WO2002005781A1 - Aniontensidfreie niedrigviskose trübungsmittel - Google Patents

Aniontensidfreie niedrigviskose trübungsmittel Download PDF

Info

Publication number
WO2002005781A1
WO2002005781A1 PCT/EP2001/007819 EP0107819W WO0205781A1 WO 2002005781 A1 WO2002005781 A1 WO 2002005781A1 EP 0107819 W EP0107819 W EP 0107819W WO 0205781 A1 WO0205781 A1 WO 0205781A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
alkyl
carbon atoms
oil
contain
Prior art date
Application number
PCT/EP2001/007819
Other languages
English (en)
French (fr)
Inventor
Claus Nieendick
Mirella Nalborczyk
Josef Koester
Anke Eggers
Original Assignee
Cognis Deutschland Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh & Co. Kg filed Critical Cognis Deutschland Gmbh & Co. Kg
Priority to EP01965084A priority Critical patent/EP1301172B1/de
Priority to DE50103654T priority patent/DE50103654D1/de
Priority to JP2002511714A priority patent/JP5010087B2/ja
Priority to US10/333,160 priority patent/US7176171B2/en
Publication of WO2002005781A1 publication Critical patent/WO2002005781A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/0005Other compounding ingredients characterised by their effect
    • C11D3/0089Pearlescent compositions; Opacifying agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/60Sugars; Derivatives thereof
    • A61K8/604Alkylpolyglycosides; Derivatives thereof, e.g. esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/94Mixtures with anionic, cationic or non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2093Esters; Carbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • C11D1/662Carbohydrates or derivatives
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/88Ampholytes; Electroneutral compounds
    • C11D1/90Betaines

