WO2002005351A1 - Led light source - Google Patents

Led light source Download PDF

Info

Publication number
WO2002005351A1
WO2002005351A1 PCT/AT2001/000224 AT0100224W WO0205351A1 WO 2002005351 A1 WO2002005351 A1 WO 2002005351A1 AT 0100224 W AT0100224 W AT 0100224W WO 0205351 A1 WO0205351 A1 WO 0205351A1
Authority
WO
WIPO (PCT)
Prior art keywords
reflector
light source
led light
circuit board
source according
Prior art date
Application number
PCT/AT2001/000224
Other languages
German (de)
French (fr)
Inventor
Stefan Tasch
Peter Pachler
Hans Christian Hoschopf
Original Assignee
Tridonic Optoelectronics Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tridonic Optoelectronics Gmbh filed Critical Tridonic Optoelectronics Gmbh
Priority to AU2002218796A priority Critical patent/AU2002218796A1/en
Publication of WO2002005351A1 publication Critical patent/WO2002005351A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an LED light source in which a plurality of unhoused LEDs are assembled directly on a printed circuit board, the LEDs are cast using a highly transparent polymer to protect the LEDs from mechanical damage, and in which a reflector is parabolic around each LED is formed, is placed on the circuit board from above.
  • LEDs in chip-on-board technology By processing LEDs in chip-on-board technology (COBT), efficient, bright and small-area lighting units can be manufactured. Due to the high luminous flux values that can be achieved, these are not only interesting as signal and backlighting, but can also be used directly as lamps.
  • LED arrays in COBT technology in which the LEDs are assembled directly on the circuit board without imaging optics, have a wide beam angle, which is determined by the beam characteristics of the LED die.
  • a polymer layer which is applied to protect against mechanical damage to the LED array, this is influenced in accordance with the shape of the protective layer.
  • LED dice in general and those with a transparent substrate in particular have a considerable emission through the side surface of the LED dice. Without imaging optics, this portion of the emitted light is lost, especially as is the case with parallel encapsulation. Therefore, it is also in applications where a broad emission distribution is required, it is advantageous to use imaging optics.
  • An essential aspect of an imaging optical system is therefore that the light which is emitted from the side surfaces which are arranged perpendicular to the printed circuit board is imaged by the imaging optical system in the half space in front of the printed circuit board.
  • Mirrors can be used for this.
  • An LED light source of the type mentioned is known from US-4603496-A. It has an imaging optic that fulfills this aspect.
  • Each LED die is first cast with a protective layer.
  • the diameter of the protective layer is slightly larger than the inner diameter of the reflector, which is then put on.
  • the reflector is therefore not on the circuit board, but on the protective layer.
  • the reflector is poured out and an approximately spherical lens is pressed into this casting compound.
  • the protective layer, casting compound and lens should have a refractive index that is as similar as possible (see column 3, lines 13-16). Thus only the top of the lens is optically active.
  • a disadvantage of this design is that the reflector is placed on the protective layer. If this is not carried out precisely, this affects the position of the reflector, so that the imaging geometry is changed.
  • an LED light source of the type mentioned at the outset in that the diameter of the casting compound is at most equal to the inside diameter of the reflector, so that the reflector lies directly on the printed circuit board, and in that the surface of the casting compound borders on air, the Interface is convex.
  • the reflectors sit directly on the circuit board and are therefore always exactly positioned in the vertical direction.
  • the sealing compound borders on air, so that the surface is a breaking surface. In order to keep losses through reflection low, it should be convex.
  • the circuit board is made of thermally highly conductive material and if the back of the circuit board is coupled to a heat sink.
  • This is known per se from US-5936353-A.
  • the density of the LED dies and the current through them can be chosen to be relatively high. So that no short circuits can occur, it is expedient if the reflector consists of a highly reflective, metallic material which is insulated on the underside, or if the reflector consists of a plastic, the inside of which is mirrored.
  • the arrangement of the optical components can either take place in the immediate vicinity of the LED dice (individual optics), or as a common optic around several LEDs (overall optics). From the point of view of mapping effectiveness, both approaches are comparable.
  • the LEDs are mounted face down and there is a die in each reflector, or else the LEDs are face up mounted and up to 4 dice are arranged in each reflector.
  • a reflector plate which has a large number of parabolically shaped reflectors. This means that not every reflector needs to be positioned individually.
  • Fresnel lenses or Gaussian lenses in the form of a lens plate are positioned centrally over each reflector and glued to the side. This means that the lenses can also be easily installed.
  • the heat sink is thermally coupled on the one hand to transmit the heat to a housing or a light source holder thereon and for the electrical connection.
  • tacting is designed as a thread for screwing into a socket analogous to the incandescent lamp.
  • the LED light source can thus be used directly as a replacement for an incandescent lamp.
  • the cooling takes place via the thread.
  • the LED light source it is possible for the LED light source to be designed as a traffic light module, the LED circuit board being thermally coupled to the traffic light housing and a lens plate being arranged in front of the LED light source. So here the traffic light housing takes over the cooling function.
  • FIG. 1 shows a section through the first embodiment of the present invention
  • FIG. 2 shows a section through a second embodiment of the present invention.
  • LED dice 1 are attached to a conductor track 5.
  • Each LED die 1 is cast in a casting compound 2, which is strongly convex (e.g. hemispherical).
  • a reflector 3 is arranged around each LED die 1 or each potting compound 2, which is seated directly on the base plate body 6 and is therefore precisely positioned.
  • the reflectors 3 can be attached either individually or in assembled matrices.
  • a reflector 3 is placed over each die 1 with an assembly system.
  • the underside of the reflector 3 uss be non-conductive, otherwise a short circuit between the conductor tracks over which the reflector is placed arises.
  • the inside of the reflector should be highly reflective.
  • a plastic mirrored on the inside can be used.
  • an optic array consisting of individual elements, which is positioned exactly above the LED dice 1, is used.
  • the casting compound 2 should have the following properties: highly transparent, softening point> 100 ° C., linear thermal expansion coefficients as low as possible. To achieve good decoupling of the light generated in the LED die, the potting compound must be dome-shaped.
  • a reflector array can be used, which e.g. consists of a thin plastic plate, into which parabolic or funnel-shaped openings with a defined shape and mirrored on the inside are made.
  • a mirror array must be specially matched to the respective LED array and is placed on it in one process step.
  • the reason for this lies in the bond wires, which have a typical length between 0.5 and 2 mm and lead from the electrical contact on the LED die to a conductor track.
  • the diameter: LED radius + 2 x length of the bonding wire must be provided for the reflector. (The LED-Die should sit in the middle of the reflector if possible.)
  • the packing density is significantly loosened compared to the possible density, which is not desirable for many applications. It therefore proves to be advantageous in the case of LED dice, processed by means of die and wire bonding, to use an optical system for several LED dice, since this enables a higher packing density to be achieved (see FIG. 2).
  • a number of between 2 and 5 LED dice is preferably arranged within an optical system. This is also important for traffic light applications.
  • a light pane eg Fresnel lens
  • the LED light source according to the invention has high luminous intensity, defined radiation characteristics and a low overall height
  • At least part of the housing in which the LED array is fastened is preferably used as the heat sink, which is to be used in the case of highly loaded LEDs.
  • this is at least partially metallic.
  • the housing of the reflector can also be used as a heat sink.
  • Certain colors cannot be generated by a single LED due to the fact that LEDs generally only have a narrow-band emission spectrum.
  • Options for realizing white light are e.g. in US-5851905-A, in WO-00/02262-A and in US-5836676-A.
  • the generation of white emissions is particularly important for lighting technology.
  • the color rendering is also of great importance. Since no intrinsically white-emitting LEDs have been able to be produced to date, this color must be produced by a special arrangement or by a special structure, as described as follows:
  • Color conversion by arranging at least one lumino phosphor directly above the LED dice, which absorbs the emission of the dice and subsequently emits photoluminescent light in a different emission color.
  • the luminophore is arranged in layers above the LED array or mixed into the lens. This approach has the disadvantage that the emission color is not constant over the radiation angle, since the path through the color conversion layer changes with the radiation angle. In order to obtain a relatively constant emission color, the path of the emitted light through the color conversion medium must therefore be kept constant. This cannot be done by a layered Medium - as a rule - can be achieved through the shape of the lens, but must be realized through a spherical or elliptical shape.
  • White emission can be generated by mixing the emission colors of suitable differently colored LEDs. This approach is particularly attractive for LEDs, processed in COBT (chip-on-board technology), since the local distances between the LED dice can be selected to be very small. With a view to good color rendering, the color mixture must be generated using red, green and blue emitting LED dice (three-band white). These are arranged in a special ratio on a circuit board, and the emission color to be generated is set by defined setting of the operating conditions for the respective die type.
  • the LEDs are electrically connected in a combined parallel and series connection and operated together with control electronics.
  • the operating voltage of the LED array can be adapted to the available voltage.
  • optimal power efficiencies can be achieved since only low voltages drop on the electronics. This also minimizes the thermal load on the arrangement.
  • these are preferably operated with a current specification. Furthermore, they are provided with reverse polarity protection.
  • a clocked or linear current regulator is preferably provided for the operation of the LEDs. It is expedient if the control electronics are arranged on a separate circuit board and are electrically connected to the LED circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)

