WO2002007236A1 - Displacement detector and processing system - Google Patents

Displacement detector and processing system Download PDF

Info

Publication number
WO2002007236A1
WO2002007236A1 PCT/JP2001/005318 JP0105318W WO0207236A1 WO 2002007236 A1 WO2002007236 A1 WO 2002007236A1 JP 0105318 W JP0105318 W JP 0105318W WO 0207236 A1 WO0207236 A1 WO 0207236A1
Authority
WO
WIPO (PCT)
Prior art keywords
processed
contour
detection
displacement
wafer
Prior art date
Application number
PCT/JP2001/005318
Other languages
French (fr)
Japanese (ja)
Inventor
Masaki Kondo
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2002007236A1 publication Critical patent/WO2002007236A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means

Definitions

  • the present invention relates to a position shift detecting device for detecting a position shift occurring in the course of conveyance, and a processing system having the position shift detecting device and performing a predetermined process on an object to be processed such as a semiconductor wafer.
  • a processing chamber for each processing is connected to one common transfer chamber and provided as a so-called class tool tool, and the wafer is transported so as to walk between the processing chambers.
  • a series of processes as described above are performed.
  • FIG. 10 is a schematic configuration diagram showing an example of the conventional processing system as described above.
  • the processing system 2 has a plurality of, here three processing chambers 8A to 8C, respectively, which are connected to a common transfer chamber 4 which can be evacuated via gate valves 6A to 6C. It is composed by connecting.
  • a mounting table 10A to 10C on which an electrostatic chuck for adsorbing and holding a wafer by, for example, electrostatic force is disposed on the upper surface is provided.
  • the common transfer chamber 4 is connected to two cassette chambers 14A and 14B for accommodating cassettes containing substantially disc-shaped semiconductor wafers via gate valves 12A and 12B. Is done.
  • a transfer mechanism 16 for example, composed of an articulated arm capable of turning and bending and extending.
  • the transfer mechanism 16 holds the semiconductor wafer W, and transfers the semiconductor wafer W to each other.
  • the paper is transferred between the cassette chambers 14A and 14B and the processing chambers 8A to 8C and between the processing chambers 8A to 8C.
  • the wafer W when receiving the wafer W from the mounting table 10 A to 10 C, the wafer W However, when the charge is insufficient, the wafer may be held up by the transfer mechanism while the wafer is jumped up due to residual charges and a positional shift occurs. Therefore, when the semiconductor wafer W is held and transferred by the transfer mechanism 16, the center of the semiconductor wafer W is allowed to the holding center 18 A at the tip of the arm 18 of the transfer mechanism 16 with high accuracy. It is necessary to transfer the wafer W with almost no misalignment in the condition of matching within the capacity.
  • Japanese Patent Application Laid-Open Publication No. H10-210, etc. has proposed a position shift detecting device.
  • a detection device as shown in FIG. 10 will be described.
  • a predetermined interval is provided in the vicinity of the gate valves 6A to 6C of the processing chambers 8A to 8C.
  • a pair of line sensors 20 and 22 are arranged, and when the wafer W passes there, it is temporarily stopped at a predetermined position to detect two edges of the wafer (positions of peripheral contours). Based on the detected value, the degree of displacement of the wafer center at that time from the reference origin is determined.
  • the position shift detecting device disclosed in Japanese Patent Application Laid-Open No. 10-247681 uses three sensors, one of which is a notch (a V-shaped notch). ), The wafer manufacturing error and heat It is difficult to sufficiently respond to fluctuations in the wafer diameter due to expansion and contraction.
  • the error of the diameter is only allowed to be about ⁇ 0.2 mm, and the amount of the positional deviation is accurately detected. And it needs to be corrected.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to accurately determine the presence / absence of a position shift and the amount of position shift of a target object without being affected by manufacturing errors or thermal expansion and contraction of the target object. It is an object of the present invention to provide a position shift detecting device and a processing system which can be used. Disclosure of the invention
  • a first feature of the present invention is a position shift detecting device for detecting a position shift of a disk-shaped object to be processed having a direction-recognizing cutout portion in a peripheral portion, wherein the processing target excluding the direction-recognition cutout portion is provided.
  • Three contour detection sensors arranged to detect the position of the peripheral contour of the body, and a reference position between the center position of the object to be processed and a reference origin obtained based on each detection value of the three contour detection sensors.
  • a shift amount calculating unit for calculating a shift amount between the two.
  • the three contour detection sensors can detect the peripheral contour of the object to be processed at a position excluding the direction recognition notch such as a notch or an orientation flat.
  • the center position of the object to be processed can be obtained without affecting the manufacturing error of the diameter or the thermal expansion and contraction.
  • the presence or absence of the position shift and the amount of the position shift can be obtained with high accuracy.
  • a second feature of the present invention is that the three contour detection sensors are arranged substantially 120 degrees apart from each other in the circumferential direction around the reference origin. According to this, it is possible to further improve the detection accuracy of the displacement amount.
  • a fourth feature of the present invention is that the contour detection sensor has a light-emitting element that emits inspection light, and a line-shaped light-receiving element that is arranged along a radial direction of the object to be processed.
  • the light receiving element is provided with a slit plate for blocking light entering the end of the linear light receiving element. According to this, the end portion of the strip-shaped inspection light, whose detection characteristics tend to be deteriorated, is blocked by the slit plate, so that it is possible to further improve the detection accuracy of the displacement amount.
  • the deviation amount calculating section obtains coordinates of three wedge portions of the object from the detected values of the three contour position detection sensors, and calculates an arbitrary one of the three points.
  • the center position of the object to be processed is determined from the intersection of the perpendicular bisectors of the line segments connecting the desired two points.
  • the displacement amount detecting device further includes a transport mechanism for transporting the object to be processed
  • the displacement amount calculation unit includes a teaching held at a regular position of the transport mechanism.
  • the reference origin is obtained based on the detection values of the three contour position detection sensors when the object to be processed is stopped at the position detection amount.
  • a seventh feature of the present invention is that a plurality of processing chambers for performing a predetermined process on an object to be processed, a common transfer chamber commonly connected to a loading / unloading port of the plurality of processing chambers, A processing mechanism provided inside the chamber and capable of holding and transporting the object to be processed between the processing chambers, and a transport mechanism capable of turning and bending and extending.
  • a standby position for temporarily holding the object to be processed is provided corresponding to the loading / unloading port of at least one of the processing chambers, and a position of a peripheral contour of the object is set corresponding to the standby position.
  • a device for detecting position deviation is provided for detecting the position of a peripheral contour excluding the direction recognition notch of a disc-shaped object having a direction recognition notch in a peripheral portion.
  • a displacement calculating unit for calculating a displacement between a center position of the object to be processed and a reference origin obtained based on each detection value of the three contour detection sensors;
  • Control means is provided for obtaining a positional shift amount of the object held by the transport mechanism based on a detection value of the apparatus, and controlling the transport mechanism so as to correct the positional shift.
  • An eighth feature of the present invention is that a plurality of processing chambers for performing a predetermined process on an object to be processed, a common transfer chamber commonly connected to a loading / unloading port of the plurality of processing chambers,
  • the processing object is provided in a room and held and transported between the processing chambers.
  • a position detection chamber is connected to the common transfer chamber, and a position of a peripheral contour of the workpiece is set in the position detection chamber.
  • a position shift detecting device for detecting the position shift is provided, and a position shift amount of the object to be processed held by the transport mechanism is obtained based on a detection value of the position shift detecting device, and the position shift is corrected. That is, a control means for controlling the transport mechanism is provided.
  • a ninth feature of the present invention is that the position shift detecting device detects a position shift of a disk-shaped workpiece having a direction recognition cutout portion in a peripheral portion, and the direction recognition cutout portion includes: Three contour detection sensors arranged to detect the positions of peripheral contours of the object to be removed, and the center position of the object determined based on the detection values of the three contour detection sensors. And a shift amount calculation unit for obtaining a shift amount from the reference origin.
  • a tenth feature of the present invention is that the displacement detection chamber is provided with support means for temporarily supporting the object to be processed. According to this, the transport mechanism in the common transport chamber can transport another workpiece in a state where the workpiece is held by the support means and is on standby.
  • An eleventh feature of the present invention is that an opening / closing valve that can be opened and closed so as to be able to carry and shut off the common transfer chamber is provided at the entrance of the displacement detection chamber. According to this, it is possible to perform maintenance only in the displacement detection chamber by closing the on-off valve.
  • FIG. 1 is a schematic plan view showing a processing system according to the present invention.
  • FIG. 2 is an enlarged view showing a positional relationship between the contour detection sensor installed at the standby position and the object to be processed.
  • FIG. 3 is a block diagram showing a control system of the displacement detection device and the transport mechanism.
  • FIG. 4 is a diagram illustrating an example of the contour detection sensor.
  • FIG. 5 is a diagram showing a characteristic curve of the contour detection sensor.
  • FIG. 6 is an explanatory diagram for describing an example of a method of calculating the amount of displacement.
  • FIG. 7 is a schematic plan view showing a processing system according to another embodiment.
  • FIG. 8 is a cross-sectional view showing the displacement detection chamber.
  • FIG. 9 is a configuration diagram showing a displacement detection chamber of a processing system according to still another embodiment of the present invention.
  • FIG. 10 is a schematic configuration diagram showing an example of a conventional processing system. BEST MODE FOR CARRYING OUT THE INVENTION
  • two cassette chambers 14A and 14B for accommodating cassettes accommodating substantially disc-shaped wafers W are connected to the common transfer chamber 4 via gate valves 12A and 12B. ing.
  • a transfer mechanism 16 for example, composed of an articulated arm that can rotate and bend and extend, is provided.
  • two claw portions 18 A are provided, and the semiconductor wafer W is held by the claw portions 18 A. The paper is transferred and transferred between the processing chambers 8 to 8D and between the processing chambers 8A to 8D.
  • a rotary table 26 for holding and rotating a wafer and a line for detecting a positional change in the contour of the peripheral portion of the wafer W at this time are provided.
  • a positioning mechanism 30 including a sensor 28 and the like is provided to perform positioning of the wafer W.
  • Standby positions 32A and 32C are provided corresponding to the installation positions of 6A and 6C to temporarily stop the wafer W during transfer and wait. Although the standby positions 32 A and 32 C are shown in the illustrated example by circles of dashed lines of the same size as the wafer for convenience, they are actually only spaces through which the wafer can pass.
  • the common transfer chamber 4 is provided with a misregistration detecting device 34, which is a feature of the present invention, and the misalignment detecting device 34 sets the center position of each of the standby positions 32A and 32C as a reference origin OA. , 0 C, and the amount of deviation of the wafer center from the reference origin OA, 0 C is determined as the amount of positional deviation as described later.