Definitions

  • the invention comprises opacifiers containing wax bodies, an emulsifier mixture of alkyl and / or alkenyl oligoglycosides, fatty acid partial glycerides and optionally amphoteric surfactants in a certain weight ratio and without the presence of anionic surfactants, and their use as opacifiers.
  • the object of the invention was to provide opacifier preparations or concentrates based on wax bodies which are highly concentrated, but have significantly reduced average particle sizes compared to the prior art, are of low viscosity and are biodegradable. Furthermore, these preparations should cause an increased whitening and no pearlescence in aqueous surfactant solutions and be sufficiently stable in storage due to their pore size. Furthermore, the addition of amphoteric surfactants should have no influence on the stability of such preparations.
  • the invention relates to opacifier preparations based on wax bodies, characterized in that they consist of an emulsifier mixture
  • the weight ratio of (a) and optionally (c): (b) is between 6: 1 and 3: 1, preferably between 3.5: 1 to 5: 1 and in particular 4: 1 to 4, 7: 1 and the preparations are free of anionic surfactants.
  • the weight ratio of components (a + if necessary c): (b) is between 5: 1 and 1.5: 1 and in particular 3: 1 to 2: 1.
  • mixtures of wax bodies with alkyl oligoglycosides and partial glycerides in a selected weight ratio give products which have a particularly small average particle size compared to the prior art.
  • the desired opacity is also enhanced by these particularly fine-particle preparations and there is no pearlescent.
  • these products are particularly low-viscosity, biodegradable, show good flow and pump properties and are sufficiently stable in storage. You stability and the properties remain in the presence of amphoteric surfactants, such as Betaines unchanged.
  • Alkyl and / or alkenyl oligoglycosides are known nonionic surfactants which follow the formula (I)
  • R 1 0- [G] p (I) in the PO stands for an alkyl and / or alkenyl radical with 4 to 22 carbon atoms
  • G for a sugar radical with 5 or 6 carbon atoms
  • p for numbers from 1 to 10.
  • the alkyl and / or alkenyl oligoglycosides can be derived from aldoses or ketoses with 5 or 6 carbon atoms, preferably glucose.
  • the preferred alkyl and / or alkenyl oligoglycosides are thus alkyl and / or alkenyl oligoglucosides.
  • the index number p in the general formula (I) indicates the degree of oligomerization (DP), ie the distribution of mono- and oligoglycosides, and stands for a number between 1 and 10.
  • Alkyl and / or alkenyl oligoglycosides with an average degree of oligomerization p of 1.1 to 3.0 are preferably used. From an application point of view, preference is given to those alkyl and / or alkenyl oligoglycosides whose degree of oligomerization is less than 1.7 and in particular between 1.2 and 1.4.
  • the alkyl or alkenyi radical R 1 can be derived from primary alcohols having 4 to 11, preferably 8 to 10, carbon atoms. Typical examples are butanol, capronic alcohol, caprylic alcohol, capric alcohol and undecyl alcohol and their technical mixtures, such as are obtained, for example, in the hydrogenation of technical fatty acid methyl esters or in the course of the hydrogenation of aldehydes from Roelen's oxosynthesis.
  • Typical examples are lauryl alcohol, myristyl alcohol, cetyl alcohol, palmoleyl alcohol, stearyl alcohol, isostearyl alcohol, oleyl alcohol, elaidyl alcohol, petroselinyl alcohol, arachyl alcohol, gadoleyl alcohol, behenyl alcohol, erucyl alcohol, brassidyl alcohol and the technical mixtures described above, which can be obtained as well as their technical mixtures.
  • Alkyl oligoglucosides based on hydrogenated Ci2 / i4 coconut alcohol with a DP of 1 to 3 are preferred.
  • the preparations according to the invention can contain the alkyl and / or alkenyl oligoglycosides in amounts of 0.1 to 20, preferably 5 to 18 and in particular 8 to 13% by weight, based on the final composition.
  • Fatty acid partial glycerides ie monoglycerides, diglycerides and their technical mixtures, can still contain small amounts of di and triglycerides due to the manufacturing process.
  • the partial glycerides preferably follow the formula (II)
  • R 2 CO represents a linear or branched, saturated and / or unsaturated acyl radical having 6 to 22, preferably 12 to 18 carbon atoms
  • R 3 and R 4 independently of one another for R 2 CO or OH and the sum (m + n + p ) represents 0 or numbers from 1 to 100, preferably 5 to 25, with the proviso that at least one of the two radicals R 3 and R 4 is OH.
  • Typical examples are mono- and / or diglycerides based on caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, linoleic acid, linolenic acid, linolenic acid Arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • Technical lauric acid glycerides palmitic acid glycerides, stearic acid glycerides, isostearic acid glycerides, oleic acid glycerides, behenic acid glycerides and / or erucic acid glycerides are used which have a monoglyceride content in the range of 50 to 95, preferably 60 to 90% by weight.
  • longer-chain partial glycerides for example based on oleic acid or stearic acid, are used, in particular mixtures of glycerides based on saturated and unsaturated fatty acids.
  • the preparations according to the invention can contain the fatty acid partial glycerides in amounts of 0.1 to 5, preferably 1 to 3.5 and in particular 1, 2 to 2.4% by weight, based on the final composition.
  • R 5 represents alkyl and / or alkenyl radicals having 6 to 22 carbon atoms
  • R 6 represents hydrogen or alkyl radicals having 1 to 4 carbon atoms
  • R 7 represents alkyl radicals having 1 to 4 carbon atoms
  • n represents numbers from 1 to 6 and X for a Alkali and / or alkaline earth metal or ammonium.
  • Typical examples are the carboxymethylation products of hexylmethylamine, hexyldimethylamine, octyl dimethyl amine, decyldimethyl amine, dodecylmethylamine, dodecyldimethylamine, Dodecylethyl- methylamine, Ci2 / 14 cocodimethylamine, myristyldimethylamine, cetyldimethylamine, stearic ryldimethylamin, stearyl, oleyl, Ci6 / ⁇ tallow alkyl dimethyl amine, and their technical mixtures.
  • R 8 CO represents an aliphatic acyl radical having 6 to 22 carbon atoms and 0 or 1 to 3 double bonds
  • m represents numbers from 1 to 3
  • R 6 , R 7 , n and X have the meanings given above.
  • Typical examples are reaction products of fatty acids with 6 to 22 carbons.
  • Lenin atoms namely caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid, linoleic acid, oleolenic acid, elaeostearic acid, arachidic acid, gadoleic acid and eric acid, behenic acid, as well as acidic acid, behenic acid N-dimethylaminoethylamine, N, N-dimethylaminopropylamine, N, -diethylaminoethylamine and N, N-diethylaminopropylamine, which are condensed with sodium chloroacetate. It is preferred to use a condensation product of C8 / i8 coconut fatty acid N, N-dimethylaminopropylamide with sodium chloroacetate.
  • suitable starting materials for the betaines to be used in accordance with the invention are also imidazolines which follow the formula (V)
  • R 5 is an alkyl radical having 5 to 21 carbon atoms
  • R 6 is a hydroxyl group
  • an OCOR 5 or NHCOR 5 radical and m is 2 or 3.
  • These substances are also known substances which can be obtained, for example, by cyclizing condensation of 1 or 2 moles of fatty acid with polyhydric amines, such as, for example, aminoethylethanolamine (AEEA) or diethylene triamine.
  • AEEA aminoethylethanolamine
  • the corresponding carboxyalkylation products are mixtures of different open-chain betaines.
  • Typical examples are condensation products of the abovementioned fatty acids with AEEA, preferably imidazolines based on lauric acid or again Ci2 / i4 coconut fatty acid, which are subsequently betainized with sodium chloroacetate.
  • the preparations according to the invention can contain the amphoteric surfactants in amounts of 0 to 10, preferably 1 to 5 and in particular 2 to 4% by weight, based on the final composition.
  • waxes are preferably esters of ethylene glycol or propylene glycol with caproic acid, caprylic acid, 2-ethylhexanoic acid, capric acid, lauric acid, isotridecanoic acid, myristic acid, palmitic acid, palmoleic acid, stearic acid, isostearic acid, oleic acid, elaidic acid, petroselinic acid Linoleic acid, oleolenic acid, elaeostearic acid, arachic acid, gadoleic acid, behenic acid and erucic acid and their technical mixtures.
  • the use of ethylene glycol distearate is particularly preferred.
  • the particular fine particle size is generated by a particle size distribution in which at least 85, preferably 90 and particularly preferably 95 and in particular 99.9% of the particles make up a diameter of ⁇ 15 ⁇ m.
  • the average particle diameter is preferably ⁇ 15, particularly preferably ⁇ 10 and in particular ⁇ 7 ⁇ m. Another advantage of these agents is their high stability against sedimentation during longer periods Storage.
  • the opacifier preparations according to the invention are used in amounts of 0.1 to 12, preferably 0.5 to 6 and in particular 1 to 3.5% by weight, based on the aqueous surface-active agents, such as manual washing and cleaning agents, cosmetic and / or Pharmaceutical preparations, such as hair shampoos, hair lotions, foam baths, shower baths, oral and dental care products, creams, gels, lotions, aqueous / alcoholic solutions, emulsions and the like - used, the agents call a permanent, uniform and compared to the prior art particularly intense whiteness without producing pearlescent.
  • aqueous surface-active agents such as manual washing and cleaning agents, cosmetic and / or Pharmaceutical preparations, such as hair shampoos, hair lotions, foam baths, shower baths, oral and dental care products, creams, gels, lotions, aqueous / alcoholic solutions, emulsions and the like - used, the agents call a permanent, uniform and compared to the prior art particularly intense whiteness without producing pearlescent.