Abstract

The invention relates to several LEDs (1) without housings, which are mounted directly onto a printed circuit board (6). Said LEDs (1) are potted using a highly transparent polymer (2) to protect them (1) from mechanical damage. A reflector (3) is placed on the printed circuit board from above around each LED (1). According to the invention, the diameter of the potting compound (2) is at least equal to the internal diameter of the reflectors (3), in such a way that the reflector (3) lies in direct contact with the printed circuit board (6) and the surface of the potting compound (2) is configured as an optically active lens surface. The printed circuit board (6) can consist of a highly thermally conductive material and the reverse of the printed circuit board (6) can be coupled to a heat sink (7), for efficiently transporting the dissipated heat.

Description

"LED-Lichtquelle" "LED light source"
TECHNISCHES GEBIETTECHNICAL AREA
Die vorliegende Erfindung betrifft eine LED-Lichtquelle, bei der mehrere ungehäuste LEDs direkt auf einer Leiterplatte assembliert sind, die LEDs mittels eines hochtransparenten Polymers vergossen sind, um die LEDs vor mechanischer Beschädigung zu schützen, und bei der um jede LED ein Reflektor, der parabolisch ausgeformt ist, von oben auf die Leiterplatte aufgesetzt ist.The present invention relates to an LED light source in which a plurality of unhoused LEDs are assembled directly on a printed circuit board, the LEDs are cast using a highly transparent polymer to protect the LEDs from mechanical damage, and in which a reflector is parabolic around each LED is formed, is placed on the circuit board from above.
STAND DER TECHNIKSTATE OF THE ART
Durch Verarbeitung von LEDs in Chip-On-Board Technologie (COBT) können effiziente, lichtstarke und kleinflächige Leuchteinheiten hergestellt werden. Aufgrund der hohen er- reichbaren Lichtstromwerte sind diese nicht nur als Signal- und Hinterbeleuchtungen interessant, sondern können direkt als Leuchtmittel eingesetzt werden.By processing LEDs in chip-on-board technology (COBT), efficient, bright and small-area lighting units can be manufactured. Due to the high luminous flux values that can be achieved, these are not only interesting as signal and backlighting, but can also be used directly as lamps.
LED-Arrays in COBT-Technologie, bei denen die LEDs ohne Abbildungsoptik direkt auf der Leiterplatte assembliert sind, besitzen einen breiten Abstrahlwinkel, der durch die Abstrahlcharakteristik des LED-Dies bestimmt ist. Durch Aufbringen einer polymeren Schicht, die zum Schutz vor mechanischen Beschädigung des LED-Arrays aufgebracht wird, wird diese nach Maßgabe der Form der Schutzschicht beeinflusst. LED-Dice im Allgemeinen und solche mit einem transparenten Substrat im Speziellen (wie GaN auf Saphir) weisen eine beträchtliche Emission durch die Seitenfläche des LED-Dice auf. Ohne Abbildungsoptik geht dieser Anteil des emittierten Lichtes verloren, speziell wie dies bei paralleler Einkapselung der Fall ist. Daher ist es auch bei Anwendungen, wo eine breite Emissionsverteilung gefordert ist, von Vorteil, eine Abbildungsoptik einzusetzen.LED arrays in COBT technology, in which the LEDs are assembled directly on the circuit board without imaging optics, have a wide beam angle, which is determined by the beam characteristics of the LED die. By applying a polymer layer, which is applied to protect against mechanical damage to the LED array, this is influenced in accordance with the shape of the protective layer. LED dice in general and those with a transparent substrate in particular (such as GaN on sapphire) have a considerable emission through the side surface of the LED dice. Without imaging optics, this portion of the emitted light is lost, especially as is the case with parallel encapsulation. Therefore, it is also in applications where a broad emission distribution is required, it is advantageous to use imaging optics.
Ein wesentlicher Aspekt einer Abbildungsoptik ist daher, dass das Licht, welches von den Seitenflächen, die senkrecht zur Leiterplatte angeordnet sind, emittiert wird, durch die Abbildungsoptik in den Halbraum vor der Leiterplatte abgebildet wird. Hierzu können Spiegel eingesetzt werden.An essential aspect of an imaging optical system is therefore that the light which is emitted from the side surfaces which are arranged perpendicular to the printed circuit board is imaged by the imaging optical system in the half space in front of the printed circuit board. Mirrors can be used for this.
Eine LED-Lichtquelle der eingangs genannten Art ist aus der US-4603496-A bekannt. Sie hat eine Abbildungsoptik, die die- sen Aspekt erfüllt. Es wird bei der Herstellung jeder LED-Die zunächst mit einer Schutzschicht vergossen. Der Durchmesser der Schutzschicht ist etwas größer als der Innendurchmesser des Reflektors, der dann aufgesetzt wird. Der Reflektor liegt daher nicht auf der Platine, sondern auf der Schutzschicht auf. Danach wird auch der Reflektor ausgegossen und in diese Vergussmasse eine etwa kugelförmige Linse hineingedrückt. Schutzschicht, Vergussmasse und Linse sollen einen möglichst ähnlichen Brechungsindex haben (s. Spalte 3, Z 13-16) . Somit ist nur die Oberseite der Linse optisch aktiv. Nachteilig bei dieser Ausführung ist, dass der Reflektor auf die Schutzschicht aufgesetzt wird. Wenn diese nicht präzise ausgeführt ist, wirkt sich dies auf die Position des Reflektors aus, sodass die Abbildungsgeometrie verändert wird.An LED light source of the type mentioned is known from US-4603496-A. It has an imaging optic that fulfills this aspect. Each LED die is first cast with a protective layer. The diameter of the protective layer is slightly larger than the inner diameter of the reflector, which is then put on. The reflector is therefore not on the circuit board, but on the protective layer. Then the reflector is poured out and an approximately spherical lens is pressed into this casting compound. The protective layer, casting compound and lens should have a refractive index that is as similar as possible (see column 3, lines 13-16). Thus only the top of the lens is optically active. A disadvantage of this design is that the reflector is placed on the protective layer. If this is not carried out precisely, this affects the position of the reflector, so that the imaging geometry is changed.
OFFENBARUNG DER ERFINDUNGDISCLOSURE OF THE INVENTION
Es ist Aufgabe der vorliegenden Erfindung, diesen Nachteil zu beseitigen. Diese Aufgabe wird durch eine LED-Lichtquelle der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass der Durchmesser der Vergussmasse höchstens gleich dem Innendurchmesser des Reflektors ist, sodass der Reflektor direkt auf der Leiterplatte aufliegt, und dass die Oberfläche der Vergussmasse an Luft grenzt, wobei die Grenzfläche konvex ist. Die Reflektoren sitzen gemäß der vorliegenden Erfindung direkt auf der Platine auf und sind daher in vertikaler Richtung immer exakt positioniert. Die Vergussmasse grenzt an Luft, sodass die Oberfläche eine brechende Fläche ist. Um Verluste durch Reflexion gering zu halten, sollte sie konvex sein.It is an object of the present invention to overcome this disadvantage. This object is achieved according to the invention by an LED light source of the type mentioned at the outset in that the diameter of the casting compound is at most equal to the inside diameter of the reflector, so that the reflector lies directly on the printed circuit board, and in that the surface of the casting compound borders on air, the Interface is convex. According to the present invention, the reflectors sit directly on the circuit board and are therefore always exactly positioned in the vertical direction. The sealing compound borders on air, so that the surface is a breaking surface. In order to keep losses through reflection low, it should be convex.