  • the position shift detecting device 34 includes three contour detection sensors 36-1, 3-6, 3-3 arranged corresponding to the standby positions 32A, 32C. 38-1 to 38-3, which detect the position of the peripheral contour (peripheral edge) of the wafer W.
  • each of the contour detection sensors 36-1 to 36-3 and 38-1 to 38-3 is connected to a shift amount calculation unit 40 such as a microcomputer.
  • a shift amount calculation unit 40 such as a microcomputer.
  • the above-described position shift detecting device 34 is configured.
  • the wafer W is positioned at each of the standby positions 32A and 32C
  • the detected values of the contour detection sensors 3.6-1-3-36-3 and 38-1-3-8-3 are obtained.
  • the amount of misalignment between the center position of the wafer and each of the reference origins OA and OC is calculated based on this.
  • the shift amount output from the shift amount calculating unit 40 is, for example, a micro value.
  • the control means 42 is input to a control means 42 composed of a computer or the like.
  • the control means 42 controls the drive motor system 43 which is a drive source of the transport mechanism 16 so as to offset the shift amount. It has become.
  • Contour detection sensor that forms one set of the above three 3 6— :! 36-3 and 38-1-3-3 are arranged in exactly the same arrangement with respect to the corresponding processing chambers 8A and 8C.
  • the contour detection sensors 36-1 to 36-3 provided at the standby position 32A corresponding to 8A will be described with reference to FIG. 2 as an example.
  • the standby position 32 A and the peripheral contour of the wafer W are overlapped for convenience, and as shown in the figure, the three contour detection sensors 36-1 to 36-3 have the reference origin OA.
  • the line-shaped light receiving element for example, the line sensors 44-1 to 44-3 are arranged toward the reference origin OA so as to be substantially perpendicular to the wafer peripheral contour resting at an appropriate position.
  • the wafer W is generally provided with a direction-recognition notch for recognizing the direction, for example, in the case of an 8-inch wafer, an orientation flat formed by linearly cutting a part of the wafer.
  • a notch is formed in which a part of the wafer is slightly cut out in a V-shape.
  • FIG. 2 the case where the orientation flat OF is formed as the direction recognition notch is shown, and the orientation flat OF is located on the processing chamber 8A side.
  • the important point is that all of the contour detection sensors 36-1 to 36-3 are arranged at positions excluding the portion of the orientation flat OF. In the illustrated example, the contour detection sensor 36-1 is arranged closest to the orientation flat OF.
  • the deflection angle of the contour detection sensor 36-1 with respect to the direction of the processing chamber 8A is determined by the above-described orientation. It is determined in consideration of the circumferential length of the station flat 0F and the maximum deviation allowed for this wafer. For example, in the case of an 8-inch wafer, this deflection angle is set to be 22 degrees or more, and no matter how the wafer W is displaced within the maximum allowable displacement, the orientation flat OF portion is Contour detection sensor 36-1 (line sensor 4 4-1) The position is not shifted to prevent the occurrence of position error.
  • the contour detection sensor 36-1 includes a light emitting element 46-1 supported on a ceiling portion 4 A of the common transfer chamber 4 and a light emitting element 46-1 opposed to the light emitting element 46-1. It mainly comprises the light receiving element, for example, a line sensor 441-1 supported on the bottom 4B, and the light emitting element 461-1 and the line sensor 441-1 for measuring the amount of displacement.
  • the wafer W is positioned between them.
  • the light-emitting element 46-1 is attached to an upper surface of a light-transmitting window 53 made of, for example, quartz, which is provided in an opening formed in a ceiling portion 4 A through a sealing member 51 such as an O-ring.
  • the line sensor 44-1 is provided at the opening formed in the bottom 4B with a sealing member 55 such as an O-ring, for example. Attached to.
  • the light emitting element 46-1 illuminates the strip-shaped inspection light L 1, and is arranged with its length direction facing the reference origin O A (see FIG. 2).
  • the line sensor 44-1 which is opposed to this, is also arranged with its length direction facing the reference origin OA as described above, and the light receiving position of the sensor body 48 that actually detects the inspection light L1, Alternatively, the position of the peripheral contour (edge portion) of the wafer W is detected according to the light shielding position by the wafer W.
  • a slit plate 50 is provided in the vicinity of the line sensor 4411.
  • the slit plate 50 blocks the light at both ends of the strip-shaped inspection light L1 and An elongated slit hole 52 that allows only the light at the center of the strip-shaped inspection light L1 to pass through is formed, so that the detection accuracy can be improved.
  • the improvement of the detection accuracy will be described with reference to FIG.
  • FIG. 5 shows a characteristic curve of the contour detection sensor.
  • the horizontal axis indicates the actual position of the wafer contour, and the vertical axis indicates the calculated position of the wafer contour. Also, the horizontal axis has a slit
  • the plan view of the plate 50 and the sensor body 48 are shown in correspondence. Also, some of the scale positions in FIG. 5 are shown in FIG.
  • a teaching operation is performed to teach the precise values of the standby positions 32A and 32C, which are the references for detecting the positional deviation, to the control system of the apparatus.
  • the electrostatic chucks of the mounting tables 10A and 10C are not used, and they are turned off, and in this state, the appropriate positions on the mounting tables 10A and 10C are used for teaching.
  • the wafer W is placed in a state where the wafers are accurately matched, that is, in a state where there is no displacement. '
  • the processing mechanism 8 A, 8 C and the common transfer chamber 4 are evacuated and the transfer mechanism 16 is driven to transfer each of the wafers from the mounting tables 10 A, 10 C. Stop at the detection positions, specifically, the corresponding standby positions 32A and 32C, and then each contour detection sensor 36-1 to 36-3 and 38-1 to 38 at this time. — Using the detected value of 3 as the zero reference, determine the reference origins OA and OC at this time. Thereafter, the position deviation amount of the wafer W is detected based on this value. This wafer is held at the normal position of the transfer mechanism. In addition, the reference origins OA and OC can be obtained from design data of the common transfer chamber 4 and the contour detection sensors 36-1 to 36-3, etc., but in this case, the detection accuracy of the displacement amount decreases. .
  • the wafer is held by the claw portion 18A in a state where the wafer is properly aligned.
  • This aligned wafer W is directed by the transfer mechanism 16 to a predetermined processing chamber, for example, 8 A. Then, the transfer mechanism 16 is extended and the wafer W is loaded into the processing chamber 8A via the gate valve 6A which is opened, and is placed on the mounting table 1OA, and the electrostatic chuck is suctioned. Fix with force.
  • the transfer mechanism 16 is retracted, the wafer W is temporarily stopped at the standby position 32 A, and the deviation of the center position of the wafer W from the reference origin OA of the standby position 32 A is determined by the contour detection sensor means 3. 6-1-3 c Based on the detected value of 6-3 c.
  • the transfer mechanism 16 is turned to transfer this wafer W to the next processing chamber. Orient to 8 B, for example.
  • the operation of the transfer mechanism 16, that is, the rotation amount of the wafer W is corrected so as to correct and offset the positional deviation amount of the wafer W obtained at the standby position 32 A.
  • the wafer W is placed at an appropriate position on the mounting table 10B.
  • C Next, when a predetermined process is performed on the wafer W in the processing chamber 8B, the wafer W is taken out by the transfer mechanism 16 and is taken into the common transfer chamber 4.
  • the wafer W is temporarily stopped at the standby position 32C immediately before the loading, and is made to stand by.
  • the detection sensors 38-1 to 38-3 the amount of displacement of the center position of the wafer W with respect to the reference origin 0C of the standby position 32C is obtained in the same manner as described above.
  • each standby position 3 2A Or the reference deviation at 32 C between the reference origin ⁇ A or OC and the center of the wafer is determined.
  • the control means 42 outputs a command signal to the drive motor system 43 so as to correct and offset the above-described displacement, and the rotation angle 0 and the bending / stretching of the transport mechanism 16 are controlled. Control the quantity R.
  • the reference origin OA is set as the coordinate origin
  • the coordinate of the actual center WO of the wafer W is set as (X, Y)
  • the coordinates of each detected value of each contour detection sensor 36-1-3-1-6-3 are set as coordinates.
  • (x1, y1), (x2, y2) and (x3, y3) are set as coordinates.
  • the line segment 56 connecting the origin (0, 0) and the coordinates (X, Y) is the amount of misalignment of the misaligned wafer with respect to the properly positioned wafer.
  • control means 42 controls the drive motor system 43 so as to offset the displacement amount 56.
  • three contour detection sensors 36-1 to 36-3 are arranged at one standby position, for example, 32 A, and all of these sensors 36-1 to 36-3 are arranged. It is located out of the direction recognition notch, for example, the position of the orientation flat OF, so it is possible not only to accurately detect the displacement of the wafer W, but also to vary the wafer diameter due to, for example, manufacturing errors. , Or even if the wafer diameter is slightly expanded or contracted due to residual heat during heat treatment, the center position of the wafer W is accurately determined without affecting these factors, and the amount of displacement is calculated. Can be determined appropriately.
  • the wafer diameter is slightly larger than the reference.
  • the wafers of the appropriate size are provided to both line sensors 20 and 22 without displacement.
  • the same detection value is output as when it is installed, and in this case, it may be erroneously determined that there is no displacement.
  • the orientation flat OF section Since the position detection is performed at three points of the wafer contour excluding the part, if the position is misaligned as described above, it can be recognized properly and accurately. In addition, since the position shift amount is detected by using the contour detection sensors 36-1 to 36-3 and 38-1 to 38-3 fixed at a predetermined position in the common transfer chamber 4, the wafer is moved. There is no need to rotate and detect, and the amount of displacement can be detected in a short time.
  • a slit plate 50 is provided near the line sensor, for example, 441-1 to block light at both ends of the strip-shaped inspection light L1 having poor characteristics. Therefore, the detection accuracy can be further improved.
  • the present invention is not limited to this, and one set of three contour detection sensors corresponding to at least one of the four processing chambers is provided. May be provided.
  • FIG. 7 is a schematic plan view showing a processing system according to such another embodiment
  • FIG. 8 is a cross-sectional view showing the displacement detection chamber.
  • each of the contour detection sensors 39-1 to 39-3 is a light emitting element 46-6. 1-4-6-3, line sensor 44-1-4-4-13 and each have a slit plate (not shown).
  • no other contour detection sensors 36-1-3-1-6-3 and 38-1-38-3 are provided in the common transfer chamber 4. You may.
  • the wafer is transferred into the displacement detection chamber 60.
  • the wafer W may be loaded by the mechanism 16 and temporarily stopped, and the amount of displacement of the wafer W may be detected.
  • a support means 70 for temporarily supporting the semiconductor wafer W carried therein may be provided in the displacement detection chamber 60 shown in FIG.
  • the support means 70 has three support pins 72 made of, for example, quartz, which support the back surface of the wafer W.
  • the three support pins 72 are commonly connected to an elevating port 74.
  • the lifting rod 74 is extended downward by penetrating a rod hole 76 provided in the bottom 6 OA of the displacement detection chamber 60 by connecting the lifting rod 74 with the lifting drive mechanism 78. It can be moved up and down. Then, an elongate and contractible metal bellows is provided between the bottom 6OA and the elevating drive mechanism 78 so as to cover the periphery of the elevating rod 74.
  • the lifting rod 74 and the support pin 72 can be moved up and down while maintaining the airtightness of the displacement detection chamber 60.
  • the transfer mechanism 16 (see FIG. 7) Can transfer other semiconductor wafers, and accordingly, the transfer efficiency can be improved and the transfer speed can be increased.
  • the displacement detection device provided therein may be, for example, the position detection device of the present invention described with reference to FIGS.
  • the present invention is not limited to the displacement detecting device, and for example, a conventional displacement detecting device as shown in FIG. 10 may be provided.
  • a semiconductor wafer has been described as an example of an object to be processed.
  • the present invention is not limited to this as long as it has a substantially disk shape.
  • the present invention can be applied to an LCD substrate and a glass substrate. Of course.

Abstract

A displacement detector capable of accurately detecting the presence or absence and the amount of the displacement of a disk-like processed body (W) having an orientation identifying cut-out part (OF) on the peripheral part thereof, comprising three profile detection sensors (36-1 to 36-3, 38-1 to 38-3) disposed so as to detect the position of the peripheral profile of the processed body excluding the orientation identifying cut-out part and a displaced amount calculation part (40) for calculating the amount of displacement between the center position of the processed body and a reference origin based on the values detected by the three profile detection sensors, whereby the presence or absence and the amount of the displacement of the processed body can be provided accurately without being affected by the manufacturing error and thermal telescoping of the processed body.

Description

明 細 書 位置ずれ検出装置及び処理システム 技術分野  Description Positional deviation detection device and processing system
この発明は、 搬送途中に発生する位置ずれを検出する位置ずれ検出装置と、 こ の位置ずれ検出装置を有するとともに半導体ウェハ等の被処理体に対して所定の 処理を施す処理システムに関する。 背景技術  The present invention relates to a position shift detecting device for detecting a position shift occurring in the course of conveyance, and a processing system having the position shift detecting device and performing a predetermined process on an object to be processed such as a semiconductor wafer. Background art
一般に、 I C等のような半導体集積回路を製造するには、 シリコン基板等の半 導体ウェハの表面に、 成膜、 酸化拡散、 エッチング、 ァニール等の各種の処理を 繰り返し行なう必要がある。 この場合、 処理効率を向上させるために、 それそれ の処理を行なう処理室を 1つの共通搬送室に連結させて設けて、 いわゆるクラス 夕ツール装置化し、 ウェハを各処理室間に渡り歩くように搬送しながら一連の上 述したような処理を行なうようにしている。  Generally, in order to manufacture a semiconductor integrated circuit such as an IC, it is necessary to repeatedly perform various processes such as film formation, oxidative diffusion, etching, and annealing on the surface of a semiconductor wafer such as a silicon substrate. In this case, in order to improve the processing efficiency, a processing chamber for each processing is connected to one common transfer chamber and provided as a so-called class tool tool, and the wafer is transported so as to walk between the processing chambers. However, a series of processes as described above are performed.
図 1 0は上述したような従来の処理システムの一例を示す概略構成図である。 図示するように、 この処理システム 2は、 例えば真空引き可能になされた共通搬 送室 4にそれそれゲートバルブ 6 A~ 6 Cを介して複数、 ここでは 3つの処理室 8 A〜8 Cを連結して構成される。 各処理室 8 A〜8 C内には、 例えば静電力で ウェハを吸着保持する静電チャックを上面に配置した載置台 1 0 A~ l 0 Cが設 けられる。 また、 この共通搬送室 4には、 ゲートバルブ 1 2 A、 1 2 Bを介して、 略円板状の半導体ウェハを収容したカセットを収納する 2つのカセット室 1 4 A、 1 4 Bが連結される。 そして、 上記共通搬送室 4内に、 旋回及び屈伸可能になさ れた例えば多関節アームよりなる搬送機構 1 6が設けられており、 この搬送機構 1 6により半導体ウェハ Wを保持し、 これを各カセット室 1 4 A、 1 4 Bと各処 理室 8 A〜8 Cとの間及び各処理室 8 A〜 8 C間で受け渡して搬送するようにな つている。  FIG. 10 is a schematic configuration diagram showing an example of the conventional processing system as described above. As shown in the figure, the processing system 2 has a plurality of, here three processing chambers 8A to 8C, respectively, which are connected to a common transfer chamber 4 which can be evacuated via gate valves 6A to 6C. It is composed by connecting. In each of the processing chambers 8A to 8C, a mounting table 10A to 10C on which an electrostatic chuck for adsorbing and holding a wafer by, for example, electrostatic force is disposed on the upper surface is provided. The common transfer chamber 4 is connected to two cassette chambers 14A and 14B for accommodating cassettes containing substantially disc-shaped semiconductor wafers via gate valves 12A and 12B. Is done. In the common transfer chamber 4, there is provided a transfer mechanism 16, for example, composed of an articulated arm capable of turning and bending and extending. The transfer mechanism 16 holds the semiconductor wafer W, and transfers the semiconductor wafer W to each other. The paper is transferred between the cassette chambers 14A and 14B and the processing chambers 8A to 8C and between the processing chambers 8A to 8C.
ところで、 載置台 1 0 A〜1 0 Cからウェハ Wを受け取る際、 ウェハ Wを十分 に除電するが、 この除電が不十分の時には受け渡しの際に、 残留電荷によってゥ ェハが跳ね上がって位置ズレを生じたまま搬送機構に保持される場合がある。 そ のため、 半導体ウェハ Wを搬送機構 1 6で保持して搬送する時には、 この搬送機 構 1 6のアーム 1 8の先端の保持中心 1 8 Aに、 半導体ウェハ Wの中心をかなり 精度良く許容量以内に一致させた状態で位置ずれをほとんど生じることなくゥェ ハ Wを移載する必要がある。 By the way, when receiving the wafer W from the mounting table 10 A to 10 C, the wafer W However, when the charge is insufficient, the wafer may be held up by the transfer mechanism while the wafer is jumped up due to residual charges and a positional shift occurs. Therefore, when the semiconductor wafer W is held and transferred by the transfer mechanism 16, the center of the semiconductor wafer W is allowed to the holding center 18 A at the tip of the arm 18 of the transfer mechanism 16 with high accuracy. It is necessary to transfer the wafer W with almost no misalignment in the condition of matching within the capacity.
このために、 従来にあっては、 例えば特開平 1 0— 2 2 3 7 3 2号公報ゃ特開 平 1 0— 2 4 7 6 8 1号公報や米国特許第 5 4 8 3 1 3 8号公報等に開示された ような位置ずれ検出装置が提案されている。 この一例として、 例えば図 1 0に示 すような検出装置について説明すると、 共通搬送室 4内において、 各処理室 8 A 〜8 Cのゲートバルブ 6 A〜 6 Cの近傍に所定の間隔を隔ててそれそれ一対のラ インセンサ 2 0、 2 2を配置し、 ここにウェハ Wが通過する時に一旦これを所定 の位置で停止させてウェハの 2箇所のエッジ (周辺輪郭の位置) を検出し、 この 検出値に基づいてその時のウェハ中心が基準原点からどの程度位置ずれを生じて いるかを求めるようになつている。  For this reason, in the related art, for example, Japanese Patent Application Laid-Open No. H10-2243732, Japanese Patent Application Laid-Open No. H10-2476791, and US Pat. Japanese Patent Application Laid-Open Publication No. H10-210, etc. has proposed a position shift detecting device. As an example of this, for example, a detection device as shown in FIG. 10 will be described. In the common transfer chamber 4, a predetermined interval is provided in the vicinity of the gate valves 6A to 6C of the processing chambers 8A to 8C. A pair of line sensors 20 and 22 are arranged, and when the wafer W passes there, it is temporarily stopped at a predetermined position to detect two edges of the wafer (positions of peripheral contours). Based on the detected value, the degree of displacement of the wafer center at that time from the reference origin is determined.
しかしながら、 円盤状の半導体ウェハには、 僅かではあるが製造誤差が発生す ることは避けられないことからその直径にばらつきが生じたり、 また、 前工程が 熱処理の場合にはその余熱のために、 半導体ウェハの直径が僅かに熱膨張してい る場合もある。 このような状況下において、 上述したような、 一対のラインセン サ 2 0、 2 2を用いた従来の検出装置では、 位置ずれの発生及びその位置ずれ量 を十分に検出できない場合があった。 例えば搬送機構 1 6に保持された半導体ゥ ェハ Wの中心が、 基準原点よりも僅かに搬送機構 1 6の中心方向へ位置ずれして いる場合であって、 その半導体ウェハの直径が製造誤差によって基準直径よりも 僅かに大きい時には、 ウェハ Wに位置ずれが生じているにもかかわらず、 両ライ ンセンサ 2 0、 2 2の検出値に基づく演算では位置ずれなしであると認識された り、 或いは位置ずれ量が誤って認識される、 といった問題があった。  However, disc-shaped semiconductor wafers have small but inevitable manufacturing errors, so their diameters may vary. The diameter of the semiconductor wafer may be slightly thermally expanded. In such a situation, the conventional detection device using the pair of line sensors 20 and 22 as described above may not be able to sufficiently detect the occurrence of the displacement and the amount of the displacement. For example, when the center of the semiconductor wafer W held by the transfer mechanism 16 is slightly displaced from the reference origin toward the center of the transfer mechanism 16, and the diameter of the semiconductor wafer is a manufacturing error. When it is slightly larger than the reference diameter, it is recognized that there is no displacement in the calculation based on the detection values of the two line sensors 20 and 22 even though the wafer W has a displacement, Alternatively, there has been a problem that the displacement amount is erroneously recognized.
また、 特開平 1 0— 2 4 7 6 8 1号公報で開示されている位置ずれ検出装置で は、 3つのセンサを用いて、 その内の 1つのセンサはノッチ (V字状の切り欠 き) の部分を検出することとしているので、 上述したようなウェハ製造誤差や熱 伸縮等によるウェハ直径の変動に対して十分に対応することが困難である。 Further, the position shift detecting device disclosed in Japanese Patent Application Laid-Open No. 10-247681 uses three sensors, one of which is a notch (a V-shaped notch). ), The wafer manufacturing error and heat It is difficult to sufficiently respond to fluctuations in the wafer diameter due to expansion and contraction.
特に、 半導体装置の微細化がより進んだことから、 現在の半導体ウェハの製造 では、 その直径の誤差は ± 0 . 2 mm程度しか許容されておらず、 その位置ずれ 量を精度よく検出し、 且つそれを補正する必要がある。  In particular, due to the progress of miniaturization of semiconductor devices, in the current semiconductor wafer manufacturing, the error of the diameter is only allowed to be about ± 0.2 mm, and the amount of the positional deviation is accurately detected. And it needs to be corrected.
本発明は、 上記事情に鑑みなされたもので、 その目的は、 被処理体の製造誤差 や熱伸縮に影響されることなく被処理体の位置ずれの有無及び位置ずれ量を正確 に求めることができる位置ずれ検出装置及び処理システムを提供することにある。 発明の開示  The present invention has been made in view of the above circumstances, and an object of the present invention is to accurately determine the presence / absence of a position shift and the amount of position shift of a target object without being affected by manufacturing errors or thermal expansion and contraction of the target object. It is an object of the present invention to provide a position shift detecting device and a processing system which can be used. Disclosure of the invention
本発明の第 1の特徴は、 周辺部に方向認識切り欠き部を有する円盤状の被処理 体の位置ずれを検出する位置ずれ検出装置であって、 前記方向認識切り欠き部を 除く前記被処理体の周辺輪郭の位置を検出するように配置された 3つの輪郭検出 センサと、 前記 3つの輪郭検出センサの各検出値に基づいて求められた前記被処 理体の中心位置と基準原点との間のずれ量を求めるずれ量演算部とを備えたこと である。 これにより、 3つの輪郭検出センサは、 例えばノッチやオリエンテ一シ ヨンフラット等の方向認識切り欠き部を除いた位置で被処理体の周辺輪郭を検出 することができるので、 これにより被処理体の直径の製造誤差や熱伸縮に影響さ せることなく被処理体の中心位置を求めることができ、 この結果、 位置ずれの有 無及び位置ずれ量を高い精度で求めることができる。  A first feature of the present invention is a position shift detecting device for detecting a position shift of a disk-shaped object to be processed having a direction-recognizing cutout portion in a peripheral portion, wherein the processing target excluding the direction-recognition cutout portion is provided. Three contour detection sensors arranged to detect the position of the peripheral contour of the body, and a reference position between the center position of the object to be processed and a reference origin obtained based on each detection value of the three contour detection sensors. And a shift amount calculating unit for calculating a shift amount between the two. As a result, the three contour detection sensors can detect the peripheral contour of the object to be processed at a position excluding the direction recognition notch such as a notch or an orientation flat. The center position of the object to be processed can be obtained without affecting the manufacturing error of the diameter or the thermal expansion and contraction. As a result, the presence or absence of the position shift and the amount of the position shift can be obtained with high accuracy.
本発明の第 2の特徴は、 前記 3つの輪郭検出センサは、 前記基準原点を中心と して周方向に互いに実質的に 1 2 0度離間させて配置されていることである。 こ れによれば、 位置ずれ量の検出精度を一層高めることが可能となる。  A second feature of the present invention is that the three contour detection sensors are arranged substantially 120 degrees apart from each other in the circumferential direction around the reference origin. According to this, it is possible to further improve the detection accuracy of the displacement amount.
本発明の第 3の特徴は、 前記輪郭検出センサの設置位置は、 前記方向認識切り 欠き部の円周方向における長さと前記被処理体に許容されている最大ずれ量とを 考慮して決定されていることである。 これにより、 被処理体に許容されている最 大ずれ量が発生していても、 切欠き部の影響を受けずに被処理体の位置ずれ量を 十分に検出することが可能となる。  A third feature of the present invention is that an installation position of the contour detection sensor is determined in consideration of a circumferential length of the direction recognition cutout portion and a maximum deviation amount allowed for the object to be processed. That is. Accordingly, even if the maximum displacement allowed for the object to be processed occurs, the positional deviation of the object to be processed can be sufficiently detected without being affected by the notch.
本発明の第 4の特徴は、 前記輪郭検出センサは、 検査光を発する発光素子と、 前記被処理体の半径方向に沿って配置されたラィン状の受光素子とを有しており、 前記受光素子には前記ライン状の受光素子の端部に入光する光を遮断するスリッ ト版が設けられることである。 これによれば、 検出特性が劣化する傾向にある帯 状の検査光の端部をスリット板にて遮断してしまうので、 位置ずれ量の検出精度 を一層向上させることが可能となる。 A fourth feature of the present invention is that the contour detection sensor has a light-emitting element that emits inspection light, and a line-shaped light-receiving element that is arranged along a radial direction of the object to be processed. The light receiving element is provided with a slit plate for blocking light entering the end of the linear light receiving element. According to this, the end portion of the strip-shaped inspection light, whose detection characteristics tend to be deteriorated, is blocked by the slit plate, so that it is possible to further improve the detection accuracy of the displacement amount.
本発明の第 5の特徴は、 前記ずれ量演算部は、 前記 3つの輪郭位置検出センサ の各検出値から前記被処理体の 3点のェッジ部の座標を求め、 前記 3点の内の任 意の 2点を結ぶ各線分の垂直 2等分線の交点から前記被処理体の中心位置を求め ることである。  According to a fifth feature of the present invention, the deviation amount calculating section obtains coordinates of three wedge portions of the object from the detected values of the three contour position detection sensors, and calculates an arbitrary one of the three points. The center position of the object to be processed is determined from the intersection of the perpendicular bisectors of the line segments connecting the desired two points.
本発明の第 6の特徴は、 前記位置ずれ量検出装置は、 さらに前記被処理体を搬 送する搬送機構を備え、 前記ずれ量演算部は、 前記搬送機構の正規位置に保持さ れたティーチング用被処理体を位置ずれ量検出位置に停止したときの前記 3つの 輪郭位置検出センサの各検出値に基づいて前記基準原点を求めることである。 本発明の第 7の特徴は、 被処理体に対して所定の処理を施すための複数の処理 室と、 前記複数の処理室の搬出入口に共通に連結された共通搬送室と、 この共通 搬送室内に設けられて前記各処理室との間で前記被処理体を保持して搬送すベく 旋回及び屈伸可能になされた搬送機構とを有する処理システムにおいて、 前記共 通搬送室内に、 前記処理室のうちの少なくとも 1つの処理室の搬出入口に対応さ せて前記被処理体を一時的に待機させる待機位置を設け、 この待機位置に対応さ せて前記被処理体の周辺輪郭の位置を検出するための位置ずれ椽出装置を設け、 この位置ずれ検出装置は、 周辺部に方向認識切り欠き部を有する円盤状の被処理 体の前記方向認識切り欠き部を除く周辺輪郭の位置を検出するように配置された 3つの輪郭検出センサと、 前記 3つの輪郭検出センサの各検出値に基づいて求め られた前記被処理体の中心位置と基準原点との間のずれ量を求めるずれ量演算部 とを有し、 前記位置ずれ検出装置の検出値に基づいて、 前記搬送機構に保持され る前記被処理体の位置ずれ量を求めて、 この位置ずれを補正するように前記搬送 機構を制御する制御手段を設けたことである。  According to a sixth feature of the present invention, the displacement amount detecting device further includes a transport mechanism for transporting the object to be processed, and the displacement amount calculation unit includes a teaching held at a regular position of the transport mechanism. The reference origin is obtained based on the detection values of the three contour position detection sensors when the object to be processed is stopped at the position detection amount. A seventh feature of the present invention is that a plurality of processing chambers for performing a predetermined process on an object to be processed, a common transfer chamber commonly connected to a loading / unloading port of the plurality of processing chambers, A processing mechanism provided inside the chamber and capable of holding and transporting the object to be processed between the processing chambers, and a transport mechanism capable of turning and bending and extending. A standby position for temporarily holding the object to be processed is provided corresponding to the loading / unloading port of at least one of the processing chambers, and a position of a peripheral contour of the object is set corresponding to the standby position. A device for detecting position deviation is provided for detecting the position of a peripheral contour excluding the direction recognition notch of a disc-shaped object having a direction recognition notch in a peripheral portion. Three contours arranged to A displacement calculating unit for calculating a displacement between a center position of the object to be processed and a reference origin obtained based on each detection value of the three contour detection sensors; Control means is provided for obtaining a positional shift amount of the object held by the transport mechanism based on a detection value of the apparatus, and controlling the transport mechanism so as to correct the positional shift.
本発明の第 8の特徴は、 被処理体に対して所定の処理を施すための複数の処理 室と、 前記複数の処理室の搬出入口に共通に連結された共通搬送室と、 この共通 搬送室内に設けられて前記各処理室との間で前記被処理体を保持して搬送すぺく 旋回及び屈伸可能になされた搬送機構とを備えた処理システムにおいて、 前記共 通搬送室に、 位置ずれ検出室を連結させて設け、 前記位置ずれ検出室内に前記被 処理体の周辺輪郭の位置を検出するための位置ずれ検出装置を設け、 前記位置ず れ検出装置の検出値に基づいて、 前記搬送機構に保持される前記被処理体の位置 ずれ量を求めて、 この位置ずれを補正するように前記搬送機構を制御する制御手 段を設けたことである。 An eighth feature of the present invention is that a plurality of processing chambers for performing a predetermined process on an object to be processed, a common transfer chamber commonly connected to a loading / unloading port of the plurality of processing chambers, The processing object is provided in a room and held and transported between the processing chambers. In a processing system provided with a transfer mechanism capable of turning and bending and extending, a position detection chamber is connected to the common transfer chamber, and a position of a peripheral contour of the workpiece is set in the position detection chamber. A position shift detecting device for detecting the position shift is provided, and a position shift amount of the object to be processed held by the transport mechanism is obtained based on a detection value of the position shift detecting device, and the position shift is corrected. That is, a control means for controlling the transport mechanism is provided.
本発明の第 9の特徴は、 前記位置ずれ検出装置は、 周辺部に方向認識切り欠き 部を有する円盤状の被処理体の位置ずれを検出するものであって、 前記方向認識 切り欠き部を除く前記被処理体の周辺輪郭の位置を検出するように配置された 3 つの輪郭検出センサと、 前記 3つの輪郭検出センサの各検出値に基づいて求めら れた前記被処理体の中心位置と基準原点との間のずれ量を求めるずれ量演算部と を備えていることである。  A ninth feature of the present invention is that the position shift detecting device detects a position shift of a disk-shaped workpiece having a direction recognition cutout portion in a peripheral portion, and the direction recognition cutout portion includes: Three contour detection sensors arranged to detect the positions of peripheral contours of the object to be removed, and the center position of the object determined based on the detection values of the three contour detection sensors. And a shift amount calculation unit for obtaining a shift amount from the reference origin.
本発明の第 1 0の特徴は、 前記位置ずれ検出室には、 前記被処理体を一時的に 支持する支持手段が設けられていることである。 これによれば、 被処理体を支持 手段に保持させて待機した状態で、 共通搬送室内の搬送機構は他の被処理体の搬 送を行うことが可能となる。  A tenth feature of the present invention is that the displacement detection chamber is provided with support means for temporarily supporting the object to be processed. According to this, the transport mechanism in the common transport chamber can transport another workpiece in a state where the workpiece is held by the support means and is on standby.
本発明の第 1 1の特徴は、 前記位置ずれ検出室の入口には、 前記共通搬送室に 対して運搬及び遮断可能とする開閉可能な開閉弁が設けられることである。 これ によれば、 開閉弁を閉じることによって位置ずれ検出室内のみのメンテナンスを 行うことが可能となる。 図面の簡単な説明  An eleventh feature of the present invention is that an opening / closing valve that can be opened and closed so as to be able to carry and shut off the common transfer chamber is provided at the entrance of the displacement detection chamber. According to this, it is possible to perform maintenance only in the displacement detection chamber by closing the on-off valve. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発昉に係る処理システムを示す概略平面図である。  FIG. 1 is a schematic plan view showing a processing system according to the present invention.
図 2は待機位置に設置された輪郭検出センサと被処理体との位置関係を示す拡 大図である。  FIG. 2 is an enlarged view showing a positional relationship between the contour detection sensor installed at the standby position and the object to be processed.
図 3は位置ずれ検出装置と搬送機構の制御系を示すプロック図である。  FIG. 3 is a block diagram showing a control system of the displacement detection device and the transport mechanism.
図 4は輪郭検出センサの一例を示す図である。  FIG. 4 is a diagram illustrating an example of the contour detection sensor.
図 5は輪郭検出センサの特性曲線を示す図である。  FIG. 5 is a diagram showing a characteristic curve of the contour detection sensor.
図 6は位置ずれ量の算出方法の一例を説明するための説明図である。 図 7は他の実施例に係る処理システムを示す概略平面図である。 FIG. 6 is an explanatory diagram for describing an example of a method of calculating the amount of displacement. FIG. 7 is a schematic plan view showing a processing system according to another embodiment.
図 8は位置ずれ検出室を示す断面図である。  FIG. 8 is a cross-sectional view showing the displacement detection chamber.
図 9は本発明の更に他の実施例の処理システムの位置ずれ検出室を示す構成図 である。  FIG. 9 is a configuration diagram showing a displacement detection chamber of a processing system according to still another embodiment of the present invention.
図 1 0は従来の処理システムの一例を示す概略構成図である。 発明を実施するための最良の形態  FIG. 10 is a schematic configuration diagram showing an example of a conventional processing system. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 この発明に係る位置ずれ検出装置及び処理システムの実施の形態を添 付図面に基づいて詳述する。  Hereinafter, embodiments of a displacement detection apparatus and a processing system according to the present invention will be described in detail with reference to the accompanying drawings.
図 1ないし図 6は、 第 1の実施の形態を示す。 図 1は本発明に係る処理システ ムを示す概略平面図、 図 2は待機位置に設置された輪郭検出センサと被処理体と の位置関係を示す拡大図、 図 3は位置ずれ検出装置と搬送機構の制御系を示すプ ロック図、 図 4は輪郭検出センサの一例を示す図、 図 5は輪郭検出センサの特性 曲線を示す図、 図 6は位置ずれ量の算出方法の一例を説明するための説明図であ る。 これらの図において、 図 1 0にて説明した従来の処理システムと同一部分に ついては同一符号を付して説明する。 - 図示するように、 この処理システム 2 4は、 真空引き可能になされた略六角形 状の共通搬送室 4を有しており、 この共通搬送室 4には、 それそれ搬出入口に設 けたゲートバルブ 6 A〜 6 Dを介して複数、 ここでは 4つの処理室 8 A〜 8 Dが 連結されて、 いわゆるクラス夕ツール装置になされている。 各処理室 8 A〜8 D 内には、 例えば静電力で被処理体である半導体ウェハ Wを吸着保持する静電チヤ ックを上面に備えた載置台 1 0 A~ l 0 Dが設けられる。 これらの各処理室 8 A 〜8 Dは、 ウェハに対してどのように処理を行なう装置でもよく、 プラズマ或い は熱 C VD成膜処理、 ァニール処理、 プラズマ或いはプラズマレスエッチング処 理、 酸化拡散処理等を必要に応じて行なう処理室を設ける。  1 to 6 show a first embodiment. FIG. 1 is a schematic plan view showing a processing system according to the present invention, FIG. 2 is an enlarged view showing a positional relationship between a contour detection sensor installed at a standby position and a workpiece, and FIG. FIG. 4 is a diagram showing an example of a contour detection sensor, FIG. 5 is a diagram showing a characteristic curve of the contour detection sensor, and FIG. 6 is a diagram for explaining an example of a method of calculating a displacement amount. FIG. In these figures, the same parts as those of the conventional processing system described with reference to FIG. -As shown in the figure, the processing system 24 has a substantially hexagonal common transfer chamber 4 which can be evacuated, and the common transfer chamber 4 has gates provided at the entrance and exit respectively. A plurality of processing chambers 8A to 8D are connected via valves 6A to 6D to form a so-called class tool tool device. In each of the processing chambers 8A to 8D, there is provided a mounting table 10A to 10D provided with an electrostatic chuck on its upper surface for adsorbing and holding a semiconductor wafer W as an object to be processed by electrostatic force, for example. . Each of these processing chambers 8A to 8D may be an apparatus for performing any processing on a wafer, such as plasma or thermal CVD film formation, annealing, plasma or plasmaless etching, and oxidation diffusion. A processing chamber for performing processing and the like as needed is provided.
また、 この共通搬送室 4には、 ゲートバルブ 1 2 A、 1 2 Bを介して略円盤状 のウェハ Wを収容したカセヅトを収容する 2つのカセット室 1 4 A、 1 4 Bが連 結されている。 そして、 この共通搬送室 4内の略中央には、 旋回及び屈伸可能に なされた例えば多関節アームよりなる搬送機構 1 6が設けられており、 この搬送 機構 1 6のアーム 1 8の先端に 2つの爪部 1 8 Aを設けて、 この爪部 1 8 Aで半 導体ウェハ Wを保持し、 これを各カセット室 1 4 A、 1 4 8と各処理室8 〜8 Dとの間及び各処理室 8 A〜 8 D間で受け渡して搬送するようになっている。 こ の場合、 アーム 1 8の先端の 2つの爪部 1 8 A間に位置する保持中心 0 2にゥェ ハ Wの中心を位置ずれがないように位置させてウェハ Wを保持するのが好ましい。 上記共通搬送室 4内の上記カセット室 1 4 A、 1 4 B側には、 ウェハを保持して 回転する回転テーブル 2 6とこの時のウェハ Wの周縁部の輪郭の位置変動を検出 するラインセンサ 2 8等を含む位置合わせ機構 3 0が設けられており、 ウェハ W の位置合わせを行なうようになっている。 Further, two cassette chambers 14A and 14B for accommodating cassettes accommodating substantially disc-shaped wafers W are connected to the common transfer chamber 4 via gate valves 12A and 12B. ing. At the approximate center of the common transfer chamber 4, a transfer mechanism 16, for example, composed of an articulated arm that can rotate and bend and extend, is provided. At the tip of the arm 18 of the mechanism 16, two claw portions 18 A are provided, and the semiconductor wafer W is held by the claw portions 18 A. The paper is transferred and transferred between the processing chambers 8 to 8D and between the processing chambers 8A to 8D. In this case, it is preferable to hold the wafer W by positioning the center of the wafer W at the holding center 02 located between the two claw portions 18 A at the tip of the arm 18 so that the center of the wafer W is not displaced. . On the side of the cassette chambers 14 A and 14 B in the common transfer chamber 4, a rotary table 26 for holding and rotating a wafer and a line for detecting a positional change in the contour of the peripheral portion of the wafer W at this time are provided. A positioning mechanism 30 including a sensor 28 and the like is provided to perform positioning of the wafer W.
そして、 共通搬送室 4内には、 上記処理室 8 A〜8 Dの内の少なくとも 1つ、 図示例では時計回り方向に 1つ置きの処理室 8 A、 8 Cの搬出入口、 すなわちゲ ートバルブ 6 A、 6 Cの設置位置に対応させて搬送時のウェハ Wを一時的に停止 させて待機させる待機位置 3 2 A、 3 2 Cを設けている。 この待機位置 3 2 A、 3 2 Cは、 図示例では便宜上ウェハと同じサイズの一点鎖線の円形で示している が、 実際にはウェハが通過できる単なる空間である。 そして、 この共通搬送室 4 に本発明の特徴とする位置ずれ検出装置 3 4を設け、 この位置ずれ検出装置 3 4 により、 上記各待機位置 3 2 A、 3 2 Cの中心位置を基準原点 O A、 0 Cとし、 後述するようにこの基準原点 O A、 0 Cからのウェハ中心のずれ量を位置ずれ量 として求めるようになつている。 具体的には、 上記位置ずれ検出装置 3 4は、 上 記各待機位置 3 2 A、 3 2 Cに対応させて配置したそれそれ 3つの輪郭検出セン サ 3 6— 1〜3 6— 3及び 3 8— 1〜3 8— 3を有しており、 ウェハ Wの周辺輪 郭 (周辺エッジ) の位置を検出するようになっている。  In the common transfer chamber 4, at least one of the processing chambers 8 A to 8 D, in the illustrated example, every other processing chamber 8 A, 8 C in the clockwise direction, a gate port, that is, a gate valve. Standby positions 32A and 32C are provided corresponding to the installation positions of 6A and 6C to temporarily stop the wafer W during transfer and wait. Although the standby positions 32 A and 32 C are shown in the illustrated example by circles of dashed lines of the same size as the wafer for convenience, they are actually only spaces through which the wafer can pass. The common transfer chamber 4 is provided with a misregistration detecting device 34, which is a feature of the present invention, and the misalignment detecting device 34 sets the center position of each of the standby positions 32A and 32C as a reference origin OA. , 0 C, and the amount of deviation of the wafer center from the reference origin OA, 0 C is determined as the amount of positional deviation as described later. More specifically, the position shift detecting device 34 includes three contour detection sensors 36-1, 3-6, 3-3 arranged corresponding to the standby positions 32A, 32C. 38-1 to 38-3, which detect the position of the peripheral contour (peripheral edge) of the wafer W.
そして、 図 3にも示すように、 各輪郭検出センサ 3 6— 1〜3 6— 3及び 3 8 — 1〜3 8— 3は、 例えばマイクロコンピュータ等よりなるずれ量演算部 4 0へ 接続されて、 上記位置ずれ検出装置 3 4を構成している。 これにより、 ウェハ W が各待機位置 3 2 A、 3 2 Cに位置された時における上記各輪郭検出センサ 3 .6 - 1 - 3 6— 3及び 3 8— 1〜3 8— 3の検出値に基づいてウェハの中心位置と 各基準原点 O A、 O Cとの間の位置ずれ量を求めるようになっている。 そして、 図 3に示すようにこのずれ量演算部 4 0の出力であるずれ量は、 例えばマイクロ コンピュータ等よりなる制御手段 4 2に入力されており、 この制御手段 4 2は、 このずれ量を相殺するように、 前記搬送機構 1 6の駆動源である駆動モー夕系 4 3を制御するようになっている。 Then, as shown in FIG. 3, each of the contour detection sensors 36-1 to 36-3 and 38-1 to 38-3 is connected to a shift amount calculation unit 40 such as a microcomputer. Thus, the above-described position shift detecting device 34 is configured. Thereby, when the wafer W is positioned at each of the standby positions 32A and 32C, the detected values of the contour detection sensors 3.6-1-3-36-3 and 38-1-3-8-3 are obtained. The amount of misalignment between the center position of the wafer and each of the reference origins OA and OC is calculated based on this. Then, as shown in FIG. 3, the shift amount output from the shift amount calculating unit 40 is, for example, a micro value. The control means 42 is input to a control means 42 composed of a computer or the like. The control means 42 controls the drive motor system 43 which is a drive source of the transport mechanism 16 so as to offset the shift amount. It has become.
上記 3つで 1組をなす輪郭検出センサ 3 6— :!〜 3 6— 3及び 3 8— 1〜3 8 一 3は、 それそれ対応する処理室 8 A、 8 Cに対して全く同じ配列状態で配置さ れており、 この配列状態をここでは処理室 8 Aに対応する待機位置 3 2 Aに設け た輪郭検出センサ 3 6— 1〜3 6— 3を例にとって、 図 2を参照しつつ説明する。 図 2において待機位置 3 2 Aとウェハ Wの周辺輪郭とは便宜上、 重なって示さ れており、 図示するように、 上記 3つの輪郭検出センサ 3 6— 1〜3 6— 3は、 基準原点 O Aを中心として放射状に配置され、 且つ平面的に互いに実質的に 1 2 0度ずつ離間させて配置されており、 また、 各センサ 3 6— 1 ~ 3 6— 3の一部 を構成する後述するライン状の受光素子、 例えばラインセンサ 4 4— 1〜4 4— 3は適正位置に静止したウェハ周辺輪郭と略直交するように上記基準原点 O Aに 向けて配置されている。  Contour detection sensor that forms one set of the above three 3 6— :! 36-3 and 38-1-3-3 are arranged in exactly the same arrangement with respect to the corresponding processing chambers 8A and 8C. The contour detection sensors 36-1 to 36-3 provided at the standby position 32A corresponding to 8A will be described with reference to FIG. 2 as an example. In FIG. 2, the standby position 32 A and the peripheral contour of the wafer W are overlapped for convenience, and as shown in the figure, the three contour detection sensors 36-1 to 36-3 have the reference origin OA. Are arranged radially around the center and are spaced apart from each other substantially by 120 degrees in a plane, and also constitute a part of each sensor 36-1 to 36-3, which will be described later. The line-shaped light receiving element, for example, the line sensors 44-1 to 44-3 are arranged toward the reference origin OA so as to be substantially perpendicular to the wafer peripheral contour resting at an appropriate position.
また、 ウェハ Wには、 一般的にその方向を認識するための方向認識切り欠き部、 例えば 8インチウェハの場合にはウェハの一部を直線状に切り欠いてなるオリエ ンテーシヨンフラッ卜が形成され、 1 2インチウェハの場合にはウェハの一部を 僅かに V字状に切り欠いてなるノッチが形成される。 図 2に示す場合には、 '方向 認識切り欠き部としてオリエンテーションフラヅト O Fが形成されている場合を 示してあり、 オリエンテーションフラヅト O Fは処理室 8 A側に位置されている c ここで重要な点は、 上記輪郭検出センサ 3 6— 1 ~ 3 6— 3のいずれをも、 上記 オリエンテーションフラット O Fの部分を除外した位置に配列する、 という点で ある。 図示例では、 輪郭検出センサ 3 6— 1がオリエンテーションフラット O F に最も接近させて配置されており、 この場合、 輪郭検出センサ 3 6— 1の処理室 8 Aの方向に対する偏向角度 は、 上記ォリエンテーシヨンフラヅト 0 Fの円周 方向における長さとこのウェハに対して許容されている最大ずれ量とを加味して 決定される。 例えば 8インチウェハの場合には、 この偏向角度ひを 2 2度以上と なるように設定し、 ウェハ Wが最大許容ずれ量内でどのように位置ずれしても、 オリエンテーションフラヅト O F部分が輪郭検出センサ 3 6 - 1 (ラインセンサ 4 4 - 1 ) まで位置ずれしないようにしており、 位置ずれ誤差の発生を防止する ようになつている。 尚、 当然のこととして、 1 2インチウェハの場合には、 これ に設けたノッチは 8ィンチウェハのォリエンテ一シヨンフラット 0 Fに対してそ の長さが非常に短いので、 上記偏向角度 の下限は、 非常に小さくなり、 例えば 3度程度となる。 The wafer W is generally provided with a direction-recognition notch for recognizing the direction, for example, in the case of an 8-inch wafer, an orientation flat formed by linearly cutting a part of the wafer. In the case of a 12-inch wafer, a notch is formed in which a part of the wafer is slightly cut out in a V-shape. In the case shown in FIG. 2, the case where the orientation flat OF is formed as the direction recognition notch is shown, and the orientation flat OF is located on the processing chamber 8A side. The important point is that all of the contour detection sensors 36-1 to 36-3 are arranged at positions excluding the portion of the orientation flat OF. In the illustrated example, the contour detection sensor 36-1 is arranged closest to the orientation flat OF. In this case, the deflection angle of the contour detection sensor 36-1 with respect to the direction of the processing chamber 8A is determined by the above-described orientation. It is determined in consideration of the circumferential length of the station flat 0F and the maximum deviation allowed for this wafer. For example, in the case of an 8-inch wafer, this deflection angle is set to be 22 degrees or more, and no matter how the wafer W is displaced within the maximum allowable displacement, the orientation flat OF portion is Contour detection sensor 36-1 (line sensor 4 4-1) The position is not shifted to prevent the occurrence of position error. As a matter of course, in the case of a 12-inch wafer, the notch provided in this is very short compared to the orientation flat 0 F of an 8-inch wafer, so the lower limit of the deflection angle is as follows. However, it becomes very small, for example, about 3 degrees.
ここで上記各輪郭検出センサ 3 6— 1〜3 6— 3及び 3 8— 1〜3 8— 3は、 全て同じ構造となっているので、 ここでは代表として輪郭検出センサ 3 6— 1を 例にとって説明する。  Here, since the contour detection sensors 36-1 to 36-3 and 38-1 to 38-3 all have the same structure, the contour detection sensor 36-1 is used as a representative here. To explain.
図 4に示すように、 この輪郭検出センサ 3 6—1は、 例えば共通搬送室 4の天 井部 4 Aに支持させた発光素子 4 6 - 1とこれに対向するように共通搬送室 4の 底部 4 Bに支持させた前記受光素子、 例えばラインセンサ 4 4一 1とにより主に 構成されており、 位置ずれ量測定のために、 上記発光素子 4 6— 1とラインセン サ 4 4一 1との間にウェハ Wが位置される。 具体的には、 上記発光素子 4 6 - 1 は、 天井部 4 Aに形成した開口に、 0リング等のシール部材 5 1を介して設けた 例えば石英等の光透過窓 5 3の上面に取り付けられており、 また、 上記ラインセ ンサ 4 4— 1は、 底部 4 Bに形成した開口に、 同じく 0リング等のシール部材 5 5を介して設けた例えば、 石英等の光透過窓 5 7の下面に取り付けられている。 上記発光素子 4 6— 1は、 帯状の検査光 L 1を照出するものであり、 その長さ 方向を基準原点 O A (図 2参照) に向けて配置される。 これに対向する上記ライ ンセンサ 4 4— 1も、 前述したようにその長さ方向を基準原点 O Aに向けて配置 されており、 検査光 L 1を実際に検出するセンサ本体 4 8の受光位置、 或いはゥ ェハ Wによる遮光位置に応じてウェハ Wの周辺輪郭 (エッジ部) の位置を検出す るようになっている。 そして、 このラインセンサ 4 4一 1の近傍には、 スリット 板 5 0が設けられており、 このスリット板 5 0には、 上記帯状の検査光 L 1の両 端部の光を遮断して上記帯状の検査光 L 1の内、 中央部の光のみを通過させる細 長いスリット孔 5 2が形成されており、 検出精度を向上させ得るようになつてい る。 この検出精度の向上について図 5を参照して説明する。  As shown in FIG. 4, for example, the contour detection sensor 36-1 includes a light emitting element 46-1 supported on a ceiling portion 4 A of the common transfer chamber 4 and a light emitting element 46-1 opposed to the light emitting element 46-1. It mainly comprises the light receiving element, for example, a line sensor 441-1 supported on the bottom 4B, and the light emitting element 461-1 and the line sensor 441-1 for measuring the amount of displacement. The wafer W is positioned between them. Specifically, the light-emitting element 46-1 is attached to an upper surface of a light-transmitting window 53 made of, for example, quartz, which is provided in an opening formed in a ceiling portion 4 A through a sealing member 51 such as an O-ring. In addition, the line sensor 44-1 is provided at the opening formed in the bottom 4B with a sealing member 55 such as an O-ring, for example. Attached to. The light emitting element 46-1 illuminates the strip-shaped inspection light L 1, and is arranged with its length direction facing the reference origin O A (see FIG. 2). The line sensor 44-1, which is opposed to this, is also arranged with its length direction facing the reference origin OA as described above, and the light receiving position of the sensor body 48 that actually detects the inspection light L1, Alternatively, the position of the peripheral contour (edge portion) of the wafer W is detected according to the light shielding position by the wafer W. A slit plate 50 is provided in the vicinity of the line sensor 4411. The slit plate 50 blocks the light at both ends of the strip-shaped inspection light L1 and An elongated slit hole 52 that allows only the light at the center of the strip-shaped inspection light L1 to pass through is formed, so that the detection accuracy can be improved. The improvement of the detection accuracy will be described with reference to FIG.
図 5は輪郭検出センサの特性曲線を示しており、 横軸にウェハ輪郭の実際の位 置を示し、 縦軸にウェハ輪郭の計算位置を示している。 また、 横軸にはスリット 板 5 0の平面図とセンサ本体 4 8とを対応させて記載している。 また、 図 5中の 目盛り位置の一部を図 4中に対応させて記してある。 FIG. 5 shows a characteristic curve of the contour detection sensor. The horizontal axis indicates the actual position of the wafer contour, and the vertical axis indicates the calculated position of the wafer contour. Also, the horizontal axis has a slit The plan view of the plate 50 and the sensor body 48 are shown in correspondence. Also, some of the scale positions in FIG. 5 are shown in FIG.
一般的に、 ウェハ輪郭の位置検出は、 センサ本体 4 8における受光位置 (遮光 位置) に応じてその時の光量を光電変換により電気に変換してその時の電圧、 或 いは電流出力によって求めるが、 この特性は図 5に示すように、 センサ本体 4 8 の両端部、 例えば X I— X 2の間、 或いは X 3— X 4の間では特性は曲線状とな つてしまうので、 この部分においてはウェハ輪郭の算出位置に誤差が含まれ易く なる。 これに対して、 センサ本体 4 8の中央部 (X 2— X 3の間) では特性は略 直線状となるので、 この部分においてはウェハ輪郭の算出位置の精度が非常に高 くなる。 そこで、 本実施例では上述のようにスリット孔 5 2を設けることによつ て帯状の検査光 L 1の両端部の光を遮断しており、 これにより、 検出精度を高め ることが可能となる。  Generally, the position of the wafer contour is detected by converting the amount of light at that time into electricity by photoelectric conversion in accordance with the light receiving position (light shielding position) in the sensor body 48 and obtaining the voltage or current output at that time. As shown in Fig. 5, this characteristic becomes curved at both ends of the sensor body 48, for example, between XI and X2 or between X3 and X4. An error is likely to be included in the contour calculation position. On the other hand, since the characteristic is substantially linear in the central portion (between X 2 and X 3) of the sensor body 48, the accuracy of the calculated position of the wafer contour is very high in this portion. Therefore, in the present embodiment, the slit holes 52 are provided as described above to block the light at both ends of the strip-like inspection light L1, thereby improving the detection accuracy. Become.
次に、 以上のように構成された本実施例の動作について説明する。  Next, the operation of the present embodiment configured as described above will be described.
まず、 処理を行なうに先立って、 位置ずれ検出の基準となる各待機位置 3 2 A、 3 2 Cの精密な値を装置の制御系に教え込むためのティーチング操作を行なう。 この操作は、 載置台 1 0 A、 1 0 Cの静電チャックは用いないでこれをオフ状態 としておき、 この状態で載置台 1 0 A、 1 0 C上の適正な位置にティ一チング用 ウイハを精度良く一致させた状態で、 すなわち位置ずれがない状態でウェハ Wを 載置する。 '  First, prior to performing the processing, a teaching operation is performed to teach the precise values of the standby positions 32A and 32C, which are the references for detecting the positional deviation, to the control system of the apparatus. In this operation, the electrostatic chucks of the mounting tables 10A and 10C are not used, and they are turned off, and in this state, the appropriate positions on the mounting tables 10A and 10C are used for teaching. The wafer W is placed in a state where the wafers are accurately matched, that is, in a state where there is no displacement. '
そして、 各処理室 8 A、 8 Cや共通搬送室 4を真空状態にして搬送機構 1 6を 駆動して、 上記各ウェハを載置台 1 0 A、 1 0 Cから搬送し、 これを位置ずれ量 検出位置、 具体的には、 それそれ対応する待機位置 3 2 A、 3 2 Cで停止させ、 この時の各輪郭検出センサ 3 6— 1〜3 6— 3及び 3 8— 1〜3 8— 3の検出値 をゼロ基準とし、 この時の各基準原点 O A、 O Cをそれそれ求める。 以後、 この 値を基準としてウェハ Wの位置ずれ量を検出することになる。 なお、 このウェハ は、 搬送機構の正規位置に保持されている。 また、 各基準原点 O A , O Cを共通 搬送室 4及び輪郭検出センサ 3 6— 1〜 3 6— 3等の設計データから得ることも できるが、 この場合には位置ずれ量の検出精度は低下する。  Then, the processing mechanism 8 A, 8 C and the common transfer chamber 4 are evacuated and the transfer mechanism 16 is driven to transfer each of the wafers from the mounting tables 10 A, 10 C. Stop at the detection positions, specifically, the corresponding standby positions 32A and 32C, and then each contour detection sensor 36-1 to 36-3 and 38-1 to 38 at this time. — Using the detected value of 3 as the zero reference, determine the reference origins OA and OC at this time. Thereafter, the position deviation amount of the wafer W is detected based on this value. This wafer is held at the normal position of the transfer mechanism. In addition, the reference origins OA and OC can be obtained from design data of the common transfer chamber 4 and the contour detection sensors 36-1 to 36-3, etc., but in this case, the detection accuracy of the displacement amount decreases. .
次に、 半導体ウェハ Wの一般的な流れから説明する。 いずれか一方のカセット 室、 例えば 1 4 Aに収容されている未処理の半導体ウェハ Wは、 搬送機構 1 6を 旋回及び屈伸させることにより、 開放されたゲートバルブ 1 2 Aを介してアーム 1 8の先端の爪部 1 8 Aに保持され、 共通搬送室 4内に取り込む。 そして、 この 搬送機構 1 6を旋回させることにより、 このウェハ Wを位置合わせ機構 3 0の回 転テーブル 2 6上に載置して保持させる。 そして、 このウェハ Wを回転させてラ インセンサ 2 8にてそのエッジを検出することにより、 ウェハの位置ずれを求め、 次に、 このウェハをアーム 1 8で保持する時に、 上記位置ずれを相殺するように 保持し、 これによりウェハは適正に位置合わせされた状態で爪部 1 8 Aに保持さ れる。 この位置合わせされたウェハ Wは、 搬送機構 1 6により所定の処理室、 例 えば 8 Aに方向付けされる。 そして、 この搬送機構 1 6を伸ばして開放されてい るゲートバルブ 6 Aを介して処理室 8 A内にウェハ Wを搬入し、 これを載置台 1 O A上に載置し、 静電チャックの吸引力で固定する。 Next, a general flow of the semiconductor wafer W will be described. Either cassette The unprocessed semiconductor wafer W accommodated in a chamber, for example, 14 A, is rotated and bent by the transfer mechanism 16, so that the claw portion at the tip of the arm 18 is opened via the opened gate valve 12 A. It is held at 18 A and taken into the common transfer chamber 4. Then, by rotating the transfer mechanism 16, the wafer W is placed and held on the rotation table 26 of the positioning mechanism 30. Then, the wafer W is rotated and its edge is detected by the line sensor 28 to determine the position shift of the wafer. Next, when the wafer is held by the arm 18, the position shift is canceled. As a result, the wafer is held by the claw portion 18A in a state where the wafer is properly aligned. This aligned wafer W is directed by the transfer mechanism 16 to a predetermined processing chamber, for example, 8 A. Then, the transfer mechanism 16 is extended and the wafer W is loaded into the processing chamber 8A via the gate valve 6A which is opened, and is placed on the mounting table 1OA, and the electrostatic chuck is suctioned. Fix with force.
このように、 ウェハ Wの搬入が終了したならば、 処理室 8 A内にてウェハ Wに 対して所定の処理を行なうことになる。 この処理が終了したならば、 搬送機構を 伸長させて、 開放されたゲートバルブ 6 Aを介してアーム 1 8を処理室 8 A内に 侵入させ、 この先端の爪部 1 8 Aに処理済みのウェハ Wを保持させる。 そして、 搬送機構 1 6を縮退させることにより、 ウェハ Wを共通搬送室 4内に取り込む。 この際、 載置台 1 O A上に静電チャックを設けてある場合には、 このチャック電 源を切ってウェハ Wの除電を予め行なっておく。 尚、 この際、 ウェハの除電が不 十分でアーム 1 8でウェハ Wを保持する際にウェハ Wが跳ねて位置ずれを生じた ままアーム 1 8に保持される場合やウェハ Wの直径が熱によって大きくなつてい る場合がある。 そして、 搬送機構 1 6を縮退させる時、 ウェハ Wを待機位置 3 2 Aで一旦停止し、 この待機位置 3 2 Aの基準原点 O Aに対するウェハ Wの中心位 置のずれ量を輪郭検出センサ手段 3 6 - 1 - 3 6— 3の検出値に基づいて求める c そして、 このウェハ Wに対して次の処理を施す場合には、 搬送機構 1 6を旋回 させて、 このウェハ Wを次の処理室、 例えば 8 Bに方向付けする。 そして、 先程、 処理室 8 Aから搬出する時に、 待機位置 3 2 Aにて求めたウェハ Wの位置ずれ量 を補正してこれを相殺するように搬送機構 1 6の動作、 すなわちこの回転量 0や 屈伸量 Rを制御し、 載置台 1 0 Bの適正な位置にウェハ Wを載置することになる c 次に、 この処理室 8 B内にてウェハ Wに対して所定の処理を施したならば、 こ のウェハ Wを搬送機構 1 6により取りに行き、 共通搬送室 4内に取り込む。 そし て、 このウェハ Wを次の処理のために処理室 8 C内に搬入する場合には、 搬入を 直前に、 このウェハ Wを待機位置 3 2 Cで一旦停止して待機させ、 ここで輪郭検 出センサ 3 8— 1〜3 8— 3を用いて前述したと同様にしてこの待機位置 3 2 C の基準原点 0 Cに対するウェハ Wの中心位置の位置ずれ量を求める。 そして、 こ こで求めた位置ずれ量を補正して相殺するように搬送機構 1 6の動作、 すなわち この回転角 6>や屈伸量 Rを制御し、 載置台 1 0 Cの適正な位置にウェハ Wを載置 することになる。 As described above, when the transfer of the wafer W is completed, a predetermined process is performed on the wafer W in the processing chamber 8A. When this process is completed, the transfer mechanism is extended, the arm 18 is made to enter the processing chamber 8A via the opened gate valve 6A, and the claw 18A at the end has been processed. Hold the wafer W. Then, the wafer W is taken into the common transfer chamber 4 by contracting the transfer mechanism 16. At this time, if an electrostatic chuck is provided on the mounting table 1OA, this chuck power is turned off and the charge on the wafer W is removed in advance. At this time, when the wafer W is not sufficiently neutralized and the arm 18 holds the wafer W, the wafer W jumps when it is held on the arm 18 with a positional shift. It may be getting bigger. Then, when the transfer mechanism 16 is retracted, the wafer W is temporarily stopped at the standby position 32 A, and the deviation of the center position of the wafer W from the reference origin OA of the standby position 32 A is determined by the contour detection sensor means 3. 6-1-3 c Based on the detected value of 6-3 c. When the next processing is to be performed on this wafer W, the transfer mechanism 16 is turned to transfer this wafer W to the next processing chamber. Orient to 8 B, for example. Then, when the wafer W is unloaded from the processing chamber 8 A, the operation of the transfer mechanism 16, that is, the rotation amount of the wafer W is corrected so as to correct and offset the positional deviation amount of the wafer W obtained at the standby position 32 A. And the amount of bending and elongation R is controlled, and the wafer W is placed at an appropriate position on the mounting table 10B. C Next, when a predetermined process is performed on the wafer W in the processing chamber 8B, the wafer W is taken out by the transfer mechanism 16 and is taken into the common transfer chamber 4. When the wafer W is loaded into the processing chamber 8C for the next processing, the wafer W is temporarily stopped at the standby position 32C immediately before the loading, and is made to stand by. Using the detection sensors 38-1 to 38-3, the amount of displacement of the center position of the wafer W with respect to the reference origin 0C of the standby position 32C is obtained in the same manner as described above. Then, the operation of the transport mechanism 16, that is, the rotation angle 6> and the bending / stretching amount R are controlled so as to correct and offset the position shift amount obtained here, and the wafer is placed at an appropriate position on the mounting table 10 C. W will be placed.
そして、 この処理室 8 C内で所定の処理が終了して、 このウェハ Wを処理室 8 Cから処理室 8 Dへ移載する場合には、 ウェハ Wを搬送機構 1 6により処理室 8 Cから取り出した時に、 このウェハ Wを上記待機位置 3 2 Cで一旦停止させて、 ここでウェハ Wの位置ずれ量を求める。 そして、 この位置ずれ量を補正して相殺 するように上記搬送機構 1 6の動作を制御し、 これを処理室 8 D内の載置台 1 0 D上に載置することになる。 この時の関係は、 上記処理室 8 Aから処理室 8 Bへ ウェハ Wを移載する時と同じである。  When the predetermined processing is completed in the processing chamber 8C and the wafer W is transferred from the processing chamber 8C to the processing chamber 8D, the wafer W is transferred by the transfer mechanism 16 to the processing chamber 8C. When the wafer W is taken out from the wafer W, the wafer W is temporarily stopped at the standby position 32 C, and the positional deviation amount of the wafer W is obtained. Then, the operation of the transport mechanism 16 is controlled so as to compensate for and offset the amount of displacement, and this is mounted on the mounting table 10D in the processing chamber 8D. The relationship at this time is the same as when the wafer W is transferred from the processing chamber 8A to the processing chamber 8B.
このようにして、 完全にウェハ Wの処理が完了したならば、 この完全に処理済 みのウェハ Wを、 例えば他方のカセヅト室 1 2 B内のカセットに収容することに なる。 このように、 各処理室 8 A~ 8 D内にウェハ Wを搬入する前には必ず位置 合わせ機構 3 0或いは本発明の位置ずれ検出装置 3 4により位置ずれ量を求める c 尚、 ここでは最後の処理室から取り出したウェハをそのままカセッ卜に戻す場合 について説明したが、 そのウェハの位置ずれ量を位置ずれ検出装置 3 4で検出し、 そのずれ量を補正してカセットに戻すようにしてもよい。 この操作は、 後述する 装置例においても同様である。  In this way, when the processing of the wafer W is completely completed, the completely processed wafer W is stored in, for example, a cassette in the other cassette chamber 12B. As described above, before the wafer W is loaded into each of the processing chambers 8A to 8D, the positional deviation amount is always obtained by the positioning mechanism 30 or the positional deviation detecting device 34 of the present invention. Although the description has been given of the case where the wafer taken out of the processing chamber is returned to the cassette as it is, the positional deviation amount of the wafer may be detected by the positional deviation detecting device 34, and the deviation amount may be corrected and returned to the cassette. Good. This operation is the same in the device example described later.
次に、 図 3乃至図 6を参照して位置ずれ量の検出及びその補正について説明す o  Next, the detection and correction of the displacement amount will be described with reference to FIGS.
各待機位置 3 2 A、 3 2 Cに対応させて図 3に示すように、 輪郭検出センサ 3 6 - 1〜3 6— 3及び 3 8— 1〜3 8— 3が配置されているので、 図 4に一例と して示すように、 例えば発光素子 4 6— 1とラインセンサ 4 4一 1との間に存在 するウェハ Wの周辺輪郭 (エッジ部) の位置により、 その時のエッジ部のライン センサ 4 4— 1上における座標 (検出値) を特定することができる。 As shown in FIG. 3, the contour detection sensors 36-1 to 36-3 and 38-1 to 38-3 are arranged corresponding to the standby positions 32 A and 32 C, respectively. For example, as shown in FIG. 4, for example, there is a light emitting element 461-1 and a line sensor 441-1. The coordinates (detected value) of the edge portion at that time on the line sensor 44-1 can be specified based on the position of the peripheral contour (edge portion) of the wafer W.
そして、 各輪郭検出センサ 3 6— 1〜3 6— 3或いは 3 8— 1〜3 8— 3の検 出値をずれ量検出部 4 0に入力することにより、 ここで各待機位置 3 2 A、 或い は 3 2 Cにおける基準原点〇 A或いは O Cとウェハ中心との間の位置ずれ量が求 められる。 そして、 この位置ずれ量を参照して、 制御手段 4 2は上記位置ずれ量 を補正して相殺するように駆動モータ系 4 3に指令信号を出力し、 搬送機構 1 6 の回転角度 0及び屈伸量 Rを制御する。  Then, by inputting the detection values of the respective contour detection sensors 36-1 to 36-3 or 38-1 to 38-3 to the shift amount detection unit 40, each standby position 3 2A Or the reference deviation at 32 C between the reference origin 〇A or OC and the center of the wafer is determined. Then, referring to the amount of displacement, the control means 42 outputs a command signal to the drive motor system 43 so as to correct and offset the above-described displacement, and the rotation angle 0 and the bending / stretching of the transport mechanism 16 are controlled. Control the quantity R.
ここで図 6を用いて上記位置ずれ量を求める時の演算手法の一例を、 待機位置 3 2 Aを例にとって説明する。 ここで基準原点 O Aを座標の原点とし、 ウェハ W の実際の中心 WOの座標を (X、 Y) とし、 更に、 各輪郭検出センサ 3 6— 1〜 3 6— 3の各検出値の座標を、 それそれ (X 1、 y 1 )、 (x 2、 y 2 ) 及び ( x 3、 y 3 ) とする。  Here, an example of a calculation method for obtaining the above-mentioned positional deviation amount will be described with reference to FIG. 6 taking the standby position 32A as an example. Here, the reference origin OA is set as the coordinate origin, the coordinate of the actual center WO of the wafer W is set as (X, Y), and the coordinates of each detected value of each contour detection sensor 36-1-3-1-6-3 are set as coordinates. And (x1, y1), (x2, y2) and (x3, y3).
このような図において、 上記各検出値の3点の内の任意の 2組の点を結ぶ各線 分をそれそれ垂直 2等分する 2つの線分の交点が、 座標 (Χ、 Υ ) となるので、 X、 Υは以下の式である数 1、 数 2のように表すことができる。 なお、 基準原点 O A , 〇Cも同様の方法で求めることができる。 In such a figure, the intersection of two line segments that vertically bisects each line segment connecting any two sets of points among the three points of each of the above detected values is the coordinates (Χ, Υ) Therefore, X and Υ can be expressed as the following formulas 1 and 2. Note that the reference origins OA and 〇C can be obtained by the same method.
X (2— Λ)¾¾— ) +fe— 2 )}—(·½— ) fy3 2— ) +fe -4)} ... X ( 2 — Λ) ¾¾—) + fe— 2 )} — (· ½—) fy 3 2 —) + fe -4)} ...
2fc -ぶ iX2 - y - κ -ぶ iXy3 - yj} 2fc -bu iX 2 -y-κ -bu iXy 3 -yj}
Y fe - ^ bl - (2 - 2)} - ― xi)b yi )+ - )} Y fe - ^ bl - (2 - 2)} - - x i) b yi) + -)}
、) (2)  )) (2)
2{fe - xi 2 - j-、ぶ 2 - ¾X3 - . 2 {fe- x i 2 -j-, bu 2 -¾X 3- .
従って、 原点 (0、 0) と座標 (X、 Y) を結ぶ線分 56が、 適正位置ウェハ に対する位置ずれウェハの位置ずれ量となる。 Therefore, the line segment 56 connecting the origin (0, 0) and the coordinates (X, Y) is the amount of misalignment of the misaligned wafer with respect to the properly positioned wafer.
そして、 上述したように、 この位置ずれ量 56を相殺するように、 制御手段 4 2は駆動モー夕系 43を制御することになる。  Then, as described above, the control means 42 controls the drive motor system 43 so as to offset the displacement amount 56.
ここで、 本実施例では 1つの待機位置、 例えば 32 Aに対して 3個の輪郭検出 センサ 36— 1〜36— 3を配置し、 且つこれらのセンサ 36— 1〜 36— 3の いずれもが方向認識切り欠き部、 例えばオリエンテーションフラット OFの位置 から外れるように位置されているので、 ウェハ Wの位置ずれを正確に検出するこ とができるのは勿論のこと、 例えば製造誤差によりウェハ直径にばらつきが生じ ていたり、 或いは熱処理時の残留熱によってウェハ直径が僅かに伸縮しているよ うな場合にあっても、 これらに影響させることなく、 正確にウェハ Wの中心位置 を求めてその位置ずれ量を適正に求めることができる。  Here, in the present embodiment, three contour detection sensors 36-1 to 36-3 are arranged at one standby position, for example, 32 A, and all of these sensors 36-1 to 36-3 are arranged. It is located out of the direction recognition notch, for example, the position of the orientation flat OF, so it is possible not only to accurately detect the displacement of the wafer W, but also to vary the wafer diameter due to, for example, manufacturing errors. , Or even if the wafer diameter is slightly expanded or contracted due to residual heat during heat treatment, the center position of the wafer W is accurately determined without affecting these factors, and the amount of displacement is calculated. Can be determined appropriately.
この点をより詳しく説明すると、 例えば図 10に示す従来装置のように 2つの ラインセンサ 20、 22を用いてウェハ中心を検出している場合には、 ウェハ直 径が基準よりも僅かに大きくて、 且つこの中心がセンサ 20、 22の配列方向に 対して直交する方向に僅かに位置ずれしているような場合には、 両ラインセンサ 20、 22には、 適正サイズのウェハを位置ずれなしで設置されている時と同様 な検出値が出力される場合があり、 従って、 この時には "位置ずれなし" として 誤って判断されてしまう場合が生ずる。  To explain this point in more detail, for example, when the center of the wafer is detected using two line sensors 20 and 22 as in the conventional apparatus shown in FIG. 10, the wafer diameter is slightly larger than the reference. In the case where the center is slightly displaced in the direction orthogonal to the arrangement direction of the sensors 20 and 22, the wafers of the appropriate size are provided to both line sensors 20 and 22 without displacement. In some cases, the same detection value is output as when it is installed, and in this case, it may be erroneously determined that there is no displacement.
これに対して、 本発明装置の場合には、 オリエンテーションフラット OFの部 分を除いたウェハ輪郭の 3点で位置検出を行なつているので、 上述したように位 置ずれしている場合には、 これを適正に且つ正確に認識することが可能となる。 また、 共通搬送室 4の所定位置に固定された輪郭検出センサ 3 6— 1〜3 6— 3 及び 3 8— 1〜3 8— 3を用いて位置ずれ量を検出しているので、 ウェハを回転 させて検出する必要がなく、 短時間で位置ずれ量の検出ができる。 On the other hand, in the case of the device of the present invention, the orientation flat OF section Since the position detection is performed at three points of the wafer contour excluding the part, if the position is misaligned as described above, it can be recognized properly and accurately. In addition, since the position shift amount is detected by using the contour detection sensors 36-1 to 36-3 and 38-1 to 38-3 fixed at a predetermined position in the common transfer chamber 4, the wafer is moved. There is no need to rotate and detect, and the amount of displacement can be detected in a short time.
また、 3つの位置ずれ検出装置、 例えば 3 6— 1〜3 6— 3を互いに 1 2 0度 間隔で配置する必要はないが、 特に、 本実施例のように上記 3つの位置ずれ検出 装置、 例えば 3 6— :!〜 3 6— 3を平面内にてそれそれ互いに略 1 2 0度離間さ せて載置するように構成すれば、 ウェハ Wの位置ずれがいずれの方向に発生して も、 その検出誤差を最も少なくすることができ、 この場合には、 検出精度を大幅 に向上させることができる。  Further, it is not necessary to arrange three displacement detection devices, for example, 36-1 to 36-3 at an interval of 120 degrees from each other, but in particular, as in the present embodiment, the three displacement detection devices, For example, 3 6— :! 3-6-3 are placed on the plane so as to be separated from each other by approximately 120 degrees, so that even if the position of the wafer W is displaced in any direction, the detection error can be reduced. In this case, the detection accuracy can be greatly improved.
また、 更には、 図 4及び図 5に示すようにラインセンサ、 例えば 4 4一 1の近 傍にスリット板 5 0を設けて特性が良好でない帯状検査光 L 1の両端部の光を遮 断するようにしたので、 その検出精度を一層向上させることが可能となる。 また、 上記実施例にあっては、 図 1中において、 各処理室 8八〜 8 Dの内、 時 計回り方向に 1つ置きに待機位置 3 2 A、 3 2 C及び 3個 1組の輪郭検出センサ 3 6— ;!〜 3 6— 3及び 3 8— 1〜3 8— 3を設けたが、 これに限定されず、 4 つの処理室の内、 少なくとも 1つの処理室に対応させて 3個 1組の輪郭検出セン サを設けるようにしてもよい。  Further, as shown in FIGS. 4 and 5, a slit plate 50 is provided near the line sensor, for example, 441-1 to block light at both ends of the strip-shaped inspection light L1 having poor characteristics. Therefore, the detection accuracy can be further improved. Further, in the above embodiment, in FIG. 1, of the processing chambers 88 to 8D, the standby positions 32A, 32C and one set of three of the processing chambers Contour detection sensor 3 6—;! However, the present invention is not limited to this, and one set of three contour detection sensors corresponding to at least one of the four processing chambers is provided. May be provided.
また、 半導体ウェハの搬送経路は、 各処理室 8 A~ 8 Dに対して順に時計回り の方向で処理を行なう場合を例にとって説明したが、 これは単に一例を示したに 過ぎない。  Also, the case where the processing path of the semiconductor wafer is sequentially processed in the clockwise direction in each of the processing chambers 8A to 8D has been described as an example, but this is merely an example.
更には、 上記実施例では共通搬送室 4内に輪郭検出センサ 3 6— 1〜3 6 - 3 及び 3 8— ;!〜 3 8— 3を設けるようにしたが、 これに限定されず、 複数の処理 室 8 A〜 8 Dの内の一部の処理室に代えて位置ずれの検査を行なう位置ずれ検出 室を連結するようにしてもよい。 図 7はこのような他の実施例に係る処理システ ムを示す概略平面図、 図 8は上記位置ずれ検出室を示す断面図である。  Further, in the above embodiment, the contour detection sensors 36-1 to 36-3 and 38-; 3 to 8-3, but this is not a limitation, and a displacement detection chamber that performs displacement inspection is connected instead of some of the processing chambers 8A to 8D. You may make it. FIG. 7 is a schematic plan view showing a processing system according to such another embodiment, and FIG. 8 is a cross-sectional view showing the displacement detection chamber.
図 7に示すように、 ここでは図 1中の処理室 8 Dに代えて、 例えばアルミニゥ ム製の位置ずれ検出室 6 0を開閉弁としてのゲートバルブ 6 Dを介して共通搬送 室 4に連結されている。 尚、 このゲートバルブ 6 Dを設けずに、 共通搬送室 4内 と位置ずれ検出室 6 0内とを常時連通状態としてもよい。 そして、 この位置ずれ 検出室 6 0内に、 ウェハ Wの待機位置 3 2 Eを設定し、 ここに、 例えば待機位置 3 2 Aに設けたように輪郭検出センサ 3 6— 1〜 3 6— 3と全く同じ構成の輪郭 検出センサ 3 9— 1〜3 9— 3を設けるようにする。 尚、 図 7中において、 図 4 中に示す構成部分と同一構成部分については同一参照符号を付してあり、 例えば 各輪郭検出センサ 3 9— 1〜3 9— 3は、 発光素子 4 6— 1〜4 6— 3、 ライン センサ 4 4— 1〜4 4一 3及ぴスリヅト板 (図示せず) をそれそれ有している。 この場合には、 共通搬送室 4内には、 位置合わせ機構 3 0を除き、 他の輪郭検出 センサ 3 6— 1〜3 6— 3及び 3 8— 1〜3 8— 3を設けないようにしてもよい。 この実施例にあっては、 位置合わせ機構 3 0にて位置合わせした場合を除き、 例えば各処理室 8 B、 8 C内へウェハを搬入する直前に、 この位置ずれ検出室 6 0内へ搬送機構 1 6によりウェハ Wを搬入して一時的に停止させ、 ウェハ Wの位 置ずれ量を検出するようにすればよい。 As shown in FIG. 7, here, instead of the processing chamber 8D in FIG. 1, for example, a misalignment detection chamber 60 made of aluminum is transferred via a gate valve 6D serving as an on-off valve. Connected to room 4. Note that, without providing the gate valve 6D, the inside of the common transfer chamber 4 and the inside of the misregistration detection chamber 60 may be always in communication. Then, a standby position 32E of the wafer W is set in the displacement detection chamber 60, and here, for example, the contour detection sensors 36-1 to 36-6-3 are provided at the standby position 32A. A contour detection sensor 39-1 to 39-3 having exactly the same configuration as that described above is provided. In FIG. 7, the same components as those shown in FIG. 4 are denoted by the same reference numerals. For example, each of the contour detection sensors 39-1 to 39-3 is a light emitting element 46-6. 1-4-6-3, line sensor 44-1-4-4-13 and each have a slit plate (not shown). In this case, besides the positioning mechanism 30, no other contour detection sensors 36-1-3-1-6-3 and 38-1-38-3 are provided in the common transfer chamber 4. You may. In this embodiment, except for the case where the alignment is performed by the alignment mechanism 30, for example, immediately before the wafer is loaded into each of the processing chambers 8 B and 8 C, the wafer is transferred into the displacement detection chamber 60. The wafer W may be loaded by the mechanism 16 and temporarily stopped, and the amount of displacement of the wafer W may be detected.
この実施例の場合には、 若干はウェハの搬送速度が遅くなるが前述した装置例 と同様な作用効果を発揮することができる。 また、 ゲートバルブ 6 Dを設けてい る場合には、 この開閉弁であるゲートバルブ 6 Dを閉じて共通搬送室 4内と位置 ずれ検出室 6 0内の連絡を断つようにすれば、 共通搬送室 4内を大気開放するこ となく、 この位置ずれ検出室 6 0内を大気開放してこのメンテナンス作業を行な うことが可能となる。 この場合、 位置ずれ検出室 6 0に対して、 N 2供給系や真 空排気系が独立して設けられる。 In the case of this embodiment, the wafer transfer speed is slightly reduced, but the same operation and effect as those of the above-described apparatus example can be exhibited. If the gate valve 6D is provided, the gate valve 6D, which is an open / close valve, is closed so that communication between the common transfer chamber 4 and the displacement detection chamber 60 is cut off. This maintenance work can be performed by opening the inside of the displacement detection chamber 60 to the atmosphere without opening the chamber 4 to the atmosphere. In this case, an N 2 supply system and a vacuum exhaust system are independently provided for the displacement detection chamber 60.
また、 図 8に示す位置ずれ検出室 6 0内に、 図 9に示すように、 この中へ搬入 された半導体ウェハ Wを一時的に支持する支持手段 7 0を設けるようにしてもよ い。 この支持手段 7 0は、 ウェハ Wの裏面を支持する例えば石英製の 3本の支持 ピン 7 2を.有しており、 この 3本の支持ピン 7 2を共通に昇降口ヅ ド 7 4に連結 し、 この昇降ロッド 7 4を、 位置ずれ検出室 6 0の底部 6 O Aに設けたロッド孔 7 6を貫通させて下方に延出し、 この昇降口ッド 7 4を昇降駆動機構 7 8により 上下移動可能としている。 そして、 上記昇降ロッド 7 4の周囲を覆うようにして、 上記底部 6 O Aと昇降駆動機構 7 8との間は、 伸縮可能になされた金属製のベロ ーズ 8 0が設けられており、 位置ずれ検出室 6 0の気密性を維持しつつ上記昇降 ロッド 7 4及び支持ピン 7 2の上下移動を可能としている。 Further, as shown in FIG. 9, a support means 70 for temporarily supporting the semiconductor wafer W carried therein may be provided in the displacement detection chamber 60 shown in FIG. The support means 70 has three support pins 72 made of, for example, quartz, which support the back surface of the wafer W. The three support pins 72 are commonly connected to an elevating port 74. The lifting rod 74 is extended downward by penetrating a rod hole 76 provided in the bottom 6 OA of the displacement detection chamber 60 by connecting the lifting rod 74 with the lifting drive mechanism 78. It can be moved up and down. Then, an elongate and contractible metal bellows is provided between the bottom 6OA and the elevating drive mechanism 78 so as to cover the periphery of the elevating rod 74. The lifting rod 74 and the support pin 72 can be moved up and down while maintaining the airtightness of the displacement detection chamber 60.
この場合には、 ウェハ Wを上記支持手段 7 0の支持ピン 7 2に支持させた状態 で、 このウェハの位置ずれ量を検出することができるので、 この時に搬送機構 1 6 (図 7参照) は他の半導体ウェハの搬送を行なうことができ、 その分、 搬送効 率を向上させて搬送速度を上げることが可能となる。  In this case, while the wafer W is supported on the support pins 72 of the support means 70, the amount of displacement of the wafer W can be detected. At this time, the transfer mechanism 16 (see FIG. 7) Can transfer other semiconductor wafers, and accordingly, the transfer efficiency can be improved and the transfer speed can be increased.
尚、 図 8乃至図 9に示すように、 位置ずれ検出室 6 0を設けた場合には、 これ に設ける位置ずれ検出装置は、 例えば図 2乃至図 5にて説明したような本発明の 位置ずれ検出装置に限定されず、 例えば図 1 0に示したような従来の位置ずれ検 出装置を設けるようにしてもよい。  As shown in FIGS. 8 and 9, when the displacement detection chamber 60 is provided, the displacement detection device provided therein may be, for example, the position detection device of the present invention described with reference to FIGS. The present invention is not limited to the displacement detecting device, and for example, a conventional displacement detecting device as shown in FIG. 10 may be provided.
また、 上記の実施例では、 一の処理室から取り出したウェハを他の処理室で処 理する際に位置ずれを検出する場合について述べた。 しかし、 カセットから取り 出したウェハを一の処理室で処理をして、 その後、 他の処理室を介さずにカセッ トに戻す処理のみをする場合もある。 かかる装置では位置ずれ検出装置は設けら れていない場合もある。 このような装置において、 事後的に実施例で説明した連 続処理をするように処理手順が変更された場合、 位置ずれ検出室 6 0を、 既設の 処理システムの共通搬送室 4の空きのボートに接続して追加することにより、 容 易に上記実施例と同様な効果を得ることができる。  Further, in the above-described embodiment, a case has been described in which a position shift is detected when a wafer taken out of one processing chamber is processed in another processing chamber. However, in some cases, wafers taken out of a cassette are processed in one processing chamber and then only returned to the cassette without passing through another processing chamber. Such a device may not be provided with a position shift detecting device. In such an apparatus, when the processing procedure is changed to perform the continuous processing described later in the embodiment, the position detection chamber 60 is replaced with an empty boat in the common transfer chamber 4 of the existing processing system. By connecting to and adding to the above, the same effect as in the above embodiment can be easily obtained.
以上の各実施例にあっては、 被処理体として半導体ウェハを例にとって説明し たが、 略円盤形状であればこれに限定されず、 例えば L C D基板、 ガラス基板に も本発明を適用できるのは勿論である。  In each of the above embodiments, a semiconductor wafer has been described as an example of an object to be processed. However, the present invention is not limited to this as long as it has a substantially disk shape. For example, the present invention can be applied to an LCD substrate and a glass substrate. Of course.

Claims

請 求 の 範 囲 The scope of the claims
1 . 周辺部に方向認識切り欠き部を有する円盤状の被処理体の位置ずれを検 出する装置であって、 1. A device for detecting a displacement of a disk-shaped object having a direction recognition notch in a peripheral portion,
前記方向認識切り欠き部を除く前記被処理体の周辺輪郭の位置を検出するよう に配置された 3つの輪郭検出センサと、  Three contour detection sensors arranged to detect the position of the peripheral contour of the object to be processed excluding the direction recognition cutout portion;
前記 3つの輪郭検出センサの各検出値に基づいて求められた前記被処理体の中 心位置と基準原点との間のずれ量を求めるずれ量演算部と、  A shift amount calculating unit for calculating a shift amount between a center position of the object to be processed and a reference origin obtained based on each detection value of the three contour detection sensors;
を備えたことを特徴とする位置ずれ検出装置。 A position shift detecting device comprising:
2 . 前記 3つの輪郭検出センサは、 前記基準原点を中心として周方向に互い に実質的に 1 2 0度離間させて配置されていることを特徴とする請求の範囲第 1 項に記載の位置ずれ検出装置。 2. The position according to claim 1, wherein the three contour detection sensors are arranged substantially 120 degrees apart from each other in a circumferential direction around the reference origin. Deviation detection device.
3 . 前記輪郭検出センサの設置位置は、 前記方向認識切り欠き部の円周方向 における長さと前記被処理体に許容されている最大ずれ量とを加味して決定され ていることを特徴とする請求の範囲第 1項に記載の位置ずれ検出装置。 3. The installation position of the contour detection sensor is determined in consideration of the circumferential length of the direction recognition notch and the maximum deviation allowed for the object to be processed. The positional deviation detecting device according to claim 1.
4 . 前記輪郭検出センサは、 検査光を発する発光素子と、 前記被処理体の半 径方向に沿って配置されたライン状の受光素子とを有しており、 前記受光素子に は前記ライン状の受光素子の端部に入光する光を遮断するスリット板が設けられ ることを特徴とする請求の範囲第 1項に記載の位置ずれ検出装置。 4. The contour detection sensor includes a light emitting element that emits inspection light, and a linear light receiving element arranged along a radial direction of the object to be processed, and the light receiving element includes the linear light receiving element. 2. The position shift detecting device according to claim 1, further comprising a slit plate for blocking light entering the end of said light receiving element.
5 . 前記ずれ量演算部は、 前記 3つの輪郭位置検出センサの各検出値から前 記被処理体の 3点のェッジ部の座標を求め、 前記 3点の内の任意の 2点を結ぷ各 線分の垂直 2等分線の交点から前記被処理体の中心位置を求めることを特徴とす る請求の範囲第 1項に記載の位置ずれ検出装置。 5. The shift amount calculation unit obtains coordinates of the three wedge portions of the object to be processed from each detection value of the three contour position detection sensors, and connects any two of the three points. 2. The position shift detecting device according to claim 1, wherein a center position of the object to be processed is obtained from an intersection of vertical bisectors of each line segment.
6 . 前記位置ずれ量検出装置は、 さらに前記被処理体を搬送する搬送機構を 備え、 6. The displacement amount detecting device further includes a transport mechanism for transporting the workpiece. Prepared,
前記ずれ量演算部は、 前記搬送機構の正規位置に保持されたティーチング用被 処理体を位置ずれ量検出位置に停止したときの前記 3つの輪郭位置検出センサの 各検出値に基づいて前記基準原点を求めることを特徴とする請求の範囲第 1項に 記載の位置ずれ検出装置。  The shift amount calculating unit is configured to determine the reference origin based on the detection values of the three contour position detection sensors when the teaching target held at the regular position of the transport mechanism is stopped at the position shift amount detection position. 2. The position shift detecting device according to claim 1, wherein
7 . 被処理体に対して所定の処理を施すための複数の処理室と、 7. A plurality of processing chambers for performing predetermined processing on the object to be processed,
前記複数の処理室の搬出入口に共通に連結された共通搬送室と、  A common transfer chamber commonly connected to the loading / unloading ports of the plurality of processing chambers,
この共通搬送室内に設けられて前記各処理室との間で前記被処理体を保持して 搬送すべく旋回及び屈伸可能になされた搬送機構と、  A transfer mechanism provided in the common transfer chamber and capable of turning and bending and stretching to hold and transfer the object to be processed between the processing chambers;
を有する処理システムにおいて、 In the processing system having
前記共通搬送室内に、 前記処理室のうちの少なくとも 1つの処理室の搬出入口 に対応させて前記被処理体を一時的に待機させる待機位置を設け、  In the common transfer chamber, a standby position for temporarily waiting the object to be processed is provided in correspondence with a loading / unloading port of at least one of the processing chambers,
この待機位置に対応させて前記被処理体の周辺輪郭の位置を検出するための位 置ずれ検出装置を設け、  A displacement detection device for detecting a position of a peripheral contour of the object to be processed is provided in correspondence with the standby position;
この位置ずれ検出装置は、 周辺部に方向認識切り欠き部を有する円盤状の被処 理体の前記方向認識切り欠き部を除く周辺輪郭の位置を検出するように配置され た 3つの輪郭検出センサと、 前記 3つの輪郭検出センサの各検出値に基づいて求 められた前記被処理体の中心位置と基準原点との間のずれ量を求めるずれ量演算 部とを有し、  This displacement detection device comprises three contour detection sensors arranged to detect the position of the peripheral contour excluding the direction recognition notch of a disc-shaped workpiece having a direction recognition notch in the periphery. And a shift amount calculating unit that calculates a shift amount between a center position of the object to be processed and a reference origin obtained based on each detection value of the three contour detection sensors,
前記位置ずれ検出装置の検出値に基づいて、 前記搬送機構に保持される前記被 処理体の位置ずれ量を求めて、 この位置ずれを補正するように前記搬送機構を制 御する制御手段を設けたことを特徴とする処理システム。  A control unit is provided for obtaining a displacement amount of the workpiece held by the transport mechanism based on a detection value of the displacement detection device, and controlling the transport mechanism so as to correct the displacement. Processing system characterized in that:
8 . 前記 3つの輪郭検出センサは、 前記基準原点を中心として周方向に互い に実質的に 1 2 0度離間させて配置されていることを特徴とする請求の範囲第 7 項に記載の処理システム。 8. The process according to claim 7, wherein the three contour detection sensors are arranged substantially 120 degrees apart from each other in a circumferential direction around the reference origin. system.
9 . 前記輪郭検出センサの設置位置は、 前記方向認識切り欠き部の円周方向 における長さと前記被処理体に許容されている最大ずれ量とを考慮して決定され ていることを特徴とする請求の範囲第 7項に記載の処理システム。 9. The installation position of the contour detection sensor is in the circumferential direction of the direction recognition notch. 8. The processing system according to claim 7, wherein the length is determined in consideration of a length of the object and a maximum deviation amount allowed for the object.
1 0 . 前記輪郭検出センサは、 検査光を発する発光素子と、 前記被処理体の 半径方向に沿って配置されたライン状の受光素子とを有しており、 前記受光素子 には前記ライン状の受光素子の端部に入光する光を遮断するスリット板が設けら れることを特徴とする請求の範囲第 7項に記載の処理システム。 10. The contour detection sensor has a light emitting element that emits inspection light, and a linear light receiving element that is arranged along a radial direction of the object to be processed. 8. The processing system according to claim 7, wherein a slit plate for blocking light that enters the end of said light receiving element is provided.
1 1 . 前記ずれ量演算部は、 前記 3つの輪郭位置検出センサの各検出値から 前記被処理体の 3点のェッジ部の座標を求め、 前記 3点の内の任意の 2点結ぶ各 線分の垂直 2等分線の交点から前記被処理体の中心位置を求めることを特徴とす る請求の範囲第 7項に記載の処理システム。 11. The shift amount calculation unit obtains coordinates of three wedge portions of the object from the respective detection values of the three contour position detection sensors, and connects each line of any two of the three points. 8. The processing system according to claim 7, wherein a center position of the object to be processed is obtained from an intersection of a minute perpendicular bisector.
1 2 . 前記ずれ量演算部は、 前記搬送機構の正規位置に保持されたティーチ ング用被処理体を前記待機位置に停止した時の前記 3つの輪郭位置検出センサの 各検出値に基づいて前記基準原点を求めることを特徴とする請求の範囲第 7項に 記載の処理システム。 12. The displacement amount calculation unit is configured to perform the teaching based on the detection values of the three contour position detection sensors when the teaching target held at the regular position of the transport mechanism is stopped at the standby position. 8. The processing system according to claim 7, wherein the reference origin is obtained.
1 3 . 被処理体に対して所定の処理を施すための複数の処理室と、 前記複数の処理室の搬出入口に共通に連結された共通搬送室と、 13. A plurality of processing chambers for performing predetermined processing on the object to be processed, and a common transfer chamber commonly connected to the loading / unloading ports of the plurality of processing chambers.
この共通搬送室内に設けられた前記各処理室との間で前記被処理体を保持して 搬送すべく旋回及び屈伸可能になされた搬送機構と、  A transfer mechanism that can rotate and bend and extend to hold and transfer the object to be processed between the processing chambers provided in the common transfer chamber;
を備えた処理システムにおいて、 In the processing system provided with
前記共通搬送室に、 位置ずれ検出室を連結させて設け、  The common transfer chamber is provided with a misalignment detection chamber connected thereto,
前記位置ずれ検出室内に前記被処理体の周辺輪郭の位置を検出するための位置 ずれ検出装置を設け、  A displacement detection device for detecting a position of a peripheral contour of the object to be processed is provided in the displacement detection chamber,
前記位置ずれ検出装置の検出値に基づいて、 前記搬送機構に保持される前記被 処理体の位置ずれ量を求めて、 この位置ずれを補正するように前記搬送機構を制 御する制御手段を設けたことを特徴とする処理システム。 A control unit is provided for obtaining a displacement amount of the workpiece held by the transport mechanism based on a detection value of the displacement detection device, and controlling the transport mechanism so as to correct the displacement. Processing system characterized in that:
1 4 . 前記位置ずれ検出装置は、 周辺部に方向認識切り欠き部を有する円盤 状の被処理体の位置ずれを検出するものであって、 14. The position shift detecting device detects a position shift of a disk-shaped object to be processed having a direction recognition notch in a peripheral portion,
前記方向認識切り欠き部を除く前記被処理体の周辺輪郭の位置を検出するよう に配置された 3つの輪郭検出センサと、  Three contour detection sensors arranged to detect the position of the peripheral contour of the object to be processed excluding the direction recognition cutout portion;
前記 3つの輪郭検出センサの各検出値に基づいて求められた前記被処理体の中 心位置と基準原点との間のずれ量を求めるずれ量演算部と、  A shift amount calculating unit for calculating a shift amount between a center position of the object to be processed and a reference origin obtained based on each detection value of the three contour detection sensors;
を備えていることを特徴とする請求の範囲第 1 3項に記載の処理システム。 14. The processing system according to claim 13, further comprising:
1 5 . 前記位置ずれ検出室には、 前記被処理体を一時的に支持する支持手段 が設けられていることを特徴とする請求の範囲第 1 3項に記載の処理システム。 15. The processing system according to claim 13, wherein the displacement detection chamber is provided with support means for temporarily supporting the object to be processed.
1 6 . 前記位置ずれ検出室の入口には、 前記共通搬送室に対して連通及び遮 断可能とする開閉可能な開閉弁が設けられていることを特徴とする請求の範囲第 1 3項に記載の処理システム。 16. An opening / closing valve which is openable and closable so as to be able to communicate with and block the common transfer chamber at an entrance of the displacement detection chamber. The processing system as described.
PCT/JP2001/005318 2000-07-19 2001-06-21 Displacement detector and processing system WO2002007236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000219823A JP2002043394A (en) 2000-07-19 2000-07-19 Positional deviation detecting device and processing system
JP2000-219823 2000-07-19

Publications (1)

Publication Number Publication Date
WO2002007236A1 true WO2002007236A1 (en) 2002-01-24

Family

ID=18714535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005318 WO2002007236A1 (en) 2000-07-19 2001-06-21 Displacement detector and processing system

Country Status (2)

Country Link
JP (1) JP2002043394A (en)
WO (1) WO2002007236A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140922A (en) * 2011-04-13 2013-06-05 松下电器产业株式会社 Plasma processing apparatus and plasma processing method
CN110832633A (en) * 2017-06-30 2020-02-21 东芝三菱电机产业系统株式会社 Substrate positioning device and substrate positioning method
CN111056195A (en) * 2018-10-17 2020-04-24 长沙行深智能科技有限公司 Butt joint control method for automatic loading and unloading of containers for unmanned equipment
CN111326394A (en) * 2018-12-14 2020-06-23 东京毅力科创株式会社 Conveying method and conveying system
CN112820686A (en) * 2021-03-09 2021-05-18 上海广川科技有限公司 Wafer teaching device and teaching method
CN113257705A (en) * 2021-06-29 2021-08-13 西安奕斯伟硅片技术有限公司 Method, device and equipment for detecting wafer abnormity and computer storage medium

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4696373B2 (en) 2001-02-20 2011-06-08 東京エレクトロン株式会社 Processing system and method of conveying object
JP2004241428A (en) * 2003-02-03 2004-08-26 Tokyo Electron Ltd Substrate treatment device and method therefor
JP2008530804A (en) * 2005-02-22 2008-08-07 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト Method for positioning a wafer
JP2006351884A (en) * 2005-06-16 2006-12-28 Tokyo Electron Ltd Substrate conveyance mechanism and processing system
JP4877938B2 (en) * 2006-05-26 2012-02-15 株式会社神戸製鋼所 Diameter measuring device
JP5005428B2 (en) * 2007-05-31 2012-08-22 株式会社アルバック Substrate transport method and substrate transport apparatus
JP4697192B2 (en) 2007-06-12 2011-06-08 東京エレクトロン株式会社 Position shift detection device and processing system using the same
JP5024555B2 (en) * 2008-09-12 2012-09-12 オムロン株式会社 Wafer alignment method and apparatus
JP5208800B2 (en) 2009-02-17 2013-06-12 東京エレクトロン株式会社 Substrate processing system and substrate transfer method
JP6118044B2 (en) * 2012-07-19 2017-04-19 株式会社Screenホールディングス Substrate processing apparatus and substrate processing method
JP6063716B2 (en) * 2012-11-14 2017-01-18 東京エレクトロン株式会社 Substrate processing apparatus and substrate transfer method
JP2015005682A (en) * 2013-06-24 2015-01-08 シンフォニアテクノロジー株式会社 Transfer robot and transfer method of disk-shaped transfer object
JP6415971B2 (en) 2014-12-25 2018-10-31 東京エレクトロン株式会社 Substrate processing apparatus, substrate processing method, and recording medium recording substrate processing program
JP6635888B2 (en) * 2016-07-14 2020-01-29 東京エレクトロン株式会社 Plasma processing system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108740A (en) * 1987-10-21 1989-04-26 Fuji Electric Co Ltd Transfer positioning system for semiconductor wafer
JPH06314731A (en) * 1993-04-28 1994-11-08 Tel Varian Ltd Vacuum processing apparatus
EP0747945A2 (en) * 1995-06-07 1996-12-11 Varian Associates, Inc. Wafer orientation inspection system
JPH10239024A (en) * 1997-02-26 1998-09-11 Omron Corp Optical measuring device
JPH10321702A (en) * 1997-05-16 1998-12-04 Kokusai Electric Co Ltd Apparatus or manufacturing semiconductor
JPH10340940A (en) * 1997-06-06 1998-12-22 Anelva Corp Substrate transfer system and semiconductor producing system
JPH11243129A (en) * 1998-02-25 1999-09-07 Olympus Optical Co Ltd Semiconductor wafer position detecting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108740A (en) * 1987-10-21 1989-04-26 Fuji Electric Co Ltd Transfer positioning system for semiconductor wafer
JPH06314731A (en) * 1993-04-28 1994-11-08 Tel Varian Ltd Vacuum processing apparatus
EP0747945A2 (en) * 1995-06-07 1996-12-11 Varian Associates, Inc. Wafer orientation inspection system
JPH10239024A (en) * 1997-02-26 1998-09-11 Omron Corp Optical measuring device
JPH10321702A (en) * 1997-05-16 1998-12-04 Kokusai Electric Co Ltd Apparatus or manufacturing semiconductor
JPH10340940A (en) * 1997-06-06 1998-12-22 Anelva Corp Substrate transfer system and semiconductor producing system
JPH11243129A (en) * 1998-02-25 1999-09-07 Olympus Optical Co Ltd Semiconductor wafer position detecting device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140922A (en) * 2011-04-13 2013-06-05 松下电器产业株式会社 Plasma processing apparatus and plasma processing method
CN110832633A (en) * 2017-06-30 2020-02-21 东芝三菱电机产业系统株式会社 Substrate positioning device and substrate positioning method
CN110832633B (en) * 2017-06-30 2023-06-02 东芝三菱电机产业系统株式会社 Substrate positioning device and substrate positioning method
CN111056195A (en) * 2018-10-17 2020-04-24 长沙行深智能科技有限公司 Butt joint control method for automatic loading and unloading of containers for unmanned equipment
CN111326394A (en) * 2018-12-14 2020-06-23 东京毅力科创株式会社 Conveying method and conveying system
CN112820686A (en) * 2021-03-09 2021-05-18 上海广川科技有限公司 Wafer teaching device and teaching method
CN113257705A (en) * 2021-06-29 2021-08-13 西安奕斯伟硅片技术有限公司 Method, device and equipment for detecting wafer abnormity and computer storage medium
CN113257705B (en) * 2021-06-29 2021-10-29 西安奕斯伟硅片技术有限公司 Method, device and equipment for detecting wafer abnormity and computer storage medium

Also Published As

Publication number Publication date
JP2002043394A (en) 2002-02-08

Similar Documents

Publication Publication Date Title
WO2002007236A1 (en) Displacement detector and processing system
US7353076B2 (en) Vacuum processing method and vacuum processing apparatus
US6845292B2 (en) Transfer apparatus and method for semiconductor process and semiconductor processing system
US7406360B2 (en) Method for detecting transfer shift of transfer mechanism and semiconductor processing equipment
US11742229B2 (en) Auto-calibration to a station of a process module that spins a wafer
TWI375293B (en) Method to position a wafer
JP2001110873A (en) Treatment device
JP5030542B2 (en) Vacuum processing equipment
KR20020010548A (en) Apparatus for on-the-fly center finding and notch aligning for wafer handling robots
US20070004058A1 (en) Semiconductor manufacturing device with transfer robot
US11380568B2 (en) Transfer method and transfer system
US7532940B2 (en) Transfer mechanism and semiconductor processing system
US20210252695A1 (en) Teaching method
JP2010062215A (en) Vacuum treatment method and vacuum carrier
KR20220062186A (en) Apparatus for treating substrate and method for teaching conveying robot
US20230047039A1 (en) Edge ring transfer with automated rotational pre-alignment
KR100211663B1 (en) Alignment apparatus of semiconductor wafer
KR19980022564A (en) Semiconductor Wafer Clamping Marker
KR20050051093A (en) Apparatus for sensing a position of wafer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

ENP Entry into the national phase

Ref document number: 2003129808

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref document number: 2003130275

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F