  • esters of linear and / or branched fatty acids with polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • Guerbet alcohols triglycerides based on C ⁇ -Cio fatty acids
  • liquid mono- / di- / triglyceride mixtures based on C6-C18 fatty acids
  • polystyrene resin examples include the mono-, di- and triesters of trimethylolpropane or pentaerythritol with lauric acid, coconut fatty acid, taig fatty acid, palmitic acid, stearic acid, oleic acid, behenic acid and the like which are optionally reacted with 1 to 30 mol of ethylene oxide.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C ⁇ -alkyl or -acyl group, contain at least one free amino group and at least one -COOH or -S ⁇ 3H group in the molecule and are capable of forming internal salts.
  • Natural waxes such as candelilla wax, camauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice germ oil wax, sugar cane wax, come among others , Ouricury wax, montan wax, beeswax, shellac wax, walrus, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin waxes, micro waxes; chemically modified waxes (hard waxes), such as montan ester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as polyalkylene waxes and polyethylene glycol waxes.
  • Ouricury wax montan wax, beeswax, shellac wax, walrus, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin waxes, micro waxes; chemically modified waxes
  • R is typically five-linear aliphatic hydrocarbon radicals with 15 to 17 carbon atoms and up to 4 cis double bonds.
  • lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • sphingosines or sphingolipids are also suitable.
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and, in addition, partial glycerides, fatty acids or hydroxy fatty acids.
  • a combination of these substances with alkyl oligoglucosides and / or fatty acid N-methyl glucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate are used.
  • cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline, condensation products from dihaloalkylene, such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane, cationic guar gum, e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers, e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1,3-propane
  • cationic guar gum e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese
  • quaternized ammonium salt polymers e.g. Mirapol
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and their polyols, and non-crosslinked polyacrylate and their esters, non-crosslinked acrylate - trimethylammonium chloride / acrylate copolymers, octylacrylamide / methyl methacrylic lat / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinyl pyrrolidone, vinyl pyrrolidone / vinyl acetate copolymers, vinyl pyrrolidone / dimethylaminoethyl methacrylate / vinyl cap
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 9_1, 27 (1976).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 2-ethylhexyl 4-methoxycinnamate, propyl 4-methoxycinnamate, 2-cyano-3,3-phenylcinnamate-2-ethylhexyl ester (octocrylene) 4-methoxycinnamate;
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropyl benzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone; > Esters of benzalmalonic acid, preferably di-2-ethylhexyl 4-methoxybenzmalonate;
  • Triazine derivatives e.g. 2,4,6-Trianilino- (p-carbo-2'-ethyl-1'-hexyloxy) -1,3,5-triazine and octyl triazone as described in EP 0818450 A1 or dioctyl butamido triazone (Uvasorb® HEB );
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl
  • typical UV-A filters -4'-methoxy-dibenzoylmethane Parsol 1789
  • 1-phenyl-3- (4'-isopropylphenyl) propane-1, 3-dione as well as enamine compounds, as described in DE 19712033 A1 (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • Particularly favorable combinations consist of the derivatives of benzoylmethane, e.g.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized.
  • Typical examples are coated titanium dioxides, such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW Journal 122, 543 (1996) and Perfumery and Cosmetics 3 (1999), page 11ff.
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • amino acids e.g. glycine, histidine, tyrosine, tryptophan
  • imidazoles e.g. urocanic acid
  • peptides such as D, L-camosine, D-camosine, L-carosin and their derivatives (e.g. Anserine), carotenoids, carotenes (e.g.
  • ⁇ -carotene, ß-carotene, lycopene) and their derivatives chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g. dihydroliponic acid), aurothioglucose, propylthiouracil and other thiols (e.g.
  • thioredoxin glu tathione, cysteine, cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -oleoleyl, cholesteryl and glyceryl esters ) as well as their salts, dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (e.g.
  • buthioninsulfoximines homocysteine sulfoximine, butioninsulfones, penta-, hexa-, hexathion) low n compatible dosages (eg pmol to ⁇ mol / kg), also (metal) chelators (eg ⁇ -hydroxy fatty acids, palmitic acid, phytic acid, lactoferrin), ⁇ -hydroxy acids (eg citric acid, lactic acid, malic acid), humic acid, bile acid, bile extracts , Bilirubin, biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g.
  • ⁇ -uenolenic acid linoleic acid, oleic acid
  • folic acid and their derivatives ubiquinone and ubiquinol and their derivatives
  • vitamin C and derivatives e.g. ascorbyl palmitate, Mg- Ascorbyl phosphate, ascorbyl acetate
  • tocopherols and derivatives e.g.
  • vitamin E acetate
  • vitamin A and derivatives vitamin A palmitate
  • Biogenic agents eryl be
  • Biogenic active substances are, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin supplements.
  • deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed.
  • deodorants contain active ingredients which act as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers.
  • germ-inhibiting agents such as. B.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG). The substances inhibit enzyme activity and thereby reduce odor.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Düsseldorf / FRG).
  • the substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesteric, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, Adipic acid, adipic acid monoethyl ester, adipic acid diethyl ester, malonic acid and malonic acid diethyl ester, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester, and zinc glycinate.
  • dicarboxylic acids and their esters such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, Adipic acid, adipic acid monoethyl ester,
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labda- num or Styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers and, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts from flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches, and resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxy acetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example, the jonones and methylcedryl ketone, and the alcohols anethole, Citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • the aldehydes for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxy acetaldehyde, cyclamenaldehyde, hydroxyc
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbaneum oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are, for example, aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds, for. B. with propylene glycol-1,2.
  • conventional oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants. Examples of such oil-soluble auxiliaries are:
  • water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusters, e.g. Buffer mixtures, water soluble thickeners, e.g. water-soluble natural or synthetic polymers such as e.g. Xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Piroctone olamine (1-hydroxy-4-methyl-6- (2,4,4-trimythylpentyl) -2- (1H) -pyridinone monoethanolamine salt
  • Baypival® (climbazole), Ketoconazol®, (4- acety I- 1 - ⁇ -4- [2- (2.4-dichlorophenyl) r-2- (1 H -imidazol-1-ylmethyl) -1, 3-dioxylan-c-4-ylmethoxyphenyl ⁇ piperazine, ketoconazole, elubiol, selenium disulfide, sulfur colloidal, sulfur polyethylene glycol sorbitan monooleate, sulfur ricinole polyethylenate, sulfur tar distillates, salicylic acid (or in combination with hexachlorophene), undexylenic acid monoethanolamide sulfosuccinate sodium salt, Lamepon® UD (protein undecylenepyrenitol pyrith
  • Montmorillonites, clay minerals, pemulene and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • Suitable insect repellents are N, N-diethyl-m-toluamide, 1, 2-pentanediol or ethyl butylacety-laminopropionate
  • Dihydroxyacetone is suitable as a self-tanner.
  • Arbutin, kojic acid, coumaric acid and ascorbic acid (vitamin C) can be used as tyrosine inhibitors, which prevent the formation of melanin and are used in depigmenting agents.
  • Hydrotropes such as ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are, for example, benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate, phenylethyl acetate, linalyl benzoate, benzyl formate, ethyl methylphenyl glycinate, allyl cyclohexyl and benzylatepylpropionate, stylate propionate.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40,% by weight, based on the composition.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.
  • the wax, the partial glycerides (b) and the various surfactants (a) were mixed in different weight ratios and the fine particle size was determined by determining the particle size distribution in ⁇ m and the average particle diameter in ⁇ m by means of laser diffraction (MasterSizer 2000) (see product description company MALVERN INSTRUMENTS GmbH,dorfberg, Germany) The viscosity was determined using the Brookfield method (23 ° C, spindle 5, 10 rpm, mPas). The results are summarized in Table 1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Detergent Compositions (AREA)