Ein weiterer wesentlicher Aspekt der Vergussmasse ist die Reduktion der internen Reflexionsverluste innerhalb der LED am Übergang LED-Halbleitermaterial/Vergussmasse/Luft im Ver- gleich zu einem direkten Übergang LED-Halbleitermaterial/Luft. Dies ist auf Grund der Tatsache möglich, dass die Brechzahl von der Vergussmasse (typisch. n=l, 3-2,0) nahe an jener des Halbeitermaterials (typisch 2<n<4) liegt.Another important aspect of the potting compound is the reduction of the internal reflection losses within the LED at the transition from LED semiconductor material / potting compound / air compared to a direct transition from LED semiconductor material / air. This is possible due to the fact that the refractive index of the casting compound (typically. N = 1.3-2.0) is close to that of the semiconductor material (typically 2 <n <4).
Es ist anzustreben, wenn die Leiterplatte aus thermisch gut leitfähigen Material besteht und wenn die Rückseite der Leiterplatte an einen Kühlkörper angekoppelt ist. Dies ist an sich aus der US-5936353-A bekannt. Dadurch kann die Dichte der LED-Dies und der Strom durch diese relativ hoch gewählt werden. Damit keine Kurzschlüsse auftreten können, ist es zweckmäßig, wenn der Reflektor aus einem hochreflektierenden, metallischen Material besteht, das auf der Unterseite isoliert ist, oder wenn der Reflektor aus einem Kunststoff, dessen Innenseite verspiegelt ist, besteht. Die Anordnung der optischen Komponenten kann entweder in unmittelbarer Umgebung der LED-Dice erfolgen (Einzeloptik) , bzw. als eine gemeinsame Optik um mehrere LEDs ausgeführt sein (Gesamtoptik) . Vom Standpunkt der Abbildungseffektivität sind beide Ansätze vergleichbar. Sogar die Form ist für die unterschiedlich dimensionierten Optiken identisch. Voraussetzung hierfür ist, dass die geometrischen Verhältnisse zwischen der Ausdehnung der Lichtquelle und der Abbildungsoptik vergleichbar sind. In beiden Fällen ist zu beachten, dass direkt über der LED eine geeignet geformte Vergussmasse aufzu- bringen ist. Einen entscheidenden Unterschied stellt allerdings die Baugröße dar. Während bei der Einzeloptik die Baugröße im Ver¬ gleich zum LED-Array ohne Abbildungsoptik nur unwesentlich erhöht wird, ist bei der Gesamtoptik als Faustregel zu be- rücksichtigen, dass der minimale innere Durchmesser der Ge¬ samtoptik zumindest doppelt so groß wie der maximale Abstand der LED-Dice auf der Platine sein uss, um Abbildungsverluste zu minimieren.The aim should be if the circuit board is made of thermally highly conductive material and if the back of the circuit board is coupled to a heat sink. This is known per se from US-5936353-A. As a result, the density of the LED dies and the current through them can be chosen to be relatively high. So that no short circuits can occur, it is expedient if the reflector consists of a highly reflective, metallic material which is insulated on the underside, or if the reflector consists of a plastic, the inside of which is mirrored. The arrangement of the optical components can either take place in the immediate vicinity of the LED dice (individual optics), or as a common optic around several LEDs (overall optics). From the point of view of mapping effectiveness, both approaches are comparable. Even the shape is identical for the different sized optics. The prerequisite for this is that the geometric relationships between the expansion of the light source and the imaging optics are comparable. In both cases it should be noted that a suitably shaped casting compound must be applied directly above the LED. However, a key difference is the size. While the size in comparison ¬ is equal to increase only slightly to the LED array with no imaging optics in the single optics, is taken into account in the overall appearance as a rule of thumb into account that the minimum inner diameter of the Ge ¬ velvet look be at least twice the maximum distance of the LED dice on the board to minimize imaging losses.
Bei besonders zweckmäßigen Ausführungen sind die LEDs face down montiert und ist jeweils ein Die in jedem Reflektor angeordnet ist, oder aber es sind die LEDs face up montiert und bis zu 4 Dice in jedem Reflektor angeordnet.In particularly expedient versions, the LEDs are mounted face down and there is a die in each reflector, or else the LEDs are face up mounted and up to 4 dice are arranged in each reflector.
Zum leichteren Zusammenbau ist es günstig, wenn eine Reflektorplatte vorgesehen ist, die eine Vielzahl an parabo- lisch ausgeformten Reflektoren aufweist. Damit braucht nicht jeder Reflektor einzeln exakt positioniert werden.For easier assembly, it is advantageous if a reflector plate is provided which has a large number of parabolically shaped reflectors. This means that not every reflector needs to be positioned individually.
Wenn zusätzlich Linsen vorgesehen werden sollen, so ist es zweckmäßig, wenn Fresnellinsen oder Gauß'sche Linsen in Form einer Linsenplatte zentrisch über jedem Reflektor positio- niert und seitlich verklebt sind. Somit können auch die Linsen einfach montiert werden.If additional lenses are to be provided, it is expedient if Fresnel lenses or Gaussian lenses in the form of a lens plate are positioned centrally over each reflector and glued to the side. This means that the lenses can also be easily installed.
Gemäß einer besonderen Ausgestaltung der Erfindung ist vorgesehen, dass der Kühlkörper einerseits zur Übertragung der Wärme auf ein Gehäuse oder eine Lichtquellenhalterung auf diese thermisch angekoppelt ist und für die elektrische Kon- . taktierung als Gewinde zum Einschrauben in eine Fassung analog zur Glühlampe ausgebildet ist. Damit kann die LED-Lichtquelle unmittelbar als Ersatz für eine Glühlampe eingesetzt werden. Die Kühlung erfolgt über das Gewinde. Weiters ist es möglich, dass die LED-Lichtquelle als Ampelmodul ausgebildet ist, wobei die LED-Platine thermisch an das Ampelgehäuse gekoppelt ist und vor der LED-Lichtquelle eine Linsenplatte angeordnet ist. Hier übernimmt also das Ampelgehäuse die Kühlfunktion. KURZE BESCHREIBUNG DER ZEICHNUNGAccording to a special embodiment of the invention, it is provided that the heat sink is thermally coupled on the one hand to transmit the heat to a housing or a light source holder thereon and for the electrical connection. tacting is designed as a thread for screwing into a socket analogous to the incandescent lamp. The LED light source can thus be used directly as a replacement for an incandescent lamp. The cooling takes place via the thread. Furthermore, it is possible for the LED light source to be designed as a traffic light module, the LED circuit board being thermally coupled to the traffic light housing and a lens plate being arranged in front of the LED light source. So here the traffic light housing takes over the cooling function. BRIEF DESCRIPTION OF THE DRAWING
