 | 2024-07-04 | Found Energy Co | Dispositifs de génération d'énergie, systèmes et procédés d'utilisation associés |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3554707A (en) * | 1968-04-10 | 1971-01-12 | Gen Electric | Attitude insensitive gas generator |
DE2436002A1 (de) * | 1974-07-26 | 1976-02-12 | Erno Raumfahrttechnik Gmbh | Regelbarer, geraeuscharmer gasgenerator |
DE3401194A1 (de) * | 1984-01-14 | 1985-07-18 | Werner 7433 Dettingen Schweikert | Einrichtung zum nutzen der energie aus verschiedenen metallabfaellen in verbindung mit natronlauge |
EP0312078A2 (fr) * | 1987-10-15 | 1989-04-19 | The Coca-Cola Company | Générateur de gaz engendrés par voie Chimique |
US4882128A (en) * | 1987-07-31 | 1989-11-21 | Parr Instrument Company | Pressure and temperature reaction vessel, method, and apparatus |
-
2001
- 2001-07-13 AU AU2001276204A patent/AU2001276204A1/en not_active Abandoned
- 2001-07-13 WO PCT/CA2001/001021 patent/WO2002008118A1/fr not_active Application Discontinuation
- 2001-07-13 EP EP01953713A patent/EP1301433A1/fr not_active Withdrawn
-
2003
- 2003-01-06 IS IS6671A patent/IS6671A/is unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3554707A (en) * | 1968-04-10 | 1971-01-12 | Gen Electric | Attitude insensitive gas generator |
DE2436002A1 (de) * | 1974-07-26 | 1976-02-12 | Erno Raumfahrttechnik Gmbh | Regelbarer, geraeuscharmer gasgenerator |
DE3401194A1 (de) * | 1984-01-14 | 1985-07-18 | Werner 7433 Dettingen Schweikert | Einrichtung zum nutzen der energie aus verschiedenen metallabfaellen in verbindung mit natronlauge |
US4882128A (en) * | 1987-07-31 | 1989-11-21 | Parr Instrument Company | Pressure and temperature reaction vessel, method, and apparatus |
EP0312078A2 (fr) * | 1987-10-15 | 1989-04-19 | The Coca-Cola Company | Générateur de gaz engendrés par voie Chimique |
Non-Patent Citations (2)
Title |
---|
BELITSKUS, DAVID: "Reaction of aluminum with sodium hydroxide solution as a source of hydrogen", J. ELECTROCHEM. SOC. (1970), (AUGUST), 1097-9, 1970, XP002180270 * |
STOCKBURGER, D. ET AL: "On-line hydrogen generation from aluminum in an alkaline solution", PROC. - ELECTROCHEM. SOC. (1992), 92-5(PROC. SYMP. HYDROGEN STORAGE MATER., BATTERIES, ELECTROCHEM., 1991), 431-44, 1992, XP001032928 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004052775A1 (fr) * | 2002-12-12 | 2004-06-24 | Erling Reidar Andersen | Procede de production d'hydrogene |
AU2003291881B2 (en) * | 2002-12-12 | 2009-10-08 | Erling Jim Andersen | Method for producing hydrogen |
AU2004291534B2 (en) * | 2003-11-14 | 2008-12-11 | Encite Llc | Self-regulating gas generator and method |
AU2004291534C1 (en) * | 2003-11-14 | 2009-09-17 | Encite Llc | Self-regulating gas generator and method |
US8172912B2 (en) | 2003-11-14 | 2012-05-08 | Encite, Llc | Self-regulating gas generator and method |
JP2007518547A (ja) * | 2003-11-14 | 2007-07-12 | インテグレーテッド・フューエル・セル・テクノロジーズ・インコーポレーテッド | 自動制御式のガス発生器およびガス発生方法 |
WO2005049485A1 (fr) * | 2003-11-14 | 2005-06-02 | Integrated Fuel Cell Technologies, Inc. | Generateur de gaz a autoregulation et procede associe |
US9139432B1 (en) | 2005-06-08 | 2015-09-22 | University Of Central Florida Research Foundation, Inc. | Apparatus for decomposing water and releasing hydrogen |
US8273140B1 (en) | 2005-06-08 | 2012-09-25 | University Of Central Florida Research Foundation, Inc. | Method and apparatus for hydrogen production from water |
US7803349B1 (en) | 2005-06-08 | 2010-09-28 | University Of Central Florida Research Foundation, Inc. | Method and apparatus for hydrogen production from water |
EP1749796A1 (fr) * | 2005-07-25 | 2007-02-07 | Air Products and Chemicals, Inc. | Procédé de production d'hydrogène |
KR100878401B1 (ko) * | 2006-10-02 | 2009-01-13 | 삼성전기주식회사 | 수소발생장치 및 이를 갖는 연료전지 |
KR100900664B1 (ko) * | 2006-11-22 | 2009-06-01 | 삼성전기주식회사 | 수소발생방법과 장치 및 이를 갖는 연료전지 |
DE102007028625A1 (de) | 2006-12-26 | 2008-07-03 | Samsung Electro-Mechanics Co., Ltd., Suwon | Brennstoffzelle mit Wasserstoffspeichertank |
US20080318096A1 (en) * | 2007-06-18 | 2008-12-25 | Samsung Electro-Mechanics Co., Ltd. | Hydrogen generating apparatus and fuel cell power generation system |