Abstract

Vorgeschlagen werden Trübungsmittelzubereitungen auf Basis von Wachskörpern, die dadurch gekennzeichnet sind, dass sie eine Emulgatormischung aus (a) mindestens einem Alkyl- und/oder Alkenyloligoglykosid, (b) mindestens einem Fettsäurepartialglycerid und gegebenenfalls (c) mindestens ein amphoteres Tensid enthalten, mit der Massgabe, dass das Gewichtsverhältnis von (a) und gegebenenfalls (c):(b) zwischen 6:1 und 3:1 liegt und die Zubereitungen frei von Aniontensiden sind.

Description

Aniontensidfreie niedrigviskose Trübungsmittel
Gebiet der Erfindung
Die Erfindung Trübungsmittel mit einem Gehalt an Wachskörpern, Emulgatormischung aus Alkyl- und/oder Alkenyloligoglykosiden, Fettsäurepartialglyceriden und gegebenenfalls amphoteren Ten- siden in einem bestimmten Gewichtsverhäitnis und ohne Anwesenheit von Aniontensiden sowie deren Verwendung als Trübungsmittel.
Stand der Technik
Bei der Formulierung einer Vielzahl von oberflächenaktiven Haushaltsprodukten wie beispielsweise Geschirrspülmitteln oder kosmetischen Zubereitungen, wie beispielsweise Haarshampoos wird besonderer Wert darauf gelegt, daß die Produkte möglichst klar vorliegen und auch im Verlauf der Lagerung nicht austrüben. In anderen Fällen werden für den gleichen Anwendungszweck Produkte gewünscht, die trübe sind und dabei einen Glimmereffekt, den sogenannten "Perlglanz" zeigen. Eine dritte Gruppe von Produkten wird mit einer nichtglänzenden Weißtrübung hergestellt, wobei sogenannte Trübungsmittel zum Einsatz gelangen.
Trübungsmittel stellen feinteilige Polymer- bzw. Feststoffdispersionen dar, die neben Wasser und/oder einem Polyol - beispielsweise Glycerin - im wesentlichen nur noch einen Wachskörper und einen geeigneten Emulgator enthalten. Die aus dem Stand der Technik bekannten Trübungsmittel basieren hauptsächlich auf Copoymerisaten auf Basis von Acyl- bzw. Methacrylsäure und Styrol und sind nicht biologisch abbaubar. Aus dem Deutschen Patent DE 19511572 C2 sind niedrigviskose Trübungsmittelkonzentrate aus Basis von Wachskörpern, Zuckertensiden und Partialgly- ceriden bekannt. Diese Konzentrate zeigen zwar gute biologisch Abbaubarkeiten, weisen jedoch hohe Viskositäten auf und sind hinsichtlich der Feinteiligkeit verbesserungswürdig.
Demzufolge hat die Aufgabe der Erfindung hat demnach darin bestanden, Trübungsmittelzubereitungen bzw. Konzentrate auf Basis von Wachskörpern zur Verfügung zu stellen, die hochkonzentriert, aber im Vergleich zum Stand der Technik deutlich verminderte durchschnittliche Teilchengrößen aufweisen, niedrigviskoser und biologisch abbaubar sind. Weiterhin sollten diese Zubereitungen in wäßrigen Tensidlösungen eine verstärkte Weißtrübung und kein Perlglanz hervorrufen und infolge ihrer Porengrösse ausreichend lagerstabil sein. Weiterhin sollte der Zusatz von amphoteren Tensiden keinen Einfluss auf die Stabilität derartiger Zubereitungen haben.
Beschreibung der Erfindung
Gegenstand der Erfindung sind Trübungsmittelzubereitungen auf Basis von Wachskörpern, dadurch gekennzeichnet, dass sie eine Emulgatormischung aus
(a) mindestens einem Alkyl- und/oder Alkenyloligoglykosid,
(b) mindestens einem Fettsäurepartialglycerid und gegebenenfalls
(c) mindestens ein amphoteres Tensid
enthalten, mit der Massgabe, dass das Gewichtsverhältnis von (a) und gegebenenfalls (c) : (b) zwischen 6 : 1 und 3 : 1 , vorzugsweise zwischen 3,5 :1 bis 5 : 1 und insbesondere 4 : 1 bis 4,7 : 1 liegt und die Zubereitungen frei von Aniontensiden sind. In einer besonderen Ausführungsform der Erfindung liegt das Gewichtsverhältnis der Komponenten (a+ggf. c) : (b) zwischen 5 : 1 und 1 ,5 : 1 und insbesondere 3 : 1 bis 2 : 1.
Überraschenderweise konnte gefunden werden, daß Mischungen aus Basis von Wachskörpern mit Alkyloligoglycosiden und Partialglyceriden in einem ausgewählten Gewichtsverhältnis Produkte ergeben, die im Vergleich zum Stand der Technik eine besonders kleine durchschnittliche Teil- chengrösse aufweisen. Demzufolge wird die gewünschte Weisstrübung ebenfalls durch diese besonders feinteiligen Zubereitungen verstärkt und es entsteht kein Perlglanz. Darüber hinaus sind diese Produkte besonders niedrig viskos, biologisch abbaubar, zeigen gute Fliess- und Pumpeigenschaften und sind ausreichend lagerstabil. Sie Stabilität und die Eigenschaften bleiben bei Anwesenheit von amphoteren Tensiden, wie z.B. Betainen unverändert. Diese vorteilhaften Eigenschaften können nur für aniontensidfreie Systeme erreicht werden.
Alkyl- und/oder Alkenyloliqoglvkoside
Alkyl- und/oder Alkenyloligoglykoside stellen bekannte nichtionische Tenside dar, die der Formel (I) folgen,
R10-[G]p (I) in der PO für einen Alkyl- und/oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den ein- schlägigen Verfahren der präparativen organischen Chemie erhalten werden. Stellvertretend für das umfangreiche Schrifttum sei hier auf die Übersichtsarbeit von Biermann et al. in Starch/Stärke 45, 281 (1993), B.Salka in Cosm.Toil. 108, 89 (1993) sowie J.Kahre et al. in SÖFW-Journal Heft 8, 598 (1995) verwiesen.
Die Alkyl- und/oder Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise der Glucose ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligoglucoside. Die Indexzahl p in der allgemeinen Formel (I) gibt den Oligomerisierungsgrad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p in einer gegebenen Verbindung stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein bestimmtes Alkyloligoglykosid eine analytisch ermittelte rechnerische Größe, die meistens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyloligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloligoglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1,7 ist und insbesondere zwischen 1,2 und 1,4 liegt. Der Alkyl- bzw. Alkenyirest R1 kann sich von primären Alkoholen mit 4 bis 11, vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge Cδ-Cio (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem Cβ-Ciβ-Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% Ci2-Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer Cg/n-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenyirest R1 kann sich ferner auch von primären Alkoholen mit 12 bis 22, vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Laurylalkohol, Myristylalkohol, Cetylalkohol, Palmo- leylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Ara- chylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren technische Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem Ci2/i4-Kokosalkohol mit einem DP von 1 bis 3.
Die erfindungsgemäßen Zubereitungen können die Alkyl- und/oder Alkenyloligoglykoside in Mengen von 0,1 bis 20, vorzugsweise 5 bis 18 und insbesondere 8 bis 13 Gew.-% - bezogen auf die Endzusammensetzung - enthalten. Fettsäurepartialglyceride
Fettsäurepartialglyceride, also Monoglyceride, Diglyceride und deren technische Gemische können herstellungsbedingt noch geringe Mengen Di und Triglyceride enthalten. Die Partialglyceride folgen vorzugsweise der Formel (II),
CH20(CH2CH20)mCOR2
I
CHO(CH2CH 0)nR3 (II)
I CH20(CH2CH20)PR4
in der R2CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen, R3 und R4 unabhängig voneinander für R2CO oder OH und die Summe (m+n+p) für 0 oder Zahlen von 1 bis 100, vorzugsweise 5 bis 25 steht, mit der Maßgabe, daß mindestens einer der beiden Reste R3 und R4 OH bedeutet. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeo- stearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden technische Laurinsäureglyceride, Palmitinsäureglyceride, Stea- rinsäureglyceride, Isostearinsäureglyceride, Ölsäureglyceride, Behensäureglyceride und/oder Eru- casäureglyceride eingesetzt, welche einen Monoglyceridanteil im Bereich von 50 bis 95, vorzugsweise 60 bis 90 Gew.-% aufweisen. Insbesondere werden längerkettige Partialglyceride z.B. basierend auf Ölsäure oder Stearinsäure eingesetzt insbesondere Gemische von Glyceriden auf Basis von gesättigten und ungesättigten Fettsäuren.
Die erfindungsgemäßen Zubereitungen können die Fettsäurepartialglyceride in Mengen von 0,1 bis 5, vorzugsweise 1 bis 3,5 und insbesondere 1 ,2 bis 2,4 Gew.-% - bezogen auf die Endzusammensetzung -enthalten.
Amphotere Tenside
Die erfindungsgemäßen Zubereitungen können faktultativ amphotere Tenside enthalten, wie beispielsweise Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazolinium- betaine und Sulfobetaine. Vorzugsweise werden Betaine eingesetzt. Betaine stellen bekannte Tenside dar, die überwiegend durch Carboxyalkylierung, vorzugsweise Carboxymethylierung von ami- nischen Verbindungen hergestellt werden. Vorzugsweise werden die Ausgangsstoffe mit Halogencarbonsäuren oder deren Salzen, insbesondere mit Natriumc loracetat kondensiert, wobei pro Mol Betain ein Mol Salz gebildet wird. Ferner ist auch die Anlagerung von ungesättigten Carbonsäuren, wie beispielsweise Acrylsäure möglich. Zur Nomenklatur und insbesondere zur Unterscheidung zwischen Betainen und "echten" Amphotensiden sei auf den Beitrag von U. Ploog in Seifen-Öle- Fette-Wachse, 108, 373 (1982) verwiesen. Weitere Übersichten zu diesem Thema finden sich beispielsweise von A.O'Lennick et al. in HAPPI, Nov. 70 (1986), S.Holzman et al. in Tens. Surf.Det. 23, 309 (1986), R.Bibo et al. in Soap Cosm.Chem.Spec, Apr. 46 (1990) und P.EIIis et al. in Euro Cosm. 1, 14 (1994). Beispiele für geeignete Betaine stellen die Carboxyalkylie- rungsprodukte von sekundären und insbesondere tertiären Aminen dar, die der Formel (III) folgen,
R6
I R5-N-(CH2)nCOOX (III)
I R7
in der R5 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R7 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, n für Zahlen von 1 bis 6 und X für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht. Typische Beispiele sind die Carboxymethylierungsprodukte von Hexylmethylamin, Hexyldimethylamin, Octyl- dimethylamin, Decyldimethylamin, Dodecylmethylamin, Dodecyldimethylamin, Dodecylethyl- methylamin, Ci2/14-Kokosalkyldimethylamin, Myristyldimethylamin, Cetyldimethylamin, Stea- ryldimethylamin, Stearylethylmethylamin, Oleyldimethylamin, Ci6/ιβ-Talgalkyldimethylamin sowie deren technische Gemische.
Weiterhin kommen auch Carboxyalkylierungsprodukte von Amidoaminen in Betracht, die der Formel (IV) folgen,
Rβ
I R8CO-NH-(CH2)m-N-(CH2)nCOOX (IV)
I R7
in der R8CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, m für Zahlen von 1 bis 3 steht und R6, R7, n und X die oben angegebenen Bedeutungen haben. Typische Beispiele sind Umsetzungsprodukte von Fettsäuren mit 6 bis 22 Koh- lenstoffatomen, namentlich Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselin- säure, Linolsäure, ünolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensaure und Erucasäure sowie deren technische Gemische, mit N,N-Dimethylaminoethylamin, N,N-Di- methylaminopropylamin, N , -Diethylaminoethylamin und N,N-Diethylaminopropylamin, die mit Natriumchloracetat kondensiert werden. Bevorzugt ist der Einsatz eines Kondensationsproduktes von C8/i8-Kokosfettsäure-N,N-dimethylaminopropylamid mit Natriumchloracetat.
Weiterhin kommen als geeignete Ausgangsstoffe für die im Sinne der Erfindung einzusetzenden Betaine auch Imidazoline in Betracht, die der Formel (V) folgen,
Figure imgf000007_0001
in der R5 für einen Alkylrest mit 5 bis 21 Kohlenstoffatomen, R6 für eine Hydroxylgruppe, einen OCOR5- oder NHCOR5-Rest und m für 2 oder 3 steht. Auch bei diesen Substanzen handelt es sich um bekannte Stoffe, die beispielsweise durch cyclisierende Kondensation von 1 oder 2 Mol Fettsäure mit mehrwertigen Aminen, wie beispielsweise Aminoethylethanolamin (AEEA) oder Diethy- lentriamin erhalten werden können. Die entsprechenden Carboxyalkylierungsprodukte stellen Gemische unterschiedlicher offenkettiger Betaine dar. Typische Beispiele sind Kondensationsprodukte der oben genannten Fettsäuren mit AEEA, vorzugsweise Imidazoline auf Basis von Laurinsäure oder wiederum Ci2/i4-Kokosfettsäure, die anschließend mit Natriumchloracetat betainisiert werden.