Die vorliegende Erfindung wird anhand der beiliegenden Zeichnung näher erläutert. Es zeigt: Fig. 1 einen Schnitt durch die erste Ausführungsform der vorliegenden Erfindung und Fig. 2 einen Schnitt durch eine zweite Ausführungsform der vorliegenden Erfindung.The present invention is explained in more detail with reference to the accompanying drawing. 1 shows a section through the first embodiment of the present invention, and FIG. 2 shows a section through a second embodiment of the present invention.
BESTE AUSFÜHRUNGSFORM DER ERFINDUNGBEST EMBODIMENT OF THE INVENTION
Gemäß Fig. 1 sind LED-Dice 1 auf einer Leiterbahn 5 angebracht. Jeder LED-Die 1 ist in eine Vergussmasse 2 eingegossen, die stark konvex (z.B. halbkugelförmig) gekrümmt ist. Um jeden LED-Die 1 bzw. jede Vergussmasse 2 ist ein Reflektor 3 angeordnet, der direkt auf dem Platinengrundkörper 6 aufsitzt und somit exakt positioniert ist. Unterhalb der Leiterbahn 5, die aus thermisch gut leitendem Material besteht, befindet sich der Platinengrundkörper 6 und darunter der Kühlkörper 7. Die Anbringung der Reflektoren 3 kann entweder einzeln oder in konfektionierten Matrizen erfolgen.1, LED dice 1 are attached to a conductor track 5. Each LED die 1 is cast in a casting compound 2, which is strongly convex (e.g. hemispherical). A reflector 3 is arranged around each LED die 1 or each potting compound 2, which is seated directly on the base plate body 6 and is therefore precisely positioned. Below the conductor track 5, which consists of thermally highly conductive material, there is the base plate body 6 and underneath the cooling body 7. The reflectors 3 can be attached either individually or in assembled matrices.
Zur Anbringung der Reflektoren 3 wird folgende Vorgangsweise vorgeschlagen:The following procedure is proposed for attaching the reflectors 3:
Nachdem die LED-Dice 1 auf der Leiterplatte 5 mittels Die- und Wire Bonding bzw. mittels Flip-Chip Technologie aufgebracht wurden, wird über jeden Die 1 mit einer Bestückungsanlage ein Reflektor 3 aufgesetzt. Die Unterseite des Reflektors 3 uss nichtleitend sein, da sonst ein Kurzschluss zwischen den Leiterbahnen, über welche der Reflektor aufgesetzt wird, entsteht. Die Innenseite des Reflektors soll hochreflektierend sein. Beispielsweise kann ein auf der Innenseite verspiegelter Kunststoff eingesetzt werden. In einer bevorzugten Variante wird anstatt vieler Einzeloptiken ein Optik- array, das aus Einzelelementen besteht, welches exakt über den LED-Dice 1 positioniert wird, verwendet. Die Vergussmasse 2 soll die folgenden Eigenschaften erfüllen: hochtransparent, Erweichungspunkt>100°C, möglichst geringer linearer thermischer Ausdehnungskoeffizienten. Um eine gute Auskoppelung des Lichts, das im LED-Die generiert wird, zu erreichen, muss die Vergussmasse kuppeiförmig ausgeführt sein.After the LED dice 1 have been applied to the printed circuit board 5 by means of die and wire bonding or by means of flip-chip technology, a reflector 3 is placed over each die 1 with an assembly system. The underside of the reflector 3 uss be non-conductive, otherwise a short circuit between the conductor tracks over which the reflector is placed arises. The inside of the reflector should be highly reflective. For example, a plastic mirrored on the inside can be used. In a preferred variant, instead of many individual optics, an optic array consisting of individual elements, which is positioned exactly above the LED dice 1, is used. The casting compound 2 should have the following properties: highly transparent, softening point> 100 ° C., linear thermal expansion coefficients as low as possible. To achieve good decoupling of the light generated in the LED die, the potting compound must be dome-shaped.
Anstelle von Einzelreflektoren kann ein Reflektorarray verwendet werden, welches z.B. aus einer dünnen Kunststoffplatte besteht, in welche definiert geformte und auf der Innenseite verspiegelte parabolische oder trichterförmige Öffnungen eingebracht sind. Ein derartiges Spiegelarray muss speziell auf das jeweilige LED-Array abgestimmt werden und wird in einem Prozessschritt auf dieses aufgesetzt.Instead of individual reflectors, a reflector array can be used, which e.g. consists of a thin plastic plate, into which parabolic or funnel-shaped openings with a defined shape and mirrored on the inside are made. Such a mirror array must be specially matched to the respective LED array and is placed on it in one process step.
Während für LED-Dice, die mittels Flip-Chip Technologie verarbeitet werden, eine Zuordnung einer Einzeloptik zu jedem LED-Arrays sinnvoll erscheint, ist dies bei LEDs, die mittels Die- und Wire Bonding verarbeitet sind, nachteilig:While it seems sensible for LED dices that are processed using flip-chip technology to assign a single lens to each LED array, this is disadvantageous for LEDs that are processed using die and wire bonding:
Der Grund hierfür liegt in den Bonddrähten, die eine typische Länge zwischen 0,5 und 2 mm besitzen und vom elektri- sehen Kontakt auf dem LED-Die auf eine Leiterbahn führen. Bei der Assemblierung einer Einzeloptik muss daher etwa der Durchmesser: LED-Radius + 2 x Länge des Bonddrahtes für den Reflektor vorgesehen werden. (Der LED-Die sollte möglichst in der Mitte des Reflektors sitzen.) Aus diesem Grund wird die Packungsdichte bei der Bestückung im Vergleich zur möglichen Dichte deutlich aufgelockert, was für viele Anwendungen nicht erwünscht ist. Es erweist sich daher bei LED-Dice, verarbeitet mittels Die- und Wirebonding, häufig als günstig, eine Optik für mehrere LED-Dice zu ver- wenden, da hierdurch eine höhere Packungsdichte erzielt werden kann (siehe Fig. 2) . Bevorzugt wird eine Anzahl zwischen 2 und 5 LED-Dice innerhalb einer Optik angeordnet. Dies ist auch für Ampelanwendungen wichtig.The reason for this lies in the bond wires, which have a typical length between 0.5 and 2 mm and lead from the electrical contact on the LED die to a conductor track. When assembling a single optic, the diameter: LED radius + 2 x length of the bonding wire must be provided for the reflector. (The LED-Die should sit in the middle of the reflector if possible.) For this reason, the packing density is significantly loosened compared to the possible density, which is not desirable for many applications. It therefore proves to be advantageous in the case of LED dice, processed by means of die and wire bonding, to use an optical system for several LED dice, since this enables a higher packing density to be achieved (see FIG. 2). A number of between 2 and 5 LED dice is preferably arranged within an optical system. This is also important for traffic light applications.
Zur finalen Bestimmung des Lichtaustritts wird über dem Re- flektor in einer bevorzugten Variante eine Lichtscheibe (z.B. Fresnellinse) angeordnet. Die erfindungsgemäße LED-Lichtquelle hat hohe Lichtstärke, definierte Abstrahlcharakteristik und geringe BauhöheIn a preferred variant, a light pane (eg Fresnel lens) is arranged above the reflector for the final determination of the light emission. The LED light source according to the invention has high luminous intensity, defined radiation characteristics and a low overall height