US8435685B2 (en) * | 2007-06-18 | 2013-05-07 | Samsung Electro-Mechanics Co., Ltd. | Hydrogen generating apparatus and fuel cell power generation system |
WO2009088134A1 (fr) * | 2008-01-04 | 2009-07-16 | Korea Advanced Institute Of Science And Technology | Procédé de fabrication d'hydrogène à l'aide d'un copolymère séquencé et d'une réaction d'oxydation de métaux |
KR100842810B1 (ko) * | 2008-01-04 | 2008-07-01 | 한국과학기술원 | 블록 공중합체와 금속의 산화반응을 이용한 수소의제조방법 |
US8887625B2 (en) * | 2010-10-18 | 2014-11-18 | Miz Co., Ltd. | Hydrogen adding equipment for living organism applicable fluid |
US20130098250A1 (en) * | 2010-10-18 | 2013-04-25 | Miz Co., Ltd. | Hydrogen adding equipment for living organism applicable fluid |
US9522371B2 (en) | 2012-05-07 | 2016-12-20 | Encite Llc | Self-regulating gas generator and method |
WO2014062833A1 (fr) * | 2012-10-16 | 2014-04-24 | Helton Bill W | Catalyseurs de production d'hydrogène et systèmes et procédés associés |
US9889429B2 (en) | 2012-10-16 | 2018-02-13 | Bill W. Helton | Hydrogen production catalysts and associated systems and methods |
FR3009297A1 (fr) * | 2013-08-01 | 2015-02-06 | Gerard Yves Francois Montel | Generateur d'hydrogene par frottement d'aluminium |
US20170101311A1 (en) * | 2015-10-12 | 2017-04-13 | Cavendish Energy | System and Method to Produce Hydrogen |
US9878907B2 (en) * | 2015-10-12 | 2018-01-30 | Cavendish Energy | System and method to produce hydrogen |
WO2024097986A3 (fr) * | 2022-11-04 | 2024-07-04 | Found Energy Co | Dispositifs de génération d'énergie, systèmes et procédés d'utilisation associés |
Also Published As
Publication number | Publication date |
---|---|
AU2001276204A1 (en) | 2002-02-05 |
EP1301433A1 (fr) | 2003-04-16 |
IS6671A (is) | 2003-01-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6800258B2 (en) | Apparatus for producing hydrogen | |
US6506360B1 (en) | Method for producing hydrogen | |
US7326263B2 (en) | Method and apparatus for hydrogenating hydrocarbon fuels | |
EP1301433A1 (fr) | Production d'hydrogene a partir d'aluminium, d'eau et d'hydroxyde de sodium | |
US6638493B2 (en) | Method for producing hydrogen | |
CA2254858C (fr) | Procede provoquant la desorption d'hydrogene d'un hydrure metallique | |
Bogdanović et al. | Active MgH2 Mg Systems for Reversible Chemical Energy Storage | |
US7144567B2 (en) | Renewable energy carrier system and method | |
CN105593159B (zh) | 制造氢的方法 | |
TW463023B (en) | A hydrogen cooled hydride storage unit | |
US6099811A (en) | Self-heating metal-hydride hydrogen storage system | |
CA2414135C (fr) | Methode de production d'hydrogene | |
CA2314403C (fr) | Production d'hydrogene a partir de l'aluminium, eau et hydroxide de sodium en tant que catalyseur | |
Wierse et al. | Magnesium hydride for thermal energy storage in a small-scale solar-thermal power station | |
US6920873B2 (en) | Portable heating pack | |
Bogdanović et al. | The magnesium hydride system for heat storage and cooling | |
US20070295593A1 (en) | Process, method and device for the production and/or derivation of hydrogen utilizing microwave energy | |
WO2020173907A1 (fr) | Systèmes et réacteurs pour stockage d'énergie électrique | |
Bolcich et al. | Hydrogen storage employing Mg-10 wt% Ni alloy | |
JP2002184436A (ja) | 水素貯蔵・供給システムおよび水素貯蔵・供給装置ならびに水素貯蔵・供給用触媒 | |
WO2017159983A1 (fr) | Appareil pour produire de l'hydrogène au moyen d'une chambre de catalyseur | |
JPS5738673A (en) | Open/close device driven by solar heat | |
CN105189339B (zh) | 用于制得金属氢化物浆料的方法和系统 | |
JPH0218281B2 (fr) | ||
Fujitani et al. | Development of hydrogen-absorbing rare earth-Ni alloys for a− 20° C refrigeration system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
ENP | Entry into the national phase |
Ref document number: 2002132840 Country of ref document: RU Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001953713 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001953713 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
ENP | Entry into the national phase |
Ref document number: 2003132550 Country of ref document: RU Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3011/DELNP/2005 Country of ref document: IN |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2001953713 Country of ref document: EP |