Die erfindungsgemäßen Zubereitungen können die amphoteren Tenside in Mengen von 0 bis 10, vorzugsweise 1 bis 5 und insbesondere 2 bis 4 Gew.-% - bezogen auf die Endzusammensetzung - enthalten.
Wachskörper
Die Auswahl der Wachskörper ist an sich unkritisch. Typische Beispiele sind Alkylenglycolfettsäure- ester, Wachsester, gehärtete Triglyceride, gesättigte Fettalkohole mit 16 bis 18 Kohlenstoffatomen, Ethylenoxid-Addukte an Fettsäuren mit 16 bis 18 Kohlenstoffatomen und/oder Paraffinwachse.
Alkylenglycolfettsäureester In einer weiteren bevorzugten Ausführungsform der Erfindung werden als Wachskörper Alkylengly- colfettsäureestern der Formel (VI) eingesetzt,
R9CO-0-[A]-0-R1°
(VI)
in der R9CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 und/oder 1, 2 oder 3 Doppelbindungen, R10 für R9CO oder eine Hydroxylgruppe und A für eine lineare oder verzweigte, gegebenenfalls hydroxysubstituierte Alkylen- gruppe mit 2 bis 5 Kohlenstoffatomen steht.
Vorzugsweise handelt es sich bei diesen Wachsen um Ester des Ethylenglycols oder Propylengly- cols mit Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecan- säure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elai- dinsäure, Petroselinsäure, Linolsäure, ünolensäure, Elaeostearinsäure, Ära- chinsäure, Gadoleinsäure, Behens ure und Erucasäure sowie deren technische Mischungen. Besonders bevorzugt ist der Ein- satz von Ethylenglycoldistearat.
Die erfindungsgemäßen Zubereitungen können die Wachskörper, vorzugsweise Alkylenglycolfett- säureester in Mengen von 10 bis 35, vorzugsweise 12 bis 28 und insbesondere 15 bis 25 Gew.-% - bezogen auf die Endzusammensetzung -enthalten.
Gewerbliche Anwendbarkeit
Die erfindungsgemäßen Trübungsmittelzubereitungen weisen vorzugsweise einen Feststoffgehalt von 20 bis 45 und besonders bevorzugt 30 bis 41 und insbesondere 35 bis 37 Gew.-% - bezogen auf die Endzusammensetzung - auf. Ein weiterer Gegenstand der Erfindung betrifft daher deren Verwendung als Trübungsmittel, vorzugsweise in kosmetischen Zubereitungen.
Sie zeichnen sich durch niedrige Viskositäten, vorzugsweise von 2000 bis 6000 und insbesondere 2500 bis 5000 mPas (nach Brookfield: 23 °C, Spindel 5, 10 Upm), gute Fließ- und Pumpeigenschaften sowie eine besondere Feinteiligkeit der Kristalle in der Dispersion aus. Die besondere Feinteiligkeit wird durch eine Partikelgrössenverteilung erzeugt, bei der mindestens 85, vorzugsweise 90 und besonders bevorzugt 95 und insbesondere 99,9 % der Teilchen einen Durchmesser von <15 μm ausmachen. Der durchschnittliche Teilchendurchmesser ist dabei vorzugsweise < 15, besonders bevorzugt < 10 und insbesondere < 7 μm. Ein weiterer Vorteil dieser Mittel besteht in ihrer hohen Stabilität gegen Sedimentieren bei längerer Lagerung. Die erfindungsgemäßen Trübungsmittelzubereitungen werden in Mengen von 0,1 bis 12, vorzugsweise 0,5 bis 6 und insbesondere 1 bis 3,5 Gew.-% - bezogen auf die wäßrigen oberflächenaktive Mittel, wie beispielsweise manuelle Wasch- und Reinigungsmittel, kosmetischen und/oder pharmazeutischen Zubereitungen, wie beispielsweise Haarshampoos, Haarlotionen, Schaumbäder, Duschbäder, Mund- und Zahnpflegemittel, Cremes, Gele, Lotionen, wäßrig/alkoholische Lösungen, Emulsionen und dergleichen - eingesetzt, rufen die Mittel eine dauerhafte, gleichmäßige und im Vergleich zum Stand der Technik eine besonders intensive Weißtrübung hervor, ohne daß dabei Perlglanz erzeugt wird.
Die Auswahl der Tenside, in deren wäßrigen Lösungen die erfindungsgemäßen Mittel eine Weißtrübung hervorrufen, ist hierbei sehr wichtig, da der Zusatz von Aniontensiden eine deutliche Erhöhung der Viskosität hervorruft und die gewünschte Feinteiligkeit und damit die besonders intensive Weisstrübung ausbleibt. Hier kommt es dann auch meist zur Ausbildung von Perlglanz da durch die Verwendung von Aniontensiden auch grössere Partikel vorhanden sind. Demzufolge können die Trübungsmittel lediglich in wäßrigen Lösungen von nichtionischen und/oder amphoteren bzw. zwitterionischen Tensiden eingesetzt werden. Vorzugsweise werden sie in wässrigen Lösungen mit amphoteren bzw. zwitterionischen Tensiden eingesetzt.
Die erfindungsgemäßen Tensidgemische können ferner als weitere Hilfs- und Zusatzstoffe weitere Tenside, Ölkörper, Emulgatoren, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Überfettungsmittel, Stabilisatoren, Polymere, Siliconverbindungen, Fette, Wachse, Lecithine, Phospholi- pide, biogene Wirkstoffe, UV-Lichtschutzfaktoren, Antioxidantien, Deodorantien, Antitranspirantien, Antischuppenmittel, Filmbildner, Quellmittel, Insektenrepellentien, Selbstbräuner, Tyrosininhibitoren (Depigmentierungsmittel), Hydrotrope, Solubilisatoren, Konservierungsmittel, Parfümöle, Farbstoffe und dergleichen enthalten.
Tenside
Als oberflächenaktive Stoffe können nichtionische und/oder kationische Tenside enthalten sein. Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolygly- colether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxy- lierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Glucoron- säurederivate, Fettsäure-N-alkylglucamide, Proteinhydrolysate (insbesondere pflanzliche Produkte auf Weizenbasis), Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen. Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyl- distearylammoniumchlorid, und Esterquats, insbesondere quatemierte Fettsäuretrialkanolamin- estersalze. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Hinsichtlich Struktur und Herstellung dieser Stoffe sei auf einschlägige Übersichtsarbeiten beispielsweise J.Falbe (ed.), "Surfactants in Consumer Products", Springer Verlag, Berlin, 1987, S. 54-124 oder J.Falbe (ed.), "Katalysatoren, Tenside und Mineralöladditive", Thieme Verlag, Stuttgart, 1978, S. 123-217 verwiesen.
Ölkörper
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten Cθ-C22-Fettalkoholen bzw. Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Ce- tylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostearylbehenat, I- sostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucyloleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22- Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Cιβ-C38-Alkylhy- droxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen (vgl. DE 19756377 A1), insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cδ-Cio-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von C6-C18- Fettsäuren (vgl. EP 97/00434), Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit a- romatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Dicaprylyl Carbonate (Cetiol® CC), Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungs- Produkte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethi- contypen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.
Emulgatoren
Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
> Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen, an Alkylphe- nole mit 8 bis 15 C-Atomen in der Alkylgruppe sowie Alkylamine mit 8 bis 22 Kohlenstoffatomen im Alkylrest;
> Alkyl- und/oder Alkenyloligoglykoside mit 8 bis 22 Kohlenstoffatomen im Alk(en)ylrest und deren ethoxylierte Analoga;
> Anlagerungsprodukte von 1 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
> Partialester von Glycerin und/oder Sorbitan mit ungesättigten, linearen oder gesättigten, verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Partialester von Polyglycerin (durchschnittlicher Eigenkondensationsgrad 2 bis 8), Polyethyl- englycol (Molekulargewicht 400 bis 5000), Trimethylolpropan, Pentaerythrit, Zuckeralkoholen (z.B. Sorbit), Alkylglucosiden (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Po- lyglucosiden (z.B. Cellulose) mit gesättigten und/oder ungesättigten, linearen oder verzweigten Fettsäuren mit 12 bis 22 Kohlenstoffatomen und/oder Hydroxycarbonsäuren mit 3 bis 18 Kohlenstoffatomen sowie deren Addukte mit 1 bis 30 Mol Ethylenoxid;
> Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin.
> Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
> Wollwachsalkohole;
> Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
> Block-Copolymere z.B. Polyethylenglycol-30 Dipolyhydroxystearate;
> Polymeremulgatoren, z.B. Pemulen-Typen (TR-1 ,TR-2) von Goodrich; > Polyalkylenglycole sowie
> Glycerincarbonat.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Alkyl- und/oder Alkenyloligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 Kohlenstoffatomen. Bezüglich des Glycosid- restes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Typische Beispiele für geeignete Partialglyceride sind Hydroxystearinsäuremonoglycerid, Hydroxy- stearinsäurediglycerid, Isostearinsäuremonoglycerid, Isostearinsäurediglycerid, Ölsäuremonoglyce- rid, Ölsäurediglycerid, Ricinolsäuremoglycerid, Ricinolsäurediglycerid, Linolsäuremonoglycerid, Linolsäurediglycerid, Linolensäuremonoglycerid, Linolensäurediglycerid, Erucasäuremonoglycerid, Erucasäurediglycerid, Weinsäuremonoglycerid, Weinsäurediglycerid, Citronensäuremonoglycerid, Citronendiglycerid, Äpfelsäuremonoglycerid, Äpfelsäurediglycerid sowie deren technische Gemische, die untergeordnet aus dem Herstellungsprozeß noch geringe Mengen an Triglycerid enthalten können. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Partialglyceride.
Als Sorbitanester kommen Sorbitanmonoisostearat, Sorbitansesquiisostearat, Sorbitandiisostearat, Sorbitantriisostearat, Sorbitanmonooleat, Sorbitansesquioleat, Sorbitandioleat, Sorbitantrioleat, Sorbitanmonoerucat, Sorbitansesquierucat, Sorbitandierucat, Sorbitantrierucat, Sorbitanmonorici- noleat, Sorbitansesquiricinoleat, Sorbitandiricinoleat, Sorbitantriricinoleat, Sorbitanmonohydro- xystearat, Sorbitansesquihydroxystearat, Sorbitandihydroxystearat, Sorbitantrihydroxystearat, Sor- bitanmonotartrat, Sorbitansesquitartrat, Sorbitanditartrat, Sorbitantritartrat, Sorbitanmonocitrat, Sorbitansesquicitrat, Sorbitandicitrat, Sorbitantricitrat, Sorbitanmonomaleat, Sorbitansesquimaleat, Sorbitandimaleat, Sorbitantrimaleat sowie deren technische Gemische. Ebenfalls geeignet sind Anlagerungsprodukte von 1 bis 30, vorzugsweise 5 bis 10 Mol Ethylenoxid an die genannten Sorbitanester.
Typische Beispiele für geeignete Polyglycerinester sind Polyglyceryl-2 Dipolyhydroxystearate (De- hymuls® PGPH), Polyglycerin-3-Diisostearate (Lameform® TGI), Polyglyceryl-4 Isostearate (Iso- lan® Gl 34), Polyglyceryl-3 Oleate, Diisostearoyl Polyglyceryl-3 Diisostearate (Isolan® PDI), Po- lyglyceryl-3 Methylglucose Distearate (Tego Care® 450), Polyglyceryl-3 Beeswax (Cera Bellina®), Polyglyceryl-4 Caprate (Polyglycerol Caprate T2010/90), Polyglyceryl-3 Cetyl Ether (Chimexane® NL), Polyglyceryl-3 Distearate (Cremophor® GS 32) und Polyglyceryl Polyricinoleate (Admul® WOL 1403) Polyglyceryl Dimerate Isostearate sowie deren Gemische. Beispiele für weitere geeignete Polyolester sind die gegebenenfalls mit 1 bis 30 Mol Ethylenoxid umgesetzten Mono-, Di- und Triester von Trimethylolpropan oder Pentaerythrit mit Laurinsäure, Kokosfettsäure, Taigfettsäure, Palmitinsäure, Stearinsäure, Ölsäure, Behensaure und dergleichen.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N- dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N-Acyl- aminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyl- dimethylammoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethyl- carboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cβ -Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Ami- nogruppe und mindestens eine -COOH- oder -Sθ3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Al- kylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkyl- amidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylami- noessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylamino- propionat und das Ci2/i8-Acylsarcosin. Schließlich kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquatemierte Difettsäu- retriethanolaminester-Salze, besonders bevorzugt sind. Fette und Wachse Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Camaubawachs, Japanwachs, Espartograswachs, Korkwachs, Guarumawachs, Reiskeimölwachs, Zuckerrohrwachs, Ouri- curywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholi- pide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero- Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC) bezeichnet und folgen der allgemeinen Formel