Als Kühlkörper, der bei hochbelasteten LED zu verwenden ist, wird bevorzugt zumindest ein Teil des Gehäuses, in dem das LED-Array befestigt wird, verwendet. Zu diesem Zweck ist dieses zumindest teilweise metallisch ausgeführt. In der Art kann auch das Gehäuse des Reflektors als Kühlkörper verwendet werden.At least part of the housing in which the LED array is fastened is preferably used as the heat sink, which is to be used in the case of highly loaded LEDs. For this purpose, this is at least partially metallic. In this way, the housing of the reflector can also be used as a heat sink.
Bestimmte Farben (z.B. weiß) lassen sich nicht durch eine einzige LED erzeugen, aufgrund der Tatsache, dass LEDs grundsätzlich nur ein schmalbandiges Emissionsspektrum aufweisen. Möglichkeiten, um weißes Licht zu realisieren, sind z.B. in der US-5851905-A, in der WO-00/02262-A und in der US-5836676- A beschrieben. Speziell die Erzeugung von weißer Emission ist für die Beleuchtungstechnik von großer Bedeutung. Neben der weißen Emissionsfarbe ist auch die Farbwiedergabe von großer Bedeutung. Da bisher keine intrinsisch weiß emittierenden LEDs erzeugt werden können, muss diese Farbe durch eine spezielle Anordnung bzw. durch einen speziellen Aufbau, wie folgt beschrieben, erzeugt werden:Certain colors (e.g. white) cannot be generated by a single LED due to the fact that LEDs generally only have a narrow-band emission spectrum. Options for realizing white light are e.g. in US-5851905-A, in WO-00/02262-A and in US-5836676-A. The generation of white emissions is particularly important for lighting technology. In addition to the white emission color, the color rendering is also of great importance. Since no intrinsically white-emitting LEDs have been able to be produced to date, this color must be produced by a special arrangement or by a special structure, as described as follows:
1) Farbkonversion: durch Anordnung zumindest eines Lumi- nophors direkt über dem LED-Dice, der die Emission des Dice absorbiert und nachfolgend Photolumineszenzlicht in einer an- deren Emissionsfarbe emittiert. Im Hinblick auf eine optimale Farbwiedergabe werden bevorzugt mehrere Luminophore eingesetzt, die in einem verschiedenen sichtbaren Spektralbereich von grün bis rot emittieren. Laut Stand der Technik wird der Luminophor schichtförmig über dem LED-Array angeordnet bzw. in die Linse eingemischt. Dieser Ansatz weist den Nachteil auf, dass die Emissionsfarbe nicht konstant über den Abstrahlwinkel ist, da der Weg durch die Farbkonversionsschicht sich mit dem Abstrahlwinkel verändert. Um eine relativ konstante Emissionsfarbe zu erhalten, muss daher der Weg des emittierten Lichtes durch das Farbkonversionsmedium konstant gehalten werden. Dies kann weder durch ein schichtförmiges Medium noch - in der Regel - durch die Form der Linse erreicht werden, sondern muss durch eine kugel- bzw. ellipsenähnliche Form realisiert werden.1) Color conversion: by arranging at least one lumino phosphor directly above the LED dice, which absorbs the emission of the dice and subsequently emits photoluminescent light in a different emission color. With a view to optimum color rendering, it is preferred to use a plurality of luminophores which emit in a different visible spectral range from green to red. According to the prior art, the luminophore is arranged in layers above the LED array or mixed into the lens. This approach has the disadvantage that the emission color is not constant over the radiation angle, since the path through the color conversion layer changes with the radiation angle. In order to obtain a relatively constant emission color, the path of the emitted light through the color conversion medium must therefore be kept constant. This cannot be done by a layered Medium - as a rule - can be achieved through the shape of the lens, but must be realized through a spherical or elliptical shape.
2) Die Erzeugung weißer Emission kann durch eine Mischung der Emissionsfarben von geeigneten verschiedenf rbigen LEDs erfolgen. Speziell für LED, verarbeitet in COBT (Chip-On- Board-Technik) , ist dieser Ansatz attraktiv, da die örtlichen Abstände zwischen den LED-Dice sehr gering gewählt werden können. Im Hinblick auf eine gute Farbwiedergabe muss die Farbmischung mittels rot, grün und blau emittierender LED- Dice erzeugt werden (Dreibandenweiß) . Diese werden in einem speziellen Verhältnis auf einer Platine angeordnet, und die zu erzeugende Emissionsfarbe wird durch definierte Einstellung der Betriebsbedingungen für die jeweilige Die-Sorte ein- gestellt.2) White emission can be generated by mixing the emission colors of suitable differently colored LEDs. This approach is particularly attractive for LEDs, processed in COBT (chip-on-board technology), since the local distances between the LED dice can be selected to be very small. With a view to good color rendering, the color mixture must be generated using red, green and blue emitting LED dice (three-band white). These are arranged in a special ratio on a circuit board, and the emission color to be generated is set by defined setting of the operating conditions for the respective die type.
Elektrische Beschaltung:Electrical wiring:
Die LEDs j eweils gleicher Emissionsfarbe eines Arrays werden in kombinierter Parallel- und Serienschaltung elektrisch verbunden und mit einer Ansteuerungselektronik gemeinsam be- trieben . Derart kann die Betriebsspannung des LED-Arrays an die zur Verfügung stehende Spannung angepasst werden. In einer derartigen Anordnung können einerseits optimale Leistungswirkungsgrade erreicht werden, da an der Elektronik nur geringe Spannungen abfallen . Weiters wird hierdurch die Wär- mebelastung der Anordnung minimiert . Um diese unabhängig von der Temperaturabhängigkeit der Betriebsspannung der LEDs betreiben zu können und somit möglichst konstante Helligkeiten über den Betriebsstrom zu erhalten, werden diese bevorzugt mit Stromvorgabe betrieben . Weiters sind diese mit einem Verpolungsschutz versehen. Um eine optimale Anpassung an die zur Verfügung stehende Betriebsspannung zu gewährleisten und somit eine optimale Energieausnützung zu erreichen, wird bevorzugt ein getakteter oder linearer Stromregler für den Betrieb der LEDs vorgesehen . Es ist zweckmäßig, wenn die Ansteuerungselektronik auf einer gesonderten Platine angeordnet und elektrisch mit der LED-Platine verbunden ist. The LEDs, each of which have the same emission color of an array, are electrically connected in a combined parallel and series connection and operated together with control electronics. In this way, the operating voltage of the LED array can be adapted to the available voltage. In such an arrangement, on the one hand, optimal power efficiencies can be achieved since only low voltages drop on the electronics. This also minimizes the thermal load on the arrangement. In order to be able to operate them independently of the temperature dependence of the operating voltage of the LEDs and thus to obtain brightnesses that are as constant as possible over the operating current, these are preferably operated with a current specification. Furthermore, they are provided with reverse polarity protection. In order to ensure optimal adaptation to the available operating voltage and thus to achieve optimal energy utilization, a clocked or linear current regulator is preferably provided for the operation of the LEDs. It is expedient if the control electronics are arranged on a separate circuit board and are electrically connected to the LED circuit board.

