WO2002003487A1 - Method for producing plate of battery - Google Patents

Method for producing plate of battery Download PDF

Info

Publication number
WO2002003487A1
WO2002003487A1 PCT/JP2001/005713 JP0105713W WO0203487A1 WO 2002003487 A1 WO2002003487 A1 WO 2002003487A1 JP 0105713 W JP0105713 W JP 0105713W WO 0203487 A1 WO0203487 A1 WO 0203487A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
active material
amount
filling
core material
Prior art date
Application number
PCT/JP2001/005713
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Kawaguchi
Hitoshi Mikuriya
Yoshinori Itou
Hiromasa Nishijima
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2002507464A priority Critical patent/JP4043939B2/en
Priority to US10/203,036 priority patent/US6857171B2/en
Priority to EP01945754A priority patent/EP1298743A4/en
Publication of WO2002003487A1 publication Critical patent/WO2002003487A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/10Battery-grid making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53135Storage cell or battery

Definitions

  • the present invention relates to a method for manufacturing an electrode plate for an alkaline storage battery.
  • Alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries are excellent in size and weight, and are widely used as power sources for personal computers and mobile phones.
  • alkaline storage batteries are often used as a battery pack by using a plurality of batteries, and the charge and discharge capacity of each alkaline storage battery is required to be uniform without any variation.
  • the electrode plate is formed by filling the porous metal body with a nickel hydroxide active material as uniformly as possible
  • specific methods for filling these porous metal bodies with an active material include, for example, as disclosed in Japanese Patent Application Laid-Open No. Hei 9-198614, from one side of the porous metal body to the other.
  • the weight of the filled active material was measured and controlled by the transmission of ⁇ -rays and the like into the porous metal body filled with these active materials.
  • the weight is measured after drying the porous metal body filled with the active material. This is because there is no difference between the absorption coefficient of water and the active material in the three lines, so that the amount of the active material charged cannot be accurately measured until the water is evaporated.
  • the porous metal when the porous metal is filled with the active material and dried, and then the amount of the filled active material is measured by radiation transmission, it takes a long time to perform the measurement, and the management of the filled amount is delayed.
  • the amount of active material to fill is easy.
  • the space volume of the porous metal body itself is barracks and the filling of the active material results in the barracks.
  • the weight of the core material is calculated by transmitting X-rays through the supplied core material, and after the core material is filled with the active material, X is again applied.
  • the weight of the active material is calculated by calculating the difference between the measured weight and the core material, and the weight of the active material is calculated from the difference between the measured weights.
  • the amount of the active material filled in the core material is adjusted, the variation in the amount of the active material filled is suppressed, and then the core material filled with the active material is dried to produce an electrode plate.
  • the active material filling amount can be confirmed before drying and the filling amount can be quickly controlled, so that the battery electrode plate having less variation in the active material filling amount than the conventional method. Can be provided.
  • FIG. 1 is a schematic view of a manufacturing process of a positive electrode plate for an alkaline storage battery according to the present invention.
  • FIG. 2 is a schematic diagram showing generation of X-rays.
  • FIG. 3 is a schematic view of filling the porous metal body 1 with the active material paste.
  • FIG. 4 is a schematic diagram of the battery electrode plate manufacturing apparatus of the present invention.
  • FIG. 5 is a schematic diagram of a manufacturing process of a positive electrode plate for an alkaline storage battery of a comparative example.
  • FIG. 6 is a schematic diagram of the generation of ⁇ -rays.
  • the present invention provides: a supply step of continuously supplying a &material; irradiating the core material with X-rays to measure a permeation amount thereof; A weight measurement step 1 to be determined, a filling step of filling the core material with a predetermined weight of the active material, and irradiating the core material filled with the active material with X-rays to measure a transmission amount thereof.
  • the method of the present invention is characterized in that the weight is calculated based on the amount of X-ray transmission. Since the X-ray absorption coefficient of the core material and active material is extremely different from the X-ray absorption coefficient of water (approximately 1/20), unlike the conventional method of calculating weight using i3 rays, These weights can be accurately calculated without going through. Further, since the active material filling weight can be confirmed immediately after filling the active material into the core material, there is no time loss for drying, and the filling weight of the active material can be quickly managed. Therefore, it is possible to provide a battery electrode plate with less variation in the filling weight of the active material.
  • the core material is not particularly limited as long as it is used as a base of the electrode, and has a shape such as oil, sheet, perforated body, lath body, and porous body.
  • the above-described process related to the calculation of the core material weight may be omitted.
  • the core material is supplied continuously.
  • the present invention further provides a supply step of continuously supplying a porous metal body having a three-dimensionally connected space; a thickness adjusting step of adjusting the thickness of the porous metal body; A weight measuring step 1 of irradiating X-rays to measure a transmission amount thereof, and calculating a weight of the porous metal body per unit area based on the transmission amount, and a filling step of filling the porous metal body with a predetermined weight of an active material.
  • a weight measurement step 2 for determining the weight of the porous body and the active material filling weight; and calculating a difference between the weight measured in the weight measurement step 2 and the weight measured in the weight measurement step 1 to calculate the active material.
  • a weight calculating step for calculating the filling weight of the active material; and when the active material filling weight calculated in the weight calculating step is out of the allowable range of the predetermined weight, the active material in the filling step is determined based on the deviated active material weight.
  • a method for producing a battery electrode plate comprising: a feed pack control step of performing feedback control on a substance filling amount; and a drying step of drying the filled active material.
  • a porous metal body having a three-dimensionally connected space has a larger volume of space than a perforated metal plate. It is effective to make the volume uniform. By adding this step, the variation in the amount of the active material filled in the porous metal body can be further suppressed.
  • the means for adjusting the thickness is not particularly limited. The degree of pressurization is appropriately set according to the properties of the porous metal body.
  • Such a method of the present invention can be carried out, for example, by a battery electrode plate manufacturing apparatus as schematically shown in FIG.
  • the core material 10 is transported by a transport device such as a roller 11, and the transport path includes an X-ray generator 1 in an X-ray shield and an X-ray detector facing the X-ray generator.
  • a discharge device such as a nozzle, an X-ray generator 2 in an X-ray shield, an X-ray detector 2 facing the same, and a sorting device are arranged in series in this order.
  • X-rays are emitted from the X-ray generator 1 to the core material, and the X-ray transmission amount X1 that has passed through the core material is detected by the X-ray detector 1 and sent to the X-ray transmission amount processing unit of the control device. Entered.
  • the core material is filled with the active material by the discharge device.
  • the core material filled with the active material is irradiated with X-rays from the X-ray generator 2, and the amount X2 of X-rays transmitted through the core material is detected by the X-ray detector 2, and the X-ray of the control device is detected. Input to the line transmission processing unit.
  • the control device has an X-ray transmission amount processing unit, and a storage unit and a control unit in which data for weight calculation and data for weight inspection are stored in advance.
  • the X-ray transmission amount processing unit uses the comparison data D 1 between the X-ray transmission amount X 1 and the core material weight W 1 stored in the storage unit to calculate the core material. Calculate the weight W1.
  • the comparison data D 1 is It was created by correlating in advance the X-ray transmission amount and the core material weight, using the X-ray absorption coefficient of the core material as a variable.
  • the X-ray transmission amount processing unit performs comparison data D 2 of the X-ray transmission amount X 2 stored in the storage unit and the weight W 2 of the core material filled with the active material. Is used to calculate the weight W 2 of the core material filled with the active material.
  • the comparative data D 2 was created by previously correlating the X-ray transmission amount and the weight of the core material filled with the active material, using the X-ray absorption coefficient of the core material and the X-ray absorption coefficient of the active material as variables. Things.
  • the X-ray absorption coefficient of the core material / active material is significantly different from the X-ray absorption coefficient of moisture
  • the X-ray absorption coefficient of moisture is determined using the X-ray absorption coefficient of the core material and the X-ray absorption coefficient of the active material as variables. The correlation can be obtained without using the X-ray absorption coefficient of water.
  • the active material filling amount W3 is calculated from the difference between W2 and W1 thus obtained, W2-W1, and sent to the storage unit.
  • a reference weight Wn of the active material and an appropriately set allowable error range Dn are stored in advance as data for weight inspection.
  • the storage unit compares the above-mentioned active material filling amount W3 with the reference weight Wn and the allowable error range Dn, and determines whether or not the W3 is within the allowable error range Dn with respect to the reference weight Wn. That is, it determines whether the weight is positive or not, and outputs the result to the control unit.
  • control unit When the control unit receives the above-mentioned inadequate control signal, the control unit controls the discharge amount of the discharge device and the transfer speed of the transfer device to control the filling amount of the active material into the core material, thereby reducing the variation. Hold down.
  • the above-mentioned device may have a sorting device at an end portion. If the weight is a positive amount, the sorting device conveys the article to a predetermined place as a normal product, In some cases, the product may be transported to a predetermined location as an abnormal product.
  • a thickness control device such as a roller may be placed at the start end to reduce the variation of the weight of the & material itself.
  • the management of the core material weight using the X-ray generator 1 and X-ray detector 1 is omitted, and the filling of the active material is omitted.
  • the filling amount may be controlled using the weight of the core material.
  • Example hereinafter, a method for producing the electrode plate for an alkaline storage battery of the present invention will be described with reference to examples.
  • To 100 parts by weight of nickel hydroxide 10 parts by weight of nickel metal powder and 5 parts by weight of powder of cobalt acid chloride were added and mixed. Water was added to the mixture as a dispersion medium so that the ratio of water to the total paste was 25% by weight, and kneaded to prepare an active material paste.
  • the X-ray absorption coefficient of the active material paste was 16.645.
  • FIG. 1 shows a schematic diagram of a manufacturing process of a positive electrode plate for an alkaline storage battery according to an embodiment of the present invention. The details will be described below.
  • step 1 shown in FIG. 1 a strip-shaped sponge-like nickel metal porous body 1 having a thickness of 3.0 mm, a porosity of 98%, and an average pore diameter of 200 ⁇ m is placed between two iron-made thickening rolls 2. Through this, the thickness was adjusted to 2.5 mm.
  • X-rays are generated from an X-ray generator (X-ray energy 20 keV) 3 and X-rays are The X-rays were transmitted by irradiating the X-rays, the amount of the transmitted X-rays was detected by the detector 4, and the weight per unit area of the porous metal body 1 was calculated using the X-ray absorption coefficient.
  • X-ray energy 20 keV X-ray energy 20 keV
  • the calculation was performed using the comparative data showing the relationship between the amount of X-ray transmission and the weight of the porous metal body prepared in advance as described above.
  • step 3 shown in FIG. 1 a nozzle 5 is opposed to one surface of the porous metal 1 as shown in FIG.
  • the active material paste was filled into the porous metal body 1 while running the porous metal body 1 itself in the longitudinal direction.
  • the approach distance between the nozzle 5 and the porous metal body 1 was kept at 0.1 mm, and a predetermined amount of the paste-like active material was discharged from the nozzle 5 to fill the porous body.
  • the traveling speed of the porous body was adjusted so that the paste did not penetrate from one surface on the filling side to the other surface, and as a result, the preferred traveling speed was 7 m. / Min and came.
  • step 4 shown in FIG. 1 X-rays are generated from the X-ray generator 3 as shown in FIG. 2, and the X-rays pass through the porous metal body 1 filled with the active material paste. Detected by the detector 4, the weight per unit area of the active material paste and the porous metal body 1 was calculated using the X-ray absorption coefficient as described above. Water in active material paste (X-ray absorption Since the X-ray absorption coefficient of the yield coefficient ⁇ 0.692) is about 1 Z 20 compared to nickel hydroxide, the amount of water can be ignored.
  • step 5 shown in Fig. 1 the active material paste is calculated from the difference between the weight per unit area of the active material paste and the porous metal body 1 calculated in step 4 and the weight per unit area of the metal porous body 1 calculated in step 2. Was determined per unit area. If this weight is outside the predetermined weight range, a signal is sent to step 3 where the active material paste weight is feed-packed and the active material paste fill is immediately adjusted.
  • step 6 shown in FIG. 1 the porous metal body 1 filled with the active material paste is dried, and the positive electrode plate 6 according to the embodiment of the present invention is manufactured.
  • the positive electrode plate 6 is wound up in step 7, and in step 8, the positive electrode plate 6 according to the battery size is manufactured.
  • the positive electrode plate 6 was roll-pressed to a thickness of 0.8 mm, and cut into a positive electrode plate 6 for an A-size alkaline storage battery to have a length of 10 mm and a width of 60 mm. 1000 plates were produced.
  • An active material paste having the same composition as in the example and a porous metal body 1 were used.
  • FIG. 5 shows a schematic view of a manufacturing process of a positive electrode plate for an alkaline storage battery of a comparative example, and details will be described below.
  • step 1 shown in FIG. 5 the nozzle 5 is opposed to one surface of a strip-shaped sponge-like nickel metal porous body 1 having a thickness of 3.0 mm, a porosity of 98%, and an average pore diameter of 200 ⁇ .
  • the active material paste is filled into the porous metal body 1 using the nozzle 5 of the comparative example while the porous metal body 1 itself is running in the length direction thereof, and is filled in the same manner as in the example.
  • a positive electrode plate 7 was produced.
  • the transmitted ⁇ -rays were detected by the X-ray detector 9.
  • the weight per unit area of the active material paste and the porous metal body 1 is calculated using the absorption coefficient of ⁇ -ray, and the weight per unit area of the porous metal body 1 is subtracted therefrom to obtain the weight of the active material paste.
  • step 4 the positive electrode plate 8 was wound up.
  • the reason why the weight of the positive electrode plate 7 is measured by applying the ⁇ -ray after drying on the positive electrode plate 7 is that the difference between the absorption coefficient of water and the absorption coefficient of j3 line of nickel hydroxide is so small that it cannot be distinguished. .
  • the weight per unit area of the active material paste was defined as the weight per unit area based on the standard specification value, assuming that the weight of the porous metal body 1 did not vary.
  • the positive electrode plate 7 prepared above was subjected to a mouth press so as to have a thickness of 0.8 mm, and cut into an A size positive electrode plate for an alkaline storage battery to have a length of 110 mm and a width of 60 mm. 1000 plates were produced.
  • each of the positive electrode plate 6 and the positive electrode plate 7 produced as described above was withdrawn 100 sheets each, and the weight of the filled active material paste was measured.
  • table 1 As shown in Table 1, in the example, the variation in the filling amount was ⁇ 1.66%, whereas in the comparative example, the variation in the filling amount was ⁇ 3.32%.
  • the filling amount of the active material paste can be measured without drying the positive electrode plate 6, and the measured filling amount can be immediately fed back to measure the filling amount. It is. Further, in the example, the weight of the porous metal body 1 was measured, the weight of the positive electrode plate 6 was measured after filling the porous metal body 1 with the active material paste, and the weight of the porous metal body 1 was calculated from the weight of the positive electrode plate 6. The active material paste is measured accurately by pulling.
  • the weight of the active material paste and the weight of the porous metal body 1 were measured using three lines (after the positive electrode plate 7 was dried) to calculate the weight of the active material paste.
  • the weight of the active material paste cannot be measured directly.
  • the weight of the positive electrode plate is measured after drying, even if the weight variation increases, it is not possible to immediately feed pack the active material filling process, so the variation is increased.
  • a method of manufacturing a positive electrode plate in which a porous metal body is filled with an active material paste is shown.
  • a hydrogen storage alloy is applied to a punching metal. Applicable to manufacturing methods.
  • alkaline storage batteries such as nickel-metal hydride storage batteries and nickel-cadmium storage batteries are manufactured using the positive and negative electrode plates manufactured by these manufacturing methods, a high-capacity alkaline storage battery with less variation in battery capacity is constructed. it can.
  • the method of controlling the filling amount using X-rays is used.
  • Methods for controlling the quantity can be used. Further, it is not necessary to adjust the thickness of the core material such as the punched metal as in the case of the porous metal body.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