Figure imgf000014_0001
wobei R typiscπerweise füπfneare aliphatische Kohlenwasserstoffreste mit 15 bis 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen steht. Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1,2-Diacyl- sn-glycerin-3-phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphin- golipide in Frage.
Perlqlanzwachse
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldi- stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensaure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Konsistenzqeber und Verdickungsmittel
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosi- den und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12- hydroxystearaten. Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Ty- losen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylengly- colmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sigma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare- Typen von Allied Colloids), Polyacrylamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Überfettunqsmittel
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyetho- xylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Stabilisatoren
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Polymere
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quatemierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quatemierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quatemierte Kollagenpolypeptide, wie beispielsweise Lau- ryldimonium Hydroxypropyl Hydrolyzed Collagen (Lamequat®L/Grünau), quatemierte Weizen- polypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyami- nopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quatemierte Ammoniumsalz- Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylace- tat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvemetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyl- trimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacry- lat/tert.Butylaminoethylmethacrylat/2-Hydroxyproyl-methacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinyl- caprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cosmetics & Toiletries Vol. 108, Mai 1993, Seite 95ff aufgeführt.
Siliconverbindungen
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysilo- xane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsi- loxan-Einheiten und hydrierten Siücaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 9_1, 27 (1976).
UV-Lichtschutzfilter und Antioxidantien
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
> 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methyl- benzyliden)campher wie in der EP 0693471 B1 beschrieben;
> 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
> Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäu- repropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexy- lester (Octocrylene);
> Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropyl- benzylester, Salicylsäurehomomenthylester;
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4- methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon; > Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
> Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1,3,5-triazin und Octyl Triazon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
> Propan-1 ,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion;
> Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammo- nium-, Alkanolammonium- und Glucammoniumsalze;
> Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5- sulfonsäure und ihre Salze;
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bomylidenmethyl)benzol- sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze.
Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1,3-dion, 4-tert.-Butyl-4'-methoxy- dibenzoylmethan (Parsol 1789), 1 -Phenyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion sowie Enamin- verbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Besonders günstige Kombinationen bestehen aus den Derivate des Benzoylmethans,, z.B. 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol 1789) und 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octocrylene) in Kombination mit Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester und/oder 4-Methoxyzimt- säurepropylester und/oder 4-Methoxyzimtsäureisoamylester. Vorteilhaft werden deartige Kombinationen mit wasserlöslichen Filtern wie z.B. 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali- , Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze kombiniert.
Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphäri- sehe Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine el- lipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) sowie Parfümerie und Kosmetik 3 (1999), Seite 11ff zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Camosin, D-Camosin, L-Car- nosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Di- hydroliponsäure), Aurothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glu- tathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-ünoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipropionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoxi- min) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citro- nensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-ünolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Camosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSÜ4) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stil- benoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe. Biogene Wirkstoffe
Unter biögenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsaure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA- Säuren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Deodorantien und keimhemmende Mittel
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Geruchsüberdecker fungieren. Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4 dichlorphenyl)harnstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2'-Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1- methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4-Chlorphenoxy)-1 ,2-propandiol, 3-lod-2-propinyl- butylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Farnesol, Phenoxyethanol, Glycerinmonocaprinat, Glycerinmonocaprylat, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N- alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid.
Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glu- tarsäurediethylester, Adipinsäure, Adipinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citronen- säure, Äpfelsäure, Weinsäure oder Weinsäurediethylester, sowie Zinkglycinat.
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labda- num bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronelly loxy acetaldehyd , Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Gal- banumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandari- nenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iral- dein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Flo- ramat allein oder in Mischungen, eingesetzt.
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
> adstringierende Wirkstoffe,
> Ölkomponenten,
> nichtionische Emulgatoren,
> Coemulgatoren,
> Konsistenzgeber,
> Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
> nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin. Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1,2. Aluminiumhydroxyallantoinat, Aluminiumchlo- ridtartrat, Aluminium-Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-tetrachlorohydrat, Aluminium- Zirkonium-pentachlorohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:
> entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
> synthetische hautschützende Wirkstoffe und/oder
> öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert- Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
Filmbildner
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäu- rereihe, quatemäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Antischuppenwirkstoffe
Als Antischuppenwirkstoffe kommen Pirocton Olamin (1-Hydroxy-4-methyl-6-(2,4,4-trimythylpentyl)- 2-(1H)-pyridinonmonoethanolaminsalz), Baypival® (Climbazole), Ketoconazol®, (4- Acety I- 1 - { -4-[2- (2.4-dichlorphenyl) r-2-(1 H-imidazol-1 -ylmethyl)-1 ,3-dioxylan-c-4-ylmethoxyphenyl}piperazin, Ketoconazol, Elubiol, Selendisulfid, Schwefel kolloidal, Schwefelpolyehtylenglykolsorbitanmonooleat, Schwefelrizinolpolyehtoxylat, Schwfel-teer Destillate, Salicylsäure (bzw. in Kombination mit He- xachlorophen), Undexylensäure Monoethanolamid Sulfosuccinat Na-Salz, Lamepon® UD (Protein- Undecylensäurekondensat), Zinkpyrithion, Aluminiumpyrithion und Magnesiumpyrithion / Dipyrithi- on-Magnesiumsulfat in Frage. Quellmittel
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R. Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Insekten-Repellentien
Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1 ,2-Pentandiol oder Ethyl Butylacety- laminopropionate in Frage
Selbstbräuner und Depigmentierunqsmittel
Als Selbstbräuner eignet sich Dihydroxyaceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmentierungsmitteln finden, kommen beispielsweise Arbutin, Kojisäure, Cumarinsäure und Ascorbins ure (Vitamin C) in Frage.
Hydrotrope
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, I- sopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktioneile Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylengly- col, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbu- tan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie bei- spielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin;
> Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol.
Konservierungsmittel
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Para- bene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen.
Parfümöle
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allyl- cyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bour- geonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpi- neol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Me- lissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanu- möl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenalde- hyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenol, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Gerani- umöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Farbstoffe
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Beispiele
Das Wachs, die Partialglyceride (b) und die verschiedenen Tenside (a) wurden in unterschiedlichen Gewichtsverhältnissen gemischt und die Feinteiligkeit über Bestimmung der Partikelgrößenverteilung in μm und dem durchschnittlichen Teilchendurchmesser in μm mittels Laserbeugung (Master- sizer 2000) bestimmt (siehe Produktbeschreibung Firma MALVERN INSTRUMENTS GmbH, Herrenberg, Germany) Die Viskosität wurde nach der Brookfieldmethode (23 °C, Spindel 5, 10 Upm, mPas) ermittelt. Die Ergebnisse sind in Tabelle 1 zusammengefaßt.
Tabelle 1: Kosmetische Zubereitungen (Mengenangaben in Gew.-% Aktivsubstanz - bezogen auf die Endzusammensetzung -)
Figure imgf000027_0001

Claims

Patentansprüche
1. Trübungsmittelzubereitungen auf Basis von Wachskörpern, dadurch gekennzeichnet, dass sie eine Emulgatormischung aus
(a) mindestens einem Alkyl- und/oder Alkenyloligoglykosid,
(b) mindestens einem Fettsäurepartialglycerid und gegebenenfalls
(c) mindestens ein amphoteres Tensid
enthalten, mit der Massgabe, dass das Gewichtsverhältnis von (a) und gegebenenfalls (c) : (b) zwischen 6 : 1 und 3 : 1 liegt und die Zubereitungen frei von Aniontensiden sind.
2. Mittel nach Anspruch 1 , dadurch gekennzeichnet, daß sie als Komponente (a) Alkyl- und/oder Alkenyloligoglykoside der Formel (I) enthalten,
R10-[G]p d)
in der R1 für einen Alkyl- und/oder Alkenyirest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht.
3. Mittel nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß sie als Komponente (b) Fettsäurepartialglyceride der Formel (II) enthalten,
CH2O-COR2
I CH-OR3
(ll)
Figure imgf000028_0001
in der R2CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, R3 und R4 unabhängig voneinander für R2CO oder OH und die Summe (m+n+p) für 0 oder Zahlen von 1 bis 100, vorzugsweise 5 bis 25 steht, mit der Maßgabe, daß mindestens einer der beiden Reste R3 und R4 OH bedeutet.
4. Mittel nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass sie als fakultative Komponente (c) amphotere Tenside enthalten, die ausgewählt sind aus der Grup- pe, die gebildet wird von Alkylbetainen, Alkylamidobetainen, Aminopropionaten, Aminoglycina- ten, Imidazoliniumbetainen und Sulfobetainen.
5. Mittel nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass sie als sie als fakultative Komponente (c) Betaine der Formel (III) enthalten,
R6
I R5-N-(CH2)nCOOX (III)
I R7
in der R5 für Alkyl- und/oder Alkenylreste mit 6 bis 22 Kohlenstoffatomen, R6 für Wasserstoff oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, R7 für Alkylreste mit 1 bis 4 Kohlenstoffatomen, n für Zahlen von 1 bis 6 und X für ein Alkali- und/oder Erdalkalimetall oder Ammonium steht.
6. Mittel nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, das sie als fakultative Komponente (c) Betaine der Formel (IV) enthalten,
R6
I R8CO-NH-(CH2)m-N-(CH2)nCOOX (IV)
I R7
in der R8CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen und 0 oder 1 bis 3 Doppelbindungen, m für Zahlen von 1 bis 3 steht und R6, R7, n und X die oben angegebenen Bedeutungen haben.
7. Mittel nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, das sie einen Feststoffgehalt von 25 bis 45 Gew.-% - bezogen auf die Endzusammensetzung - aufweisen.
8. Mittel nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, das sie die Komponenten (a) und (c) im Gewichtsverhältnis zwischen 2 : 1 bis 3 : 1 enthalten.
9. Mittel nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, das mindestens 85 % der Zusammensetzung Partikelgrössen kleiner als 15 μm aufweisen.
0. Verwendung von Zubereitungen nach Anspruch 1 als Trübungsmittel.
PCT/EP2001/007819 2000-07-17 2001-07-07 Aniontensidfreie niedrigviskose trübungsmittel WO2002005781A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01965084A EP1301172B1 (de) 2000-07-17 2001-07-07 Aniontensidfreie niedrigviskose trübungsmittel
DE50103654T DE50103654D1 (de) 2000-07-17 2001-07-07 Aniontensidfreie niedrigviskose trübungsmittel
JP2002511714A JP5010087B2 (ja) 2000-07-17 2001-07-07 アニオン界面活性剤を含有しない低粘度乳白剤
US10/333,160 US7176171B2 (en) 2000-07-17 2001-07-07 Low-viscosity opacifiers without anionic surface-active agents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10034619.7 2000-07-17
DE10034619A DE10034619A1 (de) 2000-07-17 2000-07-17 Aniontensidfreie niedrigviskose Trübungsmittel

Publications (1)

Publication Number Publication Date
WO2002005781A1 true WO2002005781A1 (de) 2002-01-24

Family

ID=7649150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/007819 WO2002005781A1 (de) 2000-07-17 2001-07-07 Aniontensidfreie niedrigviskose trübungsmittel

Country Status (6)

Country Link
US (1) US7176171B2 (de)
EP (1) EP1301172B1 (de)
JP (1) JP5010087B2 (de)
DE (2) DE10034619A1 (de)
ES (1) ES2228939T3 (de)
WO (1) WO2002005781A1 (de)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032942A1 (de) * 2001-10-13 2003-04-24 Cognis Deutschland Gmbh & Co.Kg Kosmetische und/oder pharmazeutische zubereitungen
WO2003033634A1 (de) * 2001-10-13 2003-04-24 Cognis Deutschland Gmbh & Co. Kg Aniontensidfreie niedrigviskose trübungsmittel
EP1374845A1 (de) * 2002-06-19 2004-01-02 Cognis Iberia, S.L. Kosmetische Zubereitungen
WO2004069980A1 (de) * 2003-02-10 2004-08-19 Cognis Ip Management Gmbh Textilausrüstungsmittel
WO2005097056A1 (de) * 2004-04-05 2005-10-20 Cognis Ip Management Gmbh Wachmischung auf basis von partialglyceriden und pentaerythritestern
EP1776945A1 (de) * 2005-10-20 2007-04-25 Cognis IP Management GmbH Styrolcopolymere enthaltende Trübungsmittel
EP3387217A4 (de) * 2015-12-08 2019-07-31 Kemira Oyj Flüssige polymerzusammensetzungen
WO2019228975A1 (de) * 2018-05-30 2019-12-05 Basf Se Wachsdispersionen mit konditionierenden eigenschaften
WO2020182784A1 (en) * 2019-03-13 2020-09-17 Basf Se Stabilizer concentrates for wax dispersions
EP3789008A1 (de) * 2019-09-05 2021-03-10 Evonik Operations GmbH Opake zusammensetzung mit ethylenglykoldistearat