Claims

PATENTANSPRÜCHE : PATENT CLAIMS:
1. LED-Lichtquelle, bei der mehrere ungehäuste LEDs direkt auf einer Leiterplatte assembliert sind, die LEDs mittels eines hochtransparenten Polymers vergossen sind, um die LEDs vor mechanischer Beschädigung zu schützen, und bei der um jede LED ein Reflektor, der parabolisch oder trichterförmig ausgeformt ist, von oben auf die Leiterplatte aufgesetzt ist, dadurch gekennzeichnet, dass der Durchmesser der Vergussmasse höchstens gleich dem Innendurchmesser des Reflektors ist, sodass der Reflektor di- rekt auf der Leiterplatte aufliegt, und dass die Oberfläche der Vergussmasse als optisch aktive Linsenfläche ausgebildet ist.1.LED light source, in which several unhoused LEDs are assembled directly on a printed circuit board, the LEDs are encapsulated using a highly transparent polymer to protect the LEDs from mechanical damage, and in which each LED has a reflector that is parabolic or funnel-shaped is placed on the circuit board from above, characterized in that the diameter of the sealing compound is at most equal to the inside diameter of the reflector, so that the reflector lies directly on the circuit board, and that the surface of the sealing compound is designed as an optically active lens surface.
2. LED-Lichtquelle nach Anspruch 1, dadurch gekennzeichnet, dass die Leiterplatte aus thermisch gut leitfähigen Mate- rial besteht und dass die Rückseite der Leiterplatte an einen Kühlkörper angekoppelt ist.2. LED light source according to claim 1, characterized in that the circuit board consists of thermally highly conductive material and that the back of the circuit board is coupled to a heat sink.
3. LED-Lichtquelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Reflektor aus einem hochreflektierenden, metallischen Material besteht, das auf der Unter- seite isoliert ist.3. LED light source according to claim 1 or 2, characterized in that the reflector consists of a highly reflective, metallic material which is insulated on the underside.
4. LED-Lichtquelle nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Reflektor aus einem Kunststoff, dessen Innenseite verspiegelt ist, besteht.4. LED light source according to claim 1 or 2, characterized in that the reflector consists of a plastic, the inside of which is mirrored.
5. LED-Lichtquelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die LEDs face down montiert sind und jeweils ein Die in jedem Reflektor angeordnet ist.5. LED light source according to one of claims 1 to 4, characterized in that the LEDs are mounted face down and one is arranged in each reflector.
6. LED-Lichtquelle nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die LEDs face up montiert sind und bis zu 4 Dice in jedem Reflektor angeordnet sind. 6. LED light source according to one of claims 1 to 4, characterized in that the LEDs are mounted face up and up to 4 dice are arranged in each reflector.
7. LED-Lichtquelle nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Reflektorplatte vorgesehen ist, die eine Vielzahl an parabolisch ausgeformten Reflektoren aufweist . 7. LED light source according to one of claims 1 to 6, characterized in that a reflector plate is provided which has a plurality of parabolically shaped reflectors.
8. LED-Lichtquelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Fresnellinsen in Form einer Linsenplatte zentrisch über jedem Reflektor positioniert und seitlich verklebt sind. 8. LED light source according to one of claims 1 to 7, characterized in that Fresnel lenses in the form of a lens plate are positioned centrally over each reflector and glued laterally.
9. LED-Lichtquelle nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Gauß'sche Linsen in Form einer Linsenplatte zentrisch über jedem Reflektor positioniert und seitlich verklebt sind. 9. LED light source according to one of claims 1 to 7, characterized in that Gaussian lenses in the form of a lens plate are positioned centrally above each reflector and glued to the side.
10. LED-Lichtquelle nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass der Kühlkörper einerseits zur Übertragung der Wärme auf ein Gehäuse oder eine Lichtquellen- halterung auf diese thermisch angekoppelt ist und für die elektrische Kontaktierung als Gewinde zum Einschrauben in eine Fassung analog zur Glühlampe ausgebildet ist. 10. LED light source according to one of claims 1 to 9, characterized in that the heat sink is thermally coupled on the one hand for the transfer of heat to a housing or a light source holder thereon and analog for the electrical contacting as a thread for screwing into a socket is designed for the incandescent lamp.
11. LED-Lichtquelle nach einem der Ansprüche 1-10, dadurch gekennzeichnet, dass diese thermisch an ein Gehäuse angekoppelt ist, welches zumindest zum Teil die Kühlfunktion erfüllt. 11. LED light source according to one of claims 1-10, characterized in that it is thermally coupled to a housing which at least partially fulfills the cooling function.
PCT/AT2001/000224 2000-07-12 2001-07-06 Led light source WO2002005351A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2002218796A AU2002218796A1 (en) 2000-07-12 2001-07-06 Led light source

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT12042000 2000-07-12
ATA1204/2000 2000-07-12

Publications (1)

Publication Number Publication Date
WO2002005351A1 true WO2002005351A1 (en) 2002-01-17

Family

ID=3687107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/AT2001/000224 WO2002005351A1 (en) 2000-07-12 2001-07-06 Led light source

Country Status (2)

Country Link
AU (1) AU2002218796A1 (en)
WO (1) WO2002005351A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004032235A2 (en) * 2002-09-30 2004-04-15 Siemens Aktiengesellschaft Device for producing a bundled light flux
WO2006058481A1 (en) * 2004-12-02 2006-06-08 Simon Mo Chan Ho A led lamp and the lamp bracket thereof and another two led lamps
WO2006016327A3 (en) * 2004-08-06 2006-09-08 Philips Intellectual Property Led light system
EP1710846A1 (en) * 2005-04-08 2006-10-11 Sharp Kabushiki Kaisha Light-emitting diode
EP1767849A1 (en) * 2005-09-23 2007-03-28 Alcan Technology &amp; Management Ltd. Light assambly
EP1814165A1 (en) * 2006-01-30 2007-08-01 Shinko Electric Industries Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
DE102006004581A1 (en) * 2006-02-01 2007-08-09 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Light-module for e.g. interior lighting of aeroplane, has surface mountable semiconductor components emitting radiation, and optical device e.g. diffractive unit, that focuses radiation, which is blended by optical unit of one component
DE102008033385A1 (en) * 2008-07-16 2010-02-18 Osram Gesellschaft mit beschränkter Haftung Lighting device for use in series of two different lighting devices, particularly backlighting device, comprises laminar light source, optical element, particularly diffusion element, light entrance surface, and light emitting surface
DE102011107966A1 (en) 2010-07-30 2012-06-21 Dominant Semiconductors Sdn.Bhd. LED light module
DE102012006924A1 (en) 2011-04-06 2012-10-11 Tek Beng Low LED lighting module with uniform light output
DE102011107893A1 (en) * 2011-07-18 2013-01-24 Heraeus Noblelight Gmbh Optoelectronic module with improved optics
US8421088B2 (en) 2007-02-22 2013-04-16 Sharp Kabushiki Kaisha Surface mounting type light emitting diode
DE102012202102A1 (en) * 2012-02-13 2013-08-14 Osram Gmbh Lighting device has reflecting partition wall which is arranged between volume emitter LED chips which are arranged on common substrate
US8524161B2 (en) 2007-08-31 2013-09-03 Unifrax I Llc Multiple layer substrate support and exhaust gas treatment device
US8604506B2 (en) 2007-02-22 2013-12-10 Sharp Kabushiki Kaisha Surface mounting type light emitting diode and method for manufacturing the same
CN104396012A (en) * 2012-05-02 2015-03-04 贺利氏特种光源有限责任公司 Luminaire with leds and cylindrical lens

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2315709A1 (en) * 1973-03-29 1974-10-10 Licentia Gmbh RADIATION-EMISSING SEMI-CONDUCTOR ARRANGEMENT WITH HIGH RADIATION POWER
US3875456A (en) * 1972-04-04 1975-04-01 Hitachi Ltd Multi-color semiconductor lamp
JPS55113387A (en) * 1979-02-22 1980-09-01 Sanyo Electric Co Ltd Light emitting diode indicator
EP0127239A1 (en) * 1983-05-30 1984-12-05 Rtc-Compelec Semi-conductor crystal display panel element and display panel comprising such an element
JPS6182486A (en) * 1984-09-29 1986-04-26 Sharp Corp Solid state light emitting display device
EP0303741A1 (en) * 1987-08-12 1989-02-22 Shen-Yuan Chen Quickly formable light emitting diode display and its forming method
GB2276032A (en) * 1993-03-08 1994-09-14 Prp Optoelectronics Limited A Radiation source
WO1997048134A1 (en) * 1996-06-13 1997-12-18 Gentex Corporation Illuminator assembly incorporating light emitting diodes

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3875456A (en) * 1972-04-04 1975-04-01 Hitachi Ltd Multi-color semiconductor lamp
DE2315709A1 (en) * 1973-03-29 1974-10-10 Licentia Gmbh RADIATION-EMISSING SEMI-CONDUCTOR ARRANGEMENT WITH HIGH RADIATION POWER
JPS55113387A (en) * 1979-02-22 1980-09-01 Sanyo Electric Co Ltd Light emitting diode indicator
EP0127239A1 (en) * 1983-05-30 1984-12-05 Rtc-Compelec Semi-conductor crystal display panel element and display panel comprising such an element
JPS6182486A (en) * 1984-09-29 1986-04-26 Sharp Corp Solid state light emitting display device
EP0303741A1 (en) * 1987-08-12 1989-02-22 Shen-Yuan Chen Quickly formable light emitting diode display and its forming method
GB2276032A (en) * 1993-03-08 1994-09-14 Prp Optoelectronics Limited A Radiation source
WO1997048134A1 (en) * 1996-06-13 1997-12-18 Gentex Corporation Illuminator assembly incorporating light emitting diodes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 004, no. 165 (E - 034) 15 November 1980 (1980-11-15) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 255 (E - 433) 2 September 1986 (1986-09-02) *

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7312927B2 (en) 2002-09-30 2007-12-25 Siemens Aktiengesellschaft Head-up display
WO2004032235A3 (en) * 2002-09-30 2004-10-14 Siemens Ag Device for producing a bundled light flux
WO2004032235A2 (en) * 2002-09-30 2004-04-15 Siemens Aktiengesellschaft Device for producing a bundled light flux
DE10245933B4 (en) * 2002-09-30 2013-10-10 Osram Opto Semiconductors Gmbh Device for generating a bundled luminous flux
CN100426503C (en) * 2002-09-30 2008-10-15 奥斯兰姆奥普托半导体有限责任公司 Device for producing a bundled light flux
WO2006016327A3 (en) * 2004-08-06 2006-09-08 Philips Intellectual Property Led light system
US7566155B2 (en) 2004-08-06 2009-07-28 Koninklijke Philips Electronics N.V. LED light system
WO2006058481A1 (en) * 2004-12-02 2006-06-08 Simon Mo Chan Ho A led lamp and the lamp bracket thereof and another two led lamps
EP1710846A1 (en) * 2005-04-08 2006-10-11 Sharp Kabushiki Kaisha Light-emitting diode
US7598532B2 (en) 2005-04-08 2009-10-06 Sharp Kabushiki Kaisha Light-emitting diode
JP2006294804A (en) * 2005-04-08 2006-10-26 Sharp Corp Light emitting diode
US7964886B2 (en) 2005-04-08 2011-06-21 Sharp Kabushiki Kaisha Light emitting diode
JP4744178B2 (en) * 2005-04-08 2011-08-10 シャープ株式会社 Light emitting diode
WO2007036301A1 (en) * 2005-09-23 2007-04-05 Alcan Technology & Management Ltd. Lighting device
EP1767849A1 (en) * 2005-09-23 2007-03-28 Alcan Technology &amp; Management Ltd. Light assambly
EP1814165A1 (en) * 2006-01-30 2007-08-01 Shinko Electric Industries Co., Ltd. Semiconductor device and method of manufacturing semiconductor device
DE102006004581A1 (en) * 2006-02-01 2007-08-09 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Light-module for e.g. interior lighting of aeroplane, has surface mountable semiconductor components emitting radiation, and optical device e.g. diffractive unit, that focuses radiation, which is blended by optical unit of one component
US8421088B2 (en) 2007-02-22 2013-04-16 Sharp Kabushiki Kaisha Surface mounting type light emitting diode
US8604506B2 (en) 2007-02-22 2013-12-10 Sharp Kabushiki Kaisha Surface mounting type light emitting diode and method for manufacturing the same
US8524161B2 (en) 2007-08-31 2013-09-03 Unifrax I Llc Multiple layer substrate support and exhaust gas treatment device
DE102008033385A1 (en) * 2008-07-16 2010-02-18 Osram Gesellschaft mit beschränkter Haftung Lighting device for use in series of two different lighting devices, particularly backlighting device, comprises laminar light source, optical element, particularly diffusion element, light entrance surface, and light emitting surface
DE102011107966A1 (en) 2010-07-30 2012-06-21 Dominant Semiconductors Sdn.Bhd. LED light module
DE102012006924A1 (en) 2011-04-06 2012-10-11 Tek Beng Low LED lighting module with uniform light output
DE102011107893A1 (en) * 2011-07-18 2013-01-24 Heraeus Noblelight Gmbh Optoelectronic module with improved optics
WO2013010634A1 (en) * 2011-07-18 2013-01-24 Heraeus Noblelight Gmbh Optoelectronic module with improved optical system
CN103828042A (en) * 2011-07-18 2014-05-28 贺利氏特种光源有限责任公司 Optoelectronic module with improved optical system
US9593823B2 (en) 2011-07-18 2017-03-14 Heraeus Noblelight Gmbh Optoelectronic module with improved optical system
CN103828042B (en) * 2011-07-18 2018-07-06 贺利氏特种光源有限责任公司 Optoelectronic module and its manufacturing method and application, photoelectronic device
DE102012202102A1 (en) * 2012-02-13 2013-08-14 Osram Gmbh Lighting device has reflecting partition wall which is arranged between volume emitter LED chips which are arranged on common substrate
CN104396012A (en) * 2012-05-02 2015-03-04 贺利氏特种光源有限责任公司 Luminaire with leds and cylindrical lens

Also Published As

Publication number Publication date
AU2002218796A1 (en) 2002-01-21

Similar Documents

Publication Publication Date Title
EP2287925B1 (en) Expansion compensated optoelectronic semiconductor device, in particular UV emitting diode
EP1328976B1 (en) Led module
EP1451872B1 (en) Light emitting diode-based luminous panel and carrier plate
WO2002005351A1 (en) Led light source
EP1352432B1 (en) Light-emitting diode and method for the production thereof
US7204607B2 (en) LED lamp
DE102004057499B4 (en) A method and apparatus for producing uncolored, white light using off-white light emitting diodes
US8814406B2 (en) Optoelectronic headlight, method for production of an optoelectronic headlight and a luminescence diode chip
DE102014109718B4 (en) Light-emitting device and lighting device using the same
DE102014109647B4 (en) Light emitting module and lighting device
DE112013005550T5 (en) Light-emitting module, lighting device and luminaire
DE102014118238A1 (en) Light-emitting device, the same-containing lighting device and mounting substrate
CN1212069A (en) Image-display device emitting multicoloured light
DE112015003293T5 (en) Light emitting device
EP1854153A1 (en) Led array
WO2008101525A1 (en) Illuminant
DE102006015606A1 (en) Semiconductor lamps and light panels with such
DE112015001928T5 (en) Solid state illumination with improved luminosity and high Cri value
DE102014110087A1 (en) Light emitting module, lighting device and lighting equipment
DE102014114125A1 (en) Light-emitting module, as well as the light-emitting module using illumination light source and lighting device
KR20170015145A (en) Light emitting element and light emitting device using the same
DE102008022834A1 (en) Illumination device for use on wall and table, has LEDs emitting light with intensities during operation and with warm-white light impressions, and light emitting component with optical element jointly downstream to LEDs
DE10230105B4 (en) White LED light source
DE102016102772A1 (en) Light-emitting device and lighting device
AT5738U1 (en) LED LIGHT SOURCE

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 091582001

Country of ref document: AT

ENP Entry into the national phase

Ref country code: RU

Ref document number: RU A

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP