WO2002006338A1 - Vaccin comprenant un antigene associe a une tumeur du poumon - Google Patents

Vaccin comprenant un antigene associe a une tumeur du poumon Download PDF

Info

Publication number
WO2002006338A1
WO2002006338A1 PCT/EP2001/007967 EP0107967W WO0206338A1 WO 2002006338 A1 WO2002006338 A1 WO 2002006338A1 EP 0107967 W EP0107967 W EP 0107967W WO 0206338 A1 WO0206338 A1 WO 0206338A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
seq
polynucleotide
cells
sequence
Prior art date
Application number
PCT/EP2001/007967
Other languages
English (en)
Inventor
Jean-Pol Cassart
Swann Gaulis
Carlota Vinals Y De Bassols
Original Assignee
Glaxosmithkline Biologicals S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glaxosmithkline Biologicals S.A. filed Critical Glaxosmithkline Biologicals S.A.
Priority to AU2001276392A priority Critical patent/AU2001276392A1/en
Publication of WO2002006338A1 publication Critical patent/WO2002006338A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • A61K38/1709Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4748Tumour specific antigens; Tumour rejection antigen precursors [TRAP], e.g. MAGE
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to polynucleotides, herein referred to as CASB761 polynucleotides, polypeptides encoded thereby (referred to herein as CASB761 polypeptides), for the treatment of lung cancer and preneoplasic lesions and other related conditions.
  • the present invention further relates to pharmaceutical compositions containing CASB761 polypeptides and polynucleotides, to methods of manufacture of such compositions and to their use in medicine.
  • the invention relates to methods for inducing an immune response against tumours-related antigens, including the treatment of cancer and autoimmune diseases, more particularly lung cancer and preneoplasic lesions, and other related conditions.
  • the invention relates to methods for identifying agonists and antagonists/inhibitors using the materials provided by the invention, and treating conditions associated with CASB761 polypeptide imbalance with the identified compounds.
  • the invention relates to diagnostic assays for detecting diseases associated with inappropriate CASB761 polypeptide activity or levels.
  • Polypeptides and polynucleotides of the present invention are believed to be important immunogens for specific prophylactic or therapeutic immunization against tumours, because they are specifically expressed or highly over-expressed in tumours compared to normal cells and can thus be targeted by antigen-specific immune mechanisms leading to the destruction of the tumour cell. They can also be used to diagnose the occurrence of tumour cells. Furthermore, their inappropriate expression in certain circumstances can cause an induction of autoimmune, inappropriate immune responses, which could be corrected through appropriate vaccination using the same polypeptides or polynucleotides. In this respect the most important biological activities to our purpose are the antigenic and immunogenic activities of the polypeptide of the present invention.
  • a polypeptide of the present invention may also exhibit at least one other biological activity of a CASB761 polypeptide, which could qualify it as a target for therapeutic or prophylactic intervention different from that linked to the immune response.
  • the present invention relates to the use of CASB761 polypeptides in the treatment or diagnosis of lung cancer and preneoplasic lesions and other related conditions.
  • peptides include isolated polypeptides comprising an amino acid sequence which has at least 70% identity, preferably at least 80% identity, more preferably at least 90% identity, yet more preferably at least 95% identity, most preferably at least 97-99% identity, to that of SEQ ID NO:2 over the entire length of SEQ ID NO:2.
  • Such polypeptides include those comprising the amino acid of SEQ ID NO:2.
  • peptides of the present invention include isolated polypeptides in which the amino acid sequence has at least 10% identity, preferably at least 80% identity, more preferably at least 90% identity, yet more preferably at least 95% identity, most preferably at least 91-99% identity, to the amino acid sequence of SEQ ID NO:2 over the entire length of SEQ ID NO:2.
  • polypeptides include the polypeptide of SEQ ID NO:2.
  • polypeptides are recombinantly produced.
  • polypeptides according to the invention are purified, and are substantially free of any other proteins or contaminating host-originating material.
  • peptides that find utility in the present invention include isolated polypeptides encoded by a polynucleotide comprising the sequence contained in SEQ ID NO: 1..
  • the invention also provides an immunogenic fragment of a CASB761 polypeptide, that is a contiguous portion of the CASB761 polypeptide which has the same or similar immunogenic properties to the polypeptide comprising the amino acid sequence of SEQ ID NO:2, and use thereof. That is to say, the fragment (if necessary when coupled to a carrier) is capable of raising an immune response which recognises the CASB761 polypeptide.
  • an immunogenic fragment may include, for example, the CASB761 polypeptide lacking an N-terminal leader sequence, a transmembrane domain or a C-terminal anchor domain.
  • the immunogenic fragment of CASB761 comprises substantially all of the extracellular domain of a polypeptide which has at least 70% identity, preferably at least 80% identity, more preferably at least 90% identity, yet more preferably at least 95% identity, most preferably at least 97-99% identity, to that of SEQ ID NO:2 over the entire length of SEQ ID NO:2.
  • an immunogenic fragment according to the invention comprises at least one epitope.
  • Peptide fragments incorporating an epitope of CASB761 typically will comprise at least 7, preferably 9 or 10 contiguous amino acids for class I epitopes, and 9 to 25 contiguous amino acids for class II epitopes, from SEQ ID NO:2.
  • Preferred epitopes are shown in SEQ ID NO:5-SEQ ID NO:49. Peptides that incorporate these epitopes form a preferred aspect of the present invention. Mimotopes which have the same characteristics as these epitopes, and immunogens comprising such mimotopes which generate an immune response which cross-react with an epitope in the context of the CASB761 molecule, also form part of the present invention.
  • the present invention therefore, includes isolated peptides encompassing these epitopes themselves, any mimotope thereof, and their use in the treatment or diagnosis of lung cancer and lung preneoplasic lesions.
  • mimotope is defined as an entity which is sufficiently similar to the native CASB761 epitope so as to be capable of being recognised by antibodies which recognise the native molecule; (Gheysen, H.M., et al., 1986, Synthetic peptides as antigens.
  • Peptide mimotopes of the above-identified epitopes may be designed for a particular purpose by addition, deletion or substitution of elected amino acids.
  • the peptides of the present invention may be modified for the purposes of ease of conjugation to a protein carrier.
  • the peptides may be altered to have an N-terminal cysteine and a C-terminal hydrophobic amidated tail.
  • the addition or substitution of a D-stereoisomer form of one or more of the amino acids may be performed to create a beneficial derivative, for example to enhance stability of the peptide.
  • modified peptides could be a wholly or partly non-peptide mimotope wherein the constituent residues are not necessarily confined to the 20 naturally occurring amino acids.
  • these may be cyclised by techniques known in the art to constrain the peptide into a conformation that closely resembles its shape when the peptide sequence is in the context of the whole molecule.
  • a preferred method of cyclising a peptide comprises the addition of a pair of cysteine residues to allow the formation of a disulphide bridge.
  • mimotopes or immunogens of the present invention may be larger than the above-identified epitopes, and as such may comprise the sequences disclosed herein. Accordingly, the mimotopes of the present invention may consist of addition of N and/or C terminal extensions of a number of other natural residues at one or both ends.
  • the peptide mimotopes may also be retro sequences of the natural sequences, in that the sequence orientation is reversed; or alternatively the sequences may be entirely or at least in part comprised of D-stereo isomer amino acids (inverso sequences).
  • the peptide sequences may be retro-inverso in character, in that the sequence orientation is reversed and the amino acids are of the D-stereoisomer form.
  • retro or retro-inverso peptides have the advantage of being non-self, and as such may overcome problems of self-tolerance in the immune system.
  • peptide mimotopes may be identified using antibodies which are capable themselves of binding to the epitopes of the present invention using techniques such as phage display technology (EP 0 552 267 Bl).
  • This technique generates a large number of peptide sequences which mimic the structure of the native peptides and are, therefore, capable of binding to anti-native peptide antibodies, but may not necessarily themselves share significant sequence homology to the native peptide.
  • This approach may have significant advantages by allowing the possibility of identifying a peptide with enhanced immunogenic properties, or may overcome any potential self-antigen tolerance problems which may be associated with the use of the native peptide sequence.
  • the covalent coupling of the peptide to the immunogenic carrier can be carried out in a manner well known in the art.
  • a carbodiimide, glutaraldehyde or (N-[ ⁇ -maleimidobutyryloxy] succinimide ester utilising common commercially available heterobifunctional linkers such as CDAP and SPDP (using manufacturers instructions).
  • the immunogen can easily be isolated and purified by means of a dialysis method, a gel filtration method, a fractionation method etc.
  • the types of carriers used in the immunogens of the present invention will be readily known to the man skilled in the art.
  • the function of the carrier is to provide cytokine help in order to help induce an immune response against the peptide.
  • a non-exhaustive list of carriers which may be used in the present invention include: Keyhole limpet
  • Haemocyanin such as bovine serum albumin (BSA), inactivated bacterial toxins such as tetanus or diptheria toxins (TT and DT), or recombinant fragments thereof (for example, Domain 1 of Fragment C of TT, or the translocation domain of DT), or the purified protein derivative of tuberculin (PPD).
  • BSA bovine serum albumin
  • TT and DT inactivated bacterial toxins
  • TT and DT inactivated bacterial toxins
  • TT and DT recombinant fragments thereof (for example, Domain 1 of Fragment C of TT, or the translocation domain of DT), or the purified protein derivative of tuberculin (PPD).
  • the mimotopes or epitopes may be directly conjugated to liposome carriers, which may additionally comprise immunogens capable of providing T-cell help.
  • the ratio of mimotopes to carrier is in the order of 1:1 to 20:1, and preferably each carrier should carry between 3-15 peptid
  • a preferred carrier is Protein D from Haemophilus influenzae (EP 0 594 610 Bl).
  • Protein D is an IgD-binding protein from Haemophilus influenzae and has been patented by Forsgren (WO 91/18926, granted EP 0 594 610 Bl).
  • fragments of protein D for example Protein D l/3 rd (comprising the N-terminal 100-110 amino acids of protein D (GB 9717953.5)).
  • Another preferred method of presenting the peptides of the present invention is in the context of a recombinant fusion molecule.
  • EP 0 421 635 B describes the use of chimaeric hepadnavirus core antigen particles to present foreign peptide sequences in a virus-like particle.
  • immunogens of the present invention may comprise peptides presented in chimaeric particles consisting of hepatitis B core antigen.
  • the recombinant fusion proteins may comprise the mimotopes of the present invention and a carrier protein, such as NS1 of the influenza virus.
  • the nucleic acid which encodes said immunogen also forms an aspect of the present invention.
  • Peptides used in the present invention can be readily synthesised by solid phase procedures well known in the art. Suitable syntheses may be performed by utilising "T- boc" or "F-moc” procedures. Cyclic peptides can be synthesised by the solid phase procedure employing the well-known "F-moc" procedure and polyamide resin in the fully automated apparatus. Alternatively, those skilled in the art will know the necessary laboratory procedures to perform the process manually. Techniques and procedures for solid phase synthesis are described in 'Solid Phase Peptide Synthesis: A Practical Approach 1 by E. Atherton and R.C. Sheppard, published by LRL at Oxford University Press (1989). Alternatively, the peptides may be produced by recombinant methods, .
  • nucleic acid molecules encoding the mimotopes in a bacterial or mammalian cell line, followed by purification of the expressed mimotope.
  • Techniques for recombinant expression of peptides and proteins are known in the art, and are described in Maniatis, T., Fritsch, E.F. and Sambrook et al., Molecular cloning, a laboratory manual, 2nd Ed.; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York (1989).
  • polypeptides or immunogenic fragment of the invention may be in the form of the "mature" protein or may be a part of a larger protein such as a precursor or a fusion protein. It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro-sequences, sequences which aid in purification such as multiple histidine residues, or an additional sequence for stability during recombinant production. Furthermore, addition of exogenous polypeptide or lipid tail or polynucleotide sequences to increase the immunogenic potential of the final molecule is also considered.
  • the invention relates to genetically engineered soluble fusion proteins comprising a polypeptide of the present invention, or a fragment thereof, and various portions of the constant regions of heavy or light chains of immunoglobulins of various subclasses (IgG, IgM, IgA, IgE).
  • immunoglobulin is the constant part of the heavy chain of human IgG, particularly IgGl, where fusion takes place at the hinge region.
  • the Fc part can be removed simply by incorporation of a cleavage sequence which can be cleaved with blood clotting factor Xa.
  • this invention relates to processes for the preparation of these fusion proteins by genetic engineering, and to the use thereof for drug screening, diagnosis and therapy.
  • a further aspect of the invention also relates to polynucleotides encoding such fusion proteins. Examples of fusion protein technology can be found in International Patent Application Nos. WO94/29458 and WO94/22914.
  • the proteins may be chemically conjugated, or expressed as recombinant fusion proteins allowing increased levels to be produced in an expression system as compared to non- fused protein.
  • the fusion partner may assist in providing T helper epitopes (immunological fusion partner), preferably T helper epitopes recognised by humans, or assist in expressing the protein (expression enhancer) at higher yields than the native recombinant protein.
  • the fusion partner will be both an immunological fusion partner and expression enhancing partner.
  • Fusion partners include protein D from Haemophilus influenza B and the non-structural protein from influenzae virus, NS1 (hemagglutinin).
  • Another immunological fusion partner is the protein known as LYTA.
  • LYTA the protein known as the protein known as LYTA.
  • Lyta is derived from Streptococcus pneumoniae which synthesize an N-acetyl-L- alanine amidase, amidase LYTA, (coded by the lytA gene ⁇ Gene, 43 (1986) page 265- 272 ⁇ an autolysin that specifically degrades certain bonds in the peptidoglycan backbone.
  • the C-terminal domain of the LYTA protein is responsible for the affinity to the choline or to some choline analogues such as DEAE. This property has been exploited for the development of E.coli C-LYTA expressing plasmids useful for expression of fusion proteins. Purification of hybrid proteins containing the C-LYTA fragment at its amino terminus has been described ⁇ Biotechnology: 10, (1992) page 795-798 ⁇ . It is possible to use the repeat portion of the Lyta molecule found in the C terminal end starting at residue 178, for example residues 188 - 305.
  • the present invention also includes xenogeneic forms (also termed ortholog forms) of the aforementioned polypeptides, said xenogeneic forms referring to an antigen having substantial sequence identity to the human antigen (also termed autologous antigen) which serves as a reference antigen but which is derived from a different non-human species.
  • the substantial identity refers to concordance of an amino acid sequence with another amino acid sequence or of a polynucleotide sequence with another polynucleotide sequence when such sequence are arranged in a best fit alignment in any of a number of sequence alignment proteins known in the art.
  • the xenogeneic CASB761 polypeptide will be a CASB761 polypeptide which is xenogeneic with respect to human CASB761, in other words which is isolated from a species other than human.
  • the polypeptide is isolated from mouse, rat, pig, or monkey, most preferably from mouse or rat.
  • the present invention also provides a method of inducing an immune response against human CASB761 having an amino acid sequence as set forth in any of the sequences SEQ ID NO: 3 or 4 in a human, comprising administering to the subject an effective dosage of a composition comprising a xenogeneic form of said human CASB761 as described herein.
  • a preferred embodiment is a method of inducing an immune response against human CASB761 using the xenogeneic CASB761 isolated from mouse, rat, pig or rhesus monkey.
  • Another preferred method of inducing an immune response according to the present invention is using an antigen composition including a live viral expression system which expresses said xenogeneic antigen.
  • the isolated xenogeneic CASB761 polypeptide will generally share substantial sequence similarity, and include isolated polypeptides comprising an amino acid sequence which has at least 70% identity, preferably at least 80% identity, more preferably at least 90% identity, yet more preferably at least 95% identity, most preferably at least 97-99% identity, to that of SEQ ID NO:3 or SEQ ID NO:4over the entire length of SEQ ID NO:3 or SEQ ID NO:4. Accordingly the xenogeneic polypeptide will comprise an immunogenic fragment of the polypeptide of SEQ ID NO:3 or SEQ ID NO:4 in which the immunogenic activity of the immunogenic fragment is substantially the same as the polypeptide of SEQ ID NO:3 or SEQ ID NO:4.
  • xenogeneic CASB761 polypeptide can be a fragment of at least about 20 consecutive amino acids, preferably about 30, more preferably about 50, yet more preferably about 100, most preferably about 150 contiguous amino acids selected from the amino acid sequences as shown in SEQ ID NO:3 or in SEQ ID NO:4. More particularly xenogeneic CASB761 fragments will retain some functional property, preferably an immunological activity, of the larger molecule set forth in SEQ ID NO: 3 or in SEQ ID NO:4, and are useful in the methods described herein (e.g. in pharmaceutical and vaccine compositions, in diagnostics, etc.).
  • the fragments will be able to generate an immune response against the human counterpart, such as the generation of cross-reactive antibodies which react with the autologous human form of CASB761 as set forth in any of the SEQ ID NO: 2.
  • the xenogeneic polypeptide of the invention may be part of a larger fusion, comprising the xenogeneic CASB761 polypeptide or fragment thereof and a heterologous protein or part of a protein acting as a fusion partner as described hereabove.
  • the present invention also includes variants of the aforementioned polypeptides and use thereof, that is polypeptides that vary from the referents by conservative amino acid substitutions, whereby a residue is substituted by another with like characteristics. Typical such substitutions are among Ala, Val, Leu and He; among Ser and Thr; among the acidic residues Asp and Glu; among Asn and Gin; and among the basic residues Lys and Arg; or aromatic residues Phe and Tyr. Particularly preferred are variants in which several, 5-10, 1-5, 1-3, 1-2 or 1 amino acids are substituted, deleted, or added in any combination.
  • polypeptide variants which comprise the amino acid sequence of SEQ ID NO:2 and in which several, for instance from 5 to 10, 1 to 5, 1 to 3, 1 to 2 or 1, amino acid residues are substituted, deleted or added, in any combination.
  • Polypeptides according to the present invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.
  • the present invention relates to the use of CASB761 polynucleotides in the treatment or diagnosis of lung cancer or preneoplasic lesions.
  • the present invention relates to the use of a polypeptide or a polynucleotide as disclosed herein in the manufacture of a pharmaceutical or vaccine composition for immunotherapeutically treating a patient suffering from or susceptible to lung cancer, lung preneoplasic lesions or other related conditions.
  • Such polynucleotides include isolated polynucleotides comprising a nucleotide sequence encoding a polypeptide which has at least 70%) identity, preferably at least 80% identity, more preferably at least 90%) identity, yet more preferably at least 95%> identity, to the amino acid sequence of SEQ ID NO:2, over the entire length of SEQ ID NO:2.
  • polypeptides which have at least 97% identity are highly preferred, whilst those with at least 98-99%) identity are more highly preferred, and those with at least 99%) identity are most highly preferred.
  • polynucleotides include a polynucleotide comprising the nucleotide sequence contained in SEQ ID NO: 1 encoding the polypeptide of SEQ ID NO:2.
  • polynucleotides which have at least 97%> identity are highly preferred, whilst those with at least 98-99% identity are more highly preferred, and those with at least 99% identity are most highly preferred.
  • polynucleotides according to the present invention include isolated polynucleotides comprising a nucleotide sequence which has at least 70% identity, preferably at least 80% identity, more preferably at least 90%) identity, yet more preferably at least 95%> identity, to SEQ ID NO:l or to the coding sequence of SEQ ID NO:l over the entire length of SEQ ID NO:l or over the entire length of the coding sequence of SEQ ID NO:l respectively.
  • polynucleotides which have at least 97%> identity are highly preferred, whilst those with at least 98-99% identiy are more highly preferred, and those with at least 99% identity are most highly preferred.
  • Such polynucleotides include a polynucleotide comprising the polynucleotide of SEQ ID NO:l as well as the polynucleotide of SEQ ID NO: 1 or the coding region of SEQ ID NO: 1.
  • Said polynucleotide can be inserted in a suitable plasmid or recombinant microrganism vector and used for immunization (see for example Wolff et. al., Science 247:1465-1468 (1990); Corr et. al., J. Exp. Med. 184:1555-1560 (1996); Doe et. al., Proc. Natl. Acad. Sci. 93:8578-8583 (1996)).
  • the invention also contemplates the use of polynucleotides which are complementary to all the above described polynucleotides.
  • the present invention also provides a nucleic acid encoding the aforementioned xenogeneic proteins of the present invention and their use in medicine.
  • the xenogeneic CASB761 polynucleotide for use in pharmaceutical compositions provides a nucleic acid encoding a polypeptide that has the sequence set forth in SEQ ID NO:3 or SEQ ID NO:4.
  • the isolated xenogeneic polynucleotide of the invention will comprise a nucleotide sequence encoding a polypeptide that has at least 90%, preferably 95%> and above, identity to the amino acid sequence of SEQ ID NO:3 or SEQ ID NO:4, over the entire length of SEQ ID NO:3 or SEQ ID NO:4; or a nucleotide sequence complementary to said isolated polynucleotide.
  • the isolated xenogeneic CASB761 polynucleotides according to the invention may be single-stranded (coding or antisense) or double-stranded, and may be DNA (genomic, cDNA or synthetic) or RNA molecules. Additional coding or non-coding sequences may, but need not, be present within a polynucleotide of the present invention.
  • the invention also provides polynucleotides which are complementary to all the above described polynucleotides.
  • the invention also provides a fragment of a CASB761 polynucleotide which when administered to a subject has the same immunogenic properties as the polynucleotide of SEQ ID NO:l, and use thereof.
  • the invention also provides a polynucleotide encoding an immunological fragment of a CASB761 polypeptide as hereinbefore defined, and use thereof.
  • the fragments according to the invention have a level of immunogenic activity of at least about 50%, preferably at least about 70%> and more preferably at least about 90%) of the level of immunogenic activity of a polypeptide sequence set forth in SEQ ID NO:2 or a polypeptide sequence encoded by a polynucleotide sequence set forth in SEQ ID NO: 1.
  • polypeptide fragments according to the invention preferably comprise at least about 5, 10, 15, 20, 25, 50, or 100 contiguous amino acids, or more, including all intermediate lengths, of a polypeptide composition set forth herein, such as those set forth in SEQ ID NO:2, or those encoded by a polynucleotide sequence set forth in a sequence of SEQ ID NO:l.
  • Preferred fragments comprise one or more epitopes such as those set forth in SEQ ID NO:5 to SEQ ID NO:49.
  • the nucleotide sequence of SEQ ID NO:l shows homology with Homo sapiens achaete-scute complex (Drosophila) ⁇ homolog-like 1 (ASCL1), mRNA (GenBank accession ref NM_004316).
  • the nucleotide sequence of SEQ ID NO:l is a cDNA sequence and comprises a polypeptide encoding sequence (nucleotide 569 to 1282) encoding a polypeptide of 238 amino acids, the polypeptide of SEQ ID NO:2.
  • the nucleotide sequence encoding the polypeptide of SEQ ID NO:2 may be identical to the polypeptide encoding sequence contained in SEQ ID NO:l or it may be a sequence other than the one contained in SEQ ID NO:l, which, as a result of the redundancy (degeneracy) of the genetic code, also encodes the polypeptide of SEQ ID NO:2.
  • the polypeptide of the SEQ ID NO:2 is structurally related to other proteins of the achaete- scute protein family, having homology and/or structural similarity with Homo sapiens achaete-scute complex homolog-like 1 (GenBank accession NP_004307).
  • achaete-scute complex homolog-like 1 (ACSL1) is a member of the basic helix-loop- helix family of transcription factors (BHLH). It activates transcription by binding to the E box (5'-CANNTG-3'). Dimerization with other BHLH proteins is required for efficient DNA binding.
  • ACSL1 plays a role in the neuronal commitment and differentiation and in the generation of olfactory and autonomic neurons. The presence of a CAG repeat in the gene suggests it may also play a role in tumor formation.
  • the protein is highly expressed in medullary thyroid cancer and small cell lung cancer and may be considered as a tumor- associated antigen and a candidate vaccine for these cancers.
  • polypeptides and polynucleotides of the present invention are expected to have, inter alia, similar biological functions/properties to their homologous polypeptides and polynucleotides. Furthermore, preferred polypeptides, immunological fragments and polynucleotides of the present invention have at least one activity of either SEQ ID NO:l or SEQ ID NO:2, as appropriate.
  • Polynucleotides of the present invention may be obtained, using standard cloning and screening techniques, from a cDNA library derived from mRNA in cells of human lung carcinoma, (for example Sambrook et al., Molecular Cloning: A Laboratory Manual, 2 nd Ed., Cold Spring harbor Laboratory Press, Cold Spring harbor, N.Y. (1989)). Polynucleotides of the invention can also be obtained from natural sources such as genomic DNA libraries or can be synthesized using well known and commercially available techniques.
  • the polynucleotide may include the coding sequence for the mature polypeptide, by itself; or the coding sequence for the mature polypeptide in reading frame with other coding sequences, such as those encoding a leader or secretory sequence, a pre-, or pro- or prepro- protein sequence, or other fusion peptide portions.
  • a marker sequence which facilitates purification of the fused polypeptide can be encoded.
  • the marker sequence is a hexa-histidine peptide, as provided in the pQE vector (Qiagen, Inc.) and described in Gentz et al, Proc Natl Acad Sci USA (1989) 86:821-824, or is an HA tag.
  • the polynucleotide may also contain non-coding 5' and 3' sequences, such as transcribed, non- translated sequences, splicing and polyadenylation signals, ribosome binding sites and sequences that stabilize mRNA.
  • Polynucleotides which are identical or sufficiently identical to a nucleotide sequence contained in SEQ ID NO:l may be used as hybridization probes for cDNA and genomic DNA or as primers for a nucleic acid amplification (PCR) reaction, to isolate full-length cDNAs and genomic clones encoding polypeptides of the present invention and to isolate cDNA and genomic clones of other genes (including genes encoding paralogs from human sources and orthologs and paralogs from species other than human) that have a high sequence similarity to SEQ ID NO:l.
  • these nucleotide sequences are 10% identical, preferably 80%> identical, more preferably 90% identical, most preferably 95%) identical to that of the referent.
  • the probes or primers will generally comprise at least 15 nucleotides, preferably, at least 30 nucleotides and may have at least 50 nucleotides. Particularly preferred probes will have between 30 and 50 nucleotides. Particularly preferred primers will have between 20 and 25 nucleotides.
  • polypeptides or polynucleotides derived from sequences from homologous animal origin could be used as immunogens to obtain a cross-reactive immune response to the human gene.
  • a polynucleotide encoding a polypeptide of the present invention, mcluding homologs from species other than human, may be obtained by a process which comprises the steps of screening an appropriate library under stringent hybridization conditions with a labeled probe having the sequence of SEQ ID NO: 1 or a fragment thereof; and isolating full-length cDNA and genomic clones containing' said polynucleotide sequence.
  • Such hybridization techniques are well known to the skilled artisan.
  • Preferred stringent hybridization conditions include overnight incubation at 42°C in a solution comprising: 50% formamide, 5xSSC (150mM NaCl, 15mM trisodium citrate), 50 mM sodium phosphate (pH7.6), 5x Denhardt's solution, 10 % dextran sulfate, and 20 microgram/ml denatured, sheared salmon sperm
  • the present invention also includes polynucleotides obtainable by screening an appropriate library under stingent hybridization conditions with a labeled probe having the sequence of SEQ ID NO: 1 or a fragment thereof.
  • an isolated cDNA sequence will be incomplete, in that the region coding for the polypeptide is short at the 5' end of the cDNA.
  • PCR Nucleic acid amplification
  • the products of this reaction can then be analysed by DNA sequencing and a full-length cDNA constructed either by joining the product directly to the existing cDNA to give a complete sequence, or carrying out a separate full-length PCR using the new sequence information for the design of the 5' primer.
  • Recombinant polypeptides of the present invention may be prepared by processes well known in the art from genetically engineered host cells comprising expression systems. Accordingly, in a further aspect, the present invention relates to an expression system which comprises a polynucleotide of the present invention, to host cells which are genetically engineered with such expression sytems and to the production of polypeptides of the invention by recombinant techniques. Cell-free translation systems can also be employed to produce such proteins using RNAs derived from the DNA constructs of the present invention.
  • host cells can be genetically engineered to incorporate expression systems or portions thereof for polynucleotides according to the present invention.
  • Introduction of polynucleotides into host cells can be effected by methods described in many standard laboratory manuals, such as Davis et al., Basic Methods in Molecular Biology (1986) and Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989).
  • Preferred such methods include, for instance, calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, microinjection, cationic lipid-mediated transfection, electroporation, transduction, scrape loading, ballistic introduction or infection.
  • the proteins of the invention are coexpressed with thioredoxin in trans (TIT).
  • TIT thioredoxin in trans
  • Coexpression of thioredoxin in trans versus in cis is preferred to keep antigen free of thioredoxin without the need for protease.
  • Thioredoxin coexpression eases the solubilisation of the proteins of the invention.
  • Thioredoxin coexpression has also a significant impact on protein purification yield, on purified-protein solubility and quality.
  • bacterial cells such as Streptococci, Staphylococci, E. coli, Streptomyces and Bacillus subtilis cells
  • fungal cells such as yeast cells and Asperg ⁇ llus cells
  • insect cells such as Drosophila S2 and Spodoptera Sf9 cells
  • animal cells such as CHO, COS, HeLa, C127, 3T3, BHK, HEK 293 and Bowes melanoma cells
  • expression systems can be used, for instance, chromosomal, episomal and virus-derived systems, e.g., vectors derived from bacterial plasmids, from bacteriophage, from transposons, from yeast episomes, from insertion elements, from yeast chromosomal elements, from viruses such as baculoviruses, papova viruses, such as SV40, vaccinia viruses, adenoviruses, fowl pox viruses, pseudorabies viruses and retroviruses, and vectors derived from combinations thereof, such as those derived from plasmid and bacteriophage genetic elements, such as cosmids and phagemids.
  • the expression systems may contain control regions that regulate as well as engender expression.
  • any system or vector which is able to maintain, propagate or express a polynucleotide to produce a polypeptide in a host may be used.
  • the appropriate nucleotide sequence may be inserted into an expression system by any of a variety of well-known and routine techniques, such as, for example, those set forth in Sambrook et al, Molecular Cloning, A Laboratory Manual (supra).
  • Appropriate secretion signals may be incorporated into the desired polypeptide to allow secretion of the translated protein into the lumen of the endoplasmic reticulum, the periplasmic space or the extracellular environment. These signals may be endogenous to the polypeptide or they may be heterologous signals.
  • the expression system may also be a recombinant live microorganism, such as a virus or bacterium.
  • the gene of interest can be inserted into the genome of a live recombinant virus or bacterium. Inoculation and in vivo infection with this live vector will lead to in vivo expression of the antigen and induction of immune responses.
  • polynucleotides encoding immunogenic polypeptides of the present invention are introduced into suitable mammalian host cells for expression using any of a number of known viral-based systems.
  • retroviruses provide a convenient and effective platform for gene delivery systems.
  • a selected nucleotide sequence encoding a polypeptide of the present invention can be inserted into a vector and packaged in retroviral particles using techniques known in the art. The recombinant virus can then be isolated and delivered to a subject.
  • retroviral systems have been described (e.g., U.S. Pat. No.
  • adenovirus-based systems have also been described. Unlike retroviruses which integrate into the host genome, adenoviruses persist extrachromosomally thus minimizing the risks associated with insertional mutagenesis (Haj-Ahmad and Graham (1986) J. Virol. 57:267-274; Bett et al. (1993) J. Virol. 67:5911-5921; Mittereder et al. (1994) Human Gene Therapy 5:717-729; Seth et al. (1994) J. Virol. 68:933-940; Barr et al. (1994) Gene Therapy 1:51-58; Berkner, K. L. (1988) BioTechniques 6:616-629; and Rich et al. (1993) Human Gene Therapy 4:461- 476).
  • AAV vectors can be readily constructed using techniques well known in the art. See, e.g., U.S. Pat. Nos. 5,173,414 and 5,139,941; International Publication Nos. WO 92/01070 and WO 93/03769; Lebkowski et al. (1988) Molec. Cell. Biol. 8:3988-3996; Vincent et al. (1990) Vaccines 90 (Cold Spring Harbor Laboratory Press); Carter, B. J. (1992) Current Opinion in Biotechnology 3:533-539; Muzyczka, N. (1992) Current Topics in Microbiol.
  • Additional viral vectors useful for delivering the nucleic acid molecules encoding polypeptides of the present invention by gene transfer include those derived from the pox family of viruses, such as vaccinia virus and avian poxvirus.
  • vaccinia virus recombinants expressing the novel molecules can be constructed as follows. The DNA encoding a polypeptide is first inserted into an appropriate vector so that it is adjacent to a vaccinia promoter and flanking vaccinia DNA sequences, such as the sequence encoding thymidine kinase (TK). This vector is then used to transfect cells which are simultaneously infected with vaccinia.
  • TK thymidine kinase
  • Homologous recombination serves to insert the vaccinia promoter plus the gene encoding the polypeptide of interest into the viral genome.
  • the resulting TK.sup.(-) recombinant can be selected by culturing the cells in the presence of 5-bromodeoxyuridine and picking viral plaques resistant thereto.
  • a vaccinia-based infection/transfection system can be conveniently used to provide for inducible, transient expression or coexpression of one or more polypeptides described herein in host cells of an organism.
  • cells are first infected in vitro with a vaccinia virus recombinant that encodes the bacteriophage T7 RNA polymerase. This polymerase displays extraordinar specificity in that it only transcribes templates bearing T7 promoters.
  • cells are fransfected with the polynucleotide or polynucleotides of interest, driven by a T7 promoter.
  • the polymerase expressed in the cytoplasm from the vaccinia virus recombinant transcribes the fransfected DNA into RNA which is then translated into polypeptide by the host translational machinery.
  • the method provides for high level, transient, cytoplasmic production of large quantities of RNA and its translation products. See, e.g., Elroy-Stein and Moss, Proc. Natl. Acad. Sci. USA (1990) 87:6743-6747; Fuerst et al. Proc. Natl. Acad. Sci. USA (1986) 83:8122-8126.
  • avipoxviruses such as the fowlpox and canarypox viruses
  • canarypox viruses can also be used to deliver the coding sequences of interest.
  • Recombinant avipox viruses expressing immunogens from mammalian pathogens, are known to confer protective immunity when administered to non-avian species.
  • the use of an Avipox vector is particularly desirable in human and other mammalian species since members of the Avipox genus can only productively replicate in susceptible avian species and therefore are not infective in mammalian cells.
  • Methods for producing recombinant Avipoxviruses are known in the art and employ genetic recombination, as described above with respect to the production of vaccinia viruses. See, e.g., WO 91/12882; WO 89/03429; and WO 92/03545.
  • alphavirus vectors can also be used for delivery of polynucleotide compositions of the present invention, such as those vectors described in U.S. Patent Nos. 5,843,723; 6,015,686; 6,008,035 and 6,015,694.
  • Certain vectors based on Venezuelan Equine Encephalitis (VEE) can also be used, illustrative examples ofwhich can be found in U.S. Patent Nos. 5,505,947 and 5,643,576.
  • molecular conjugate vectors such as the adenovirus chimeric vectors described in Michael et al. J. Biol. Chem. (1993) 268:6866-6869 and Wagner et al. Proc. Natl. Acad. Sci. USA (1992) 89:6099-6103, can also be used for gene delivery under the invention.
  • the recombinant live microorganisms described above can be virulent, or attenuated in various ways in order to obtain live vaccines. Such live vaccines also form part of the invention.
  • a polynucleotide may be integrated into the genome of a target cell. This integration may be in the specific location and orientation via homologous recombination (gene replacement) or it may be integrated in a random, nonspecific location (gene augmentation).
  • the polynucleotide may be stably maintained in the cell as a separate, episomal segment of DNA. Such polynucleotide segments or "episomes" encode sequences sufficient to permit maintenance and replication independent of or in synchronization with the host cell cycle. The manner in which the expression construct is delivered to a cell and where in the cell the polynucleotide remains is dependent on the type of expression construct employed.
  • a polynucleotide is administered/delivered as "naked" DNA, for example as described in Ulmer et al.,
  • the uptake of naked DNA may be increased by coating the DNA onto biodegradable beads, which are efficiently transported into the cells.
  • a composition of the present invention can be delivered via a particle bombardment approach, many of which have been described.
  • gas-driven particle acceleration can be achieved with devices such as those manufactured by Powderject Pharmaceuticals PLC (Oxford, UK) and Powderject Vaccines Inc. (Madison, WI), some examples of which are described in U.S. Patent Nos. 5,846,796; 6,010,478; 5,865,796; 5,584,807; and EP Patent No. 0500 799.
  • This approach offers a needle-free delivery approach wherein a dry powder formulation of microscopic particles, such as polynucleotide or polypeptide particles, are accelerated to high speed within a helium gas jet generated by a hand held device, propelling the particles into a target tissue of interest.
  • microscopic particles such as polynucleotide or polypeptide particles
  • compositions of the present invention include those provided by Bioject, Inc. (Portland, OR), some examples of which are described in U.S. Patent Nos. 4,790,824; 5,064,413; 5,312,335; 5,383,851; 5,399,163; 5,520,639 and 5,993,412.
  • Polypeptides of the present invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, ion metal affinity chromatography (IMAC) is employed for purification.
  • IMAC ion metal affinity chromatography
  • Well known techniques for refolding proteins may be employed to regenerate active conformation when the polypeptide is denatured during intracellular synthesis, isolation and or purification.
  • Another important aspect of the invention relates to a method for inducing , reinforcing or modulating an immunological response in a mammal which comprises inoculating the mammal with a fragment or the entire polypeptide or polynucleotide of the invention, adequate to produce antibody and/or T cell immune response for prophylaxis or for therapeutic treatment of cancer and autoimmune disease and related conditions.
  • Yet another aspect of the invention relates to a method of inducing, reinforcing or modulating immunological response in a mammal which comprises, delivering a polypeptide of the present invention via a vector or cell directing expression of the polynucleotide and coding for the polypeptide in vivo in order to induce such an immunological response to produce immune responses for prophylaxis or treatment of said mammal from diseases.
  • a further aspect of the invention relates to an immunological/vaccine formulation (composition) which, when introduced into a mammalian host, induces, re-inforces or modulates an immunological response in that mammal to a polypeptide of the present invention wherein the composition comprises a polypeptide or polynucleotide of the invention or an immunological fragment thereof as herein before defined.
  • the immunogenic composition according to the present invention comprises a safe and effective amount of a CASB761 polypeptide, or immunogenic fragment thereof which polypeptide comprises an amino acid sequence which has at least 85%, preferably 90%, most preferably 95% identity to the amino acid sequence of SEQ ID NO:2, SEQ ID NO:3 or SEQ ID NO:4 or to an immunogenic fragment thereof.
  • the imunogenic composition comprises a safe and effective amount of a CASB761 -encoding polynucleotide, which polynucleotide comprises a nucleotide sequence which has at least 85%, preferably 90% , more preferably 95% identity to the nucleotide sequence of SEQ ID NO: l or to a fragment thereof which encodes an immunogenic polypeptide.
  • the vaccine formulation may further comprise a suitable, i.e. pharmaceutically acceptable carrier. Since a polypeptide may be broken down in the stomach, it is preferably administered parenterally (for instance, subcutaneous, intramuscular, intravenous, or intradermal injection).
  • Formulations suitable for parenteral administration include aqueous and non-aqueous sterile injection solutions which may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the recipient; and aqueous and non-aqueous sterile suspensions which may include suspending agents or thickening agents.
  • the invention also provides vaccine formulations for use in medicine.
  • the formulations may be presented in unit-dose or multi-dose containers, for example, sealed ampoules and vials and may be stored in a freeze-dried condition requiring only the addition of the sterile liquid carrier immediately prior to use.
  • a further aspect of the invention relates to the in vitro induction of immune responses to a fragment or the entire polypeptide or polynucleotide of the present invention or a molecule comprising the polypeptide or polynucleotide of the present invention, using cells from the immune system of a mammal, and reinfusing these activated immune cells of the mammal for the treatment of disease.
  • Activation of the cells from the immune system is achieved by in vitro incubation with the entire polypeptide or polynucleotide of the present invention or a molecule comprising the polypeptide or polynucleotide of the present invention in the presence or absence of various immunomodulator molecules.
  • a further aspect of the invention relates to the immunization of a mammal by administration of antigen presenting cells modified by in vitro loading with part or the entire polypeptide of the present invention or a molecule comprising the polypeptide of the present invention and administered in vivo in an immunogenic way.
  • antigen presenting cells can be transfected in vitro with a vector containing a fragment or the entire polynucleotide of the present invention or a molecule comprising the polynucleotide of the present invention, such as to express the corresponding polypeptide, and administered in vivo in an immunogenic way.
  • compositions of the invention will comprise an effective amount of antigen presenting cells, modified by in vitro loading with a CASB761 polypeptide, or genetically modified in vitro to express a CASB761 polypeptide and a pharmaceutically effective carrier.
  • the pharmaceutical compositions described herein will comprise one or more immunostimulants in addition to the immunogenic polynucleotide, polypeptide, antibody, T-cell and or antigen presenting cell (APC) compositions of this invention.
  • An immunostimulant refers to essentially any substance that enhances or potentiates an immune response (antibody and/or cell-mediated) to an exogenous antigen.
  • One preferred type of immunostimulant comprises an adjuvant.
  • Many adjuvants contain a substance designed to protect the antigen from rapid catabolism, such as aluminum hydroxide or mineral oil, and a stimulator of immune responses, such as lipid A, Bortadella pertussis or Mycobacterium tuberculosis derived proteins.
  • adjuvants are commercially available as, for example, Freund's Incomplete Adjuvant and Complete Adjuvant (Difco Laboratories, Detroit, MI); Merck Adjuvant 65 (Merck and Company, Inc., Rahway, NJ); AS-2 (SmithKline Beecham, Philadelphia, PA); aluminum salts such as aluminum hydroxide gel (alum) or aluminum phosphate; salts of calcium, iron or zinc; an insoluble suspension of acylated tyrosine; acylated sugars; cationically or anionically derivatized polysaccharides; polyphosphazenes; biodegradable microspheres; monophosphoryl lipid A and quil A.
  • Cytokines such as GM-CSF, interleukin-2, -7, -12, and other like growth factors, may also be used as adjuvants.