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6645261B2 (en) 2000-03-06 2003-11-11 Cargill, Inc. Triacylglycerol-based alternative to paraffin wax
US6503285B1 (en) * 2001-05-11 2003-01-07 Cargill, Inc. Triacylglycerol based candle wax
US7128766B2 (en) * 2001-09-25 2006-10-31 Cargill, Incorporated Triacylglycerol based wax compositions
US7192457B2 (en) * 2003-05-08 2007-03-20 Cargill, Incorporated Wax and wax-based products
US8147825B2 (en) 2004-01-22 2012-04-03 University Of Miami Topical co-enzyme Q10 formulations and methods of use
US20050239670A1 (en) * 2004-04-21 2005-10-27 Qing Stella Personal care compositions that deposit hydrophilic benefit agents
US20050238595A1 (en) * 2004-04-21 2005-10-27 Qing Stella Personal care compositions that deposit sunless tanning benefit agents
US20050238680A1 (en) 2004-04-21 2005-10-27 Qing Stella Personal care compositions that deposit hydrophilic benefit agents
AU2006205023C1 (en) 2005-01-10 2012-05-24 Elevance Renewable Sciences, Inc. Candle and candle wax containing metathesis and metathesis-like products
DE102005026035A1 (de) * 2005-06-03 2006-12-07 Beiersdorf Ag Kosmetische Zubereitungen mit einem Gehalt an einem besonderen Anisfruchtextrakt und Füllstoffen
CA2573902C (en) * 2006-01-30 2010-09-28 Rohm And Haas Company Wax-biocide wood treatment
WO2008008420A1 (en) * 2006-07-12 2008-01-17 Elevance Renewable Sciences, Inc. Hot melt adhesive compositions comprising metathesized unsaturated polyol ester wax
WO2008103289A1 (en) 2007-02-16 2008-08-28 Elevance Renewable Sciences, Inc. Wax compositions and methods of preparing wax compositions
MX352434B (es) 2007-03-22 2017-11-24 Berg Llc Formulaciones topicas que tienen biodisponibilidad aumentada.
MX2009013053A (es) * 2007-05-30 2010-01-18 Elevance Renewable Sciences Ceras de perlas que comprenden particulas pequeñas y velas moldeadas por compresion de lados lisos elaboradas a partir de estas.
WO2008157436A1 (en) 2007-06-15 2008-12-24 Elevance Renewable Sciences, Inc. Hybrid wax compositions for use in compression molded wax articles such as candles
US20090063334A1 (en) * 2007-08-28 2009-03-05 Alistair Duncan Business-to-business transaction processing utilizing electronic payment network
CN102083424B (zh) 2008-04-11 2013-08-28 细胞研究有限公司 诱导癌细胞凋亡的方法和应用
SG10201402288RA (en) 2009-05-11 2014-07-30 Berg Llc Methods for the diagnosis of oncological disorders using epimetabolic shifters, multidimensional intracellular molecules, or environmental influencers
DK2545151T3 (en) * 2010-03-10 2014-02-17 Elevance Renewable Sciences Lipid-based wax composition substantially free of fat bloom and method of preparation
KR102008658B1 (ko) 2010-03-12 2019-08-08 베르그 엘엘씨 코엔자임 Q10(CoQ10)의 정맥내 제형 및 이의 사용 방법
EP2569379B8 (de) 2010-05-12 2018-09-19 Cargill, Incorporated Auf naturlichen ölen basierende markierungszusammensetzungen und ihre herstellungsprozesse
WO2012006324A1 (en) 2010-07-09 2012-01-12 Elevance Renewable Sciences, Inc. Waxes derived from metathesized natural oils and amines and methods of making
WO2012071306A1 (en) 2010-11-23 2012-05-31 Elevance Renewable Sciences, Inc. Lipid-based wax compositions substantially free of fat bloom and methods of making
CN103608323B (zh) 2011-04-04 2016-08-17 博格有限责任公司 治疗中枢神经系统肿瘤的方法
MY183615A (en) 2011-06-17 2021-03-03 Berg Llc Inhalable pharmaceutical compositions
JP2015500790A (ja) 2011-06-23 2015-01-08 ザ プロクター アンド ギャンブルカンパニー パーソナルケア組成物での使用のための結晶形成プロセス
US9139801B2 (en) 2011-07-10 2015-09-22 Elevance Renewable Sciences, Inc. Metallic soap compositions for various applications
CN113797343A (zh) 2013-04-08 2021-12-17 博格有限责任公司 使用辅酶q10联合疗法治疗癌症
HUE050060T2 (hu) 2013-09-04 2020-11-30 Berg Llc Eljárások rák kezelésére koenzim Q10 folyamatos infúziójával
FR3026641B1 (fr) * 2014-10-02 2018-01-26 Pierre Fabre Dermo-Cosmetique Composition cosmetique et/ou pharmaceutique sous forme de dispersion, procede de preparation et utilisation pour le traitement de la peau
WO2018086857A1 (de) * 2016-11-14 2018-05-17 Werner & Mertz Gmbh Wässrige wasch- oder reinigungsmittel-zusammensetzungen, enthaltend natürliche wachse als trübende mittel
WO2019197626A1 (de) * 2018-04-13 2019-10-17 Evonik Degussa Gmbh Opake zusammensetzung enthaltend ethylenglykoldistearat
DE102018215303A1 (de) 2018-09-10 2020-03-12 Beiersdorf Ag Trübungsmittel auf der Basis natur-basierter Komponenten
MX2021005883A (es) * 2018-11-20 2021-06-23 Rhodia Operations Concentrado opacificante y su uso para modificar la apariencia y/o incremento de opacidad y/o blancura de una composicion acuosa.
WO2023222410A1 (en) * 2022-05-17 2023-11-23 Basf Se Wax dispersions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510870A2 (de) * 1991-04-24 1992-10-28 Kao Corporation Milchige Reinigungsmittelzusammensetzung für harte Oberflächen
DE19511572A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Niedrigviskose Trübungsmittelkonzentrate
DE19728084A1 (de) * 1997-07-02 1999-01-07 Henkel Kgaa Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1165574B (de) 1960-08-08 1964-03-19 Dehydag Gmbh Verfahren zur Herstellung von als Emulgiermittel fuer Salbengrundlagen dienenden Mischestern
DE2024051C3 (de) 1970-05-16 1986-05-07 Henkel KGaA, 4000 Düsseldorf Verwendung der Veresterungsprodukte von Glycerin-Äthylenoxid-Addukten mit Fettsäuren als Rückfettungsmittel in kosmetischen Zubereitungen
LU68901A1 (de) 1973-11-30 1975-08-20
US4172887A (en) 1973-11-30 1979-10-30 L'oreal Hair conditioning compositions containing crosslinked polyaminopolyamides
JPH075911B2 (ja) * 1991-10-23 1995-01-25 ライオン株式会社 真珠様光沢剤分散液の製造方法
DE4426216A1 (de) 1994-07-23 1996-01-25 Merck Patent Gmbh Benzyliden-Norcampher-Derivate
DE4426215A1 (de) 1994-07-23 1996-01-25 Merck Patent Gmbh Ketotricyclo [5.2.1.0] decan-Derivate
DE19604744A1 (de) 1996-02-09 1997-08-14 Henkel Kgaa Technische Di-/Triglyceridgemische
EP1293504A3 (de) 1996-07-08 2003-11-05 Ciba SC Holding AG Triazinderivate als UV-Filter in kosmetischen Mitteln
DE19712033A1 (de) 1997-03-21 1998-09-24 Basf Ag Photostabile UV-Filter enthaltende kosmetische und pharmazeutische Zubereitungen
EP0852137B1 (de) 1996-11-29 2005-08-10 Basf Aktiengesellschaft Photostabile UV-A-Filter enthaltende kosmetische Zubereitungen
DE19756377A1 (de) 1997-12-18 1999-06-24 Beiersdorf Ag Verwendung von C¶1¶¶8¶-¶3¶¶8¶-Alkylhydroxystearoylstearat zur Verstärkung der UV-A-Schutzleistung kosmetischer oder dermatologischer Formulierungen
DE19805703C2 (de) * 1998-02-06 2001-05-03 Cognis Deutschland Gmbh Haarnachbehandlungsmittel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0510870A2 (de) * 1991-04-24 1992-10-28 Kao Corporation Milchige Reinigungsmittelzusammensetzung für harte Oberflächen
DE19511572A1 (de) * 1995-03-29 1996-10-02 Henkel Kgaa Niedrigviskose Trübungsmittelkonzentrate
DE19728084A1 (de) * 1997-07-02 1999-01-07 Henkel Kgaa Verfahren zur Erzeugung von intensiven Weißtrübungen in wäßrigen tensidischen Zubereitungen

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003032942A1 (de) * 2001-10-13 2003-04-24 Cognis Deutschland Gmbh & Co.Kg Kosmetische und/oder pharmazeutische zubereitungen
WO2003033634A1 (de) * 2001-10-13 2003-04-24 Cognis Deutschland Gmbh & Co. Kg Aniontensidfreie niedrigviskose trübungsmittel
EP1374845A1 (de) * 2002-06-19 2004-01-02 Cognis Iberia, S.L. Kosmetische Zubereitungen
US7309685B2 (en) 2003-02-10 2007-12-18 Cognis Ip Management Gmbh Textile finishing agents for imparting a sensory effect during use
WO2004069980A1 (de) * 2003-02-10 2004-08-19 Cognis Ip Management Gmbh Textilausrüstungsmittel
WO2005097056A1 (de) * 2004-04-05 2005-10-20 Cognis Ip Management Gmbh Wachmischung auf basis von partialglyceriden und pentaerythritestern
EP1776945A1 (de) * 2005-10-20 2007-04-25 Cognis IP Management GmbH Styrolcopolymere enthaltende Trübungsmittel
EP3387217A4 (de) * 2015-12-08 2019-07-31 Kemira Oyj Flüssige polymerzusammensetzungen
WO2019228975A1 (de) * 2018-05-30 2019-12-05 Basf Se Wachsdispersionen mit konditionierenden eigenschaften
CN112218611A (zh) * 2018-05-30 2021-01-12 巴斯夫欧洲公司 具有调理性能的蜡分散体
WO2020182784A1 (en) * 2019-03-13 2020-09-17 Basf Se Stabilizer concentrates for wax dispersions
EP3789008A1 (de) * 2019-09-05 2021-03-10 Evonik Operations GmbH Opake zusammensetzung mit ethylenglykoldistearat
US11969493B2 (en) 2019-09-05 2024-04-30 Evonik Operations Gmbh Opaque composition comprising ethylene glycol distearate

Also Published As

Publication number Publication date
ES2228939T3 (es) 2005-04-16
DE50103654D1 (de) 2004-10-21
EP1301172A1 (de) 2003-04-16
EP1301172B1 (de) 2004-09-15
US7176171B2 (en) 2007-02-13
US20040037793A1 (en) 2004-02-26
DE10034619A1 (de) 2002-01-31
JP5010087B2 (ja) 2012-08-29
JP2004514653A (ja) 2004-05-20

Similar Documents

Publication Publication Date Title
EP1301172B1 (de) Aniontensidfreie niedrigviskose trübungsmittel
EP1434840B1 (de) Aniontensidfreie niedrigviskose trübungsmittel
EP1395643B1 (de) Tensidmischungen
DE10162026A1 (de) Hochkonzentriert fließfähige Perlglanzkonzentrate
WO2002057217A2 (de) Verfahren zur herstellung von acylaminosäuren
EP1776945A1 (de) Styrolcopolymere enthaltende Trübungsmittel
DE10162024A1 (de) Hochkonzentriert fließfähige Perlglanzkonzentrate
EP1152051A2 (de) Wässrige Reinigungsmittel
EP1235546B1 (de) Verwendung von nanoskaligen wachsen
EP1283854B1 (de) Lösungsvermittler
EP1200043B1 (de) Sonnenschutzmittel enthaltend alkoxylierte carbonsäureester
EP1189577B1 (de) Kosmetische emulsionen
DE10044662A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen mit Salicysäure
DE19943585B4 (de) Ölkörpermischung
WO2001010391A2 (de) Verwendung von alkoxylierten carbonsäureestern als schaumbooster
EP1214043B1 (de) Kosmetische und/oder pharmazeutische zubereitungen
EP1067175B1 (de) Wässrige Perlglanzkonzentrate
DE19950497B4 (de) Kosmetische und/oder pharmazeutische Zubereitungen und deren Verwendung
EP1235553B1 (de) Kosmetische und/oder pharmazeutische zubereitungen enthaltend dicarbonsäuremonoester
EP1374845B1 (de) Kosmetische Zubereitungen
WO2004096963A1 (de) Kosmetische und/oder pharmazeutische zubereitungen
EP1061121B1 (de) Wässrige Perlglanzkonzentrate
EP1065258B1 (de) Wässrige Perlglanzkonzentrate
EP1060737A1 (de) Wässerige Perlglanzkonzentrate
EP1061122A1 (de) Wässrige Perlglanzkonzentrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001965084

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001965084

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10333160

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001965084

Country of ref document: EP