A method for producing the plate of a battery comprising a step for calculating the weight of a supplied core material by passing X-rays through the core material, a step for calculating the filling weight of an active substance and the weight of the core material by passing X-rays again after filling the core material with the active substance, a step for calculating the weight of the active substance from the difference between these measured weights, a step for regulating the quantity of the active substance filling the core material when it deviates from a predetermined weight and suppressing variation in the filling quantity of active substance, and a step for producing a plate by drying the core material filled with the active substance.

Description

明 細 書 電池用極板の製造法 技術分野  Description Manufacturing method for battery electrode plates Technical field
本発明は、 アルカリ蓄電池用極板の製造法に関する。  The present invention relates to a method for manufacturing an electrode plate for an alkaline storage battery.
背景技術 Background art
二ッケル ·水素蓄電池、 二ッケル ·カドミゥム蓄電池などのアル力リ蓄電池は、 小型軽量化に優れ、 パーソナルコンピュータ、 携帯電話などの電源として多用さ れている。  Alkaline storage batteries such as nickel-hydrogen storage batteries and nickel-cadmium storage batteries are excellent in size and weight, and are widely used as power sources for personal computers and mobile phones.
このアル力リ蓄電池は、 複数本使用して電池パックとして利用されることが多 く、 それぞれのアルカリ蓄電池の充放電容量は、 バラツキのない均一なものが要 求される。  These alkaline storage batteries are often used as a battery pack by using a plurality of batteries, and the charge and discharge capacity of each alkaline storage battery is required to be uniform without any variation.
この電池の容量を均一にするためには、 例えばニッケル ·水素蓄電池に用いら れている正極板では、 金属多孔体にできる限り、 均一に水酸化ニッケル活物質を 充填して極板を構成する必要がある。 従来、 これらの金属多孔体への具体的な活 物質充填方法には、 例えば特開平 9一 1 0 6 8 1 4号公報などに開示されている ように、 金属多孔体の一方の面から他方の面へ向かってペースト状活物質をノズ ルょり噴射して金属多孔体へ貫通しないように充填する方法や金属多孔体をぺー スト状活物質に浸漬して充填する方法等がある。  In order to make the capacity of this battery uniform, for example, in the case of a positive electrode plate used in nickel-metal hydride storage batteries, the electrode plate is formed by filling the porous metal body with a nickel hydroxide active material as uniformly as possible There is a need. Conventionally, specific methods for filling these porous metal bodies with an active material include, for example, as disclosed in Japanese Patent Application Laid-Open No. Hei 9-198614, from one side of the porous metal body to the other. There is a method in which the paste-like active material is sprayed into the porous metal body by spraying the paste-like active material toward the surface so as not to penetrate into the porous metal body, or a method in which the porous metal body is immersed in the paste-like active material and filled.
これらの活物質を充填した金属多孔体は、 図 6に示すように β線などの放射線 透過により、 充填された活物質の重量が測定され管理されていた。  As shown in Fig. 6, the weight of the filled active material was measured and controlled by the transmission of β-rays and the like into the porous metal body filled with these active materials.
発明の開示 Disclosure of the invention
上記の方法では活物質を充填した金属多孔体を乾燥後、 重量が測定されている。 これは、 水分と活物質の ;3線の吸収係数の差がないため、 水分を蒸発させてから でないと正確な活物質充填量を測定できないためである。  In the above method, the weight is measured after drying the porous metal body filled with the active material. This is because there is no difference between the absorption coefficient of water and the active material in the three lines, so that the amount of the active material charged cannot be accurately measured until the water is evaporated.
このように、 金属多孔体に活物質を充填乾燥してから、 放射線透過により充填 された活物質量を測定すると、 測定するまでに時間がかかり、 充填量の管理が遅 れるため、 金属多孔体への活物質充填量がパラッキ易い。 また、 金属多孔体自体の空間体積がバラックと活物質の充填がそれによつて結 果的にバラックという問題もある。 As described above, when the porous metal is filled with the active material and dried, and then the amount of the filled active material is measured by radiation transmission, it takes a long time to perform the measurement, and the management of the filled amount is delayed. The amount of active material to fill is easy. In addition, there is also a problem that the space volume of the porous metal body itself is barracks and the filling of the active material results in the barracks.
これに対して、 本発明の電池用極板の製造法は、 供給された芯材に X線を透過 させることによって芯材の重量を算出し、 この芯材に活物質を充填後、 再度 X線 を透過させて活物質の充填重量と芯材の重量を算出し、 これらの測定された重量 の差によつて活物質の重量を算出し、 この活物質の充填重量が所定の重量から外 れると芯材に活物質を充填する量を調整し、 活物質の充填量のパラツキを抑制し、 その後、 この活物質の充填された芯材を乾燥して極板を製造する方法である。 本発明の方法によれば、 乾燥前に活物質充填量を確認し、 充填量を迅速に制御 することができるので、 従来の方法に比べて活物質充填量のバラツキの少ない電 池用極板を提供することができる。  On the other hand, in the manufacturing method of the battery electrode plate of the present invention, the weight of the core material is calculated by transmitting X-rays through the supplied core material, and after the core material is filled with the active material, X is again applied. The weight of the active material is calculated by calculating the difference between the measured weight and the core material, and the weight of the active material is calculated from the difference between the measured weights. In this method, the amount of the active material filled in the core material is adjusted, the variation in the amount of the active material filled is suppressed, and then the core material filled with the active material is dried to produce an electrode plate. According to the method of the present invention, the active material filling amount can be confirmed before drying and the filling amount can be quickly controlled, so that the battery electrode plate having less variation in the active material filling amount than the conventional method. Can be provided.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明のアル力リ蓄電池用正極板の製造工程の概略図である。  FIG. 1 is a schematic view of a manufacturing process of a positive electrode plate for an alkaline storage battery according to the present invention.
図 2は、 X線の発生を示す模式図である。  FIG. 2 is a schematic diagram showing generation of X-rays.
図 3は、 活物質ペーストを金属多孔体 1に充填する模式図である。  FIG. 3 is a schematic view of filling the porous metal body 1 with the active material paste.
図 4は、 本発明の電池用極板製造装置の模式図である。  FIG. 4 is a schematic diagram of the battery electrode plate manufacturing apparatus of the present invention.
図 5は、 比較例のアル力リ蓄電池用正極板の製造工程の概略図である。  FIG. 5 is a schematic diagram of a manufacturing process of a positive electrode plate for an alkaline storage battery of a comparative example.
図 6は、 β線の発生の模式図である。  FIG. 6 is a schematic diagram of the generation of β-rays.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 :&材を連続的に供給する供給工程と、 前記芯材に X線を照射してそ の透過量を測定し、 前記透過量に基づき単位面積あたりの前記芯材の重量を求め る重量測定工程 1と、 前記芯材に活物質を所定重量充填する充填工程と、 前記活 物質が充填された芯材に X線を照射してその透過量を測定し、 前記透過量に基づ き単位面積あたりの前記芯材の重量と前記活物質充填重量を求める重量測定工程 2と、 前記重量測定工程 2で測定された重量値と前記重量測定工程 1で測定され た重量との差を算出して前記活物質充填重量を求める重量算出工程と、 前記重量 算出工程で算出された活物質充填重量が前記所定重量の許容範囲から外れる場合 は、 その外れた前記活物質重量に基づいて前記充填工程における前記活物質充填 量に対してフィードバック制御をかけるフィードバック制御工程と、 前記充填さ れた活物質を乾燥する乾燥工程とを含む電池用極板の製造法である。 The present invention provides: a supply step of continuously supplying a &material; irradiating the core material with X-rays to measure a permeation amount thereof; A weight measurement step 1 to be determined, a filling step of filling the core material with a predetermined weight of the active material, and irradiating the core material filled with the active material with X-rays to measure a transmission amount thereof. A weight measurement step 2 for determining the weight of the core material and the active material filling weight per unit area based on the weight value measured in the weight measurement step 2 and the weight measured in the weight measurement step 1 A weight calculating step of calculating the difference to obtain the active material filling weight; and, if the active material filling weight calculated in the weight calculating step is out of the allowable range of the predetermined weight, based on the deviated active material weight. To the active material filling amount in the filling step. A feedback control step of subjecting the readback control, the filling of And a drying step of drying the obtained active material.
本発明の方法は X線透過量に基づき、 重量を算出することを特徴とする。 芯材 や活物質の X線吸収係数は水分の X線吸収係数と極端に異なる (約 1 / 2 0 ) の で、 従来の i3線を用いて重量を算出する場合とは異なり、 乾燥工程を経ずにこれ らの重量を正確に算出できる。 また、 活物質を芯材に充填した直後に活物質充填 重量を確認できるため、 乾燥させる時間的ロスがなく、 活物質の充填重量の管理 を迅速に行うことができる。 したがって、 活物質の充填重量のバラツキの少ない 電池用極板を提供できる。  The method of the present invention is characterized in that the weight is calculated based on the amount of X-ray transmission. Since the X-ray absorption coefficient of the core material and active material is extremely different from the X-ray absorption coefficient of water (approximately 1/20), unlike the conventional method of calculating weight using i3 rays, These weights can be accurately calculated without going through. Further, since the active material filling weight can be confirmed immediately after filling the active material into the core material, there is no time loss for drying, and the filling weight of the active material can be quickly managed. Therefore, it is possible to provide a battery electrode plate with less variation in the filling weight of the active material.
上記において、 芯材は、 電極の基体として使用されるものであれば、 特に限定 されず、 フオイル、 シート、 穿孔体、 ラス体、 多孔体などの形状を有する。  In the above, the core material is not particularly limited as long as it is used as a base of the electrode, and has a shape such as oil, sheet, perforated body, lath body, and porous body.
フオイルやシートなど、 重量の変動が少ない芯材を使用する場合は、 上記の芯 材の重量算出に関連する工程を省略してもよく、 具体的には、 芯材を連続的に供 給する供給工程と、 前記芯材に活物質を所定重量充填する充填工程と、 前記活物 質や充填された芯材に X線を照射してその透過量を測定し、 前記透過量に基づき、 単位面積あたりの活物質の充填重量を求める重量算出工程と、 前記重量算出工程 で算出された活物質充填重量が前記所定重量の許容範囲から外れる場合には、 そ の外れた活物質重量に基づいて前記充填工程における前記活物質充填量に対して フィードパック制御をかけるフィードバック制御工程を含む方法により、 活物質 の充填重量のパラツキの少ない電池用極板を提供することも可能である。  In the case of using a core material such as oil or a sheet that has a small variation in weight, the above-described process related to the calculation of the core material weight may be omitted. Specifically, the core material is supplied continuously. A supplying step, a filling step of filling the core material with a predetermined weight of the active material, and irradiating the active material and the filled core material with X-rays to measure a transmission amount thereof. A weight calculating step for determining the filling weight of the active material per area; and, if the active material filling weight calculated in the weight calculating step is out of the allowable range of the predetermined weight, based on the deviated active material weight. By a method including a feedback control step of performing a feed pack control on the active material filling amount in the filling step, it is also possible to provide a battery electrode plate with less variation in the filling weight of the active material.
一方、 穿孔体や多孔体などのフォイルゃシートに比べて重量の変動が大きい芯 材を使用する場合には、 上記の芯材の重量算出に関連する工程を行うことが好ま しい。 さらに、 芯材に多孔体を使用する場合には、 事前に、 芯材の重量そのもの の変動を小さくするための工程を置いてもよい。  On the other hand, when using a core material whose weight varies greatly as compared with a foil or sheet such as a perforated body or a porous body, it is preferable to perform the above-mentioned steps related to the calculation of the weight of the core material. Further, when a porous body is used as the core material, a step for reducing the variation in the weight of the core material itself may be provided in advance.
すなわち、 本発明は、 また、 三次元的に連なった空間を有する金属多孔体を連 続的に供給する供給工程と、 前記金属多孔体の厚みを調整する調厚工程と、 前記 金属多孔体に X線を照射してその透過量を測定し、 前記透過量に基づき単位面積 あたりの前記金属多孔体の重量を求める重量測定工程 1と、 前記金属多孔体に活 物質を所定重量充填する充填工程と、 前記活物質が充填された金属多孔体に X線 を照射してその透過量を測定し、 前記透過量に基づき単位面積あたりの前記金属 多孔体の重量と前記活物質充填重量を求める重量測定工程 2と、 前記重量測定工 程 2で測定された重量と前記重量測定工程 1で測定された重量との差を算出して 前記活物質の充填重量を求める重量算出工程と、 前記重量算出工程で算出された 活物質充填重量が前記所定重量の許容範囲から外れる場合は、 その外れた前記活 物質重量に基づいて前記充填工程における前記活物質充填量に対してフィードバ ック制御をかけるフィードパック制御工程と、 前記充填された活物質を乾燥する 乾燥工程とを含む電池用極板の製造法である。 That is, the present invention further provides a supply step of continuously supplying a porous metal body having a three-dimensionally connected space; a thickness adjusting step of adjusting the thickness of the porous metal body; A weight measuring step 1 of irradiating X-rays to measure a transmission amount thereof, and calculating a weight of the porous metal body per unit area based on the transmission amount, and a filling step of filling the porous metal body with a predetermined weight of an active material. And irradiating the porous metal body filled with the active material with X-rays to measure the amount of transmission, and based on the amount of transmission, the metal per unit area A weight measurement step 2 for determining the weight of the porous body and the active material filling weight; and calculating a difference between the weight measured in the weight measurement step 2 and the weight measured in the weight measurement step 1 to calculate the active material. A weight calculating step for calculating the filling weight of the active material; and when the active material filling weight calculated in the weight calculating step is out of the allowable range of the predetermined weight, the active material in the filling step is determined based on the deviated active material weight. A method for producing a battery electrode plate, comprising: a feed pack control step of performing feedback control on a substance filling amount; and a drying step of drying the filled active material.
三次元的に連なった空間を有する金属多孔体は、 穿孔金属板よりも空間体積が 多く、 この空間体積の大きさがバラックので活物質を充填する前に厚みを調厚す ることによって、 空間体積を均一にすることが有効となる。 この工程を加えると 活物質の金属多孔体への充填量のバラツキをより抑制できる。 調厚の手段は特に 限定されないが、 例えば口ールによつて加圧することにより行うことができる。 加圧の程度は金属多孔体の性状にあわせて適宜設定される。  A porous metal body having a three-dimensionally connected space has a larger volume of space than a perforated metal plate. It is effective to make the volume uniform. By adding this step, the variation in the amount of the active material filled in the porous metal body can be further suppressed. The means for adjusting the thickness is not particularly limited. The degree of pressurization is appropriately set according to the properties of the porous metal body.
このよ,うな本発明の方法は、 たとえば、 図 4に模式的に示すような電池用極板 製造装置により実施することができる。 図 4を参照して芯材 1 0は、 ローラ 1 1 などの搬送装置により、 搬送され、 その搬送経路には、 X線シールド内の X線発 生器 1とこれに対向する X線検出器 1、 ノズルなどの吐出装置、 X線シールド内 の X線発生器 2とこれに対向する X線検出器 2および振り分け装置がこの順に直 列に配置されている。  Such a method of the present invention can be carried out, for example, by a battery electrode plate manufacturing apparatus as schematically shown in FIG. Referring to Fig. 4, the core material 10 is transported by a transport device such as a roller 11, and the transport path includes an X-ray generator 1 in an X-ray shield and an X-ray detector facing the X-ray generator. 1, a discharge device such as a nozzle, an X-ray generator 2 in an X-ray shield, an X-ray detector 2 facing the same, and a sorting device are arranged in series in this order.
まず、 芯材に X線発生器 1から X線が照射され、 この芯材を透過した X線の透 過量 X 1が X線検出器 1によって検出され、 制御装置の X線透過量処理部に入力 される。 次に、 吐出装置によって芯材に活物質が充填される。 次いで、 活物質が 充填された芯材に X線発生器 2から X線が照射され、 この芯材を透過した X線の 透過量 X 2が X線検出器 2によって検出され、 制御装置の X線透過量処理部に入 力される。  First, X-rays are emitted from the X-ray generator 1 to the core material, and the X-ray transmission amount X1 that has passed through the core material is detected by the X-ray detector 1 and sent to the X-ray transmission amount processing unit of the control device. Entered. Next, the core material is filled with the active material by the discharge device. Next, the core material filled with the active material is irradiated with X-rays from the X-ray generator 2, and the amount X2 of X-rays transmitted through the core material is detected by the X-ray detector 2, and the X-ray of the control device is detected. Input to the line transmission processing unit.
制御装置は、 X線透過量処理部と、 予め重量算出用データおよび重量検査用デ ータが記憶された記憶部おょぴ制御部とを有している。 X線透過量処理部は、 ま ず、 X線透過量 X Iに基づき、 記憶部に保存された X線透過量 X 1と芯材重量 W 1との較量データ D 1を用いて、 芯材の重量 W 1を算出する。 較量データ D 1は、 芯材の X線吸収係数を変数として、 X線透過量と芯材重量について予め相関を取 り、 作成したものである。 The control device has an X-ray transmission amount processing unit, and a storage unit and a control unit in which data for weight calculation and data for weight inspection are stored in advance. First, based on the X-ray transmission amount XI, the X-ray transmission amount processing unit uses the comparison data D 1 between the X-ray transmission amount X 1 and the core material weight W 1 stored in the storage unit to calculate the core material. Calculate the weight W1. The comparison data D 1 is It was created by correlating in advance the X-ray transmission amount and the core material weight, using the X-ray absorption coefficient of the core material as a variable.
次いで、 X線透過量処理部は、 X線透過量 X 2に基づき、 記憶部に保存された X線透過量 X 2と活物質が充填された芯材の重量 W 2との較量データ D 2を用い て、 活物質が充填された芯材の重量 W 2を算出する。  Next, based on the X-ray transmission amount X 2, the X-ray transmission amount processing unit performs comparison data D 2 of the X-ray transmission amount X 2 stored in the storage unit and the weight W 2 of the core material filled with the active material. Is used to calculate the weight W 2 of the core material filled with the active material.
ここで、 較量データ D 2は、 芯材の X線吸収係数及び活物質の X線吸収係数を 変数として、 X線透過量と活物質が充填された芯材重量について予め相関を取り、 作成したものである。 前記したとおり、 芯材ゃ活物質の X線吸収係数は水分の X 線吸収係数と大きく異なるので、 芯材の X線吸収係数及び活物質の X線吸収係数 を変数として水分の X線吸収係数を使用せずに、 相関をとることができるが、 水 分の X線吸収係数を使用してもよレ、。  Here, the comparative data D 2 was created by previously correlating the X-ray transmission amount and the weight of the core material filled with the active material, using the X-ray absorption coefficient of the core material and the X-ray absorption coefficient of the active material as variables. Things. As described above, since the X-ray absorption coefficient of the core material / active material is significantly different from the X-ray absorption coefficient of moisture, the X-ray absorption coefficient of moisture is determined using the X-ray absorption coefficient of the core material and the X-ray absorption coefficient of the active material as variables. The correlation can be obtained without using the X-ray absorption coefficient of water.
このようにして求めた W 2および W 1の差、 W 2— W 1から活物質の充填量 W 3を算出し、 記憶部に送る。 記憶部には、 重量検査用データとして、 予め、 活物 質の基準重量 Wnと適宜、 設定された許容誤差範囲 D nが記憶されている。  The active material filling amount W3 is calculated from the difference between W2 and W1 thus obtained, W2-W1, and sent to the storage unit. In the storage unit, a reference weight Wn of the active material and an appropriately set allowable error range Dn are stored in advance as data for weight inspection.
記憶部では、 上記の活物質の充填量 W 3と、 基準重量 W n及び許容誤差範囲 D nとを比較し、 上記 W 3が基準重量 Wnに対する許容誤差範囲 D n内にあるか否 力 \ すなわち、 重量の正量、 不量を判定し、 その結果を制御部に出力する。  The storage unit compares the above-mentioned active material filling amount W3 with the reference weight Wn and the allowable error range Dn, and determines whether or not the W3 is within the allowable error range Dn with respect to the reference weight Wn. That is, it determines whether the weight is positive or not, and outputs the result to the control unit.
制御部は、 上記の不量の制御信号を受けた場合は、 吐出装置の吐出量や搬送装 置の搬送速度を制御して、 芯材への活物質の充填量を制御して、 ばらつきを抑え る。  When the control unit receives the above-mentioned inadequate control signal, the control unit controls the discharge amount of the discharge device and the transfer speed of the transfer device to control the filling amount of the active material into the core material, thereby reducing the variation. Hold down.
上記装置は、 終端部に振分け装置を有してもよく、 振分け装置は、 重量が正量 である場合には、 その物品を正常品として所定の場所に搬送し、 また、 重量が不 量であるときは、 異常品として、 所定の場所に搬送するようにしてもよレ、。  The above-mentioned device may have a sorting device at an end portion. If the weight is a positive amount, the sorting device conveys the article to a predetermined place as a normal product, In some cases, the product may be transported to a predetermined location as an abnormal product.
また、 上記装置は、 発端部にローラーなどの調厚装置を置いて、 &材の重量そ のものの変動を小さくするようにしてもよい。  Further, in the above device, a thickness control device such as a roller may be placed at the start end to reduce the variation of the weight of the & material itself.
なお、 フオイルやシートなどの重量の変動の少ない芯材を使用する場合には、 X線発生器 1及ぴ X線検出器 1を使用した芯材重量の管理を省略して、 活物質の 充填された芯材の重量を用いて充填量を制御してもよい。  When using core materials such as oils and sheets with small weight fluctuations, the management of the core material weight using the X-ray generator 1 and X-ray detector 1 is omitted, and the filling of the active material is omitted. The filling amount may be controlled using the weight of the core material.
実施例 以下に実施例を挙げて、 本発明のアルカリ蓄電池用極板の製造法を説明する。 水酸ィヒニッケル 1 0 0重量部に対して、 ニッケル金属粉末 1 0重量部、 コバル ト酸ィ匕物粉末 5重量部を加えて粉末混合した。 混合物に分散媒として水を全ぺー ストに占める比率が 2 5重量%となるよう加え、 練合して活物質ペーストを作製 した。 活物質ぺーストの X線吸収係数は 1 6 . 4 5であった。 Example Hereinafter, a method for producing the electrode plate for an alkaline storage battery of the present invention will be described with reference to examples. To 100 parts by weight of nickel hydroxide, 10 parts by weight of nickel metal powder and 5 parts by weight of powder of cobalt acid chloride were added and mixed. Water was added to the mixture as a dispersion medium so that the ratio of water to the total paste was 25% by weight, and kneaded to prepare an active material paste. The X-ray absorption coefficient of the active material paste was 16.645.
図 1に、 本発明の実施態様のアル力リ蓄電池用正極板の製造工程の概略図を示 した。 以下にその詳細を説明する。  FIG. 1 shows a schematic diagram of a manufacturing process of a positive electrode plate for an alkaline storage battery according to an embodiment of the present invention. The details will be described below.
図 1で示す工程 1では、 厚さ 3 . 0 mm, 多孔度 9 8 %, 平均孔径 2 0 0 μ m の帯状のスポンジ状ニッケル金属多孔体 1を二つの鉄製の調厚ロール 2の間を通 して厚さ 2 . 5 mmに厚みを調整した。  In step 1 shown in FIG. 1, a strip-shaped sponge-like nickel metal porous body 1 having a thickness of 3.0 mm, a porosity of 98%, and an average pore diameter of 200 μm is placed between two iron-made thickening rolls 2. Through this, the thickness was adjusted to 2.5 mm.
図 1で示す工程 2では、 図 2に X線の発生の模式図を示すように、 X線発生器 (X線エネルギー 2 0 k e V) 3より X線を発生し、 金属多孔体 1に X線を当て て、 X線を透過させ、 この透過した X線の透過量を検出器 4で検出し、 金属多孔 体 1の単位面積当たりの重量を X線吸収係数を利用して算出した。  In step 2 shown in FIG. 1, X-rays are generated from an X-ray generator (X-ray energy 20 keV) 3 and X-rays are The X-rays were transmitted by irradiating the X-rays, the amount of the transmitted X-rays was detected by the detector 4, and the weight per unit area of the porous metal body 1 was calculated using the X-ray absorption coefficient.
算出は先に記載の通り予め作成した X線透過量と金属多孔体の重量との関係を 示す較量データを用いて行った。  The calculation was performed using the comparative data showing the relationship between the amount of X-ray transmission and the weight of the porous metal body prepared in advance as described above.
図 1で示す工程 3では、 図 3に活物質ペーストを金属多孔体 1に充填する模式 図を示すように、 金属多孔体 1の一方の面にノズル 5を対向させ、 このノズル 5 を用いて活物質ペーストを金属多孔体 1中へ、 金属多孔体 1自体をその長さ方向 に走行させながら充填した。  In step 3 shown in FIG. 1, a nozzle 5 is opposed to one surface of the porous metal 1 as shown in FIG. The active material paste was filled into the porous metal body 1 while running the porous metal body 1 itself in the longitudinal direction.
このとき、 ノズル 5と金属多孔体 1との接近距離は 0 . 1 mmに保ち、 ノズル 5より一定量ずつペースト状活物質を吐出して多孔体中への充填を行った。 ぺー ストの多孔体への充填に当って、 その充填側である一方の面から他方の面にまで はペーストが貫通しないように多孔体の走行速度を調整した結果、 その好ましい 走行速度は 7 m/分となつた。  At this time, the approach distance between the nozzle 5 and the porous metal body 1 was kept at 0.1 mm, and a predetermined amount of the paste-like active material was discharged from the nozzle 5 to fill the porous body. When the paste was filled into the porous body, the traveling speed of the porous body was adjusted so that the paste did not penetrate from one surface on the filling side to the other surface, and as a result, the preferred traveling speed was 7 m. / Min and came.
図 1で示す工程 4では、 図 2に示すように X線発生器 3より X線を発生させて、 活物質ペーストの充填された金属多孔体 1を透過させ、 この透過した X線を X線 検出器 4で検出し、 先に記載の通り活物質ペーストと金属多孔体 1の単位面積当 たりの重量を X線吸収係数を利用して算出した。 活物質ペースト中の水 (X線吸 収係数- 0 . 6 9 2 ) は、 水酸化二ッケルに比べて X線吸収係数が約 1 Z 2 0で あるので、 水分量を無視することができる。 In step 4 shown in FIG. 1, X-rays are generated from the X-ray generator 3 as shown in FIG. 2, and the X-rays pass through the porous metal body 1 filled with the active material paste. Detected by the detector 4, the weight per unit area of the active material paste and the porous metal body 1 was calculated using the X-ray absorption coefficient as described above. Water in active material paste (X-ray absorption Since the X-ray absorption coefficient of the yield coefficient −0.692) is about 1 Z 20 compared to nickel hydroxide, the amount of water can be ignored.
図 1で示す工程 5では、 工程 4で算出した活物質ペーストと金属多孔体 1の単 位面積当たりの重量と工程 2で求めた金属多孔体 1の単位面積当たりの重量の差 から活物質ペーストの単位面積当たりの重量を求めた。 この重量が所定の重量の 範囲を超えている場合、 工程 3に信号が送られ、 活物質ペースト重量がフィード パックされて、 活物質ペーストの充填量が即座に調整される。  In step 5 shown in Fig. 1, the active material paste is calculated from the difference between the weight per unit area of the active material paste and the porous metal body 1 calculated in step 4 and the weight per unit area of the metal porous body 1 calculated in step 2. Was determined per unit area. If this weight is outside the predetermined weight range, a signal is sent to step 3 where the active material paste weight is feed-packed and the active material paste fill is immediately adjusted.
図 1で示す工程 6では、 活物質ペーストの充填された金属多孔体 1が乾燥され、 本発明の実施例における正極板 6が作製される。 正極板 6は、 工程 7で卷き取ら れ、 工程 8では電池サイズに合わせた正極板 6が作製される。  In step 6 shown in FIG. 1, the porous metal body 1 filled with the active material paste is dried, and the positive electrode plate 6 according to the embodiment of the present invention is manufactured. The positive electrode plate 6 is wound up in step 7, and in step 8, the positive electrode plate 6 according to the battery size is manufactured.
この実施例では、 正極板 6を厚み 0 . 8 mmになるようにロールプレスし、 ァ カリ蓄電池の Aサイズ用の正極板 6、 長さ l l O mm, 幅 6 0 mmになるよう に切断し極板を 1 0 0 0 0枚作製した。  In this example, the positive electrode plate 6 was roll-pressed to a thickness of 0.8 mm, and cut into a positive electrode plate 6 for an A-size alkaline storage battery to have a length of 10 mm and a width of 60 mm. 1000 plates were produced.
比較例 Comparative example
つぎに、 比較例を示す。  Next, a comparative example is shown.
実施例と同じ配合の活物質ペーストと、 金属多孔体 1を用いた。  An active material paste having the same composition as in the example and a porous metal body 1 were used.
図 5に、 比較例のアル力リ蓄電池用正極板の製造工程の概略図を示し、 以下に 詳細を説明する。  FIG. 5 shows a schematic view of a manufacturing process of a positive electrode plate for an alkaline storage battery of a comparative example, and details will be described below.
図 5で示す工程 1では、 厚さ 3 . O mm, 多孔度 9 8 %, 平均孔径 2 0 0 μ πι の帯状のスポンジ状ニッケル金属多孔体 1の一方の面にノズル 5を対向させ、 こ のノズル 5を用いて活物質ペーストを金属多孔体 1中へ、 金属多孔体 1自体をそ の長さ方向に走行させながら実施例と同様な方法で充填し、 工程 2で乾燥し比較 例の正極板 7を作製した。  In step 1 shown in FIG. 5, the nozzle 5 is opposed to one surface of a strip-shaped sponge-like nickel metal porous body 1 having a thickness of 3.0 mm, a porosity of 98%, and an average pore diameter of 200 μππι. The active material paste is filled into the porous metal body 1 using the nozzle 5 of the comparative example while the porous metal body 1 itself is running in the length direction thereof, and is filled in the same manner as in the example. A positive electrode plate 7 was produced.
図 5で示す工程 3では、 図 6に jS線の発生の模式図を示すように、 ;3線発生器 8より ]3線を発生させて、 活物質ペーストの充填された金属多孔体 1を透過させ、 この透過した β線を Ρ線検出器 9で検出した。 β線の吸収係数を利用して活物質 ペーストと金属多孔体 1の単位面積当たりの重量を算出し、 それより金属多孔体 1の単位面積当たりの重量を引いて活物質ペーストの重量を求め、 工程 4で正極 板 8を卷き取った。 ここで、 正極板 7で乾燥してから β線を当てて正極板 7の重量を測定するのは、 水分と水酸ィ匕ニッケルの j3線の吸収係数の差が小さく、 区別できないからである。 また、 活物質ペーストの単位面積当たりの重量は、 金属多孔体 1の重量がバラ ツキがないものとして、 標準の規格値をもとに単位面積当たりの重量とした。 上記で作製した正極板 7を厚み 0 . 8 mmになるように口ールプレスし、 アル カリ蓄電池の Aサイズ用の正極板、 長さ 1 1 0 mm, 幅 6 O mmになるように切 断し極板を 1 0 0 0 0枚作製した。 In the step 3 shown in FIG. 5, as shown in FIG. 6, a schematic diagram of the generation of the jS line is obtained; 3 lines are generated from the 3 line generator 8], and the porous metal body 1 filled with the active material paste is removed. The transmitted β-rays were detected by the X-ray detector 9. The weight per unit area of the active material paste and the porous metal body 1 is calculated using the absorption coefficient of β-ray, and the weight per unit area of the porous metal body 1 is subtracted therefrom to obtain the weight of the active material paste. In step 4, the positive electrode plate 8 was wound up. Here, the reason why the weight of the positive electrode plate 7 is measured by applying the β-ray after drying on the positive electrode plate 7 is that the difference between the absorption coefficient of water and the absorption coefficient of j3 line of nickel hydroxide is so small that it cannot be distinguished. . The weight per unit area of the active material paste was defined as the weight per unit area based on the standard specification value, assuming that the weight of the porous metal body 1 did not vary. The positive electrode plate 7 prepared above was subjected to a mouth press so as to have a thickness of 0.8 mm, and cut into an A size positive electrode plate for an alkaline storage battery to have a length of 110 mm and a width of 60 mm. 1000 plates were produced.
次に、 上記で作製した正極板 6と正極板 7とをそれぞれ 1 0 0枚ずつ抜き取り、 充填された活物質ペーストの重量を測定し、 そのバラツキを表 1に示す。 表 1
Figure imgf000010_0001
表 1に示すように、 実施例では、 充填量のバラツキが ± 1 . 6 6 %であるの に対して、 比較例では充填量のパラツキが ± 3 . 3 2 %である。
Next, each of the positive electrode plate 6 and the positive electrode plate 7 produced as described above was withdrawn 100 sheets each, and the weight of the filled active material paste was measured. table 1
Figure imgf000010_0001
As shown in Table 1, in the example, the variation in the filling amount was ± 1.66%, whereas in the comparative example, the variation in the filling amount was ± 3.32%.
これは、 実施例では X線利用しているので、 正極板 6を乾燥しないで活物質ぺ ーストの充填量を測定でき、 しかも測定された充填量を即座にフィードバックし て充填量を測定できるためである。 また、 実施例では、 金属多孔体 1の重量を測 定し、 金属多孔体 1に活物質ペーストを充填後に正極板 6の重量を測定し、 正極 板 6の重量から金属多孔体 1の重量を引いて正確に活物質ペーストを測定してい る。  This is because, in the embodiment, since the X-ray is used, the filling amount of the active material paste can be measured without drying the positive electrode plate 6, and the measured filling amount can be immediately fed back to measure the filling amount. It is. Further, in the example, the weight of the porous metal body 1 was measured, the weight of the positive electrode plate 6 was measured after filling the porous metal body 1 with the active material paste, and the weight of the porous metal body 1 was calculated from the weight of the positive electrode plate 6. The active material paste is measured accurately by pulling.
これに対して、 比較例では、 正極板 7を乾燥後に) 3線を用いて活物質ペースト の重量と金属多孔体 1の重量を測定して、 活物質ペーストの重量を算出している ため、 活物質ペーストの重量を直接測定できない。 また、 乾燥後に正極板の重量 を測定しているので、 重量パラツキが大きくなってもすぐに活物質の充填工程に フィードパックできないため、 パラツキが大きくなつたものである。  In contrast, in the comparative example, the weight of the active material paste and the weight of the porous metal body 1 were measured using three lines (after the positive electrode plate 7 was dried) to calculate the weight of the active material paste. The weight of the active material paste cannot be measured directly. In addition, since the weight of the positive electrode plate is measured after drying, even if the weight variation increases, it is not possible to immediately feed pack the active material filling process, so the variation is increased.
なお、 上記の実施例では、 金属多孔体に活物質ペーストを充填した正極板を製 造する方法を示したものであるが、 パンチングメタルに水素吸蔵合金を塗布する 製造方法に適用できる。 In the above embodiment, a method of manufacturing a positive electrode plate in which a porous metal body is filled with an active material paste is shown. However, a hydrogen storage alloy is applied to a punching metal. Applicable to manufacturing methods.
また、 これらの製造方法により作製された正 ·負極板を用いてニッケル水素蓄 電池、 ニッケル ·カドミゥム蓄電池などのアルカリ蓄電池を作製すると、 電池容 量のパラツキが少ない高容量なアル力リ蓄電池を構成できる。  In addition, when alkaline storage batteries such as nickel-metal hydride storage batteries and nickel-cadmium storage batteries are manufactured using the positive and negative electrode plates manufactured by these manufacturing methods, a high-capacity alkaline storage battery with less variation in battery capacity is constructed. it can.
なお、 上記の実施例では、 金属多孔体の一方の面から他方の面に向かって活物 質ペーストを充填するときに X線を用いて充填量を管理する方法を用いたが、 金 属多孔体を活物質ペーストに浸漬して充填して電極を構成するときやパンチング メタルに活物質ペーストゃ水素吸蔵合金ペーストを塗布して電極構成するときに も、 上記のように X線を用いて充填量を管理する方法を用いることができる。 また、 このパンチングメタルの様な芯材は、 金属多孔体のように厚みを調整す る必要もない。  In the above embodiment, when the active material paste is filled from one surface of the porous metal body to the other surface, the method of controlling the filling amount using X-rays is used. As described above, use X-rays to fill the electrode by immersing the body in the active material paste and filling the electrode, or when forming the electrode by applying the active material paste and the hydrogen storage alloy paste to the punching metal. Methods for controlling the quantity can be used. Further, it is not necessary to adjust the thickness of the core material such as the punched metal as in the case of the porous metal body.
産業上の利用可能性 Industrial applicability
以上のように本発明によれば、 活物質の充填バラツキの少ない電極を構成でき る。 また、 この電極を電池に用いると充放電容量のパラツキの少ない優れた電池 を構成できる。  As described above, according to the present invention, it is possible to configure an electrode with less variation in the filling of the active material. Also, when this electrode is used in a battery, an excellent battery with less variation in charge / discharge capacity can be constructed.

Claims

請 求 の 範 囲 The scope of the claims
1. 芯材を連続的に供給する供給工程と、 1. a supply process for continuously supplying the core material;
前記芯材に X線を照射してその透過量を測定し、 前記透過量に基づき単位面積 あたりの前記芯材の重量を求める重量測定工程 1と、  A weight measurement step 1 of irradiating the core material with X-rays and measuring a transmission amount thereof, and calculating a weight of the core material per unit area based on the transmission amount;
前記芯材に活物質を所定重量充填する充填工程と、  A filling step of filling the core material with a predetermined weight of the active material,
前記活物質が充填された芯材に X線を照射してその透過量を測定し、 前記透過 量に基づき単位面積あたりの前記芯材の重量と前記活物質充填重量を求める重量 測定工程 2と、  Irradiating the core material filled with the active material with X-rays to measure the amount of transmission thereof, and determining the weight of the core material per unit area and the weight of the active material filling based on the amount of transmission, a weight measuring step 2; ,
前記重量測定工程 2で測定された重量値と前記重量測定工程 1で測定された重 量との差を算出して前記活物質ペーストの充填重量を求める重量算出工程と、 前記重量算出工程で算出された活物質ペースト充填重量が前記所定重量の許容 範囲から外れる場合は、 その外れた活物質重量に基づいて前記充填工程における 前記活物質ペースト充填量に対してフィ一ドパック制御をかけるフィードパック 制御工程と、  A weight calculating step of calculating a difference between the weight value measured in the weight measuring step 2 and the weight measured in the weight measuring step 1 to obtain a filling weight of the active material paste; and a weight calculating step. If the weight of the filled active material paste is out of the allowable range of the predetermined weight, a feed pack control is performed based on the deviated weight of the active material to perform a feed pack control on the amount of the filled active material paste in the filling step. Process and
前記充填された活物質を乾燥する乾燥工程とを含む電池用極板の製造法。 A drying step of drying the filled active material.
2. 芯材を連続的に供給する供給工程と、 2. a supply process for continuously supplying the core material;
前記芯材に活物質を所定量充填する充填工程と、 前記活物質が充填された芯材 に X線を照射してその透過量を測定し、 前記透過量に基づき、 単位面積あたりの 活物質の充填重量を求める重量算出工程と、  A filling step of filling the core material with a predetermined amount of an active material, and irradiating the core material filled with the active material with X-rays to measure a transmission amount thereof, and based on the transmission amount, an active material per unit area. A weight calculation step for determining the filling weight of
前記重量算出工程で算出された活物質充填重量が前記所定重量の許容範囲から 外れる場合には、 その外れた活物質重量に基づいて前記充填工程における前記活 物質充填量に対してフィードバック制御をかけるフィードパック制御工程とを含 む電池用極板の製造方法。  If the active material filling weight calculated in the weight calculation step is out of the allowable range of the predetermined weight, feedback control is performed on the active material filling amount in the filling step based on the deviated active material weight. A method for manufacturing a battery electrode plate, including a feed pack control step.
3. 三次元的に連なった空間を有する金属多孔体を連続的に供給する供給工程 と、  3. a supply step of continuously supplying a porous metal body having a three-dimensionally connected space;
前記金属多孔体の厚みを調整する調厚工程と、  Thickening step of adjusting the thickness of the porous metal body,
前記金属多孔体に X線を照射してその透過量を測定し、 前記透過量に基づき単 位面積あたりの前記金属多孔体の重量を求める重量測定工程 1と、 前記金属多孔体に活物質を所定重量充填する充填工程と、 前記活物質が充填された金属多孔体に X線を照射してその透過量を測定し、 前 記透過量に基づき単位面積あたりの前記金属多孔体の重量と前記活物質充填重量 を求める重量測定工程 2と、 A weight measuring step 1 of irradiating the metal porous body with X-rays to measure a transmission amount thereof, and calculating a weight of the metal porous body per unit area based on the transmission amount; A filling step of filling the porous metal body with an active material by a predetermined weight, and irradiating the porous metal body filled with the active material with X-rays to measure a transmission amount thereof, A weight measurement step 2 for determining the weight of the porous metal body and the active material filling weight,
前記重量測定工程 2で測定された重量と前記重量測定工程 1で測定された重量 との差を算出して前記活物質の充填重量を求める重量算出工程と、  A weight calculation step of calculating a difference between the weight measured in the weight measurement step 2 and the weight measured in the weight measurement step 1 to obtain a filling weight of the active material;
前記重量算出工程で算出された活物質充填重量が前記所定重量の許容範囲から 外れる場合は、 その外れた前記活物質重量に基づいて前記充填工程における前記 活物質充填量に対してフィ一ドバック制御をかけるフィードバック制御工程と、 前記充填された活物質ペーストを乾燥する乾燥工程とを含む電池用極板の製造 法。  If the active material filling weight calculated in the weight calculating step is out of the allowable range of the predetermined weight, feedback control is performed on the active material filling amount in the filling step based on the deviated active material weight. And a drying step of drying the filled active material paste.
4. 活物質が水酸ィ匕ニッケルを主体とするペーストまたは水素吸蔵合金ペース トである請求項 1〜 3のいずれか 1項に記載の電池用極板の製造法。  4. The method for producing an electrode plate for a battery according to any one of claims 1 to 3, wherein the active material is a paste mainly composed of nickel hydroxide or a hydrogen storage alloy paste.
5. 芯材が穿孔金属板である請求項 1記載の電池用極板の製造法。  5. The method according to claim 1, wherein the core material is a perforated metal plate.
6. 活物質が充填された芯材を透過した X線の透過量を測定するための X線発 生手段と X線検出手段、  6. X-ray generation means and X-ray detection means for measuring the amount of X-ray transmitted through the core material filled with active material,
前記 X線の透過量に基づき、 活物質の充填量の正量、 不量を判定する X線透過 量処理手段、 及び  X-ray transmission amount processing means for determining a positive amount or an incomplete amount of the active material based on the X-ray transmission amount, and
不量の信号に基づき、 活物質充填量を制御する制御手段を含むことを特徴とす る電極製造装置。  An electrode manufacturing apparatus characterized by including a control means for controlling an active material filling amount based on an insignificant signal.
7. 芯材を透過した X線の透過量を測定するための X線発生手段と X線検出手 段、  7. X-ray generation means and X-ray detection means for measuring the amount of X-ray transmitted through the core material,
活物質充填手段、  Active material filling means,
活物質が充填された芯材を透過した X線の透過量を測定するための X線発生手 段と X線検出手段、  X-ray generation means and X-ray detection means for measuring the amount of X-ray transmitted through the core material filled with the active material,
芯材と透過した X線の透過量と、 活物質が充填された芯材を透過した X線の透 過量に基づき、 活物質の充填量を算出し、 活物質の正量、 不量を判定する X線透 過量処理手段、 及ぴ  Based on the amount of X-rays transmitted through the core and the amount of X-rays transmitted through the core filled with the active material, calculate the amount of active material to be filled, and determine whether the amount of active material is positive or not X-ray transmission processing means, and
不量の信号に基づき、 活物質充填量を制御する制御手段を含むことを特徴とす It includes a control means for controlling the active material filling amount based on the insignificant signal.
8. 活物質の充填量が不量であると判断した芯材を、 正量であると判断した芯 材と区別して排出する振り分け手段を含む請求項 6または 7に記載の装置。 8. The apparatus according to claim 6, further comprising a sorting unit that discharges the core material determined to have an unfilled amount of the active material in distinction from the core material determined to be a positive amount.
9. 芯材の厚みを調整する手段をさらに有する請求項 7に記載の装置。  9. The apparatus according to claim 7, further comprising a means for adjusting the thickness of the core material.
PCT/JP2001/005713 2000-07-03 2001-07-02 Method for producing plate of battery WO2002003487A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002507464A JP4043939B2 (en) 2000-07-03 2001-07-02 Battery electrode plate manufacturing method and electrode manufacturing apparatus
US10/203,036 US6857171B2 (en) 2000-07-03 2001-07-02 Method for producing plate of battery
EP01945754A EP1298743A4 (en) 2000-07-03 2001-07-02 Method for producing plate of battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000200667 2000-07-03
JP2000-200667 2000-07-03

Publications (1)

Publication Number Publication Date
WO2002003487A1 true WO2002003487A1 (en) 2002-01-10

Family

ID=18698501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005713 WO2002003487A1 (en) 2000-07-03 2001-07-02 Method for producing plate of battery

Country Status (5)

Country Link
US (1) US6857171B2 (en)
EP (1) EP1298743A4 (en)
JP (1) JP4043939B2 (en)
CN (1) CN1189960C (en)
WO (1) WO2002003487A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147338A (en) * 2004-11-19 2006-06-08 Toyota Motor Corp Manufacturing method and device of battery electrode plate
JP2014199245A (en) * 2013-03-14 2014-10-23 湘南Corun Energy株式会社 Method, device and program for measuring weight of porous body
CN104979523A (en) * 2014-04-02 2015-10-14 湘南科力远能源株式会社 Method for manufacturing a sheet material with a coating material, and a device for manufacturing an electrode plate of a battery
JP2020204611A (en) * 2019-06-17 2020-12-24 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Device for determining weight of composite sheet at one time
JP2021004877A (en) * 2019-06-26 2021-01-14 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Online grade selection for weight measurements of composite sheets

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101113504B1 (en) * 2009-11-03 2012-02-29 삼성에스디아이 주식회사 Apparatus for detecting different pattern of electrode
DE102011108190A1 (en) * 2011-07-22 2013-01-24 Li-Tec Battery Gmbh Method and system for producing an electrochemical cell and battery having a number of said electrochemical cells
JP2013140680A (en) * 2011-12-28 2013-07-18 Nissan Motor Co Ltd Production method for electrode and production control system of electrode
JP5751235B2 (en) * 2012-10-19 2015-07-22 トヨタ自動車株式会社 Battery electrode manufacturing method and apparatus
US20230184698A1 (en) * 2021-12-13 2023-06-15 Thermo Fisher Scientific Messtechnik Gmbh Calibration sample set and method for li-ion battery gauging systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337955A (en) * 1989-07-04 1991-02-19 Fuji Elelctrochem Co Ltd Judgement device for seal material coating in cell
EP0703632A1 (en) * 1994-07-28 1996-03-27 Matsushita Electric Industrial Co., Ltd. Apparatus for coating pasty mixture and method for coating the pasty mixture
JPH09106814A (en) 1995-10-09 1997-04-22 Matsushita Electric Ind Co Ltd Electrode for battery and manufacture thereof
JPH09161792A (en) * 1995-12-11 1997-06-20 Toshiba Battery Co Ltd Manufacture of electrode plate of alkaline storage battery
JPH10223219A (en) * 1997-02-10 1998-08-21 Matsushita Electric Ind Co Ltd Manufacture of electrode for battery and alkaline storage battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498267A (en) * 1978-01-20 1979-08-03 Uk Nii Tsuerujiyurozuno Bumasu Device for measuring thickness of sheettlike article or like and weight per unit area without contact

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337955A (en) * 1989-07-04 1991-02-19 Fuji Elelctrochem Co Ltd Judgement device for seal material coating in cell
EP0703632A1 (en) * 1994-07-28 1996-03-27 Matsushita Electric Industrial Co., Ltd. Apparatus for coating pasty mixture and method for coating the pasty mixture
JPH09106814A (en) 1995-10-09 1997-04-22 Matsushita Electric Ind Co Ltd Electrode for battery and manufacture thereof
JPH09161792A (en) * 1995-12-11 1997-06-20 Toshiba Battery Co Ltd Manufacture of electrode plate of alkaline storage battery
JPH10223219A (en) * 1997-02-10 1998-08-21 Matsushita Electric Ind Co Ltd Manufacture of electrode for battery and alkaline storage battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006147338A (en) * 2004-11-19 2006-06-08 Toyota Motor Corp Manufacturing method and device of battery electrode plate
JP2014199245A (en) * 2013-03-14 2014-10-23 湘南Corun Energy株式会社 Method, device and program for measuring weight of porous body
CN104979523A (en) * 2014-04-02 2015-10-14 湘南科力远能源株式会社 Method for manufacturing a sheet material with a coating material, and a device for manufacturing an electrode plate of a battery
JP2015198044A (en) * 2014-04-02 2015-11-09 湘南Corun Energy株式会社 Production method of thin plate material with coating material, manufacturing method and manufacturing apparatus for battery plate
JP2020204611A (en) * 2019-06-17 2020-12-24 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Device for determining weight of composite sheet at one time
US11333544B2 (en) 2019-06-17 2022-05-17 Honeywell International Inc. Apparatus for simultaneously determining weights of composite sheets
JP2021004877A (en) * 2019-06-26 2021-01-14 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. Online grade selection for weight measurements of composite sheets

Also Published As

Publication number Publication date
JP4043939B2 (en) 2008-02-06
CN1418382A (en) 2003-05-14
EP1298743A1 (en) 2003-04-02
US6857171B2 (en) 2005-02-22
US20030024106A1 (en) 2003-02-06
EP1298743A4 (en) 2009-04-01
CN1189960C (en) 2005-02-16

Similar Documents

Publication Publication Date Title
WO2002003487A1 (en) Method for producing plate of battery
TW538553B (en) Method of producing electrode for battery and electrode produced by method
JPH04229554A (en) Method for manufacturing strip positive electrode for primary and secondary battery
JP7316772B2 (en) Copper foil used for lithium secondary battery current collector
KR20170024069A (en) Method of manufacturing lithium-ion secondary battery electrode sheet
US7846574B2 (en) Positive electrode plate for alkaline storage battery and method for producing the same
JP6798236B2 (en) Roll press method
US3310437A (en) Cylindrical rechargeable battery having expanded metal grid with bond joints being bent flatwise
JP4526825B2 (en) Energy device
JP6182062B2 (en) Porous material weight measuring method, weight measuring device, and weight measuring program
JP4828683B2 (en) Method and apparatus for manufacturing battery electrode plate
JP4292125B2 (en) Positive electrode plate for alkaline storage battery and manufacturing method thereof
CN104979523B (en) Light sheet material manufacturing method, plate of battery manufacturing device with coating material
US8475958B2 (en) Nickel hydrogen storage battery and method for manufacturing negative electrode thereof
JP2018063791A (en) Roll press method
JPWO2011010430A1 (en) Deposit amount measuring device, deposit amount measuring method, and method for manufacturing electrode for electrochemical device
US20030124428A1 (en) Alkaline storage battery
EP4120459A1 (en) Separator for batteries
JP4575103B2 (en) Electrode plate manufacturing method and manufacturing apparatus
JPH097581A (en) Manufacture of plate for battery
JP7328954B2 (en) METHOD AND APPARATUS FOR MANUFACTURING ELECTRODE FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
CN110268010A (en) Synthetic resin microporous membrane and its manufacturing method, electrical storage device diaphragm and electrical storage device
JP3462563B2 (en) Hydrogen storage alloy electrode
JP2001266860A (en) Nickel hydrogen storage battery
JP2000173613A (en) Manufacture of positive electrode active material for alkaline secondary battery, and manufacture of the alkaline secondary battery using positive electrode containing the active material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 507464

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10203036

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001945754

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018068529

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001945754

Country of ref document: EP