  • the adjuvant composition is preferably one that induces an immune response predominantly of the Thi type.
  • High levels of Thi -type cytokines e.g., IFN- ⁇ , TNF ⁇ , IL-2 and IL-12
  • high levels of Th2-type cytokines e.g., IL-4, IL-5, IL-6 and IL-10
  • a patient will support an immune response that includes Thi- and Th2-type responses.
  • the level of Thi -type cytokines will increase to a greater extent than the level of Th2-type cytokines.
  • the levels of these cytokines may be readily assessed using standard assays. For a review of the families of cytokines, see Mosmann and Coffman, Ann. Rev. Immunol. 7:145-173, 1989.
  • Certain preferred adjuvants for eliciting a predominantly Thi -type response include, for example, a combination of monophosphoryl lipid A, preferably 3-de-O- acylated monophosphoryl lipid A, together with an aluminum salt.
  • MPL ® adjuvants are available from Corixa Corporation (Seattle, WA; see, for example, US Patent Nos. 4,436,727; 4,877,611; 4,866,034 and 4,912,094).
  • CpG-containing oligonucleotides in which the CpG dinucleotide is unmethylated also induce a predominantly Thi response.
  • oligonucleotides are well known and are described, for example, in WO 96/02555, WO 99/33488 and U.S. Patent Nos. 6,008,200 and 5,856,462. Immunostimulatory DNA sequences are also described, for example, by Sato et al., Science 273:352, 1996.
  • Another preferred adjuvant comprises a saponin, such as Quil A, or derivatives thereof, including QS21 and QS7 (Aquila Biopharmaceuticals Inc., Framingham, MA); Escin; Digitonin; or Gypsophila or Chenopodium quinoa saponins.
  • Other preferred formulations include more than one saponin in the adjuvant combinations of the present invention, for example combinations of at least two of the following group comprising QS21, QS7, Quil A, ⁇ -escin, or digitonin.
  • the saponin formulations may be combined with vaccine vehicles composed of chitosan or other polycationic polymers, polylactide and polylactide-co- glycolide particles, poly-N-acetyl glucosamine-based polymer matrix, particles composed of polysaccharides or chemically modified polysaccharides, liposomes and lipid-based particles, particles composed of glycerol monoesters, etc.
  • vaccine vehicles composed of chitosan or other polycationic polymers, polylactide and polylactide-co- glycolide particles, poly-N-acetyl glucosamine-based polymer matrix, particles composed of polysaccharides or chemically modified polysaccharides, liposomes and lipid-based particles, particles composed of glycerol monoesters, etc.
  • the saponins may also be formulated in the presence of cholesterol to form particulate structures such as liposomes or ISCOMs.
  • the saponins may be formulated together with a polyoxyethylene ether or ester, in either a non-particulate solution or suspension, or in a particulate structure such as a paucilamelar liposome or IS COM.
  • the saponins may also be formulated with excipients such as Carbopol R to increase viscosity, or may be formulated in a dry powder form with a powder excipient such as lactose.
  • the adjuvant system includes the combination of a monophosphoryl lipid A and a saponin derivative, such as the combination of QS21 and 3D-MPL ® adjuvant, as described in WO 94/00153, or a less reactogenic composition where the QS21 is quenched with cholesterol, as described in WO 96/33739.
  • a monophosphoryl lipid A and a saponin derivative such as the combination of QS21 and 3D-MPL ® adjuvant, as described in WO 94/00153
  • a less reactogenic composition where the QS21 is quenched with cholesterol as described in WO 96/33739.
  • Other preferred formulations comprise an oil-in-water emulsion and tocopherol.
  • Another particularly preferred adjuvant formulation employing QS21, 3D-MPL ® adjuvant and tocopherol in an oil-in-water emulsion is described in WO 95/17210.
  • Another enhanced adjuvant system involves the combination of a CpG-containing oligonucleotide and a saponin derivative particularly the combination of CpG and QS21 as disclosed in WO 00/09159 or WO 00/62800.
  • the formulation additionally comprises an oil in water emulsion and tocopherol.
  • Additional illustrative adjuvants for use in the pharmaceutical compositions of the invention include Montanide ISA 720 (Seppic, France), SAF (Chiron, California, United States), ISCOMS (CSL), MF-59 (Chiron), the SBAS series of adjuvants (e.g., SBAS-2 or SBAS-4, available from SmithKline Beecham, Rixensart, Belgium), Detox (Enhanzyn ® ) (Corixa, Hamilton, MT), RC-529 (Corixa, Hamilton, MT) and other aminoalkyl glucosaminide 4-phosphates (AGPs), such as those described in pending U.S. Patent Application Serial Nos. 08/853,826 and 09/074,720, the disclosures of which are incorporated herein by reference in their entireties, and polyoxyethylene ether adjuvants such as those described in WO 99/52549A1.
  • n 1 -50
  • A is a bond or -C(O)-
  • R is C 1-50 alkyl or Phenyl C 1-50 alkyl.
  • One embodiment of the present invention consists of a vaccine formulation comprising a polyoxyethylene ether of general formula (I), wherein n is between 1 and 50, preferably 4-24, most preferably 9; the R component is C O , preferably C -C 20 alkyl and most preferably C 12 alkyl, and A is a bond.
  • the concentration of the polyoxyethylene ethers should be in the range 0.1-20%), preferably from 0.1-10%, and most preferably in the range 0.1-1%).
  • Preferred polyoxyethylene ethers are selected from the following group: polyoxyethylene-9-lauryl ether, polyoxyethylene-9-steoryl ether, polyoxyethylene-8-steoryl ether, polyoxyethylene-4-lauryl ether, polyoxyethylene-35- lauryl ether, and polyoxyethylene-23-lauryl ether.
  • Polyoxyethylene ethers such as polyoxyethylene lauryl ether are described in the Merck index (12 th edition: entry 7717). These adjuvant molecules are described in WO 99/52549.
  • the polyoxyethylene ether according to the general formula (I) above may, if desired, be combined with another adjuvant.
  • a preferred adjuvant combination is preferably with CpG as described in the pending UK patent application GB 9820956.2.
  • a carrier is also present in the vaccine composition according to the invention.
  • the carrier may be an oil in water emulsion, or an aluminium salt, such as aluminium phosphate or aluminium hydroxide.
  • a preferred oil-in-water emulsion comprises a metabolisible oil, such as squalene, alpha tocopherol and Tween 80.
  • the antigens in the vaccine composition according to the invention are combined with QS21 and 3D-MPL in such an emulsion.
  • the oil in water emulsion may contain span 85 and/or lecithin and/or tricaprylin.
  • QS21 and 3D-MPL will be present in a vaccine in the range of l ⁇ g - 200 ⁇ g, such as 10-100 ⁇ g, preferably lO ⁇ g - 50 ⁇ g per dose.
  • the oil in water will comprise from 2 to 10%> squalene, from 2 to 10%> alpha tocopherol and from 0.3 to 3% tween 80.
  • the ratio of squalene: alpha tocopherol is equal to or less than 1 as this provides a more stable emulsion.
  • Span 85 may also be present at a level of 1%. In some cases it may be advantageous that the vaccines of the present invention will further contain a stabiliser.
  • Non-toxic oil in water emulsions preferably contain a non-toxic oil, e.g. squalane or squalene, an emulsifier, e.g. Tween 80, in an aqueous carrier.
  • a non-toxic oil e.g. squalane or squalene
  • an emulsifier e.g. Tween 80
  • the aqueous carrier may be, for example, phosphate buffered saline.
  • the present invention also provides a polyvalent vaccine composition
  • a polyvalent vaccine composition comprising a vaccine formulation of the invention in combination with other antigens, in particular antigens useful for treating cancers, autoimmune diseases and related conditions.
  • a polyvalent vaccine composition may include a TH-1 inducing adjuvant as hereinbefore described.
  • the invention provides a process for the production of a immunogenic composition as hereabove disclosed, comprising admixing a CASB761 polypeptide or immunogenic fragment thereof or fusion thereof or a CASB761 -encoding polynucleotide with a suitable adjuvant, diluent or other pharmaceutically acceptable carrier.
  • an immunogenic composition described herein is delivered to a host via antigen presenting cells (APCs), such as dendritic cells, macrophages, B cells, monocytes and other cells that may be engineered to be efficient APCs.
  • APCs antigen presenting cells
  • Such cells may, but need not, be genetically modified to increase the capacity for presenting the antigen, to improve activation and/or maintenance of the T cell response, to have anti-tumor effects per se and/or to be immunologically compatible with the receiver (i.e., matched HLA haplotype).
  • APCs may generally be isolated from any of a variety of biological fluids and organs, including tumor and peritumoral tissues, and may be autologous, allogeneic, syngeneic or xenogeneic cells.
  • Dendritic cells are highly potent APCs (Banchereau and Steinman, Nature 392:245-251, 1998) and have been shown to be effective as a physiological adjuvant for eliciting prophylactic or therapeutic antitumor immunity (see Timmerman and Levy, Ann. Rev. Med. 50:501-529, 1999).
  • dendritic cells may be identified based on their typical shape (stellate in situ, with marked cytoplasmic processes (dendrites) visible in vitro), their ability to take up, process and present antigens with high efficiency and their ability to activate na ⁇ ve T cell responses.
  • Dendritic cells may, of course, be engineered to express specific cell-surface receptors or ligands that are not commonly found on dendritic cells in vivo or ex vivo, and such modified dendritic cells are contemplated by the present invention.
  • secreted vesicles antigen-loaded dendritic cells called exosomes
  • exosomes antigen-loaded dendritic cells
  • Dendritic cells and progenitors may be obtained from peripheral blood, bone marrow, tumor-infiltrating cells, peritumoral tissues-infiltrating cells, lymph nodes, spleen, skin, umbilical cord blood or any other suitable tissue or fluid.
  • dendritic cells may be differentiated ex vivo by adding a combination of cytokines such as GM-CSF, IL- 4, IL-13 and/or TNF ⁇ to cultures of monocytes harvested from peripheral blood.
  • CD34 positive cells harvested from peripheral blood, umbilical cord blood or bone marrow may be differentiated into dendritic cells by adding to the culture medium combinations of GM-CSF, IL-3, TNF ⁇ , CD40 ligand, LPS, flt3 ligand and/or other compound(s) that induce differentiation, maturation and proliferation of dendritic cells.
  • Dendritic cells are conveniently categorized as "immature” and “mature” cells, which allows a simple way to discriminate between two well characterized phenotypes. However, this nomenclature should not be construed to exclude all possible intermediate stages of differentiation.
  • Immature dendritic cells are characterized as APC with a high capacity for antigen uptake and processing, which correlates with the high expression of Fc ⁇ receptor and mannose receptor.
  • the mature phenotype is typically characterized by a lower expression of these markers, but a high expression of cell surface molecules responsible for T cell activation such as class I and class II MHC, adhesion molecules (e.g., CD54 and CD11) and costimulatory molecules (e.g.; CD40, CD80, CD86 and 4- 1BB).
  • APCs may generally be fransfected with a polynucleotide of the invention (or portion or other variant thereof) such that the encoded polypeptide, or an immunogenic portion thereof, is expressed on the cell surface. Such transfection may take place ex vivo, and a pharmaceutical composition comprising such transfected cells may then be used for therapeutic purposes, as described herein. Alternatively, a gene delivery vehicle that targets a dendritic or other antigen presenting cell may be administered to a patient, resulting in transfection that occurs in vivo.
  • In vivo and ex vivo transfection of dendritic cells may generally be performed using any methods known in the art, such as those described in WO 97/24447, or the gene gun approach described by Mahvi et al., Immunology and cell Biology 75:456-460, 1997.
  • Antigen loading of dendritic cells may be achieved by incubating dendritic cells or progenitor cells with the tumor polypeptide, DNA (naked or within a plasmid vector) or RNA; or with antigen-expressing recombinant bacterium or viruses (e.g., vaccinia, fowlpox, adenovirus or lenti virus vectors).
  • the polypeptide Prior to loading, the polypeptide may be covalently conjugated to an immunological partner that provides T cell help (e.g., a carrier molecule). Alternatively, a dendritic cell may be pulsed with a non-conjugated immunological partner, separately or in the presence of the polypeptide. While any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of this invention, the type of carrier will typically vary depending on the mode of administration. Compositions of the present invention may be formulated for any appropriate manner of administration, including for example, topical, oral, nasal, mucosal, intravenous, intracranial, intiaperitoneal, subcutaneous and intramuscular administration.
  • Carriers for use within such pharmaceutical compositions are biocompatible, and may also be biodegradable.
  • the formulation preferably provides a relatively constant level of active component release. In other embodiments, however, a more rapid rate of release immediately upon administration may be desired.
  • the formulation of such compositions is well within the level of ordinary skill in the art using known techniques.
  • Illustrative carriers useful in this regard include microparticles of poly(lactide-co-glycolide), polyacrylate, latex, starch, cellulose, dextran and the like.
  • illustrative delayed-release carriers include supramolecular biovectors, which comprise a non-liquid hydrophilic core (e.g., a cross- linked polysaccharide or oligosaccharide) and, optionally, an external layer comprising an amphiphilic compound, such as a phospholipid (see e.g., U.S. Patent No. 5,151,254 and PCT applications WO 94/20078, WO/94/23701 and WO 96/06638).
  • a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.
  • biodegradable microspheres e.g., polylactate polyglycolate
  • Suitable biodegradable microspheres are disclosed, for example, in U.S. Patent Nos. 4,897,268; 5,075,109; 5,928,647; 5,811,128; 5,820,883; 5,853,763; 5,814,344, 5,407,609 and 5,942,252.
  • Modified hepatitis B core protein carrier systems such as described in WO/99 40934, and references cited therein, will also be useful for many applications.
  • Another illustrative carrier/delivery system employs a carrier comprising particulate- protein complexes, such as those described in U.S. Patent No. 5,928,647, which are capable of inducing a class I-restricted cytotoxic T lymphocyte responses in a host.
  • compositions of the invention will often further comprise one or more buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, bacteriostats, chelating agents such as EDTA or glutathione, adjuvants (e.g., aluminum hydroxide), solutes that render the formulation isotonic, hypotonic or weakly hypertonic with the blood of a recipient, suspending agents, thickening agents and/or preservatives.
  • buffers e.g., neutral buffered saline or phosphate buffered saline
  • carbohydrates e.g., glucose, mannose, sucrose or dextrans
  • mannitol proteins
  • proteins polypeptides or amino acids
  • proteins e.glycine
  • antioxidants e.g., gly
  • compositions described herein may be presented in unit-dose or multi-dose containers, such as sealed ampoules or vials. Such containers are typically sealed in such a way to preserve the sterility and stability of the formulation until use.
  • formulations may be stored as suspensions, solutions or emulsions in oily or aqueous vehicles.
  • a pharmaceutical composition may be stored in a freeze- dried condition requiring only the addition of a sterile liquid carrier immediately prior to use.
  • compositions disclosed herein may be delivered via oral administration to an animal.
  • these compositions may be formulated with an inert diluent or with an assimilable edible carrier, or they may be enclosed in hard- or soft-shell gelatin capsule, or they may be compressed into tablets, or they may be incorporated directly with the food of the diet.
  • the active compounds may even be incorporated with excipients and used in the form of ingestible tablets, buccal tables, troches, capsules, elixirs, suspensions, syrups, wafers, and the like (see, for example, Mathiowitz et al, Nature 1997 Mar 27;386(6623):410-4; Hwang et al, Crit Rev Ther Drug Carrier Syst 1998;15(3):243-84; U. S. Patent 5,641,515; U. S. Patent 5,580,579 and U. S. Patent 5,792,451).
  • Tablets, troches, pills, capsules and the like may also contain any of a variety of additional components, for example, a binder, such as gum tragacanth, acacia, cornstarch, or gelatin; excipients, such as dicalcium phosphate; a disintegrating agent, such as corn starch, potato starch, alginic acid and the like; a lubricant, such as magnesium stearate; and a sweetening agent, such as sucrose, lactose or saccharin may be added or a flavoring agent, such as peppermint, oil of wintergreen, or cherry flavoring.
  • a binder such as gum tragacanth, acacia, cornstarch, or gelatin
  • excipients such as dicalcium phosphate
  • a disintegrating agent such as corn starch, potato starch, alginic acid and the like
  • a lubricant such as magnesium stearate
  • a sweetening agent such as sucrose, lactose
  • any material used in preparing any dosage unit form should be pharmaceutically pure and substantially non-toxic in the amounts employed.
  • the active compounds may be incorporated into sustained-release preparation and formulations.
  • these formulations will contain at least about 0.1 % of the active compound or more, although the percentage of the active ingredient(s) may, of course, be varied and may conveniently be between about 1 or 2% and about 60% or 70% or more of the weight or volume of the total formulation.
  • the amount of active compound(s) in each therapeutically useful composition may be prepared is such a way that a suitable dosage will be obtained in any given unit dose of the compound. Factors such as solubility, bioavailability, biological half-life, route of administration, product shelf life, as well as other pharmacological considerations will be contemplated by one skilled in the art of preparing such pharmaceutical formulations, and as such, a variety of dosages and treatment regimens may be desirable.
  • compositions of the present invention may alternatively be incorporated with one or more excipients in the form of a mouthwash, dentifrice, buccal tablet, oral spray, or sublingual orally-administered formulation.
  • the active ingredient may be incorporated into an oral solution such as one containing sodium borate, glycerin and potassium bicarbonate, or dispersed in a dentifrice, or added in a therapeutically-effective amount to a composition that may include water, binders, abrasives, flavoring agents, foaming agents, and humectants.
  • the compositions may be fashioned into a tablet or solution form that may be placed under the tongue or otherwise dissolved in the mouth.
  • solutions of the active compounds as free base or pharmacologically acceptable salts may be prepared in water suitably mixed with a surfactant, such as hydroxypropylcellulose.
  • Dispersions may also be prepared in glycerol, liquid polyethylene glycols, and mixtures thereof and in oils. Under ordinary conditions of storage and use, these preparations generally will contain a preservative to prevent the growth of microorganisms.
  • Illustrative pharmaceutical forms suitable for injectable use include sterile aqueous solutions or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersions (for example, see U. S. Patent 5,466,468).
  • the form must be sterile and must be fluid to the extent that easy syringability exists. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms, such as bacteria and fungi.
  • the carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and/or vegetable oils.
  • polyol e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like
  • suitable mixtures thereof e.g., vegetable oils
  • vegetable oils e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like
  • suitable mixtures thereof e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like
  • vegetable oils e.g., glycerol, propylene glycol, and liquid polyethylene glycol, and the like
  • Proper fluidity may be maintained, for example, by the use of a coating, such as lecithin, by the maintenance of the required particle size in the case of dispersion
  • isotonic agents for example, sugars or sodium chloride.
  • Prolonged absorption of the injectable compositions can be brought about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
  • the solution for parenteral administration in an aqueous solution, should be suitably buffered if necessary and the liquid diluent first rendered isotonic with sufficient saline or glucose.
  • aqueous solutions are especially suitable for intravenous, intramuscular, subcutaneous and intiaperitoneal administration.
  • a sterile aqueous medium that can be employed will be known to those of skill in the art in light of the present disclosure.
  • one dosage may be dissolved in 1 ml of isotonic NaCl solution and either added to 1000 ml of hypodermoclysis fluid or injected at the proposed site of infusion, (see for example, "Remington's Pharmaceutical Sciences” 15th Edition, pages 1035-1038 and 1570-1580). Some variation in dosage will necessarily occur depending on the condition of the subject being treated. Moreover, for human administration, preparations will of course preferably meet sterility, pyrogenicity, and the general safety and purity standards as required by FDA Office of Biologies standards.
  • compositions disclosed herein may be formulated in a neutral or salt form.
  • Illustrative pharmaceutically-acceptable salts include the acid addition salts (formed with the free amino groups of the protein) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine and the like. Upon formulation, solutions will be administered in a manner compatible with the dosage formulation and in such amount as is therapeutically effective.
  • the carriers can further comprise any and all solvents, dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like.
  • solvents dispersion media, vehicles, coatings, diluents, antibacterial and antifungal agents, isotonic and absorption delaying agents, buffers, carrier solutions, suspensions, colloids, and the like.
  • the use of such media and agents for pharmaceutical active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active ingredient, its use in the therapeutic compositions is contemplated. Supplementary active ingredients can also be incorporated into the compositions.
  • pharmaceutically-acceptable refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a human.
  • the pharmaceutical compositions may be delivered by intranasal sprays, inhalation, and/or other aerosol delivery vehicles.
  • Methods for delivering genes, nucleic acids, and peptide compositions directly to the lungs via nasal aerosol sprays has been described, e.g., in U. S. Patent 5,756,353 and U. S. Patent 5,804,212.
  • the delivery of drugs using intranasal microparticle resins (Takenaga et al., J Controlled Release 1998 Mar 2;52(l-2):81-7) and lysophosphatidyl- glycerol compounds (U. S. Patent 5,725,871) are also well-known in the pharmaceutical arts.
  • illustrative transmucosal drug delivery in the form of a polytetrafluoroetheylene support matrix is described in U. S. Patent 5,780,045.
  • compositions of the present invention are used for the introduction of the compositions of the present invention into suitable host cells/organisms.
  • the compositions of the present invention may be formulated for delivery either encapsulated in a lipid particle, a liposome, a vesicle, a nanosphere, or a nanoparticle or the like.
  • compositions of the present invention can be bound, either covalently or non-covalently, to the surface of such carrier vehicles.
  • liposome and liposome-like preparations as potential drug carriers are generally known to those of skill in the art (see for example, Lasic, Trends).
  • Liposomes have been used successfully with a number of cell types that are normally difficult to transfect by other procedures, including T cell suspensions, primary hepatocyte cultures and PC 12 cells (Renneisen et al, J Biol Chem. 1990 Sep 25;265(27):16337-42; Muller et al, DNA Cell Biol. 1990 Apr;9(3):221-9).
  • liposomes are free of the DNA length constraints that are typical of viral-based delivery systems. Liposomes have been used effectively to introduce genes, various drugs, radiotherapeutic agents, enzymes, viruses, transcription factors, allosteric effectors and the like, into a variety of cultured cell lines and animals.
  • liposomes are formed from phospholipids that are dispersed in an aqueous medium and spontaneously form multilamellar concentric bilayer vesicles (also termed multilamellar vesicles (MLVs).
  • MLVs multilamellar vesicles
  • the invention provides for pharmaceutically- acceptable nanocapsule formulations' of the compositions of the present invention.
  • Nanocapsules can generally entrap compounds in a stable and reproducible way (see, for example, Quintanar-Guerrero et al, Drug Dev Ind Pharm. 1998 Dec;24(12):l 113-28).
  • ultrafine particles sized around 0.1 ⁇ m
  • Such particles can be made as described, for example, by Couvreur et al, Crit Rev Ther Drug Carrier Syst.
  • This invention also relates to the use of polynucleotides, in the form of primers derived from the polynucleotides of the present invention, and of polypeptides, in the form of antibodies or reagents specific for the polypeptide of the present invention, as diagnostic reagents.
  • the identification of genetic or biochemical markers in blood or tissues that will enable the detection of very early changes along the carcinogenesis pathway will help in deterrnining the best treatment for the patient.
  • Surrogate tumour markers such as polynucleotide expression, can be used to diagnose different forms and states of cancer.
  • the identification of expression levels of the polynucleotides of the invention will be useful in both the staging of the cancerous disorder and grading the nature of the cancerous tissue.
  • the staging process monitors the advancement of the cancer and is determined on the presence or absence of malignant tissue in the areas biopsied.
  • the polynucleotides of the invention can help to perfect the staging process by identifying markers for the aggresivity of a cancer, for example the presence in different areas of the body.
  • the grading of the cancer describes how closely a tumour resembles normal tissue of its same type and is assessed by its cell morphology and other markers of differentiation.
  • the polynucleotides of the invention can be useful in determining the tumour grade as they can help in the determination of the differentiation status of the cells of a tumour.
  • the diagnostic assays offer a process for diagnosing or determining a susceptibility to cancers, autoimmune disease and related conditions through diagnosis by methods comprising determining from a sample derived from a subject an abnormally decreased or increased level of polypeptide or mRNA.
  • This method of diagnosis is known as differential expression.
  • the expression of a particular gene is compared between a diseased tissue and a normal tissue.
  • a difference between the polynucleotide-related gene, mRNA, or protein in the two tissues is compared, for example in molecular weight, amino acid or nucleotide sequence, or relative abundance, indicates a change in the gene, or a gene which regulates it, in the tissue of the human that was suspected of being diseased.
  • the invention also provides a process for diagnosing a disease or a susceptibility to a disease in a subject related to expression or activity of a polypeptide of SEQ ID NO: 2 or polynucleotide of SEQ ID NO:l in a subject comprising analyzing for the presence or amount of said polypeptide in a sample derived from said subject.
  • RNA level Decreased or increased expression can be measured at the RNA level.
  • PolyA RNA is first isolated from the two tissues and the detection of mRNA encoded by a gene corresponding to a differentially expressed polynucleotide of the invention can be detected by, for example, in situ hybridization in tissue sections, reverse trascriptase- PCR, using Northern blots containing poly A+ mRNA, or any other direct or inderect RNA detection method.
  • An increased or decreased expression of a given RNA in a diseased tissue compared to a normal tissue suggests that the transcript and/or the expressed protein has a role in the disease.
  • detection of a higher or lower level of mRNA corresponding to SEQ ID NO 1 relative to normal level is indicative of the presence of cancer in the patient.
  • mRNA expression levels in a sample can be determined by generation of a library of expressed sequence tags (ESTs) from the sample.
  • ESTs expressed sequence tags
  • the relative representation of ESTs in the library can be used to assess the relative representation of the gene transcript in the starting sample.
  • the EST analysis of the test can then be compared to the EST analysis of a reference sample to determine the relative expression levels of the polynucleotide of interest.
  • mRNA analyses can be carried out using serial analysis of gene expression (SAGE) methodology (Velculescu et. Al. Science (1995) 270:484) , differential display methodology (For example, US 5,776,683) or hybridization analysis which relies on the specificity of nucleotide interactions.
  • SAGE serial analysis of gene expression
  • differential display methodology For example, US 5,776,683
  • hybridization analysis which relies on the specificity of nucleotide interactions.
  • the comparison could be made at the protein level.
  • the protein sizes in the two tissues may be compared using antibodies to detect polypeptides in Western blots of protein extracts from the two tissues. Expression levels and subcellular localization may also be detected immunologically using antibodies to the corresponding protein. Further assay techniques that can be used to determine levels of a protein, such as a polypeptide of the present invention, in a sample derived from a host are well-known to those of skill in the art. A raised or decreased level of polypeptide expression in the diseased tissue compared with the same protein expression level in the normal tissue indicates that the expressed protein may be involved in the disease.
  • the diagnosis can be determined by detection of gene product expression levels encoded by at least one sequence set forth in SEQ ID NO:l.
  • a comparison of the mRNA or protein levels in a diseased versus normal tissue may also be used to follow the progression or remission of a disease.
  • polynucleotide sequences in a sample can be assayed using polynucleotide arrays. These can be used to examine differential expression of genes and to determine gene function.
  • arrays of the polynucleotide sequences SEQ ID NO: 1 can be used to determine if any of the polynucleotides are differentially expressed between a normal and cancer cell.
  • an array of oligonucleotides probes comprising the SEQ ID NO: 1 nucleotide sequence or fragments thereof can be constructed to conduct efficient screening of e.g., genetic mutations.
  • Diagnosis includes determination of a subject's susceptibility to a disease, determination as to whether a subject presently has the disease, and also the prognosis of a subject affected by the disease.
  • the present invention further relates to a diagnostic kit for performing a diagnostic assay which comprises:
  • a polynucleotide of the present invention preferably the nucleotide sequence of SEQ ID NO: 1 , or a fragment thereof ;
  • polypeptide of the present invention preferably the polypeptide of SEQ ID NO: 2, or a fragment thereof; or
  • the nucleotide sequences of the present invention are also valuable for chromosomal localisation.
  • the sequence is specifically targeted to, and can hybridize with, a particular location on an individual human chromosome.
  • the mapping of relevant sequences to chromosomes according to the present invention is an important first step in correlating those sequences with gene associated disease. Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. Such data are found in, for example, V. McKusick, Mendelian Inheritance in Man (available on-line through Johns Hopkins University Welch Medical Library). The relationship between genes and diseases that have been mapped to the same chromosomal region are then identified through linkage analysis (coinheritance of physically adjacent genes). The differences in the cDNA or genomic sequence between affected and unaffected individuals can also be determined.
  • polypeptides of the invention or their fragments or analogs thereof, or cells expressing them can also be used as immunogens to produce antibodies immunospecific for polypeptides of the present invention.
  • immunospecific means that the antibodies have substantially greater affinity for the polypeptides of the invention than their affinity for other related polypeptides in the prior art.
  • the invention provides an antibody immunospecific for a polypeptide according to the invention or an immunological fragment thereof as hereinbefore defined.
  • the antibody is a monoclonal antibody.
  • Antibodies generated against polypeptides of the present invention may be obtained by administering the polypeptides or epitope- bearing fragments, analogs or cells to an animal, preferably a non-human animal, using routine protocols.
  • any technique which provides antibodies produced by continuous cell line cultures can be used. Examples include the hybridoma technique (Kohler, G. and Milstein, C, Nature (1975) 256:495-497), the trioma technique, the human B-cell hybridoma technique (Kozbor et al, Immunology Today (1983) 4:72) and the EBV-hybridoma technique (Cole et al, Monoclonal Antibodies and Cancer Therapy, 77-96, Alan R. Liss, Inc., 1985).
  • the above-described antibodies may be employed to isolate or to identify clones expressing the polypeptide or to purify the polypeptides by affinity chromatography.
  • the antibody of the invention may also be employed to prevent or treat cancer, particularly lung cancer, lung preneoplasic lesions, autoimmune disease and related conditions.
  • Another aspect of the invention relates to a method for inducing or modulating an immunological response in a mammal which comprises inoculating the mammal with a polypeptide of the present invention, adequate to produce antibody and/or T cell immune response to protect or ameliorate the symptoms or progression of the disease.
  • Yet another aspect of the invention relates to a method of inducing or modulating immunological response in a mammal which comprises, delivering a polypeptide of the present invention via a vector directing expression of the polynucleotide and coding for the polypeptide in vivo in order to induce such an immunological response to produce antibody to protect said animal from diseases.
  • the present invention therefore provides a method of treating abnormal conditions such as, for instance, cancer and autoimmune diseases, in particular, lung cancer or lung preneoplasic lesions, related to either a presence of, an excess of, or an under-expression of CASB761 polypeptide activity.
  • abnormal conditions such as, for instance, cancer and autoimmune diseases, in particular, lung cancer or lung preneoplasic lesions, related to either a presence of, an excess of, or an under-expression of CASB761 polypeptide activity.
  • the present invention further provides for a method of screening compounds to identify those which stimulate or which inhibit the function of the CASB761 polypeptide.
  • agonists or antagonists may be employed for therapeutic and prophylactic purposes for such diseases as hereinbefore mentioned.
  • Compounds may be identified from a variety of sources, for example, cells, cell-free preparations, chemical libraries, and natural product mixtures.
  • Such agonists, antagonists or inhibitors so-identified may be natural or modified substrates, ligands, receptors, enzymes, etc., as the case may be, of the polypeptide; or may be structural or functional mimetics thereof (see Coligan et al, Current Protocols in Immunology l(2):Chapter 5 (1991)). Screening methods will be known to those skilled in the art.
  • the invention provides a method for screening to identify compounds which stimulate or which inhibit the function of the polypeptide of the invention which comprises a method selected from the group consisting of:
  • polypeptide of the invention may be used to identify membrane bound or soluble receptors, if any, through standard receptor binding techniques known in the art.
  • Well known screening methods may also be used to identify agonists and antagonists of the polypeptide of the invention which compete with the binding of the polypeptide of the invention to its receptors, if any.
  • the present invention relates to a screening kit for identifying agonists, antagonists, ligands, receptors, substrates, enzymes, etc. for polypeptides of the present invention; or compounds which decrease or enhance the production of such polypeptides, which comprises: (a) a polypeptide of the present invention; (b) a recombinant cell expressing a polypeptide of the present invention;
  • polypeptide of the present invention may also be used in a method for the structure-based design of an agonist, antagonist or inhibitor of the polypeptide, by:
  • Gene therapy may also be employed to effect the endogenous production of CASB761 polypeptide by the relevant cells in the subject.
  • Gene therapy see Chapter 20, Gene Therapy and other Molecular Genetic-based Therapeutic Approaches, (and references cited therein) in Human Molecular Genetics, T Strachan and A P Read, BIOS Scientific Publishers Ltd (1996).
  • Vaccine preparation is generally described in Pharmaceutical Biotechnology, Vol.61 Vaccine Design - the subunit and adjuvant approach, edited by Powell and Newman, Plenum Press, 1995. New Trends and Developments in Vaccines, edited by Voller et al, University Park Press, Baltimore, Maryland, U.S.A. 1978. Encapsulation within liposomes is described, for example, by Fullerton, U.S. Patent 4,235,877. Conjugation of proteins to macromolecules is disclosed, for example, by Likhite, U.S. Patent 4,372,945 and by Armor et al, U.S. Patent 4,474,757.
  • each vaccine dose is selected as an amount which induces an immunoprotective response without significant, adverse side effects in typical vaccinees. Such amount will vary depending upon which specific immunogen is employed. Generally, it is expected that each dose will comprise l-1000 ⁇ g of protein, preferably 2-100 ⁇ g, most preferably 4-40 ⁇ g. An optimal amount for a particular vaccine can be ascertained by standard studies involving observation of antibody titres and other responses in subjects. Following an initial vaccination, subjects may receive a boost in about 4 weeks.
  • Isolated means altered “by the hand of man” from the natural state. If an "isolated” composition or substance occurs in nature, it has been changed or removed from its original environment, or both.
  • a polynucleotide or a polypeptide naturally present in a living animal is not “isolated,” but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated”, as the term is employed herein.
  • Polynucleotide generally refers to . any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA including single and double stranded regions.
  • Variant refers to a polynucleotide or polypeptide that differs from a reference polynucleotide or polypeptide, but retains essential properties.
  • a typical variant of a polynucleotide differs in nucleotide sequence from another, reference polynucleotide. Changes in the nucleotide sequence of the variant may or may not alter the amino acid sequence of a polypeptide encoded by the reference polynucleotide. Nucleotide changes may result in amino acid substitutions, additions, deletions, fusions and truncations in the polypeptide encoded by the reference sequence, as discussed below.
  • a typical variant of a polypeptide differs in amino acid sequence from another, reference polypeptide.
  • a variant and reference polypeptide may differ in amino acid sequence by one or more substitutions, additions, deletions in any combination.
  • a substituted or inserted amino acid residue may or may not be one encoded by the genetic code.
  • a variant of a polynucleotide or polypeptide may be a naturally occurring such as an allelic variant, or it may be a variant that is not known to occur naturally. Non-naturally occurring variants of polynucleotides and polypeptides may be made by mutagenesis techniques or by direct synthesis.
  • Identity is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing the sequences.
  • identity also means the degree of sequence relatedness between polypeptide or polynucleotide sequences, as the case may be, as determined by the match between strings of such sequences.
  • Preferred methods to determine identity are designed to give the largest match between the sequences tested. Methods to determine identity and similarity are codified in publicly available computer programs. Preferred computer program methods to determine identity and similarity between two sequences include, but are not limited to, the GCG program package (Devereux, J., et al., Nucleic Acids Research 12(1): 387 (1984)), BLASTP, BLASTN, and FASTA (Atschul, S.F. et al., J. Molec. Biol.
  • the BLAST X program is publicly available from NCBI and other sources (BLAST Manual, Altschul, S., et al, NCBI NLM NIH Bethesda, MD 20894; Altschul, S., et al, J. Mol. Biol. 215: 403-410 (1990).
  • the well known Smith Waterman algorithm may also be used to determine identity.
  • the preferred algorithm used is FASTA.
  • the preferred parameters for polypeptide or polynuleotide sequence comparisonusing this algorithm include the following: Gap Penalty: 12 Gap extension penalty: 4 Word size: 2, max 6
  • Preferred parameters for polypeptide sequence comparison with other methods include the following: 1) Algorithm: Needleman and Wunsch, J. Mol Biol. 48: 443-453 (1970)
  • Preferred parameters for polynucleotide comparison include the following:
  • a polynucleotide sequence according to the present invention may be identical to the reference sequence of SEQ ID NO:l, that is be 100% identical, or it may include up to a certain integer number of nucleotide alterations as compared to the reference sequence.
  • Such alterations are selected from the group consisting of at least one nucleotide deletion, substitution, including transition and transversion, or insertion, and wherein said alterations may occur at the 5' or 3' terminal positions of the reference nucleotide sequence or anywhere between those terminal positions, interspersed either individually among the nucleotides in the reference sequence or in one or more contiguous groups within the reference sequence.
  • the number of nucleotide alterations is determined by multiplying the total number of nucleotides in SEQ ID NO:l by the numerical percent of the respective percent identity(divided by 100) and subtracting that product from said total number of nucleotides in SEQ ID NO:l, or: n n ⁇ x n - (x n « y), wherein n n is the number of nucleotide alterations, x n is the total number of nucleotides in SEQ ID NO:l, and y is, for instance, 0.70 for 70%, 0.80 for 80%, 0.85 for 85%, 0.90 for 90%, 0.95 for 95%o,etc, and wherein any non-integer product of x n and y is rounded down to the nearest integer prior to subtracting it from x n .
  • Alterations of a polynucleotide sequence encoding the polypeptide of SEQ ID NO:2 may create nonsense, missense or frameshift mutations in this coding sequence and thereby alter the polypeptide encoded by the polynucleotide following such alterations.
  • a polypeptide sequence according to the present invention may be identical to the reference sequence of SEQ ID NO:2, that is be 100%) identical, or it may include up to a certain integer number of amino acid alterations as compared to the reference sequence such that the %> identity is less than 100%).
  • Such alterations are selected from the group consisting of at least one amino acid deletion, substitution, including conservative and non-conservative substitution, or insertion, and wherein said alterations may occur at the amino- or carboxy-terminal positions of the reference polypeptide sequence or anywhere between those terminal positions, interspersed either individually among the amino acids in the reference sequence or in one or more contiguous groups within the reference sequence.
  • the number of amino acid alterations for a given % identity is determined by multiplying the total number of amino acids in SEQ ID NO:2 by the numerical percent of the respective percent identity(divided by 100) and then subtracting that product from said total number of amino acids in SEQ ID NO:2, or: n a ⁇ x a - (x a « y), wherein n a is the number of amino acid alterations, x a is the total number of amino acids in SEQ ID NO:2, and y is, for instance 0.70 for 70%, 0.80 for 80%, 0.85 for 85% etc., and wherein any non-integer product of x a and y is rounded down to the nearest integer prior to subtracting it from x a .
  • “Homolog” is a generic term used in the art to indicate a polynucleotide or polypeptide sequence possessing a high degree of sequence relatedness to a subject sequence. Such relatedness may be quntified by determining the degree of identity and/or similarity between the sequences being compared as hereinbefore described. Falling within this generic term are the terms “ortholog”, meaning a polynucleotide or polypeptide that is the functional equivalent of a polynucleotide or polypeptide in another species and "paralog” meaning a functionally similar sequence when considered within the same species.
  • RNA from frozen (-70°C) tumour and matched normal lung samples using the TriPure reagent and protocol (Boehringer).
  • Target RNA is prepared by pooling total RNA from three tumour samples (30 ⁇ g each).
  • Driver RNA is prepared by pooling total RNA from three matched normal lung samples (10 ⁇ g each) and total RNA from a pool of normal tissues other than lung (brain, heart, kidney, liver, bladder, skin, spleen; 10 ⁇ g each).
  • Total RNA from non-lung normal tissues is purchased from InVitrogen.
  • RNA is purified from total RNA using oligo-dT magnetic bead technology (Dynal) and quantified by spectrofluorimetry (BioRad).
  • Target and driver mRNA are reverse transcribed into cDNA using one of two strategies: 1) Target sequences for PCR oligonucleotides are introduced onto the ends of the newly synthesised cDNA during reverse transcription using the template switching capability of reverse transcriptase (ClonTech SMART PCR cDNA synthesis kit).
  • target and driver mRNA are reverse transcribed into cDNA using an oligo-dT primer and converted to double-strand cDNA; the cDNA is cleaved with Rsal and linkers for PCR amplification are ligated onto the extremities of the cDNA fragments.
  • target and driver cDNA are amplified by long range PCR (ClonTech SMART PCR Synthesis Kit and Advantage PCR Polymerase Mix) and used as starting material for subtractive cloning. For amplification, cycling conditions and optimisation of the number of PCR cycles are as described in the Advantage PCR protocol.
  • target and driver RNA are assembled for the first subtraction as above with the exception that non- lung RNA is left out of the driver pool and amounts of normal lung are increased to 10 ⁇ g.
  • Preparation of target and driver cD A and subtractive hybridization are performed as described above.
  • a second subtraction is then performed on the products of the first subtraction, but the driver is now composed of a pool of normal lung and normal non-lung mRNA from the several normal tissues.
  • Total bacterial DNA is extracted from 100 ⁇ l over-night cultures. Bacteria are lysed with guanidium isothiocyantate and the bacterial DNA is affinity purified using magnetic glass (Boehringer). Plasmid inserts are recovered from the bacterial DNA by Advantage PCR amplification (Clontech). The PCR products are dotted onto two nylon membranes to produce high density cDNA arrays using the Biomek 96 HDRT tool (Beekman). The spotted cDNA is covalently linked to the membrane by UV irradiation. The first membrane is hybridised with a mixed cDNA probe prepared from the tumour of a single patient. The second membrane is hybridised with an equivalent amount of mixed cDNA probe prepared from normal lung of the same patient.
  • the probe cDNA is prepared by PCR amplification as described above and is labelled using the AlkPhos Direct System (Amersham). Hybridisation conditions and stringency washes are as described in the AlkPhos Direct kit. Hybridized probe is detected by chentiluminescence. Hybridisation intensities for each cDNA fragment on both blots are measured by film densitometry or direct measurement (BioRad Fluor-S Max). The ratio of the tumour to normal hybridisation intensities (T/N) is calculated for each gene to evaluate the degree of over-expression in the tumour. Genes which are significantly over-expressed in lung tumours are followed-up. Significance is arbitrarily defined as one standard deviation of the T/N frequency distribution. Differential screening experiments are repeated using RNA from multiple patient donors (>18) to estimate the frequency of over-expressing tumours in the patient population.
  • the DNA arrays are hybridised with mixed cDNA probes from normal tissues other than lung to determine the level of expression of the candidate gene in these tissues.
  • RNA transcript abundance of the target protein in a panel of normal and tumour tissues and/or cell lines. This analysis is critical to establish the tumor specificity of CASB761 expression, which is an important criterion a good vaccine candidate must fulfill.
  • Total RNA is extracted from snap frozen biopsies or cell lines using TriPure reagent
  • RNA from normal tissues is also purchased from InVitrogen. Poly-A+ mRNA is purified from total RNA after DNAase treatment using oligo-dT magnetic beads
  • Primers for real-time PCR amplification are designed with the Perkin-Elmer Primer Express software using default options for TaqMan amplification conditions.
  • Real-time reactions are assembled according to standard PCR protocols using 2 ng of reverse transcribed mRNA (Expand RT, Roche) for each reaction. Sybrl dye (Molecular Probes) is added at a final dilution of 1/75000 for real-time detection. Amplification (40 cycles) and real-time detection is performed in a Perkin-Elmer Biosystems PE7700 system using conventional instrument settings. Ct values are calculated using the PE7700 Sequence Detector Software. Ct values are obtained from each tissue sample for the target mRNA (CtX) and for the actin mRNA (CtA).
  • CtX target mRNA
  • CtA actin mRNA
  • 2(CtA-CtX) value is an estimate of the relative target transcript level of the sample, standardized with respect to Actin transcript level. A value of 1 thus suggests the candidate antigen and Actin have the same expression level.
  • CRL-5803 Carcinoma, Non-Small Cell Lung Cancer, large cell, neuroendocrine, metastatic site : lymph node
  • CRL-5865 (Adenocarcinoma, metastatic site : pleural effusion)
  • CRL-9609 Normal lung, bronchus, epithelial, virus transformed
  • HTB-177 Carcinoma, large cell lung cancer, pleural effusion
  • 2 colon cell lines
  • Aorta adrenal gland (Ad_Gl) bladder (Bl) bone marrow (Bo_Ma) brain (Bra) cervix (Ce) colon (Co) fallopian tube (Fa_Tu) heart (He) ileum (II) kidney (Ki) liver (Li) lung (Lu) lymph node (LyJSTo) oesophagus (Oe) ovary (Ov) parathyroid (Pa_Thy) placenta (PI) prostate (Pr) rectum (Re) skeletal muscle (Sk_Mu) skin (Sk) small intestine (Sm_In) spleen (Sp) testis (Te) trachea (Tr) thyroid (Thy)
  • DNA micro-arrays are used to examine mRNA expression profiles of large collections of genes in multiple samples. This information is used to complement the data obtained by real-time PCR and provides an independent measure of gene expression levels in tumours and normal tissues.
  • Examples of current technologies for production of DNA micro-arrays include 1) The Affymetrix "GeneChip" arrays in which oligonucleotides are synthesised on the surface of the chip by solid phase chemical synthesis using a photolithographic process 2) DNA spotting technology in which small volumes of a DNA solution are robotically deposited and then immobilised onto the surface of a solid phase (e.g. glass).
  • the chips are hybridised with cDNA or cRNA that has been extracted from the tissue of interest (e.g. normal tissue, tumour etc..) and labelled with radioactivity or with a fluorescent reporter molecule.
  • the labelled material is hybridised to the chip and the amount of probe bound to each sequence on the chip is determined using a specialised scanner.
  • the experiment can be set-up with a single fluorescent reporter (or radioactivity) or, alternatively, can be performed using two fluorescent reporters.
  • each of the two samples is labelled with one of the reporter molecules.
  • the two-labelled samples are then hybridised competitively to the sequences on the DNA chip.
  • the ratio of the two fluorescent signals is determined for each sequence on the chip. This ratio is used to calculate the relative abundance of the transcript in the two samples.
  • Detailed protocols are available from a number of sources including "DNA Microarrays: A practical approach. Schena M. Oxford University Press 1999" and the World Wide Web (http://cmgm.stanford.edu/pbrown protocols/index.html), http://arrayit.com/DNA-
  • RNA from multiple normal tissues is also amplified using the same procedure.
  • the amplified cDNA (1 ⁇ g) is electrophoresed on a 1.2% agarose gel and transferred onto a nylon membrane.
  • the membrane is hybridised (AlkPhos Direct System) with a probe prepared using a fragment of the candidate TAA cDNA.
  • Northern-Southern analysis provides information on transcript size, presence of splice variants and transcript abundance in tumour and normal tissues. Northern-Southern Blot analysis is used in place of the more familiar Northern Blot analysis as most tissue samples are too small to yield enough RNA for the latter procedure.
  • Expression in microbial hosts, or alternatively in vitro transcription/translation, is used to produce the antigen of the invention for vaccine purposes and to produce protein fragments or whole protein for rapid purification and generation of antibodies needed for characterisation of the naturally expressed protein by immunohistochemistry or for follow-up of purification.
  • Recombinant proteins may be expressed in two microbial hosts, E. coli and in yeast (such as Saccharomyces cerevisiae or Pichia pastoris). This allows the selection of the expression system with the best features for this particular antigen production. In general, the recombinant antigen will be expressed in E. coli and the reagent protein expressed in yeast.
  • the expression strategy first involves the design of the primary structure of the recombinant antigen.
  • an expression fusion partner (EFP) is placed at the N terminal extremity to improve levels of expression that could also include a region useful for modulating the immunogenic properties of the antigen, an immune fusion partner (IFP).
  • an affinity fusion partner (AFP) useful for facilitating further purification is included at the C-terminal end.
  • the recombinant product is characterised by the evaluation of the level of expression and the prediction of further solubility of the protein by analysis of the behaviour in the crude extract. After growth on appropriate culture medium and induction of the recombinant protein expression, total extracts are analysed by SDS-PAGE. The recombinant proteins are visualised in stained gels and identified by Western blot analysis using specific antibodies. A comparative evaluation of the different versions of the expressed antigen will allow the selection of the most promising candidate that is to be used for further purification and immunological evaluation.
  • the purification scheme follows a classical approach based on the presence of an His affinity tail in the recombinant protein.
  • the disrupted cells are filtered and the acellular extracts loaded onto an Ion Metal Affinity Chromatography
  • the retained proteins are eluted by 0-500 mM Imidazole gradient (possibly in presence of a detergent) in a phosphate buffer.
  • Plasmid pCDNA3 from Invitrogen is used to generate expressing plasmid useful for COS transient expression of the CASB761.
  • the coding sequence for the putative protein is inserted downstream of the CMV promoter.
  • the recombinant plasmid is amplified after transformation of E. coli by classical methods. Endotoxin-free DNA is prepared using commercial Quiagen kit and used to transfect COS cells. The expression of CASB761 is assessed by running a Western blot on COS cell lysates.
  • Small amounts of relatively purified protein can be used to generate immunological tools in order to: a) detect the expression by immunohistochemistry in normal or cancer tissue sections; b) detect the expression, and to follow the protein during the purification process (ELISA/ Western Blot); or c) characterise/ quantify the purified protein (ELISA).
  • Rabbits are immunised , intramuscularly (I.M.) , 3 times at 3 weeks intervals with lOO ⁇ g of protein, formulated in the adjuvant 3D-MPL/QS21. Three weeks after each immunisation a blood sample is taken and the antibody titer estimated in the serum by ELISA using the protein as coating antigen following a standard protocol.
  • 96 well microplates (maxisorb Nunc) are coated with 5 ⁇ g of protein overnight at 4°C. After lhour saturation at 37°C with PBS NCS 1%>, serial dilution of the rabbit sera is added for 1H 30 at 37°C (starting at 1/10). After 3 washings in PBS Tween, anti rabbit biotinylated anti serum (Amersham) is added (1/5000). Plates are washed and peroxydase coupled streptavidin (1/5000) is added for 30 min at 37°C. After washing, 50 ⁇ l TMB (BioRad) is added for 7 min and the reaction then stopped with H2SO4 0.2M. The OD can be measured at 450 nm and midpoint dilutions calculated by SoftmaxPro.
  • polyclonal antibodies can be obtained by immunization with a peptide selected from the tumor antigen.
  • the selected peptide for CASB761 is MESSAKMESGGAGQQ, and corresponds to amino acids 1 to 15.
  • the peptide is then conjugated to a carrier protein (KLH).
  • Rabbits are immunized, intramuscularly (I.M.), 3 times at 3 to 4 weeks intervals with 200 ⁇ g of conjugate formulated with Freund's adjuvant.
  • PP intramuscularly
  • GP third immunization
  • ELISA 96 well microplates are coated with either lOOng of peptide or 100 ng of carrier at 4°C during 16 hours. After 2 hour saturation at 25°C with BSA 1 mg/ml, serial dilution of the rabbit sera is added for 2 hours at 25°C (starting at 1/100). Anti rabbit anti serum (universal-HRP) is added (1/1000). Plates are washed and OPD (0.4 mg/ml) is added for 30 min at 25°C. After washing, the reaction is stopped with H2SO4 4M. The OD can be measured at 492 nm and midpoint dilutions calculated using SoftmaxPro. The results are shown in tables 1 and 2, and figure 2 (rabbit 1 and rabbit 2).
  • mice are immunised 3 times at 3 week intervals with 5 ⁇ g of purified protein. Bleedings are performed 14 days post II and 1 week post 3. The sera are tested by Elisa on purified protein used as coated antigen. Based on these results (midpoint dilution > 10000 ) one mouse is selected for fusion
  • Spleen cells are fused with the SP2/0 myeloma according to a standard protocol using PEG 40% and DMSO 5%. Cells are then seeded in 96 well plates 2.5 xl04 - 105 cells/well and resistant clones will be selected in HAT medium. The supernatant of these hybridomas will be tested for their content in specific antibodies and when positive, will be submitted to 2 cycles of limited dilution . After 2 rounds of screening, 3 hybridomas will be chosen for ascitis production.
  • tissue sample is mounted on a cork disk in OCT compound and rapidly frozen in isopentane previously super cooled in liquid nitrogen (-160°C). The block will then be conserved at -70°C until use. 7-10 ⁇ m sections will be realised in a cryostat chamber (-20, -30°C).
  • Tissue sections are dried for 5 min at room Temperature (RT), fixed in acetone for lOmin at RT, dried again, and saturated with PBS 0.5% BSA 5% serum. After 30 min at RT either a direct or indirect staining is performed using antigen specific antibodies. A direct staining leads to a better specificity but a less intense staining whilst an indirect staining leads to a more intense but less specific staining.
  • SB Navac vector JA4304 bearing the CMV major immediate early enhancer- containing promoter and the signal sequence of human tPA was used to construct the expressing plasmid.
  • the coding sequence for the putative protein to which immunogenicity will be demonstrated is inserted downstream of this signal sequence to promote secretion of the in vivo translated protein and increase the humoral response.
  • the expressing plasmid is used to transform a host E. coli strain such as BL21.
  • the above recombinant strain is grown is anal culture medium. Bacteria are harvested before reaching the stationnary phase and used to prepare plasmid DNA (Quiagen sytem, 4 mgr) for injection in mice.
  • Balb/c mice Six to eight-weeks old Balb/c mice receive 3 mtramuscular (gastrocnemian) injections of lOO ⁇ g of recombinant plasmid DNA given 3 weeks apart. Two weeks after the last injection, blood is taken to analyze the presence of antibodies directed against the antigen of interest . The antibody response can be assessed either by Western Blot or by Elisa using extracts of E. coli cells expressing the antigen or lysates or Cos cells that have been genetically engineered to transiently express the recombinant plasmid.
  • the cellular immune response can also been assessed.
  • T cell lymphocyte lines and dendritic cells are derived from PBMCs (peripheral blood mononuclear cells) of healthy donors (preferred HLA-A2 subtype).
  • PBMCs peripheral blood mononuclear cells
  • HLA-A2.1/Kb transgenic mouse model is also used for screening of HLA- A2.1 peptides.
  • Newly discovered antigen-specific CD8+ T cell lines are raised and maintained by weekly in vitro stimulation.
  • the lytic activity and the ⁇ -IFN production of the CD 8+ lines in response to the antigen or antigen derived-peptides is tested using standard procedures.
  • transgenic mice are immunised with adjuvanted HLA-A2 peptides, those unable to induce a CD8 response (as defined by an efficient lysis of peptide-pulsed autologous spleen cells) will be further analysed in the human system.
  • Human dendritic cells (cultured according to Romani et al.) will be pulsed with peptides and used to stimulate CD8+-sorted T cells (by Facs).
  • the CD8+ lines will be first tested on peptide-pulsed autologous BLCL (EBV-B transformed cell lines). To verify the proper in vivo processing of the peptide, the CD8+ lines will be tested on cDNA-transfected tumour cells (HLA-A2 transfected LnCaP, Skov3 or CAMA tumour cells).
  • CD8+ T cell lines will be primed and stimulated with either gene-gun transfected dendritic cells, retrovirally transduced B7.1 -transfected fibroblasts, recombinant pox virus (Kim et al.) or adenovirus (Butterfield et al.) infected dendritic cells.
  • Virus infected cells are very efficient to present antigenic peptides since the antigen is expressed at high level but can only be used once to avoid the over-growth of viral T cells lines.
  • the CD8+ lines are tested on cDNA-transfected tumour cells as indicated above. Peptide specificity and identity is determined to confirm the immunological validation.
  • CD4+ T-cell immune response can also be assessed.
  • Generation of specific CD4+ T-cells is made using dendritic cells loaded with recombinant purified protein or peptides to stimulate the T-cells.
  • HLA Class I binding peptide sequences are predicted either by the Parker's algorithm (Parker, K. C, M. A. Bednarek, and J. E. Coligan. 1994. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. J. Immunol. 152:163 and http://bimas.dcrt.nih.gov/molbio/hla_bind/) or the Rammensee method (Rammensee, Friede, Stevanovic, MHC ligands and peptide motifs: 1st listing, Immunogenetics 41, 178-228, 1995 ; Rammensee, Bachmann, Stevanovic: MHC ligands and peptide motifs.
  • HLA-A2.1/Kb transgenic mice model (Vitiello et al).
  • the HLA Class II binding peptide sequences are predicted using the Tepitope algorithm, with a score cut-off set to 5 (Sturniolo, Hammer at al, Nature Biotechnology. 1999. 17;555-561).

Abstract

L'invention concerne des polypeptides et des polynucléotides CASB761, ainsi que des méthodes de production desdits polypeptides par des techniques de recombinaison. L'invention concerne également des méthodes d'utilisation des polypeptides et polynucléotides CASB761 dans le cadre d'un diagnostic et dans des vaccins destinés au traitement prophylactique et thérapeutique des cancers, notamment le cancer du poumon, les lésions prénéoplasiques du poumon, les maladies autoimmunes et les états pathologiques associés.
PCT/EP2001/007967 2000-07-17 2001-07-11 Vaccin comprenant un antigene associe a une tumeur du poumon WO2002006338A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001276392A AU2001276392A1 (en) 2000-07-17 2001-07-11 Vaccine comprising a lung tumour associated antigen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0017512.5A GB0017512D0 (en) 2000-07-17 2000-07-17 Novel compounds
GB0017512.5 2000-07-17

Publications (1)

Publication Number Publication Date
WO2002006338A1 true WO2002006338A1 (fr) 2002-01-24

Family

ID=9895804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/007967 WO2002006338A1 (fr) 2000-07-17 2001-07-11 Vaccin comprenant un antigene associe a une tumeur du poumon

Country Status (3)

Country Link
AU (1) AU2001276392A1 (fr)
GB (1) GB0017512D0 (fr)
WO (1) WO2002006338A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015063302A3 (fr) * 2013-11-04 2015-10-29 Immatics Biotechnologies Gmbh Immunothérapie personnalisée contre plusieurs tumeurs neuronales et cérébrales
WO2017089779A1 (fr) * 2015-11-23 2017-06-01 Immunocore Limited Peptides dérivés d'ascl2 (achaete‐scute complex homolog 2), complexes comprenant ces peptides liés à des molécules mhc
JP2020528458A (ja) * 2017-07-25 2020-09-24 イーデーペー・ディスカバリー・ファルマ,ソシエダッド・リミターダ 抗がんペプチド
US10792333B2 (en) 2015-11-23 2020-10-06 Immunocore Limited Peptides derived from actin-like protein 8 (ACTL8)
US10980893B2 (en) 2015-11-23 2021-04-20 Immunocore Limited Peptides derived from transient receptor potential cation channel subfamily M member 1 (TRPM1), complexes comprising such peptides bound to MHC molecules
EP3573647B1 (fr) * 2017-01-27 2023-04-05 Immatics Biotechnologies GmbH Nouveaux peptides et combinaison de peptides à utiliser en immunothérapie contre le cancer de l'ovaire et d'autres cancers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087168A (en) * 1999-01-20 2000-07-11 Cedars Sinai Medical Center Conversion of non-neuronal cells into neurons: transdifferentiation of epidermal cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087168A (en) * 1999-01-20 2000-07-11 Cedars Sinai Medical Center Conversion of non-neuronal cells into neurons: transdifferentiation of epidermal cells

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
BALL DOUGLAS W ET AL: "Identification of a human achaete-scute homolog highly expressed in neuroendocrine tumors.", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES, vol. 90, no. 12, 1993, 1993, pages 5648 - 5652, XP001019107, ISSN: 0027-8424 *
BLACK B L ET AL: "Cooperative transcriptional activation by the neurogenic basic helix-loop-helix protein MASH1 and members of the myocyte enhancer factor-2 (MEF2) family", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY OF BIOLOGICAL CHEMISTS, BALTIMORE, MD, US, vol. 271, no. 43, 25 October 1996 (1996-10-25), pages 26659 - 26663, XP002079601, ISSN: 0021-9258 *
FRANCO DEL AMO FRANCISCO ET AL: "Cloning, sequencing and expression of the mouse mammalian achaete-scute homolog 1 (MASH1).", BIOCHIMICA ET BIOPHYSICA ACTA, vol. 1171, no. 3, 1993, pages 323 - 327, XP001018568, ISSN: 0006-3002 *
JOHNSON J E ET AL: "Two rat homologues of Drosophila achaete-scute specifically expressed in neuronal precursors", NATURE, MACMILLAN JOURNALS LTD. LONDON, GB, vol. 346, no. 6287, 30 August 1990 (1990-08-30), pages 858 - 861, XP002113548, ISSN: 0028-0836 *
LO L ET AL: "MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity", DEVELOPMENT, COMPANY OF BIOLOGISTS, CAMBRIDGE,, GB, vol. 125, 22 January 1998 (1998-01-22), pages 609 - 620, XP002130309, ISSN: 0950-1991 *
SETA YUJI ET AL: "Expression of Mash1 in basal cells of rat circumvallate taste buds is dependent upon gustatory innervation.", FEBS LETTERS, vol. 444, no. 1, 5 February 1999 (1999-02-05), pages 43 - 46, XP002179638, ISSN: 0014-5793 *
SOMMER L ET AL: "THE CELLULAR FUNCTION OF MASH1 IN AUTONOMIC NEUROGENESIS", NEURON, CAMBRIDGE, MA, US, vol. 15, no. 6, 1 December 1995 (1995-12-01), pages 1245 - 1258, XP002071060 *
VERMA-KURVARI SUNITA ET AL: "Lineage-specific regulation of the neural differentiation gene MASH1.", DEVELOPMENTAL BIOLOGY, vol. 180, no. 2, 1996, pages 605 - 617, XP001018598, ISSN: 0012-1606 *

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11759507B2 (en) 2013-11-04 2023-09-19 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
US11529401B2 (en) 2013-11-04 2022-12-20 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
KR20210068615A (ko) * 2013-11-04 2021-06-09 이매틱스 바이오테크놀로지스 게엠베하 일부 신경 및 뇌 종양에 대한 개인화된 면역요법
EP3066115B1 (fr) * 2013-11-04 2019-04-03 Immatics Biotechnologies GmbH Immunothérapie personnalisée contre plusieurs tumeurs neuronales et cérébrales
EP3539979A3 (fr) * 2013-11-04 2020-01-01 Immatics Biotechnologies GmbH Immunothérapie personnalisée contre plusieurs tumeurs neuronales et cérébrales
US11890334B2 (en) 2013-11-04 2024-02-06 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
KR102414447B1 (ko) * 2013-11-04 2022-07-04 이매틱스 바이오테크놀로지스 게엠베하 일부 신경 및 뇌 종양에 대한 개인화된 면역요법
EA036517B1 (ru) * 2013-11-04 2020-11-18 Имматикс Байотекнолоджиз Гмбх Пептид, который связывается с молекулой главного комплекса гистосовместимости человека i класса; антитело; нуклеиновая кислота; вектор экспрессии; активированный цитотоксический t-лимфоцит; клетка-хозяин и фармацевтическая композиция для лечения рака
US10946064B2 (en) 2013-11-04 2021-03-16 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
EP4253401A3 (fr) * 2013-11-04 2023-11-22 immatics biotechnologies GmbH Immunothérapie personnalisée contre plusieurs tumeurs neuronales et cérébrales
KR102651028B1 (ko) * 2013-11-04 2024-03-25 이매틱스 바이오테크놀로지스 게엠베하 일부 신경 및 뇌 종양에 대한 개인화된 면역요법
US11890333B2 (en) 2013-11-04 2024-02-06 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
US11524059B2 (en) 2013-11-04 2022-12-13 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
KR20220100705A (ko) * 2013-11-04 2022-07-15 이매틱스 바이오테크놀로지스 게엠베하 일부 신경 및 뇌 종양에 대한 개인화된 면역요법
KR102415748B1 (ko) * 2013-11-04 2022-07-05 이매틱스 바이오테크놀로지스 게엠베하 일부 신경 및 뇌 종양에 대한 개인화된 면역요법
US11529400B1 (en) 2013-11-04 2022-12-20 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
KR20160079102A (ko) * 2013-11-04 2016-07-05 이매틱스 바이오테크놀로지스 게엠베하 일부 신경 및 뇌 종양에 대한 맞춤형 면역요법
WO2015063302A3 (fr) * 2013-11-04 2015-10-29 Immatics Biotechnologies Gmbh Immunothérapie personnalisée contre plusieurs tumeurs neuronales et cérébrales
US10980893B2 (en) 2015-11-23 2021-04-20 Immunocore Limited Peptides derived from transient receptor potential cation channel subfamily M member 1 (TRPM1), complexes comprising such peptides bound to MHC molecules
US10792333B2 (en) 2015-11-23 2020-10-06 Immunocore Limited Peptides derived from actin-like protein 8 (ACTL8)
WO2017089779A1 (fr) * 2015-11-23 2017-06-01 Immunocore Limited Peptides dérivés d'ascl2 (achaete‐scute complex homolog 2), complexes comprenant ces peptides liés à des molécules mhc
EP3573647B1 (fr) * 2017-01-27 2023-04-05 Immatics Biotechnologies GmbH Nouveaux peptides et combinaison de peptides à utiliser en immunothérapie contre le cancer de l'ovaire et d'autres cancers
JP7361689B2 (ja) 2017-07-25 2023-10-16 イーデーペー・ディスカバリー・ファルマ,ソシエダッド・リミターダ 抗がんペプチド
JP2020528458A (ja) * 2017-07-25 2020-09-24 イーデーペー・ディスカバリー・ファルマ,ソシエダッド・リミターダ 抗がんペプチド

Also Published As

Publication number Publication date
GB0017512D0 (en) 2000-08-30
AU2001276392A1 (en) 2002-01-30

Similar Documents

Publication Publication Date Title
US8535690B2 (en) Tumor specific animal proteins
AU2001256156A1 (en) Novel compounds
WO2002050103A2 (fr) Composes
WO2002006338A1 (fr) Vaccin comprenant un antigene associe a une tumeur du poumon
WO2002066506A2 (fr) Nouvelle utilisation
US7811574B2 (en) Tumour-specific animal proteins
WO2001034794A1 (fr) Antigene surexprime dans le cancer du colon (casb7434)
WO2001029214A1 (fr) Antigenes associes aux tumeurs du colon
WO2001023417A2 (fr) Nouveaux composes
WO2001057077A1 (fr) Proteines specifiquement exprimees ou hautement surexprimees dans des tumeurs et acides nucleiques les codant
WO2001080879A2 (fr) Compositions
WO2001034795A2 (fr) Nouveaux composes
WO2002092627A2 (fr) Nouvelle utilisation
ZA200206746B (en) Tumour-specific animal proteins.
WO2003016344A2 (fr) Nouvelle utilisation
WO2002098913A2 (fr) Nouveau compose

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP