WO2001099225A1 - Composite substrate type circulator - Google Patents

Composite substrate type circulator Download PDF

Info

Publication number
WO2001099225A1
WO2001099225A1 PCT/JP2001/005220 JP0105220W WO0199225A1 WO 2001099225 A1 WO2001099225 A1 WO 2001099225A1 JP 0105220 W JP0105220 W JP 0105220W WO 0199225 A1 WO0199225 A1 WO 0199225A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
conductive
composite substrate
circulator
layer
Prior art date
Application number
PCT/JP2001/005220
Other languages
French (fr)
Japanese (ja)
Inventor
Osamu Myohga
Mitsuru Furuya
Yoshitsugu Okada
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2001099225A1 publication Critical patent/WO2001099225A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • H01P1/383Junction circulators, e.g. Y-circulators
    • H01P1/387Strip line circulators

Definitions

  • the present invention relates to a circulator or an isolator used for a high-frequency communication device using a frequency band of a millimeter wave band as well as a microwave band. More specifically, the present invention relates to a light source embedded in a dielectric layer.
  • the composite substrate type to be used is related to the evening or night sky. Background of the Invention
  • This composite substrate type circulator has a dielectric layer, a disk-shaped X-light having the same thickness as the dielectric layer, and embedded in the dielectric layer, A ground electrode (ground) layer formed on the lower surface of the ferrite; a circular conductor portion formed on the dielectric layer and the upper surface of the ferrite; and having substantially the same planar shape as the disk-shaped ferrite; A signal circuit consisting of three microstrip lines extending from the conductor, and a, constitutes a drop-in type circuit.
  • the thickness of the dielectric layer and the disk-shaped ferrite that is, the gap between the ground electrode (ground) layer on the lower surface and the signal circuit layer on the upper surface depends on the operating frequency range of the composite substrate type circulator. Selected.
  • this kind of composite substrate type circuit is actually using an insulating substrate, usually a dielectric substrate, as a base substrate, and the configuration from the dielectric layer to the signal circuit is as follows. For example, as described in Japanese Patent Application Laid-Open No. 2000-28686, It is formed on this dielectric substrate.
  • this type of composite board type circuit configuration has been used, for example, the shape of a signal circuit layer consisting of a circular conductor and three microstrip lines, and a disk-shaped X-light for the diameter of the circular conductor.
  • a signal circuit layer consisting of a circular conductor and three microstrip lines
  • a disk-shaped X-light for the diameter of the circular conductor.
  • various improvements and modifications in the element shape surface have been proposed.
  • the operating principle itself is based on the magnetic field formed by the high-frequency current input from one end of the three microstrip lines of the circuit, and the magnetic material, mainly a disk-shaped ferrite. There is no change in using the gyromagnetic phenomenon induced by the interaction with the magnetic field generated by the gyro.
  • the interaction between the magnetic field formed by the high-frequency current and the magnetic field of the disk-shaped ferrite causes The magnetic field induced by the high-frequency current is distributed in the surface of the circuit formation surface, and as a result, the high-frequency current is output to the other end of the microstrip line. Therefore, by designing the electrode shape and the like of the circuit so as to give a desired resonance frequency based on the magnetic field caused by the disk-shaped ferrite, a drop-in type circulator suitable for the target frequency region can be obtained. It can be manufactured. .
  • a drop-in type circulator whose electrode shape is designed to give a specific resonance frequency based on the magnetic field caused by the disk-shaped ferrite, has a disk-like shape.
  • a fine magnetic material is placed around the ferrite, and the weak magnetic field generated by the magnetic material is applied to the magnetic field caused by the disk-shaped ferrite, so that the resonance frequency of the entire circuit can be set to a certain width.
  • the present inventors have already proposed a technique for fine-tuning in (Japanese Patent Laid-Open No. 11-355014).
  • the present inventors when configuring the above-described composite substrate type circuit, for example, into a shape as shown in FIG. 1, depending on the structure, the magnetic field of the circuit circuit initially designed It was found that the distribution was disturbed.
  • the composite substrate type circulator shown in FIG. 1 includes a first dielectric substrate 6, a ground layer 5 formed on one surface of the first dielectric substrate 6, and a conductive adhesive on the ground layer 5.
  • a ferrite disk 10 fixed via layer 11 and a second dielectric provided around ferrite disk 10 so as to embed ferrite disk 10 on ground layer 5. It comprises a body material film 4 and a circuit composed of a conductive thin film formed on the ferrite disk 10 and the second dielectric material film 4.
  • the circuit composed of the conductive thin film includes a circular conductor 9, three microstrip lines 7 extending from the circular conductor 9 in three directions at equal circumferential angles, and vias 12. And a ground pad 8 arranged on both sides of the end of each microstrip line 7.
  • the circuit composed of the conductive thin film has, for example, a three-layered structure of different metals of a Cu thin film, a magnetic Ni plating film, and an Au plating film in order from the bottom.
  • the magnetic Ni film forming the three-layer structure is magnetized, it is affected by the magnetic field generated by the magnetized magnetic Ni film, and the magnetic field distribution of the initially designed circuit circuit Is disturbed.
  • the three-layer structure of dissimilar metals such as Cu thin film, magnetic Ni plating film, and Au plating film, is preferable in terms of bonding properties, it causes fluctuations in electrical characteristics such as frequency characteristics over a circular cycle. It is a cause for improvement, and improvement is desired.
  • the present invention has been made in order to solve such problems, and an object of the present invention is to further improve the bonding property, which is an advantage of a three-layer structure of dissimilar metal, It is an object of the present invention to provide a multi-substrate circulator capable of eliminating a factor causing disturbance in a magnetic field distribution of a circulator circuit and suppressing variations in electric characteristics such as frequency characteristics over time.
  • a magnetic conductive material film such as a multilayer structure of different metals such as a Cu thin film, a magnetic Ni film, and an Au film. Eliminates and further improves the bondability achieved with the three-layer structure of dissimilar metals It is an object of the present invention to provide a composite substrate type circulator using a new three-layer structure of dissimilar metals for a circulator circuit.
  • Another object of the present invention is to provide an isolator configured using such a composite substrate type circuit. Disclosure of the invention
  • the present inventors have elucidated that the cause of this variation is due to the use of a magnetic conductive material film in the three-layer structure of dissimilar metals. Between the Cu film and the uppermost Au film, a non-magnetic conductive material film other than Cu or Au is used instead of the Ni film of magnetic material. Thus, it has been confirmed that the above-mentioned factors that cause variations in the electrical characteristics of the circulating device such as the frequency characteristics can be eliminated, and the present invention has been completed.
  • the present invention provides a first dielectric substrate, a metal film layer formed on one surface of the first dielectric substrate, and a ferrite fixed on the metal film layer via a conductive adhesive layer.
  • a circuit comprising a formed conductive thin film, and a composite substrate type curator comprising: a conductive disk formed of a first conductive film formed on an upper surface of a flight disk and a second dielectric material film; A three-layer structure consisting of a conductive film, a non-magnetic conductive material film formed on the first conductive film, and a second conductive film formed on the non-magnetic conductive material film.
  • a circulator for a composite substrate is provided.
  • the first conductive film is preferably made of copper (Cu)
  • the second conductive film is preferably made of gold (Au).
  • the nonmagnetic conductive material film can be composed of, for example, a Ni—P film.
  • the film thickness of the nonmagnetic conductive material film is preferably 0.3 or more and 5 or less, particularly preferably 1 ⁇ m or more and 3 ⁇ m or less.
  • the nonmagnetic conductive material film, the second conductive film, or the first conductive film can be formed by plating.
  • the second dielectric material film is preferably, for example, a non-conductive resin film.
  • the first dielectric substrate is preferably, for example, an alumina substrate or a glass ceramic substrate.
  • the metal layer film can be made of, for example, a copper (Cu) film.
  • nonmagnetic conductive material film is preferably a film made of a material having a higher pick-up hardness than magnetic Ni.
  • the first conductive film, the non-magnetic conductive material film, and the second conductive film can be configured to have the same shape.
  • the nonmagnetic conductive material film is formed so as to cover the upper surface and side surfaces of the first conductive film
  • the second conductive film is formed so as to cover the upper surface and side surfaces of the nonmagnetic conductive material film. Can be formed.
  • the first conductive film has a thickness in the range from 2 to 7 m. Further, it is preferable that the second conductive film has a thickness in a range of 0.5 m to 5 m.
  • the present invention further comprises any one of the above-described composite substrate-type circuit elements, wherein one of three microstrip lines serving as an input terminal and an output terminal of a circuit formed of a conductive thin film has a termination resistor.
  • a connected isolator is provided.
  • FIG. 1 is a plan view showing an example of the structure of a circulator circuit in a composite substrate type circulator according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG.
  • FIG. 3 is a cross-sectional view taken along line BB of FIG.
  • FIG. 2 is a cross-sectional view showing an example of a cross-sectional shape of a microstrip line made of the above.
  • FIG. 5 is a cross-sectional view showing another example of a cross-sectional shape of a microstrip line having a three-layer structure of dissimilar metals in the composite substrate type circulator shown in FIG. Detailed Description of the Preferred Embodiment
  • the circulator circuit formed on the upper surface of the element and the conductive thin film forming the ground pad have a three-layer structure made of different metals.
  • an Au film with much better bonding properties than conductive epoxy is provided.
  • a Cu layer having excellent adhesion to the ferrite disk and the dielectric material film embedded therein is used as the lowermost layer.
  • a nonmagnetic conductive material film is adopted between the uppermost Au film and the lowermost Cu layer as an intermediate layer for joining the two layers.
  • the composite substrate type circulator according to the present invention can employ any structure as the element structure itself except for the structure of the conductive thin film constituting the circulator circuit and the ground pad. Therefore, the basic configuration of a composite substrate type circulator according to an embodiment of the present invention will be described by taking a composite substrate type circular circuit having the structure shown in FIG. 1 as an example.
  • FIG. 1 is a plan view showing an example of the structure of a circulator circuit in a composite board type circulator according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA of FIG. 1
  • FIG. 3 is a cross-sectional view taken along line BB of FIG.
  • the composite substrate type circuit includes a first dielectric substrate 6 and a ground layer formed on one surface of the first dielectric substrate 6.
  • Metal film 5 a cylindrical ferrite disk 10 fixed on the metal film 5 via a conductive adhesive layer 11, and a filler disk 10 embedded on the metal film 5.
  • a second dielectric material film 4 provided around the disk 10 and And a circuit 13 made of a conductive thin film formed on the disk 10 and the second dielectric material film 4.
  • this circuit 13 made of a conductive thin film has a circular conductor portion 9 and three microphone ports extending in three equal circumferential angles from the circular conductor portion 9 as shown in FIG.
  • a strip line 7 and ground pads 8 disposed on both sides of the input / output end of each microstrip line 7.
  • the ground pad 8 is electrically connected to the metal film 5 on the lower surface via a via 12 formed in the thickness direction inside the second dielectric material film 4.
  • the composite substrate type circuit uses a first dielectric substrate 6 as a base substrate for holding the entire composite substrate.
  • the first dielectric substrate 6 is, of course, formed of a non-magnetic and non-conductive material.
  • the first dielectric substrate 6 for example, it is preferable to use a substrate made of a material having high insulating properties and high mechanical strength, such as an alumina substrate or a glass ceramic substrate.
  • the operating region of the composite substrate type circulator according to the present embodiment is provided above the first dielectric substrate 6.
  • the metal film 5 is formed on one surface (upper surface) of the first dielectric substrate 6.
  • the metal film 5 has excellent adhesion to the first dielectric substrate 6 and has high conductivity.
  • a membrane is used.
  • the metal film 5 is formed on the entire surface of one surface of the first dielectric substrate 6 and functions as a ground layer for the entire circuit. Further, the Cu film is excellent in adhesion to the second dielectric film layer 4 disposed thereon, and is preferable as a ground layer for the solar cell.
  • a composite substrate-type circuit using a gyromagnetic phenomenon caused by the interaction between a bias magnetic field generated by a circular magnetic body and a magnetic field induced by a high-frequency current flowing through the circuit In the evening, a circular magnetic material is used on the metal film 5 serving as the ground layer, and in this embodiment, the X-light disc 10 uses a conductive adhesive 11. And sticks.
  • the second dielectric material film 4 is integrally formed on the metal film 5 so as to embed the light disk 10.
  • the second dielectric material film 4 may be formed after the light disk 10 is fixed so as to embed the light disk 10 fixed by using the conductive adhesive 11.
  • a hole for inserting the bright disk 10 is formed in the second dielectric material film, and then the bright disk 10 is inserted into the hole, and the bright disk 10 is connected to the metal film. 5 may be fixed on the top.
  • the dielectric material used for the second dielectric material film 4 it is preferable to select a material having a small dielectric loss in the operating frequency range over a short period of time.
  • the method of forming the second dielectric material film 4 in which the ferrite disc 10 is fixed on the metal film 5 and then embedding the ferrite disc 10 is adopted, a resin with low loss is used. be able to.
  • this resin is used to form the second dielectric material film 4, there is essentially no gap between the fly disk 10 and the second dielectric material film 4, which is more preferable. It will be. That is, it is possible to prevent erosion of the metal film 5 due to a chemical or the like entering from the gap.
  • the resin in order to increase the operating frequency range to several tens of GHz, etc., when reducing the element dimensions and the diameter and thickness of the ferrite disk 10, the resin The method of forming the second dielectric material film 4 by embedding is more advantageous in terms of work efficiency and accuracy.
  • the magnetic material used for the filler disk 10 is appropriately selected in consideration of the strength of the generated bias magnetic field.
  • the magnetic material is a soft magnetic material having a small coercive force
  • a permanent magnet material is arranged in an external magnetic field, specifically, in the sky, and the soft magnetic material is magnetized.
  • a magnetic material is not used for both the conductive thin film provided on the upper surface for the circulator circuit and the metal film 5 provided as the ground layer on the lower surface.
  • Ferrite disk 10 Magnetic material As the material, any of a soft magnetic material having a small magnetization coercive force and a magnetic material having a large magnetization coercive force can be used.
  • the upper surfaces of the light disk 10 and the second dielectric material film 4 are parallel to the upper surface of the metal film 5 serving as the ground layer on the lower surface, in fact, the upper surface of the first dielectric substrate 6 of the underlying substrate. Polishing is performed as necessary so that Ultimately, the upper surfaces of the ferrite disk 10 and the second dielectric material film 4 are smooth with the upper surface of the ferrite disk 10 and the surface of the second dielectric material film 4 exposed in the same horizontal plane. It has a simple planar shape.
  • the thickness of the second dielectric material film 4 is set so as to suppress the loss of the high-frequency current propagating through the microstrip line line 7 of the circulator circuit according to the operating frequency range of the circuit. It is preferable to select an optimal one.
  • vias 12 that penetrate the second dielectric material film 4 and establish electrical continuity between the metal film 5 serving as the ground layer on the lower surface and the ground pad 8 provided on the upper surface are formed at predetermined positions. I do.
  • a heterometallic three-layer structure forming a circuit 13 is formed on the fly disk 10 and the second dielectric material film 4.
  • This three-layer structure is composed of an uppermost Au film, a lowermost Cu layer, and a nonmagnetic conductive material film 1 which is formed as an intermediate layer between these two layers and joins both layers. I'm sorry.
  • the lower Cu layer 3 is preferable in terms of adhesion between the disk 10 and the second dielectric material film 4. Selected as
  • the uppermost Au layer 2 is the most suitable electrode material for Au wire bonding, and is selected for its high conductivity.
  • the nonmagnetic conductive material film 1 is provided mainly for the purpose of bonding the lower Cu layer 3 and the uppermost Au layer 2 to each other. Also, when the uppermost Au layer 2 is formed by plating, it functions as a plating underlayer and protects the Cu layer 3 so that the lower Cu layer 3 is not damaged during plating. It also has
  • the material used for the non-magnetic conductive material film 1 is a non-magnetic conductive material, Furthermore, it is preferable to select a material that sufficiently satisfies the function of the junction between the lower Cu layer 3 and the uppermost Au layer 2 and the function of the plating underlayer.
  • Suitable nonmagnetic conductive materials that meet this condition include Ni-P and the like.
  • the bonding performance is comparable to that of the magnetic Ni film conventionally used for the intermediate layer.
  • a material having a Vickers hardness higher than that of the magnetic Ni film is more suitable as the nonmagnetic conductive material film 1, and Ni-P is one example thereof.
  • the Vickers hardness of the non-magnetic Ni—P film 50 OHv or more
  • the Pickers hardness of the magnetic Ni plating film about 10 OHv. Therefore, comparing the bonding properties of the Au plating films 2 formed on those films, the nonmagnetic Ni-P film is better than the magnetic Ni plating film.
  • the non-magnetic N i The required film thickness of the P film can be much smaller than the required film thickness of the magnetic Ni plating film.
  • the thickness of the lower Cu layer 3 may be within a range necessary for achieving close contact with the flat disk 10 and the second dielectric material film 4, and need not be unnecessarily thick. Therefore, it is preferable to select, for example, a range of 2 m to 7 m, particularly a range of 3 m to 5 rn. With such a thickness range, when producing the nonmagnetic conductive material film 1 by the plating method, the Cu layer 3 sufficiently functions as a plating base film.
  • any method may be used as long as the adhesion to the fly disk 10 and the second dielectric material film 4 is satisfied.
  • a sputtering method or a plating method it is preferable to use a sputtering method or a plating method.
  • the film thickness of the non-magnetic conductive material film 1 of the intermediate layer is, for example, considering the pick hardness of the non-magnetic conductive material forming the non-magnetic conductive material film 1 in order to achieve a desired bonding property. Then, the lower limit is determined by itself.
  • the non-magnetic conductive material film 1 in the present embodiment causes an extra magnetic field to be generated.
  • the film thickness there is no upper limit on the film thickness as long as it does not become unnecessarily thick.
  • the electrical conductivity of many non-magnetic conductive materials is used for the top layer
  • the Au layer 2 It is considerably inferior to the Au layer 2 and is preferably in a range that is not excessively thick compared to the film thickness of the Au layer 2 used as the uppermost layer.
  • the non-magnetic conductive material film 1 is formed by, for example, a plating method, if the film thickness is too thin, pinholes occur more frequently. For this reason, it is preferable to set the thickness of the nonmagnetic conductive material film 1 to 0.3 m or more to avoid the problem of the occurrence of pinholes.
  • the plating method is more suitable for forming a film having a larger thickness than other film forming methods, if the upper limit of the film thickness of the nonmagnetic conductive material film 1 is set to 5 im, workability is improved. It is also favorable in terms of surface.
  • the film thickness of the nonmagnetic conductive material film 1 is preferably in the range of 0.3 m or more and 5 ⁇ m or less, more preferably 1 m when using a Ni—P film. Set it within the range of 3 m or less.
  • the thickness of the non-magnetic conductive material film 1 of the intermediate layer depends on the electric characteristics such as the frequency characteristics of the circuit. Has essentially no effect on properties. For this reason, the range of the thickness of the nonmagnetic conductive material film 1 may be set to a range that is preferable mainly due to bonding characteristics and restrictions on fabrication.
  • This nonmagnetic conductive material film 1 is formed according to the circuit pattern. Therefore, as a method for forming the nonmagnetic conductive material film 1, it is preferable to select a method suitable for pattern formation according to the nonmagnetic conductive material forming the nonmagnetic conductive material film 1.
  • a mask may be used. It is preferable to use and form by plating.
  • the uppermost Au layer 2 mainly controls the resistance of the circular circuit, for example, the microstrip-line line 7.
  • the appropriate thickness of the Au layer 2 varies depending on the operating frequency region and the width of the microstrip line line 7, but is generally preferably in the range of 0.5 to 5, .7 ⁇ m ⁇ 2 The range of m is more preferred.
  • the lower limit of the film thickness of the Au layer 2 is determined according to the diameter of the Au wire used for bonding. For this reason, the thickness range of the Au layer 2 is selected so as to satisfy this lower limit. Normally, the thickness of the uppermost Au layer 2 is set to at least about 1 m.
  • the Au layer 2 and the nonmagnetic conductive material film 1 are formed in the same shape, it is preferable to form the Au layer 2 and the nonmagnetic conductive material film 1 by, for example, a plating method using a mask.
  • the conductive thin film used in the circuit 13 has a three-layer structure in which a Cu film 3, a nonmagnetic conductive material film 1, and an Au film 2 are formed in this order.
  • the three layers 3, 1, and 2 can be formed in the same shape.
  • the nonmagnetic conductive material film 1 and the uppermost Au layer 2 are the same, with the lower Cu film 3 as a plating underlayer. It is preferable to sequentially form by a plating method using a mask.
  • the three-layer laminated structure forming the circuit 13 is composed of a nonmagnetic conductive material film 1 covering the upper surface and side surfaces of the lower Cu film 3 and a top layer.
  • the Au layer 2 can be formed so as to cover the upper surface and side surfaces of the nonmagnetic conductive material film 1.
  • the upper film covers the side surface of the lower film in this way, when the uppermost Au layer 2 is formed by plating, the erosion of the drug from the side end surface of the lowermost Cu film 3 is prevented. There is an advantage that can be.
  • the conductive thin film forming the circuit 13 formed on the upper surface is formed of the Cu film 3, the non-magnetic conductive material film 1, and the Au film 2. Since it has a three-layer laminated structure formed in order, there is no magnetic layer in the circuit plane. The magnetic permeability of this conductive thin film is almost 1, and in the region where microwave and millimeter wave currents flow in the composite circuit type circuit, a magnetic material for generating a bias magnetic field, that is, a ferrite disk 1 Little generates a magnetic field other than 0, and the magnetic field distribution generated at the resonance frequency specific to the circulator circuit 13 is not disturbed. As a result, in a circulator circuit having the same shape in which only the thickness of the nonmagnetic conductive material film 1 is different, the operating center frequency is essentially a conductive value. The same value is obtained regardless of the thickness of the material film 1.
  • a conventional composite substrate-type solar cell using a Ni film which is a magnetic metal that has excellent adhesion between the Cu film and Au film as the intermediate layer and is suitable as a plating underlayer for the Au film.
  • the Ni film is magnetized, causing a disturbance in the magnetic field distribution.
  • the degree of the magnetization varies, and as a result, the operating center of the obtained composite substrate type solar cell is obtained.
  • the frequency also varied.
  • the composite substrate type circulator according to the present embodiment even if the width and thickness of the nonmagnetic conductive material film 1 are different, the change and the variation of the operating center frequency of the composite substrate type circulator are different. It is not a factor.
  • the frequency of the high-frequency signal actually input to the composite board type circulator and the operating center frequency of the composite board type circulator itself are changed. -It will not be.
  • the isolation decreases and the loss also increases. For this reason, the frequency characteristics may not be sufficiently high for practical use.
  • the secondary electric characteristics accompanying such frequency characteristics The decline has been essentially avoided.
  • the composite substrate type circuit according to the present embodiment has a configuration of a drop-in type circulator, three microstrips which serve as input and output terminals of the circulator circuit 13 are used.
  • the composite substrate type circulator according to the present embodiment can be used as an isolator.
  • This isolator has the same structure as the composite substrate type circulator according to the present embodiment. Therefore, the frequency characteristics, the bonding properties, and the like are essentially the same as those of the composite substrate type circulator according to the present embodiment.
  • the composite substrate type circulator according to the specific example 1-5 has a structure as shown in FIG.
  • an alumina substrate having a thickness of 0.8 mm was used as the first dielectric substrate 6, as the first dielectric substrate 6, an alumina substrate having a thickness of 0.8 mm was used.
  • a Cu layer was formed on one surface as a metal film layer 5 serving as a ground layer.
  • a disk-shaped ferrite 10 is fixed on the Cu layer 5 using a conductive adhesive 11.
  • a non-conductive resin is applied to the same thickness as the ferrite 10 so as to surround the periphery of the disk-shaped light 10 and to cover the surface of the metal film layer 5, and then cure the non-conductive resin. Let me know. After curing, the non-conductive resin was polished from the upper surface, and polished until the upper surface of the light 10 and the surface of the non-conductive resin became flat and the same surface.
  • the thickness of the resin layer after polishing was a predetermined thickness.
  • the resin layer thus obtained functions as the second dielectric material film 4.
  • a material having a low dielectric loss near a target operating frequency of 76 GHz was selected.
  • the resin layer that is, the second dielectric material film 4 has a ground layer Cu layer 5 corresponding to the arrangement position of the ground pad 8 associated with the three microstrip lines 7 shown in FIG. Then, a via hole reaching the ground layer 5 was formed, and a via 12 electrically connecting the ground layer 5 and the ground pad 8 was formed in the via hole.
  • a photoresist film is first formed on the polished surface of the ferrite 10 and the second dielectric material film 4 in order to fabricate a pattern of the circuit 13 and then the circuit pattern is formed.
  • the photoresist film was removed to form a mask.
  • a lower Cu film 3 having a thickness of 4 m was formed by plating.
  • non-magnetic Ni—P Film 1 was formed by plating according to the circuit pattern.
  • the thickness of the nonmagnetic Ni-P film 1 is selected in the range of 0.3 to 5.0 i / m.
  • the uppermost Au film 2 was also formed by plating, and the thickness was set to 1.
  • the pattern of the circuit 13 and the ground pad 8 are formed from the Cu film 3, the nonmagnetic Ni-P film 1 and the Au film 2. It has a three-layer structure of dissimilar metals, and its cross-sectional structure is a simple laminated film as shown in Fig. 2.
  • the ferrite 10 used has a magnetic property such that the coercive force i He is 3.8 kO e (kilo-elsted) and the index Br of the residual magnetic flux density is 3600 Gauss (gauss).
  • a composite substrate-type circulator of Comparative Examples 1-5 was manufactured in order to compare with the composite-substrate-type circuit of Specific Examples 15-5.
  • a magnetic Ni film made of the same material was used in the composite substrate-type circuit of Comparative Example 1-5. Except for the membrane, it has the same structure as the composite substrate type circulator of Example 15.
  • the thickness of the magnetic Ni film was selected in the range of 0.3 m to 5.0 m.
  • Specific examples 11-5 The composite substrate type circuit circulator and the comparative example 1 _5 The composite substrate type circuit converter, the main electrical characteristics, such as the operating center frequency, the isolation between the ports during the circuit operation, and the input The loss between the port and the output port was measured. At the time of these measurements, a plurality of each of the specific examples and comparative examples were produced, and the variability in the same group was evaluated.
  • the bondability of the Au wire-bonding was judged as good or bad when the Au wire was pulled and a break occurred at the bonding location when the wire was pulled.
  • Table 1 shows the composite substrate type circuit (element number 1 _5) and the ratio of Example 1-5.
  • the evaluation results of the composite substrate type oscillator (element numbers 6-10) of Comparative Examples 15 are shown.
  • the circuit 13 and the ground pad 8 are formed in a heterometallic three-layer structure composed of a Cu film 3, a nonmagnetic Ni-P film 1 and an Au film 2.
  • the operating center frequency is within the design value of 76 GHz, and the variation is within 0.3%.
  • the operating center frequency is 3.9% even though the average value is the same as the designed value of 76 GHz, even if the variation is small.
  • the isolation at the measurement frequency of 76 GHz is approximately 45 dB, and the maximum variation is only 12%.
  • the isolation at a measurement frequency of 76 GHz is only about 23 dB, and even if the dispersion is small, it is 19%.
  • the loss at a measurement frequency of 76 GHz is approximately 2. OdB or less, and the maximum variation is 10%.
  • the loss at the measurement frequency of 76 GHz was about 3.5 dB, and the variation was about 13%. Has become.
  • the non-magnetic Ni—P film 1 was used in the composite substrate type circuit collector (element number 115) of Example 15 and the circuit circuit 13 Since the ground pad 8 does not include a magnetic material that generates a magnetic field, the target operating center frequency can be obtained with good reproducibility without causing a large change (fluctuation) in the operating center frequency. .
  • the operating center frequency only slightly changes from the target value of 76 GHz.
  • the isolation at the measurement frequency of 76 GHz is sufficiently large, and the dispersion is small.
  • Example 11 Loss at the measurement frequency of 76 GHz of the composite board type circulator (element numbers 1 to 5) of 15 and the measurement frequency of 76 GHz of the composite board type circulator (element numbers 6 to 10) of Comparative Example 1-5 The difference from the loss in the above is also due to the difference in the variation of the operating center frequency.
  • the composite substrate type circuit controller (element Nos. 6-10) of Comparative Example 1-5 in which the deviation from the resonance condition was large, the loss at the measurement frequency of 76 GHz increased, and the isolation was not large. The accompanying leakage is also a factor that increases the apparent loss.
  • the above-mentioned frequency characteristics between the composite substrate-type circuit elements of the specific example 1-5 using the non-magnetic Ni-P film 1 are also obtained by the non-magnetic Ni-P film 1. It does not depend on thickness, but is virtually the same. This is because the nonmagnetic Ni-P film 1 is used in the composite substrate type circuit element (element number 1-5) in Example 1-5, so the bias magnetic field that determines the operating center frequency is Is only the magnetic field generated by the ferrite 10, and as with the Cu film 3 and the Au film 2, the non-magnetic Ni-P film 1 is a result of not being an extra magnetic field source that disturbs the bias magnetic field.
  • Ni-P has a higher electrical resistance than Ni, but it is not enough to significantly change the pattern of the circuit 13 such as the line resistance of the microstrip line 7, for example. Although it has a small effect on the loss, it has no effect on the frequency characteristics such as the operating center frequency.
  • the bondability was poor when the magnetic Ni film thickness was 0.5 ⁇ m and 0.3 ⁇ m. Has become. That is, the bonding property is poor in the Ni plating film. Even with such a small film thickness, the Ni-P plating film still has sufficient strength. This difference is considered to be due to the remarkable difference in Vickers hardness between the two. That is, the above difference is a result of the fact that the Vickers hardness of the Ni-P plating film 1 (500 Hv or more) is larger than the Vickers hardness of the Ni plating film (about ⁇ ⁇ ⁇ ⁇ ). However, if the thickness of the plating film is too small, the frequency of occurrence of pinholes increases, which is not preferable in practical use.
  • Ni-P is also effective for improving the bonding property, and it is understood that Ni-P is one of the more preferable nonmagnetic conductive materials.
  • the lower limit of the film thickness should be set to 0.3 m to avoid pinholes when using the plating method. Is preferred.
  • the line resistance of the microstrip line 7 is governed by the electrical conductivity of the uppermost Au film 2, and the contribution of the nonmagnetic Ni—P film 1 in the intermediate layer is slight, but Ni_ Since P itself has a relatively high resistivity as a conductive material, it is not preferable to make the film too thick. Therefore, it is preferable to set an upper limit of the thickness of the non-magnetic Ni—P film 1, and select an upper limit of, for example, 5 ⁇ m. Furthermore, considering that the nonmagnetic Ni-P film 1 is formed by plating, if the upper limit of the thickness of the nonmagnetic Ni-P film 1 is selected to be 5 m, it is preferable in terms of workability. Become.
  • the circulator circuit pattern 13 on the upper surface and the ground pad 8 are, for example, a Cu film 3 in the lower layer and a Ni 1 film in the non-magnetic conductive material film in the intermediate layer.
  • variations in the operating center frequency can be reduced and composites with high reproducibility of electrical characteristics such as frequency characteristics can be achieved.
  • a substrate-type solar cell can be manufactured. The improvement of the frequency characteristics does not depend on the thickness of the nonmagnetic conductive material film 1 and does not depend on the structure of the composite substrate type circulator.
  • the nonmagnetic conductive material film depends on the hardness of the nonmagnetic conductive material used.
  • the film thickness of 1 can be selected to a film thickness suitable for obtaining a desired bonding property.
  • the bond At the same time, electrical characteristics such as frequency characteristics are improved.
  • electrical characteristics such as frequency characteristics are improved.
  • a high-hardness non-magnetic conductive material such as the Ni-P film shown in the specific examples
  • the above-described improvement in bonding properties and improvement in electrical characteristics such as frequency characteristics can be more easily achieved. be able to.
  • the circulator circuit pattern 13 and the ground pad 8 are formed of a heterometallic three-layer structure using a nonmagnetic conductive material film as an intermediate layer.
  • a conventional composite substrate type circulator using a magnetic metal film as the intermediate layer it is possible to significantly reduce the variation of the operating center frequency, and at the same time, increase the magnitude of the isolation and reduce the loss. And variations thereof can be reduced. That is, the composite substrate type circulator according to the present invention has much better electrical characteristics than the conventional composite substrate type circulator.
  • the improvement of electrical characteristics such as frequency characteristics due to the adoption of a dissimilar metal three-layer structure using a nonmagnetic conductive material film for the intermediate layer can be achieved irrespective of the structure of the composite substrate type circulator. It is. That is, such improvements can be made in any of the composite board type circulators having various element structures.
  • the effect of improving the frequency characteristics described above does not essentially depend on the thickness of the nonmagnetic conductive material film of the intermediate layer. For this reason, it is possible to freely select a film thickness suitable for obtaining a desired bonding property according to the hardness of the nonmagnetic conductive material to be used, and to improve the bonding property. it can.

Landscapes

  • Non-Reversible Transmitting Devices (AREA)

Abstract

A composite substrate type circulator comprising a conductive thin film formed on a ferrite disc (10) and a second dielectric material film (4) for constructing a circulator circuit, the conductive thin film being made of a three-layered laminate structure which is composed of a first conductive film (3) formed on the upper faces of the ferrite disc (10) and the second dielectric material film (4), a nonmagnetic conductive layer film (1) formed on the first conductive film (3), and a second conductive film (2) formed on said nonmagnetic conductive film (1).

Description

明 細 書 複合基板型サーキユレ一夕 発明の技術分野  Description Composite substrate type circuit
本発明は、 マイクロ波帯ならぴにミリ波帯の周波数領域を利用する高周波通信 用デバイスに利用されるサーキュレータあるいはアイソレー夕に関し、 より具体 的には、 誘電体層中に埋め込まれたフヱライ トを利用する複合基板型サ一キユレ —夕あるいはァイソレー夕に関する。 発明の背景  The present invention relates to a circulator or an isolator used for a high-frequency communication device using a frequency band of a millimeter wave band as well as a microwave band. More specifically, the present invention relates to a light source embedded in a dielectric layer. The composite substrate type to be used is related to the evening or night sky. Background of the Invention
マイクロ波帯ならびにミリ波帯の周波数領域を利用する高周波通信用デバイス に利用されるサーキュレー夕として、 誘電体層中に円板状のフヱライトを埋め込 んだ複合基板型サ一キユレータが利用されている。  As a circulator used in high-frequency communication devices that use the microwave and millimeter-wave frequency bands, a composite substrate type circulator with a disc-shaped filler embedded in a dielectric layer has been used. I have.
この複合基板型サ一キュレータは、誘電体層と、誘電体層と同一の厚さを有し、 誘電体層の内部に埋め込まれている円板状のフ Xライ 卜と、 誘電体層及びフェラ ィ 卜の下面に形成された接地電極 (グランド) 層と、 誘電体層及びフェライ トの 上面に形成され、 円板状のフェライ トと実質的に同じ平面形状を有する円形導体 部及びこの円形導体部から延出する三本のマイクロストリップ. ラインからなる 信号回路と、 からなり、 ドロップ ·イン型サ一キユレ一タを構成している。  This composite substrate type circulator has a dielectric layer, a disk-shaped X-light having the same thickness as the dielectric layer, and embedded in the dielectric layer, A ground electrode (ground) layer formed on the lower surface of the ferrite; a circular conductor portion formed on the dielectric layer and the upper surface of the ferrite; and having substantially the same planar shape as the disk-shaped ferrite; A signal circuit consisting of three microstrip lines extending from the conductor, and a, constitutes a drop-in type circuit.
例えば、 このようなドロップ'ィン型サーキュレー夕は、 特開平 1 0— 3 3 5 1 2 9号公報、 特開平 1 1—3 5 5 0 1 4号公報、 特開 2 0 0 0— 6 8 7 1 2号 公報に記載されている。  For example, such a drop-in type circulator is disclosed in Japanese Patent Application Laid-Open Nos. 10-33512-09, 11-3551014, and 2000-2006. It is described in Japanese Patent Publication No. 8712.
なお、誘電体層及び円板状のフェライ トの厚さ、すなわち、下面の接地電極(グ ランド) 層と上面の信号回路層との間隙は複合基板型サーキュレー夕の動作周波 数領域に応じて選択される。  The thickness of the dielectric layer and the disk-shaped ferrite, that is, the gap between the ground electrode (ground) layer on the lower surface and the signal circuit layer on the upper surface depends on the operating frequency range of the composite substrate type circulator. Selected.
また、 この種の複合基板型サーキユレ一夕は、 実際には、 下地基板として、 絶 縁性基板、 通常、 誘電体基板を利用しており、 前述の誘電体層から信号回路まで の構成は、例えば、特開 2 0 0 0— 2 8 6 6 1 3号公報に記載されているように、 この誘電体基板上に形成される。 In addition, this kind of composite substrate type circuit is actually using an insulating substrate, usually a dielectric substrate, as a base substrate, and the configuration from the dielectric layer to the signal circuit is as follows. For example, as described in Japanese Patent Application Laid-Open No. 2000-28686, It is formed on this dielectric substrate.
従来から、 この種の複合基板型サーキユレ一夕の構成、 例えば、 円形導体部と 三本のマイクロストリップ ·ラインとからなる信号回路層の形状、 円形導体部の 直径に対する円板状のフ Xライトの直径の相対比などに関して、 素子形状面にお ける様々な改良及び変形が提案されている。  Conventionally, this type of composite board type circuit configuration has been used, for example, the shape of a signal circuit layer consisting of a circular conductor and three microstrip lines, and a disk-shaped X-light for the diameter of the circular conductor. Regarding the relative ratio of the diameters of the devices, various improvements and modifications in the element shape surface have been proposed.
しかしながら、 その動作原理自体は、 サ一キユレ一夕回路の三本のマイクロス トリップ · ラインの一端から入力される高周波電流により形成される磁界と、 磁 性材料、 主に、 円板状のフェライ トが生成した磁界との間の相互作用により誘起 されるジャイロ磁気現象を利用する点で変わりはない。  However, the operating principle itself is based on the magnetic field formed by the high-frequency current input from one end of the three microstrip lines of the circuit, and the magnetic material, mainly a disk-shaped ferrite. There is no change in using the gyromagnetic phenomenon induced by the interaction with the magnetic field generated by the gyro.
すなわち、 サーキュレ一タ回路の形状により規定される回路固有の共振周波数 を有する高周波電流が入力されると、 その高周波電流により形成される磁界と円 板状のフェライ トの磁界との相互作用により、 回路形成面の面内に高周波電流が 誘起する磁界が分布し、 その結果、 上記のマイクロストリップ ·ラインの他の一 端に高周波電流が出力される。 従って、 円板状のフェライ トに起因する磁界に基 づいて所望の共振周波数を与えるように回路の電極形状などを設計することより、 目的の周波数領域に適するドロップ ·ィン型サ一キュレータを作製することがで ぎる。 .  That is, when a high-frequency current having a circuit-specific resonance frequency defined by the shape of the circulator circuit is input, the interaction between the magnetic field formed by the high-frequency current and the magnetic field of the disk-shaped ferrite causes The magnetic field induced by the high-frequency current is distributed in the surface of the circuit formation surface, and as a result, the high-frequency current is output to the other end of the microstrip line. Therefore, by designing the electrode shape and the like of the circuit so as to give a desired resonance frequency based on the magnetic field caused by the disk-shaped ferrite, a drop-in type circulator suitable for the target frequency region can be obtained. It can be manufactured. .
一方、 円板状のフェライ トに起因する磁界に基づいて特定の共振周波数を与え るように回路の電極形状などを設計したドロップ ·ィン型サ一キュレ一タに対し て、 円板状のフェライ ト以外に、 その周囲に微細な磁性体を配置し、 その磁性体 が発生する微弱な磁界を円板状のフェライ トに起因する磁界に加えることにより、 回路全体の共振周波数を一定の幅で微調整する手法を本発明者らは既に提案して いる (特開平 1 1—3 5 5 0 1 4号公報)。  On the other hand, a drop-in type circulator, whose electrode shape is designed to give a specific resonance frequency based on the magnetic field caused by the disk-shaped ferrite, has a disk-like shape. In addition to the ferrite, a fine magnetic material is placed around the ferrite, and the weak magnetic field generated by the magnetic material is applied to the magnetic field caused by the disk-shaped ferrite, so that the resonance frequency of the entire circuit can be set to a certain width. The present inventors have already proposed a technique for fine-tuning in (Japanese Patent Laid-Open No. 11-355014).
また、 本発明者らは、 上述の複合基板型サ一キユレ一夕を、 例えば、 図 1に示 すような形状に構成する際に、 その構造によっては、 当初設計したサーキユレ一 タ回路の磁界分布に擾乱が起きることを見出した。  Further, the present inventors, when configuring the above-described composite substrate type circuit, for example, into a shape as shown in FIG. 1, depending on the structure, the magnetic field of the circuit circuit initially designed It was found that the distribution was disturbed.
この点について以下に説明する。  This will be described below.
図 1に示す複合基板型サーキュレータは、 第一の誘電体基板 6と、 第一の誘電 体基板 6の片面上に形成されたグランド層 5と、 グランド層 5上に導電性接着剤 層 1 1を介して固定されたフェライ ト円板 1 0と、 グランド層 5上においてフエ ライ ト円板 1 0を埋め込むようにフ ライ ト円板 1 0の周囲に設けられた第二の 誘電体材料膜 4と、 フェライ ト円板 1 0及び第二の誘電体材料膜 4上に形成され た導電性薄膜からなる回路と、 からなる。 The composite substrate type circulator shown in FIG. 1 includes a first dielectric substrate 6, a ground layer 5 formed on one surface of the first dielectric substrate 6, and a conductive adhesive on the ground layer 5. A ferrite disk 10 fixed via layer 11 and a second dielectric provided around ferrite disk 10 so as to embed ferrite disk 10 on ground layer 5. It comprises a body material film 4 and a circuit composed of a conductive thin film formed on the ferrite disk 10 and the second dielectric material film 4.
この導電性薄膜からなる回路は、 上方から見ると、 円形導体部 9と、 円形導体 部 9から 3方向に等円周角方向に延びる三本のマイクロストリップ'ライン 7と、 ビア 1 2を介して下面のグランド層 5と導通され、 各マイクロストリップ ' ライ ン 7の端部の両側に配置されているグランドパット 8と、 からなる。  When viewed from above, the circuit composed of the conductive thin film includes a circular conductor 9, three microstrip lines 7 extending from the circular conductor 9 in three directions at equal circumferential angles, and vias 12. And a ground pad 8 arranged on both sides of the end of each microstrip line 7.
ここで、 上記の導電性薄膜からなる回路を、 例えば、 下から順に C u薄膜、 磁 性 N iメツキ膜、 A uメツキ膜の異種金属の三層構造で構成するものとする。 こ の場合、 三層構造を構成する磁性 N iメツキ膜が磁化されると、 この磁化された 磁性 N iメツキ膜が発生する磁界による影響を受け、 当初設計したサ一キュレー 夕回路の磁界分布に擾乱が生じる。  Here, it is assumed that the circuit composed of the conductive thin film has, for example, a three-layered structure of different metals of a Cu thin film, a magnetic Ni plating film, and an Au plating film in order from the bottom. In this case, when the magnetic Ni film forming the three-layer structure is magnetized, it is affected by the magnetic field generated by the magnetized magnetic Ni film, and the magnetic field distribution of the initially designed circuit circuit Is disturbed.
この磁界分布の擾乱は、 前記の付加的な磁性体を利用する共振周波数の微調整 とは異なり、 予め予測され、 制御されたものでない。 このため、 結果として、 複 合基板型サーキュレータの周波数特性は、 目的とする周波数特性とは異なるもの となる。  This disturbance of the magnetic field distribution is not predicted and controlled in advance, unlike the fine tuning of the resonance frequency using the additional magnetic material. Therefore, as a result, the frequency characteristics of the composite substrate type circulator are different from the target frequency characteristics.
C u薄膜、 磁性 N iメツキ膜、 A uメツキ膜の異種金属の三層構造自体は、 ボ ンディング性の面では好ましいものであるものの、 周波数特性などのサーキュレ 一夕の電気特性にパラツキを生じさせる原因となっており、 その改善が望まれる ものである。  Although the three-layer structure of dissimilar metals, such as Cu thin film, magnetic Ni plating film, and Au plating film, is preferable in terms of bonding properties, it causes fluctuations in electrical characteristics such as frequency characteristics over a circular cycle. It is a cause for improvement, and improvement is desired.
本発明は、 このような課題を解決するためになされたものであり、 本発明の目 的は、 異種金属の三層構造の利点であるボンディング性の良さを更に向上させ、 また、当初設計したサーキュレ一タ回路の磁界分布に擾乱を起こす要因を排除し、 周波数特性などのサ一キユレ一夕の電気特性のバラツキを抑えることが可能な複 合基板型サ一キュレータを提供することにある。  The present invention has been made in order to solve such problems, and an object of the present invention is to further improve the bonding property, which is an advantage of a three-layer structure of dissimilar metal, It is an object of the present invention to provide a multi-substrate circulator capable of eliminating a factor causing disturbance in a magnetic field distribution of a circulator circuit and suppressing variations in electric characteristics such as frequency characteristics over time.
より具体的には、 例えば、 C u薄膜、 磁性 N iメツキ膜、 A uメツキ膜の異種 金属の Ξ層構造のように、 磁性導電性材料膜を利用することに伴う余剰磁界の弊 害を排除し、 異種金属の三層構造で達成されるボンディング性の良さを更に向上 させることができる、 新たな異種金属三層構造をサーキュレータ回路に利用する 複合基板型サ一キュレー夕を提供することにある。 More specifically, for example, the effect of an extra magnetic field caused by the use of a magnetic conductive material film, such as a multilayer structure of different metals such as a Cu thin film, a magnetic Ni film, and an Au film, is considered. Eliminates and further improves the bondability achieved with the three-layer structure of dissimilar metals It is an object of the present invention to provide a composite substrate type circulator using a new three-layer structure of dissimilar metals for a circulator circuit.
加えて、 本発明は、 そのような複合基板型サーキユレ一夕を利用して構成され るァイソレータを提供することも目的の一つとする。 発明の開示  In addition, another object of the present invention is to provide an isolator configured using such a composite substrate type circuit. Disclosure of the invention
なお、 本発明者らが、 例えば、 C u薄膜、 磁性 N iメツキ膜、 A uメツキ膜の 異種金属三層構造のように磁性導電性材料膜を利用することに伴う周波数特性な どのサーキュレ一夕の電気特性におけるバラツキを見い出すことができたのは、 周波数特性などにバラツキを与える他の要因、 回路の寸法誤差、 位置合わせ誤差 などに由来するバラツキを解消するための改良を施し、 より大きな特性バラツキ がなくなった結果、 見過ごされていたバラツキの要因が明らかになつたためであ る。  Note that the present inventors have found that circular characteristics such as frequency characteristics associated with the use of a magnetic conductive material film such as a Cu thin film, a magnetic Ni plating film, and a Au plating film of a dissimilar metal three-layer structure. Variations in the electrical characteristics of the evening were found because improvements were made to eliminate variations due to other factors that cause variations in frequency characteristics, circuit dimensional errors, alignment errors, etc. As a result of the elimination of characteristic variations, the cause of the overlooked variations became apparent.
本発明者らは、 このバラツキの要因は、 異種金属の三層構造に磁性導電性材料 膜を利用することに起因するものであることを解明したが、 この知見をさらに発 展させ、最下層の C u膜と最上層の A u膜との間に、磁性材料の N i膜に代えて、 C uや A u以外の非磁性導電性材料膜を介在させる異種金属三層構造を採用する ことにより、 上述の周波数特性などのサーキュレー夕の電気特性のバラツキを生 じる要因を解消できることを確認し、 本発明を完成するに至つた。  The present inventors have elucidated that the cause of this variation is due to the use of a magnetic conductive material film in the three-layer structure of dissimilar metals. Between the Cu film and the uppermost Au film, a non-magnetic conductive material film other than Cu or Au is used instead of the Ni film of magnetic material. Thus, it has been confirmed that the above-mentioned factors that cause variations in the electrical characteristics of the circulating device such as the frequency characteristics can be eliminated, and the present invention has been completed.
すなわち、 本発明は、 第一の誘電体基板と、 第一の誘電体基板の片面上に形成 された金属膜層と、 金属膜層上に導電性接着剤層を介して固定されたフェライ ト 円板と、 金属膜層上においてフヱライ ト円板を埋め込むようにフヱライ ト円板の 周囲に設けられた第二の誘電体材料膜と、 フェライ ト円板及び第二の誘電体材料 膜上に形成された導電性薄膜からなる回路と、 からなる複合基板型 ーキュレー タであって、 導電性薄膜は、 フ ライ ト円板と第二の誘電体材料膜の上面に形成 された第一の導電性膜と、第一の導電性膜上に形成された非磁性導電性材料膜と、 非磁性導電性材料膜上に形成された第二の導電性膜と、 からなる三層の積層構造 を有することを特徴とする複合基板型サーキュレータを提供する。  That is, the present invention provides a first dielectric substrate, a metal film layer formed on one surface of the first dielectric substrate, and a ferrite fixed on the metal film layer via a conductive adhesive layer. A disk, a second dielectric material film provided around the fly disk so as to embed the fly disk on the metal film layer, and a ferrite disk and the second dielectric material film. A circuit comprising a formed conductive thin film, and a composite substrate type curator comprising: a conductive disk formed of a first conductive film formed on an upper surface of a flight disk and a second dielectric material film; A three-layer structure consisting of a conductive film, a non-magnetic conductive material film formed on the first conductive film, and a second conductive film formed on the non-magnetic conductive material film. A circulator for a composite substrate is provided.
例えば、 第一の導電性膜は銅 (C u ) からなるものであることが好ましく、 第 二の導電性膜は金 (A u ) からなるものであることが好ましい。 For example, the first conductive film is preferably made of copper (Cu), The second conductive film is preferably made of gold (Au).
非磁性導電性材料膜は、 例えば、 N i— P膜から構成することができる。  The nonmagnetic conductive material film can be composed of, for example, a Ni—P film.
非磁性導電性材料膜の膜厚は 0. 3 以上かつ 5 以下であることが好ま しく、 1 〃m以上かつ 3〃m以下であることが特に好ましい。  The film thickness of the nonmagnetic conductive material film is preferably 0.3 or more and 5 or less, particularly preferably 1 μm or more and 3 μm or less.
例えば、 非磁性導電性材料膜、 第二の導電性膜または第一の導電性膜はメツキ により形成することができる。  For example, the nonmagnetic conductive material film, the second conductive film, or the first conductive film can be formed by plating.
第二の誘電体材料膜は、 例えば、 非導電性樹脂膜であることが好ましい。  The second dielectric material film is preferably, for example, a non-conductive resin film.
第一の誘電体基板は、 例えば、 アルミナ基板あるいはガラスセラミック基板で あることが好ましい。  The first dielectric substrate is preferably, for example, an alumina substrate or a glass ceramic substrate.
金属層膜は、 例えば、 銅 (C u ) 膜からなるものとすることができる。  The metal layer film can be made of, for example, a copper (Cu) film.
また、 非磁性導電性材料膜は磁性 N iよりもピツカ一ス硬度が大きい材料から なる膜であることが好ましい。  In addition, the nonmagnetic conductive material film is preferably a film made of a material having a higher pick-up hardness than magnetic Ni.
第一の導電性膜と非磁性導電性材料膜と第二の導電性膜とは同一形状を有する ものとして構成することができる。 あるいは、 非磁性導電性材料膜は第一の導電 性膜の上面及び側面を覆うようにして形成し、 第二の導電性膜は非磁性導電性材 料膜の上面及び側面を覆うようにして形成することができる。  The first conductive film, the non-magnetic conductive material film, and the second conductive film can be configured to have the same shape. Alternatively, the nonmagnetic conductive material film is formed so as to cover the upper surface and side surfaces of the first conductive film, and the second conductive film is formed so as to cover the upper surface and side surfaces of the nonmagnetic conductive material film. Can be formed.
第一の導電性膜は 2 乃至 7 mの範囲の厚さを有していることが好ましい。 また、 第二の導電性膜は 0. 5 m乃至 5 mの範囲の厚さを有していること が好ましい。  Preferably, the first conductive film has a thickness in the range from 2 to 7 m. Further, it is preferable that the second conductive film has a thickness in a range of 0.5 m to 5 m.
本発明は、 さらに、 上述の何れかの複合基板型サーキユレ一夕を備え、 導電性 薄膜からなる回路の入力端及び出力端となる三本のマイクロストリップ · ライン のうちの一つに終端抵抗が接続されてなるァイソレータを提供する。 図面の箇単な説明  The present invention further comprises any one of the above-described composite substrate-type circuit elements, wherein one of three microstrip lines serving as an input terminal and an output terminal of a circuit formed of a conductive thin film has a termination resistor. A connected isolator is provided. Brief description of drawings
図 1は、 本発明の一実施例に係る複合基板型サ一キュレ一タにおけるサーキュ レータ回路の構造の一例を示す平面図である。  FIG. 1 is a plan view showing an example of the structure of a circulator circuit in a composite substrate type circulator according to one embodiment of the present invention.
図 2は、 図 1の A— A線における断面図である。  FIG. 2 is a cross-sectional view taken along line AA of FIG.
図 3は、 図 1の B— B線における断面図である。  FIG. 3 is a cross-sectional view taken along line BB of FIG.
図 4は、 図 1に示した複合基板型サーキユレータにおける異種金属三層構造か らなるマイクロストリップ ·ラインの断面形状の一例を示す断面図である。 Figure 4 shows the three-layer structure of the dissimilar metal in the composite substrate type circulator shown in Figure 1. FIG. 2 is a cross-sectional view showing an example of a cross-sectional shape of a microstrip line made of the above.
図 5は、 図 1に示した複合基板型サーキュレータにおける異種金属三層構造か らなるマイクロストリップ . ラインの断面形状の他の例を示す断面図である。 好ましい実施例の詳細な説明  FIG. 5 is a cross-sectional view showing another example of a cross-sectional shape of a microstrip line having a three-layer structure of dissimilar metals in the composite substrate type circulator shown in FIG. Detailed Description of the Preferred Embodiment
本発明に係る複合基板型サーキュレー夕においては、 素子の上面に形成される サ一キュレ一タ回路ならびにグランドパットを構成する導電性薄膜を異種金属か らなる三層構造とする。 この三層構造の最上層には、導電性エポキシと比較して、 格段にボンディング性の良い A u膜を配する。 最下層としては、 フエライ ト円板 とそれを埋め込む誘電体材料膜に対する密着性に優れた C u層を用いる。 また、 最上層の A u膜と最下層の C u層との間に、 両層を接合する中間層として非磁性 導電性材料膜を採用する。 サーキユレ一夕回路及びグランドパットをこのような 三層からなる導電性薄膜から構成することにより、 周波数特性などのサ一キュレ —夕の電気特性のバラツキを抑えるものである。  In the composite substrate type circulator according to the present invention, the circulator circuit formed on the upper surface of the element and the conductive thin film forming the ground pad have a three-layer structure made of different metals. On the top layer of this three-layer structure, an Au film with much better bonding properties than conductive epoxy is provided. As the lowermost layer, a Cu layer having excellent adhesion to the ferrite disk and the dielectric material film embedded therein is used. In addition, a nonmagnetic conductive material film is adopted between the uppermost Au film and the lowermost Cu layer as an intermediate layer for joining the two layers. By forming the circuit and the ground pad from such a three-layered conductive thin film, variations in electrical characteristics such as frequency characteristics can be suppressed.
以下に、 図面を参照しつつ、 本発明の複合基板型サ一キユレ一夕の一実施例を 説明する。  Hereinafter, an embodiment of a composite substrate type circuit according to the present invention will be described with reference to the drawings.
本発明に係る複合基板型サーキュレータは、 サーキュレ一タ回路及びグランド パッ トを構成する導電性薄膜の構造を除き、 その素子構造自体は任意の構造を採 用することができる。 従って、 図 1に示す構造の複合基板型サーキユレ一夕を例 に採り、 本発明の一実施例に係る複合基板型サーキュレー夕の基本的な構成を説 明する。  The composite substrate type circulator according to the present invention can employ any structure as the element structure itself except for the structure of the conductive thin film constituting the circulator circuit and the ground pad. Therefore, the basic configuration of a composite substrate type circulator according to an embodiment of the present invention will be described by taking a composite substrate type circular circuit having the structure shown in FIG. 1 as an example.
図 1は、 本発明の一実施例に係る複合基板型サーキュレータにおけるサーキュ レータ回路の構造の一例を示す平面図である。 図 2は、 図 1の A— A線における 断面図であり、 図 3は、 図 1の B— B線における断面図である。  FIG. 1 is a plan view showing an example of the structure of a circulator circuit in a composite board type circulator according to one embodiment of the present invention. FIG. 2 is a cross-sectional view taken along line AA of FIG. 1, and FIG. 3 is a cross-sectional view taken along line BB of FIG.
本実施例に係る複合基板型サーキユレ一夕は、 図 2及び図 3に示すように、 第 一の誘電体基板 6と、 第一の誘電体基板 6の片面上に形成されたグランド層とし ての金属膜 5と、 金属膜 5上に導電性接着剤層 1 1を介して固定された円柱状の フェライ ト円板 1 0と、 金属膜 5上においてフヱライト円板 1 0を埋め込むよう にフヱライ ト円板 1 0の周囲に設けられた第二の誘電体材料膜 4と、 フヱライ ト 円板 1 0及び第二の誘電体材料膜 4上に形成された導電性薄膜からなる回路 1 3 と、 からなる。 As shown in FIGS. 2 and 3, the composite substrate type circuit according to the present embodiment includes a first dielectric substrate 6 and a ground layer formed on one surface of the first dielectric substrate 6. Metal film 5, a cylindrical ferrite disk 10 fixed on the metal film 5 via a conductive adhesive layer 11, and a filler disk 10 embedded on the metal film 5. A second dielectric material film 4 provided around the disk 10 and And a circuit 13 made of a conductive thin film formed on the disk 10 and the second dielectric material film 4.
この導電性薄膜からなる回路 1 3は、 上方から見ると、 図 1に示すように、 円 形導体部 9と、 円形導体部 9から 3方向に等円周角方向に延びる三本のマイク口 ストリップ ·ライン 7と、 各マイクロストリップ ·ライン 7の入出力端の両側に 配置されているグランドパット 8と、 からなる。  When viewed from above, this circuit 13 made of a conductive thin film has a circular conductor portion 9 and three microphone ports extending in three equal circumferential angles from the circular conductor portion 9 as shown in FIG. A strip line 7 and ground pads 8 disposed on both sides of the input / output end of each microstrip line 7.
図 2に示すように、 グランドパット 8は、 第二の誘電体材料膜 4の内部におい てその厚さ方向に形成されているビア 1 2を介して下面の金属膜 5と導通されて いる。  As shown in FIG. 2, the ground pad 8 is electrically connected to the metal film 5 on the lower surface via a via 12 formed in the thickness direction inside the second dielectric material film 4.
図 1に示すように、 本実施例に係る複合基板型サーキユレ一夕は、 複合基板全 体を保持する下地基板として、 第一の誘電体基板 6を利用する。 この第一の誘電 体基板 6は、 当然のことながら、 非磁性 ·非導電性材料で形成されている。 第一 の誘電体基板 6としては、 例えば、 アルミナ基板あるいはガラスセラミック基板 など、 絶縁性が高く、 また、 機械的な強度も高い材料の基板を用いることが好ま しい。  As shown in FIG. 1, the composite substrate type circuit according to the present embodiment uses a first dielectric substrate 6 as a base substrate for holding the entire composite substrate. The first dielectric substrate 6 is, of course, formed of a non-magnetic and non-conductive material. As the first dielectric substrate 6, for example, it is preferable to use a substrate made of a material having high insulating properties and high mechanical strength, such as an alumina substrate or a glass ceramic substrate.
本実施例に係る複合基板型サーキュレー夕の動作領域は、 この第一の誘電体基 板 6の上部に設けられる。  The operating region of the composite substrate type circulator according to the present embodiment is provided above the first dielectric substrate 6.
先ず、 第一の誘電体基板 6の片面 (上面) に金属膜 5を形成する。 第一の誘電 体基板 6としてアルミナ基板あるいはガラスセラミック基板などを利用する際に は、 金属膜 5としては、 第一の誘電体基板 6への密着性に優れ、 また、 導電性も 高い C u膜を用いることが好ましい。  First, the metal film 5 is formed on one surface (upper surface) of the first dielectric substrate 6. When an alumina substrate or a glass ceramic substrate is used as the first dielectric substrate 6, the metal film 5 has excellent adhesion to the first dielectric substrate 6 and has high conductivity. Preferably, a membrane is used.
この金属膜 5は第一の誘電体基板 6の片面の全面に形成され、 サ一キユレ一夕 のグランド層として機能する。 また、 C u膜は、 その上に配置される第二の誘電 体膜層 4との密着性にも優れ、 サ一キユレ一夕のグランド層として好ましいもの である。  The metal film 5 is formed on the entire surface of one surface of the first dielectric substrate 6 and functions as a ground layer for the entire circuit. Further, the Cu film is excellent in adhesion to the second dielectric film layer 4 disposed thereon, and is preferable as a ground layer for the solar cell.
図 1に示すように、 円形磁性体が発生するバイァス磁界とサ一キユレ一タ回路 を流れる高周波電流が誘起する磁界との相互作用に由来するジャイロ磁気現象を 利用する複合基板型サ一キユレ一夕においては、グランド層となる金属膜 5上に、 円形磁性体、 本実施例においては、 フ Xライ ト円板 1 0が導電性接着剤 1 1を用 いて固着ざれる。 As shown in Fig. 1, a composite substrate-type circuit using a gyromagnetic phenomenon caused by the interaction between a bias magnetic field generated by a circular magnetic body and a magnetic field induced by a high-frequency current flowing through the circuit. In the evening, a circular magnetic material is used on the metal film 5 serving as the ground layer, and in this embodiment, the X-light disc 10 uses a conductive adhesive 11. And sticks.
さらに、 金属膜 5上に、 フヱライ ト円板 1 0を埋め込むように第二の誘電体材 料膜 4を一体に形成する。 この第二の誘電体材料膜 4は、 導電性接着剤 1 1を用 いて固着したフヱライ ト円板 1 0を埋め込むように、 フヱライ ト円板 1 0を固着 した後で形成したものでもよい。 逆に、 フヱライ ト円板 1 0を揷入する穴を第二 の誘電体材料膜に形成し、 その後、 フヱライト円板 1 0をその穴に挿入し、 フエ ライ ト円板 1 0を金属膜 5上に固着してもよい。  Further, the second dielectric material film 4 is integrally formed on the metal film 5 so as to embed the light disk 10. The second dielectric material film 4 may be formed after the light disk 10 is fixed so as to embed the light disk 10 fixed by using the conductive adhesive 11. Conversely, a hole for inserting the bright disk 10 is formed in the second dielectric material film, and then the bright disk 10 is inserted into the hole, and the bright disk 10 is connected to the metal film. 5 may be fixed on the top.
第二の誘電体材料膜 4に用いる誘電体材料は、 サ一キユレ一夕の動作周波数領 域における誘電損失の少ない材料を選択することが好ましい。  As the dielectric material used for the second dielectric material film 4, it is preferable to select a material having a small dielectric loss in the operating frequency range over a short period of time.
フェライト円板 1 0を金属膜 5上に固着した後、 フヱライ ト円板 1 0を埋め込 む第二の誘電体材料膜 4を形成する方法を採用する場合には、 損失の少ない樹脂 を用いることができる。 この樹脂を用いて、第二の誘電体材料膜 4を形成すると、 本質的にフ ライ ト円板 1 0と第二の誘電体材料膜 4との間に間隙が生じること はなく、 より好ましいものとなる。 すなわち、 この間隙から浸入する薬剤などに 起因する金属膜 5の侵食等を防止することができる。  When the method of forming the second dielectric material film 4 in which the ferrite disc 10 is fixed on the metal film 5 and then embedding the ferrite disc 10 is adopted, a resin with low loss is used. be able to. When this resin is used to form the second dielectric material film 4, there is essentially no gap between the fly disk 10 and the second dielectric material film 4, which is more preferable. It will be. That is, it is possible to prevent erosion of the metal film 5 due to a chemical or the like entering from the gap.
また、 動作周波数領域が数十 G H zなどと高くするために、 素子寸法、 フェラ イ ト円板 1 0の直径及び厚さを小型化する際にも、 樹脂によりフヱライ ト円板 1 0の周囲を埋め込み、 第二の誘電体材料膜 4を形成する方式は、 作業効率及び精 度の面でもより有利なものとなる。  Also, in order to increase the operating frequency range to several tens of GHz, etc., when reducing the element dimensions and the diameter and thickness of the ferrite disk 10, the resin The method of forming the second dielectric material film 4 by embedding is more advantageous in terms of work efficiency and accuracy.
フヱライト円板 1 0に用いる磁性材料は、 発生させるバイアス磁界の強度を考 慮して適宜選択される。 この磁性材料が、 磁化保持力の小さい軟磁性材料の場合 には、 外部磁場、 具体的には、 上空に永久磁石材料を配置して、 この軟磁性材料 を磁化する。  The magnetic material used for the filler disk 10 is appropriately selected in consideration of the strength of the generated bias magnetic field. When the magnetic material is a soft magnetic material having a small coercive force, a permanent magnet material is arranged in an external magnetic field, specifically, in the sky, and the soft magnetic material is magnetized.
一方、 フ Xライ ト円板 1 0に用いる磁性材料として、 保持力の大きい磁性材料 を使用する場合は、 一旦磁化した後に残留磁化が維持されるので、 軟磁性材料を 使用した場合のような永久磁石の使用は不必要となる。  On the other hand, when a magnetic material having a large coercive force is used as the magnetic material used for the X-light disc 10, since the remanent magnetization is maintained after being magnetized once, it is similar to the case where a soft magnetic material is used. The use of permanent magnets becomes unnecessary.
本実施例に係る複合基板型サーキュレ一タにおいては、 上面に設けるサーキュ レ一タ回路用としての導電性薄膜及ぴ下面に設けるグランド層としての金属膜 5 の双方ともに磁性材料を用いていないので、 フェライ ト円板 1 0に用いる磁性材 料としては、 磁化保持力の小さい軟磁性材料及び磁化保持力の大きい磁性材料の 何れを用いることもできる。 In the composite substrate type circulator according to the present embodiment, a magnetic material is not used for both the conductive thin film provided on the upper surface for the circulator circuit and the metal film 5 provided as the ground layer on the lower surface. , Ferrite disk 10 Magnetic material As the material, any of a soft magnetic material having a small magnetization coercive force and a magnetic material having a large magnetization coercive force can be used.
フェライ ト円板 1 0を構成する磁性材料として磁化保持力の大きい磁性材料を 用いると、 集積化した高周波回路内に実装する際、 より好適となる。  When a magnetic material having a large magnetization coercive force is used as the magnetic material forming the ferrite disk 10, it becomes more suitable when mounted in an integrated high-frequency circuit.
フヱライ ト円板 1 0及び第二の誘電体材料膜 4の上面は、 下面のグランド層と なる金属膜 5の上面、 実際には、 下地基板の第一の誘電体基板 6の上面と平行と なるように、 必要に応じて、 研磨加工を施す。 最終的には、 フヱライト円板 1 0 及び第二の誘電体材料膜 4の上面は、 フェライ ト円板 1 0の上面と第二の誘電体 材料膜 4の表面が同一水平面内に露出した平滑な平面形状とされる。  The upper surfaces of the light disk 10 and the second dielectric material film 4 are parallel to the upper surface of the metal film 5 serving as the ground layer on the lower surface, in fact, the upper surface of the first dielectric substrate 6 of the underlying substrate. Polishing is performed as necessary so that Ultimately, the upper surfaces of the ferrite disk 10 and the second dielectric material film 4 are smooth with the upper surface of the ferrite disk 10 and the surface of the second dielectric material film 4 exposed in the same horizontal plane. It has a simple planar shape.
なお、 その際、 第二の誘電体材料膜 4の厚さは、 サーキユレ一夕の動作周波数 領域に応じて、 サーキュレータ回路のマイクロストリップ 'ライン線路 7を伝播 する高周波電流の損失を抑制するように最適に選択することが好ましい。  At this time, the thickness of the second dielectric material film 4 is set so as to suppress the loss of the high-frequency current propagating through the microstrip line line 7 of the circulator circuit according to the operating frequency range of the circuit. It is preferable to select an optimal one.
この段階で、 第二の誘電体材料膜 4を貫通し、 下面のグランド層となる金属膜 5と上面に設けるグランドパット 8との間の電気的導通をとるビア 1 2を所定の 位置に形成する。  At this stage, vias 12 that penetrate the second dielectric material film 4 and establish electrical continuity between the metal film 5 serving as the ground layer on the lower surface and the ground pad 8 provided on the upper surface are formed at predetermined positions. I do.
次いで、 フヱライ ト円板 1 0及び第二の誘電体材料膜 4上に回路 1 3をなす異 種金属三層構造を形成する。 この三層構造は、 最上層の A u膜と、 最下層の C u 層と、 これら 2つの層の間に中間層として形成され、 両層を接合する非磁性導電 性材料膜 1と、 からなつている。  Next, a heterometallic three-layer structure forming a circuit 13 is formed on the fly disk 10 and the second dielectric material film 4. This three-layer structure is composed of an uppermost Au film, a lowermost Cu layer, and a nonmagnetic conductive material film 1 which is formed as an intermediate layer between these two layers and joins both layers. I'm sorry.
下層の C u層 3は、 グランド層としての金属層 5に好適な C u層と同様に、 フ ヱライト円板 1 0及び第二の誘電体材料膜 4との間の密着性の点で好ましいもの として選択される。  Like the Cu layer suitable for the metal layer 5 as the ground layer, the lower Cu layer 3 is preferable in terms of adhesion between the disk 10 and the second dielectric material film 4. Selected as
最上層の A u層 2は、 A uワイヤーによるボンディングに最も適する電極材料 であり、 また、 その高い電導性から選択されている。  The uppermost Au layer 2 is the most suitable electrode material for Au wire bonding, and is selected for its high conductivity.
非磁性導電性材料膜 1は、 主として、 下層の C u層 3と最上層の A u層 2とを 接合する目的で設けられる。 また、 最上層の A u層 2をメツキ法で形成する際に は、 そのメツキ下地として機能し、 メツキ中に下層の C u層 3に損傷が生じない ように C u層 3を防護する目的をも有している。  The nonmagnetic conductive material film 1 is provided mainly for the purpose of bonding the lower Cu layer 3 and the uppermost Au layer 2 to each other. Also, when the uppermost Au layer 2 is formed by plating, it functions as a plating underlayer and protects the Cu layer 3 so that the lower Cu layer 3 is not damaged during plating. It also has
従って、非磁性導電性材料膜 1に利用される材料は、非磁性導電性材料であり、 さらに、 下層の C u層 3と最上層の A u層 2との接合、 メツキ下地の機能をも十 分に満足するものを選択することが好ましい。 Therefore, the material used for the non-magnetic conductive material film 1 is a non-magnetic conductive material, Furthermore, it is preferable to select a material that sufficiently satisfies the function of the junction between the lower Cu layer 3 and the uppermost Au layer 2 and the function of the plating underlayer.
この条件に適う好適な非磁性導電性材料として、 N i—Pなどを挙げることが できる。  Suitable nonmagnetic conductive materials that meet this condition include Ni-P and the like.
加えて、 最上層の A u層 2に A uワイヤーによるボンディングを行った際、 そ のボンディング性が、 従来、 中間層に利用されていた磁性 N i膜と比較して、 遜 色ないか、 あるいは、 より優れている材料を選択することが好ましい。  In addition, when Au wire is bonded to the uppermost Au layer 2, the bonding performance is comparable to that of the magnetic Ni film conventionally used for the intermediate layer. Alternatively, it is preferable to select a better material.
例えば、 磁性 N i膜よりもビッカース硬度が大きい材料は、 非磁性導電性材料 膜 1として、 より好適であり、 N i— Pはその一例である。 具体的には、 非磁性 N i—P膜のビッカース硬度 ( 5 0 O H v以上) は磁性 N iメツキ膜のピッカー ス硬度 (1 0 O H v程度) より大きい。 従って、 それらの膜上に形成する A uメ ツキ膜 2のボンディング性を比較すると、 非磁性 N i - P膜の方が磁性 N iメッ キ膜よりも良好である。 非磁性 N i—P膜上に形成する A u層 2のボンディング 性と磁性 N iメツキ膜上に形成する A u層 2のボンディング性とを同程度のもの にするとすれば、 非磁性 N i一 P膜の必要膜厚は磁性 N iメツキ膜の必要膜厚よ り格段に薄いものとすることができる。  For example, a material having a Vickers hardness higher than that of the magnetic Ni film is more suitable as the nonmagnetic conductive material film 1, and Ni-P is one example thereof. Specifically, the Vickers hardness of the non-magnetic Ni—P film (50 OHv or more) is larger than the Pickers hardness of the magnetic Ni plating film (about 10 OHv). Therefore, comparing the bonding properties of the Au plating films 2 formed on those films, the nonmagnetic Ni-P film is better than the magnetic Ni plating film. Assuming that the bonding property of the Au layer 2 formed on the non-magnetic Ni—P film and the bonding property of the Au layer 2 formed on the magnetic Ni film are comparable, the non-magnetic N i The required film thickness of the P film can be much smaller than the required film thickness of the magnetic Ni plating film.
下層の C u層 3の厚さは、 フヱライ ト円板 1 0及び第二の誘電体材料膜 4との 密着を図るのに必要な範囲であればよく、不要に厚くする必要はない。そのため、 例えば、 2 m乃至 7 mの範囲、 特には、 3 m乃至 5 rnの範囲に選択する ことが好ましい。 このような膜厚範囲であれば、 非磁性導電性材料膜 1をメツキ 法で作製する際、 C u層 3はメッキ下地膜としても十分に機能する。  The thickness of the lower Cu layer 3 may be within a range necessary for achieving close contact with the flat disk 10 and the second dielectric material film 4, and need not be unnecessarily thick. Therefore, it is preferable to select, for example, a range of 2 m to 7 m, particularly a range of 3 m to 5 rn. With such a thickness range, when producing the nonmagnetic conductive material film 1 by the plating method, the Cu layer 3 sufficiently functions as a plating base film.
C u層 3の作製方法は、 フ ライ ト円板 1 0及び第二の誘電体材料膜 4との密 着性を満足するものであれば、 どのような作製方法を用いてもよいが、 例えば、 緻密な C u層 3を形成するためには、 スパッタ法ゃメツキ法を用いることが好ま しい。  As a method for forming the Cu layer 3, any method may be used as long as the adhesion to the fly disk 10 and the second dielectric material film 4 is satisfied. For example, in order to form a dense Cu layer 3, it is preferable to use a sputtering method or a plating method.
中間層の非磁性導電性材料膜 1の膜厚は、 所望とするボンディング性を達成す るため、 例えば、 非磁性導電性材料膜 1をなす非磁性導電性材料のピツカ一ス硬 度を考慮すると、 その下限値は自ずから定まる。  The film thickness of the non-magnetic conductive material film 1 of the intermediate layer is, for example, considering the pick hardness of the non-magnetic conductive material forming the non-magnetic conductive material film 1 in order to achieve a desired bonding property. Then, the lower limit is determined by itself.
一方、 本実施例における非磁性導電性材料膜 1は余剰な磁界発生を引き起こさ ないので、 原理的には、 必要以上に厚くならない範囲であれば、 その膜厚に上限 はない。 しかしながら、 多くの非磁性導電性材料の電気伝導度は最上層に用いるOn the other hand, the non-magnetic conductive material film 1 in the present embodiment causes an extra magnetic field to be generated. In principle, there is no upper limit on the film thickness as long as it does not become unnecessarily thick. However, the electrical conductivity of many non-magnetic conductive materials is used for the top layer
A u層 2と比較すると相当劣っており、最上層に用いる A u層 2の膜厚と比べて、 過度に厚くない範囲とすることが好ましい。 It is considerably inferior to the Au layer 2 and is preferably in a range that is not excessively thick compared to the film thickness of the Au layer 2 used as the uppermost layer.
加えて、 非磁性導電性材料膜 1を、 例えば、 メツキ法により形成する場合、 そ の膜厚を薄く しすぎると、 ピンホールを生じる頻度が高くなる。 このため、 非磁 性導電性材料膜 1の膜厚は 0. 3 m以上に設定し、 このピンホール発生の問題 を回避することが好ましい。  In addition, when the non-magnetic conductive material film 1 is formed by, for example, a plating method, if the film thickness is too thin, pinholes occur more frequently. For this reason, it is preferable to set the thickness of the nonmagnetic conductive material film 1 to 0.3 m or more to avoid the problem of the occurrence of pinholes.
• また、 メツキ法は、 他の成膜方法と比べて、 膜厚の大きい膜の形成に適してい るため、 非磁性導電性材料膜 1の膜厚の上限を 5 i mとすると、 作業性の面でも 好ましいものとなる。  • Since the plating method is more suitable for forming a film having a larger thickness than other film forming methods, if the upper limit of the film thickness of the nonmagnetic conductive material film 1 is set to 5 im, workability is improved. It is also favorable in terms of surface.
従って、 非磁性導電性材料膜 1の膜厚は、例えば、 N i—P膜を用いる際には、 好ましくは、 0. 3 m以上かつ 5〃m以下の範囲に、 より好ましくは、 1 m 以上かつ 3 m以下の範囲に設定する。  Therefore, the film thickness of the nonmagnetic conductive material film 1 is preferably in the range of 0.3 m or more and 5 μm or less, more preferably 1 m when using a Ni—P film. Set it within the range of 3 m or less.
しかしながら、 後に検証例を示すように、 本実施例に係る複合基板型サ一キュ レー夕においては、 中間層の非磁性導電性材料膜 1の膜厚は、 サーキユレ一夕の 周波数特性などの電気特性に本質的になんら影響を及ぼさない。 このため、 非磁 性導電性材料膜 1の膜厚の範囲は、 主にボンディング性と作製上の制約から好ま しいとされる範囲に設定すればよい。  However, as will be shown later in the verification example, in the composite substrate type circulating device according to the present embodiment, the thickness of the non-magnetic conductive material film 1 of the intermediate layer depends on the electric characteristics such as the frequency characteristics of the circuit. Has essentially no effect on properties. For this reason, the range of the thickness of the nonmagnetic conductive material film 1 may be set to a range that is preferable mainly due to bonding characteristics and restrictions on fabrication.
この非磁性導電性材料膜 1は回路パターンに合わせて形成される。 このため、 非磁性導電性材料膜 1の形成方法としては、 非磁性導電性材料膜 1をなす非磁性 導電性材料に応じて、 パターン形成に適する方法を選択することが好ましい。 なお、 非磁性導電性材料膜 1と最上層の A u層 2との膜厚合計が 1 mを超え る場合であって、 この両層を同一形状に形成する場合には、 例えば、 マスクを利 用してメッキ法で形成することが好ましい。  This nonmagnetic conductive material film 1 is formed according to the circuit pattern. Therefore, as a method for forming the nonmagnetic conductive material film 1, it is preferable to select a method suitable for pattern formation according to the nonmagnetic conductive material forming the nonmagnetic conductive material film 1. When the total thickness of the nonmagnetic conductive material film 1 and the uppermost Au layer 2 exceeds 1 m, and both layers are formed in the same shape, for example, a mask may be used. It is preferable to use and form by plating.
最上層の A u層 2は、 サ一キュレー夕回路、 例えば、 マイクロストリップ - ラ イン線路 7の抵抗を主に支配するものである。 このため、 A u層 2の適切な膜厚 は、 動作周波数領域及びマイクロストリップ 'ライン線路 7の幅に依存して変わ るが、 一般的には、 0. 5 乃至 5 の範囲が好ましく、 0. 7 ^ m乃至 2 mの範囲がより好ましい。 The uppermost Au layer 2 mainly controls the resistance of the circular circuit, for example, the microstrip-line line 7. For this reason, the appropriate thickness of the Au layer 2 varies depending on the operating frequency region and the width of the microstrip line line 7, but is generally preferably in the range of 0.5 to 5, .7 ^ m ~ 2 The range of m is more preferred.
なお、 A uワイヤ一によるボンディングは A u層 2に対して行うので、 ボンデ ィングに用いる A uワイヤーの直径に応じて、 A u層 2の膜厚の下限が定まる。 このため、 前述の A u層 2の膜厚範囲はこの下限をも満たすように選択する。 通 常、 最上層の A u層 2の膜厚は少なくとも 1 m程度に設定される。 A u層 2と 非磁性導電性材料膜 1とを同一形状に形成する際には、 例えば、 マスクを利用し てメツキ法で形成することが好ましい。  Since the bonding by the Au wire is performed on the Au layer 2, the lower limit of the film thickness of the Au layer 2 is determined according to the diameter of the Au wire used for bonding. For this reason, the thickness range of the Au layer 2 is selected so as to satisfy this lower limit. Normally, the thickness of the uppermost Au layer 2 is set to at least about 1 m. When the Au layer 2 and the nonmagnetic conductive material film 1 are formed in the same shape, it is preferable to form the Au layer 2 and the nonmagnetic conductive material film 1 by, for example, a plating method using a mask.
サーキユレ一夕回路 1 3に用いる導電性薄膜は、 C u膜 3、 非磁性導電性材料 膜 1、 A u膜 2の順に形成されてなる三層の積層構造をなす。 この三層構造は、 図 4に示すように、 三層 3、 1、 2とも同一形状に構成することができる。 この ように三層 3、 1、 2とも同一形状に形成する場合には、 下層の C u膜 3をメッ キ下地として、 非磁性導電性材料膜 1と最上層の A u層 2とを同一マスクを利用 して、 順次、 メツキ法で形成することが好ましい。  The conductive thin film used in the circuit 13 has a three-layer structure in which a Cu film 3, a nonmagnetic conductive material film 1, and an Au film 2 are formed in this order. In this three-layer structure, as shown in FIG. 4, the three layers 3, 1, and 2 can be formed in the same shape. When the three layers 3, 1, and 2 are formed in the same shape as described above, the nonmagnetic conductive material film 1 and the uppermost Au layer 2 are the same, with the lower Cu film 3 as a plating underlayer. It is preferable to sequentially form by a plating method using a mask.
また、 図 5に示すように、 サーキユレ一夕回路 1 3をなす三層積層構造は、 非 磁性導電性材料膜 1が下層の C u膜 3の上面及び側面を覆うように、 さらに、 最 上層の A u層 2が非磁性導電性材料膜 1の上面及び側面を覆うように、 形成する こともできる。 このように、 下層膜の側面を上層膜が覆うように構成すると、 最 上層の A u層 2をメツキで形成する際に、 最下層の C u膜 3の側端面からの薬剤 の侵食を防止することができるという利点がある。  Further, as shown in FIG. 5, the three-layer laminated structure forming the circuit 13 is composed of a nonmagnetic conductive material film 1 covering the upper surface and side surfaces of the lower Cu film 3 and a top layer. The Au layer 2 can be formed so as to cover the upper surface and side surfaces of the nonmagnetic conductive material film 1. When the upper film covers the side surface of the lower film in this way, when the uppermost Au layer 2 is formed by plating, the erosion of the drug from the side end surface of the lowermost Cu film 3 is prevented. There is an advantage that can be.
なお、 図 4及び図 5は何れも図 2の C— C線における断面を示している。 本実施例に係る複合基板型サーキュレ一タにおいては、 上面に形成するサーキ ユレ一タ回路 1 3をなす導電性薄膜は、 C u膜 3、 非磁性導電性材料膜 1、 A u 膜 2の順に形成されてなる三層の積層構造を有しているので、 回路面内には磁性 層が存在しない。 この導電性薄膜の透磁率はほぼ 1であり、 本複合基板型サーキ ユレ一夕においてマイクロ波及びミリ波電流が流れる領域においては、 バイアス 磁界発生のための磁性材料、 すなわち、 フェライ ト円板 1 0以外に磁界を発生す るものはなく、 サーキュレータ回路 1 3に固有の共振周波数で起こる磁界分布が 乱されることがない。 その結果、 非磁性導電性材料膜 1の膜厚のみが異なる同一 形状のサーキユレータ回路においては、 その動作中心周波数は、 本質的に導電性 材料膜 1の膜厚とは無関係に同一の値をとることになる。 4 and 5 each show a cross section taken along line CC of FIG. In the composite substrate type circulator according to this embodiment, the conductive thin film forming the circuit 13 formed on the upper surface is formed of the Cu film 3, the non-magnetic conductive material film 1, and the Au film 2. Since it has a three-layer laminated structure formed in order, there is no magnetic layer in the circuit plane. The magnetic permeability of this conductive thin film is almost 1, and in the region where microwave and millimeter wave currents flow in the composite circuit type circuit, a magnetic material for generating a bias magnetic field, that is, a ferrite disk 1 Nothing generates a magnetic field other than 0, and the magnetic field distribution generated at the resonance frequency specific to the circulator circuit 13 is not disturbed. As a result, in a circulator circuit having the same shape in which only the thickness of the nonmagnetic conductive material film 1 is different, the operating center frequency is essentially a conductive value. The same value is obtained regardless of the thickness of the material film 1.
中間層として C u膜と A u膜との間の密着性に優れ、 A u膜のメッキ下地層と して適している磁性金属である N i膜を用いた従来の複合基板型サ一キユレ一夕 においては、 この N i膜が磁化し、 磁界分布に乱れを生じさせ、 加えて、 その磁 化の程度にバラツキがあり、 結果として、 得られる複合基板型サ一キユレ一夕の 動作中心周波数にもバラツキが生じていた。 本実施例に係る複合基板型サ一キュ レー夕によれば、 C u膜 3と A u膜 2との間の中間層として、 磁性金属である N i膜とは異なる非磁性導電性材料膜を用いるので、 前述のような複合基板型サ一 キユレ一夕の動作中心周波数におけるバラツキは本質的に生じないものとなつて いる。  A conventional composite substrate-type solar cell using a Ni film, which is a magnetic metal that has excellent adhesion between the Cu film and Au film as the intermediate layer and is suitable as a plating underlayer for the Au film. In a short time, the Ni film is magnetized, causing a disturbance in the magnetic field distribution. In addition, the degree of the magnetization varies, and as a result, the operating center of the obtained composite substrate type solar cell is obtained. The frequency also varied. According to the composite substrate type semiconductor device according to the present embodiment, as an intermediate layer between the Cu film 3 and the Au film 2, a nonmagnetic conductive material film different from the magnetic metal Ni film is used. Therefore, there is essentially no variation in the operating center frequency of the composite substrate type circuit described above.
加えて、 仮に、 磁性 N i膜の磁化の程度が同じであっても、 個々の複合基板型 サーキュレー夕の磁性 N i膜の幅や膜厚が異なると、 各複合基板型サーキュレー 夕の動作中心周波数の変移やバラツキの要因となる。 これに対して、 本実施例に 係る複合基板型サーキュレー夕においては、 非磁性導電性材料膜 1の幅や膜厚が 異なっていても、 複合基板型サーキュレー夕の動作中心周波数の変移やバラツキ の要因とはならない。  In addition, even if the degree of magnetization of the magnetic Ni film is the same, if the width and thickness of the magnetic Ni film of each composite substrate type circulator are different, the operating center of each composite substrate type circulator is different. It causes frequency shift and variation. On the other hand, in the composite substrate type circulator according to the present embodiment, even if the width and thickness of the nonmagnetic conductive material film 1 are different, the change and the variation of the operating center frequency of the composite substrate type circulator are different. It is not a factor.
さらに、 複合基板型サーキュレー夕の動作中心周波数に変移やバラツキが生じ ると、 複合基板型サーキュレ一夕に実際に入力する高周波信号の周波数と複合基 板型サ一キュレータ自体の動作中心周波数とがー致しないものとなる。その結果、 複合基板型サ一キュレー夕に入力する高周波信号の周波数において、 アイソレー シヨンが低下し、 さらに、 損失も大きくなる。 このため、 周波数特性は実用上十 分に高くない場合も起こるが、 本実施形態に係る複合基板型サーキュレ一タにお いては、 このような周波数特性に付随す'る副次的な電気特性の低下も本質的に回 避されている。  Furthermore, if the operating center frequency of the composite board type circulator shifts or varies, the frequency of the high-frequency signal actually input to the composite board type circulator and the operating center frequency of the composite board type circulator itself are changed. -It will not be. As a result, at the frequency of the high-frequency signal input to the composite substrate type circulator, the isolation decreases and the loss also increases. For this reason, the frequency characteristics may not be sufficiently high for practical use. However, in the composite substrate type circulator according to the present embodiment, the secondary electric characteristics accompanying such frequency characteristics The decline has been essentially avoided.
本実施例に係る複合基板型サーキユレ一夕はドロップ ·ィン型サーキュレ一タ の構成を有しているので、 サーキュレー夕回路 1 3の入 ·出力端となる三本のマ イクロストリップ ' ライン 7のうちの一つに終端抵抗を接続すると、 本実施例に 係る複合基板型サ一キュレー夕をァイソレ一タとして使用することができる。 こ のアイソレ一タは、 本実施例に係る複合基板型サーキュレータをそのままの構造 で包含しているので、 周波数特性やボンディング性などはその基礎となっている 本実施例に係る複合基板型サーキユレータと本質的に一致する。 Since the composite substrate type circuit according to the present embodiment has a configuration of a drop-in type circulator, three microstrips which serve as input and output terminals of the circulator circuit 13 are used. When a terminating resistor is connected to one of them, the composite substrate type circulator according to the present embodiment can be used as an isolator. This isolator has the same structure as the composite substrate type circulator according to the present embodiment. Therefore, the frequency characteristics, the bonding properties, and the like are essentially the same as those of the composite substrate type circulator according to the present embodiment.
以下に、 具体例を示し、 本実施例に係る複合基板型サ一キユレ一夕をより具体 的に説明する。 これらの具体例は、 本発明に係る複合基板型サーキユレ一夕の最 良の実施例の一例ではあるが、 本発明はこれらの具体例に限定されるものではな い。  Hereinafter, a specific example will be described, and the composite substrate type circuit according to the present embodiment will be described more specifically. These specific examples are examples of the best embodiment of the composite substrate type circuit according to the present invention, but the present invention is not limited to these specific examples.
(具体例 1一 5 )  (Specific examples 1-5)
具体例 1—5に係る複合基板型サーキュレータは図 1に示すような構造を有す るものとした。  The composite substrate type circulator according to the specific example 1-5 has a structure as shown in FIG.
第一の誘電体基板 6としては 0. 8 mm厚さのアルミナ基板を用いた。 このァ ルミナ基板 6上にグランド層となる金属膜層 5として C u層を一面に形成した。 この C u層 5上に円板状のフェライ ト 1 0を導電性接着剤 1 1を用いて固着する。 円板状のフヱライ ト 1 0の周囲を囲み、 かつ、 金属膜層 5の表面を覆うように、 フェライ ト 1 0と同じ厚さで非導電性樹脂を塗布し、 この非導電性樹脂を硬化さ せた。 硬化後、 この非導電性樹脂を上面から研磨し、 フヱライ ト 1 0の上面と非 導電性樹脂の表面が平坦な同一面となるまで研磨加工を施した。  As the first dielectric substrate 6, an alumina substrate having a thickness of 0.8 mm was used. On this alumina substrate 6, a Cu layer was formed on one surface as a metal film layer 5 serving as a ground layer. A disk-shaped ferrite 10 is fixed on the Cu layer 5 using a conductive adhesive 11. A non-conductive resin is applied to the same thickness as the ferrite 10 so as to surround the periphery of the disk-shaped light 10 and to cover the surface of the metal film layer 5, and then cure the non-conductive resin. Let me know. After curing, the non-conductive resin was polished from the upper surface, and polished until the upper surface of the light 10 and the surface of the non-conductive resin became flat and the same surface.
なお、 研磨後の樹脂層の厚さは所定の膜厚とした。 このようにして得られた樹 脂層は第二の誘電体材料膜 4として機能する。  The thickness of the resin layer after polishing was a predetermined thickness. The resin layer thus obtained functions as the second dielectric material film 4.
第二の誘電体材料膜 4を構成する樹脂としては、 目標とする動作周波数 7 6 G H z付近において誘電損失の低い材料を選択した。  As a resin constituting the second dielectric material film 4, a material having a low dielectric loss near a target operating frequency of 76 GHz was selected.
また、 樹脂層すなわち第二の誘電体材料膜 4には、 図 1に示す三本のマイクロ ストリップ 'ライン 7に付随するグランドパット 8の配置位置に併せて、 グラン ド層である C u層 5に達するビア · ホールを形成し、 グランド層 5とグランドパ ッド 8とを電気的に接続するビア 1 2をビア ·ホールの中に形成した。  In addition, the resin layer, that is, the second dielectric material film 4 has a ground layer Cu layer 5 corresponding to the arrangement position of the ground pad 8 associated with the three microstrip lines 7 shown in FIG. Then, a via hole reaching the ground layer 5 was formed, and a via 12 electrically connecting the ground layer 5 and the ground pad 8 was formed in the via hole.
次いで、 サ一キユレ一夕回路 1 3のパターン作製のため、 先ず、 フェライ ト 1 0及び第二の誘電体材料膜 4の研磨面上にフォトレジスト膜を形成し、 その後、 回路パターンに合わせてフォ ト レジスト膜を除去し、 マスクを形成した。 このメ ツキマスクを利用して、 下層となる厚さ 4 mの C u膜 3をメツキにより形成し た。 引き続き、 この C u膜 3上に、 マスクメツキ法を利用して、 非磁性 N i— P 膜 1を回路パターンに合わせてメツキにより形成した。 Next, a photoresist film is first formed on the polished surface of the ferrite 10 and the second dielectric material film 4 in order to fabricate a pattern of the circuit 13 and then the circuit pattern is formed. The photoresist film was removed to form a mask. Using this plating mask, a lower Cu film 3 having a thickness of 4 m was formed by plating. Then, on the Cu film 3, non-magnetic Ni—P Film 1 was formed by plating according to the circuit pattern.
具体例 1一 5においては、 表 1に示すように、 この非磁性 N i— P膜 1の膜厚 を 0. 3〃m乃至 5. 0 i/mの範囲にそれぞれ選択している。 最上層の Au膜 2 もメツキにより形成し、 厚さを 1 とした。  In specific examples 115, as shown in Table 1, the thickness of the nonmagnetic Ni-P film 1 is selected in the range of 0.3 to 5.0 i / m. The uppermost Au film 2 was also formed by plating, and the thickness was set to 1.
従って、 本具体例 1—5の複合基板型サーキユレ一夕においては、 サーキユレ —夕回路 13のパターン及びグランドパッ ト 8は、 Cu膜 3、 非磁性 N i—P膜 1及び A u膜 2からなる異種金属三層構造となっており、 その断面構造は図 2に 示すような単純な積層膜とした。  Therefore, in the composite substrate type circuit of Example 1-5, the pattern of the circuit 13 and the ground pad 8 are formed from the Cu film 3, the nonmagnetic Ni-P film 1 and the Au film 2. It has a three-layer structure of dissimilar metals, and its cross-sectional structure is a simple laminated film as shown in Fig. 2.
また、 使用したフェライ ト 10は、 保持力 i Heが 3. 8 kO e (キロ ·エル ステツド)、 その残留磁束密度の指標 Brが 3600Ga u s s (ガウス) の磁気 的性質を有している。  The ferrite 10 used has a magnetic property such that the coercive force i He is 3.8 kO e (kilo-elsted) and the index Br of the residual magnetic flux density is 3600 Gauss (gauss).
一方、 具体例 1一 5の複合基板型サ一キユレ一夕と対比させるため、 比較例 1 _ 5の複合基板型サ一キュレータを作製した。 この比較例 1—5の複合基板型サ —キユレ一夕においては、 非磁性 N i—P膜 1に代えて、 同じくメツキで作製し た磁性 N i膜が用いられており、 この磁性 N i膜以外は、 具体例 1一 5の複合基 板型サーキュレー夕と同じ構造を有している。  On the other hand, a composite substrate-type circulator of Comparative Examples 1-5 was manufactured in order to compare with the composite-substrate-type circuit of Specific Examples 15-5. In the composite substrate-type circuit of Comparative Example 1-5, instead of the non-magnetic Ni-P film 1, a magnetic Ni film made of the same material was used. Except for the membrane, it has the same structure as the composite substrate type circulator of Example 15.
この比較例 1 _5においても、 表 1に示すように、 磁性 N i膜の膜厚を 0. 3 m乃至 5. 0 mの範囲にそれぞれ選択している。  Also in Comparative Examples 1 to 5, as shown in Table 1, the thickness of the magnetic Ni film was selected in the range of 0.3 m to 5.0 m.
具体例 1一 5の複合基板型サーキユレータならびに比較例 1 _ 5の複合基板型 サーキユレ一夕について、 主な電気特性である動作中心周波数、 サーキユレ一夕 動作時のポ一ト間のアイソレーション、 入力ポート ·出力ポ一ト間における損失 を測定した。 これらの測定に際しては、 各具体例及び比較例をそれぞれ複数個作 製し、 同一群内におけるバラツキの評価を行った。  Specific examples 11-5 The composite substrate type circuit circulator and the comparative example 1 _5 The composite substrate type circuit converter, the main electrical characteristics, such as the operating center frequency, the isolation between the ports during the circuit operation, and the input The loss between the port and the output port was measured. At the time of these measurements, a plurality of each of the specific examples and comparative examples were produced, and the variability in the same group was evaluated.
また、 サ一キュレ一タ回路 13のパターン及びグランドパット 8に対するボン ディング性についても併せて評価した。  In addition, the pattern of the circulator circuit 13 and the bonding property to the ground pad 8 were also evaluated.
Auワイヤ一 ·ボンディングにおけるボンディング性の良/不良判定は、 Au ワイヤーを引っ張った際、 ボンディング箇所で破断が起こった場合を不良、 それ 以外を良と判定した。  The bondability of the Au wire-bonding was judged as good or bad when the Au wire was pulled and a break occurred at the bonding location when the wire was pulled.
表 1に、 具体例 1一 5の複合基板型サ一キユレ一夕 (素子番号 1 _5) 及び比 較例 1一 5の複合基板型サ一キユレータ (素子番号 6— 10) についての評価結 果を示す。 Table 1 shows the composite substrate type circuit (element number 1 _5) and the ratio of Example 1-5. The evaluation results of the composite substrate type oscillator (element numbers 6-10) of Comparative Examples 15 are shown.
(表 1) (table 1)
Figure imgf000018_0001
表 1に示される通り、 サ一キユレ一夕回路 13及びグランドパット 8を C u膜 3、 非磁性 N i—P膜 1及び Au膜 2からなる異種金属三層構造に形成している 具体例 1—5の複合基板型サーキユレータ (素子番号 1—5) においては、 動作 中心周波数は設計値の 76 GHzに対して、 パラツキは 0. 3%以内に収まって いる。
Figure imgf000018_0001
As shown in Table 1, the circuit 13 and the ground pad 8 are formed in a heterometallic three-layer structure composed of a Cu film 3, a nonmagnetic Ni-P film 1 and an Au film 2. In the 1-5 complex substrate type circulator (element number 1-5), the operating center frequency is within the design value of 76 GHz, and the variation is within 0.3%.
これに対して、 サ一キユレ一夕回路 13及ぴグランドパット 8を Cu膜、 磁性 N i膜及び A u膜からなる異種金属三層構造に形成している比較例 1—5の複合 基板型サーキユレ一夕 (素子番号 6— 10) においては、 動作中心周波数は平均 値は設計値の 76 GHzと一致するものの、 バラツキは少ないものでも 3. 9% に達している。 On the other hand, the composite of Comparative Examples 1-5 in which the solar cell circuit 13 and the ground pad 8 are formed in a three-layer structure of dissimilar metals consisting of a Cu film, a magnetic Ni film and an Au film In the circuit type circuit (element number 6-10), the operating center frequency is 3.9% even though the average value is the same as the designed value of 76 GHz, even if the variation is small.
また、 具体例 1一 5の複合基板型サーキユレータ (素子番号 1一 5) において は、 測定周波数 76 GHzにおけるアイソレーションは概ね 45 dB、 パラツキ は最大のもので 12%でしかないが、 比較例 1一 5の複合基板型サーキュレー夕 (素子番号 6— 10) においては、 測定周波数 76 GHzにおけるアイソレーシ ョンは概ね 23 dBしかなく、 バラツキも少ないものでも 19%となっている。 さらに、 具体例 1一 5の複合基板型サ一キユレ一夕 (素子番号 1一 5) におい ては、 測定周波数 76 GHzにおける損失は概ね 2. OdB以下、 バラツキは最 大のもので 10%でしかないが、 比較例 1—5の複合基板型サーキユレ一夕 (素 子番号 6— 10) においては、 測定周波数 76 GHzにおける損失は概ね 3. 5 dBになっており、 バラツキも 13%前後となっている。  Also, in the composite board type circulator (element number 15) of Example 15 (5), the isolation at the measurement frequency of 76 GHz is approximately 45 dB, and the maximum variation is only 12%. In the composite circuit type circulator (element number 6-10), the isolation at a measurement frequency of 76 GHz is only about 23 dB, and even if the dispersion is small, it is 19%. Furthermore, in the composite substrate type sacrificial device of Example 15 (element number 115), the loss at a measurement frequency of 76 GHz is approximately 2. OdB or less, and the maximum variation is 10%. However, in the composite board type circuit (Comparative Example 1-5), the loss at the measurement frequency of 76 GHz was about 3.5 dB, and the variation was about 13%. Has become.
この電気特性の評価結果から、 具体例 1一 5の複合基板型サーキユレ一タ (素 子番号 1一 5) においては、 非磁性 N i— P膜 1を利用しており、 サーキユレ一 タ回路 13及びグランドパット 8は磁界を発生する磁性材料を含まないので、 動 作中心周波数の大きな変移 (パラツキ) を起こすこともなく、 目的とする動作中 心周波数が再現性よく得られていることがわかる。  From the results of the evaluation of the electrical characteristics, the non-magnetic Ni—P film 1 was used in the composite substrate type circuit collector (element number 115) of Example 15 and the circuit circuit 13 Since the ground pad 8 does not include a magnetic material that generates a magnetic field, the target operating center frequency can be obtained with good reproducibility without causing a large change (fluctuation) in the operating center frequency. .
—方、 比較例 1一 5の複合基板型サーキユレ一夕 (素子番号 6— 10) におい ては、 非磁性 N i _P膜 1に代えて磁性 N i膜を用いており、 この磁性体に由来 する磁界の影響により、 動作中心周波数の大きな変移 (バラツキ) が引き起こさ れていることがわかる。 磁性 N i膜の膜厚のバラツキに伴い、 磁界強度に差異が 生ずるが、 これもバ動作中心周波数のラツキを増長する要因となっているものと 考えられる。  On the other hand, in the composite substrate type circuit of Comparative Example 1-5 (element number 6-10), a magnetic Ni film is used in place of the nonmagnetic Ni_P film 1, and this magnetic material is used. It can be seen that a large shift (variation) in the operating center frequency is caused by the effect of the moving magnetic field. Variations in the magnetic field strength occur due to variations in the thickness of the magnetic Ni film, and this is also considered to be a factor that increases the variation in the center frequency of the magnetic operation.
非磁性 N i _P膜 1を利用する具体例 1一 5の複合基板型サーキュレータ (素 子番号 1—5) においては、 動作中心周波数は目標値の 76 GHzから僅かに変 移するのみであり、 その結果、 測定周波数 76GHzにおけるアイソレーション も十分に大きく、 また、 バラツキも小さなものとなっている。  In the composite substrate type circulator (element numbers 1-5) of Example 15 using the non-magnetic Ni_P film 1, the operating center frequency only slightly changes from the target value of 76 GHz. As a result, the isolation at the measurement frequency of 76 GHz is sufficiently large, and the dispersion is small.
これに対して、 磁性 N i膜を用いている比較例 1—5の複合基板型サーキュレ 一夕 (素子番号 6— 10) においては、 動作中心周波数は目標値の 76 GHzよ り有意に変移しているものが多く、 その結果、 個々の複合基板型サ一キユレータ の動作中心周波数とは有意に異なる測定周波数 76 GHzにおけるァイソレーシ ヨンは小さくなり、 また、 当然のことながら、 バラツキも大きくなつてしまって いる。 In contrast, the composite substrate-type circulator of Comparative Example 1-5 using the magnetic Ni film In the evening (element numbers 6 to 10), the operating center frequency often shifted significantly from the target value of 76 GHz, and as a result, the operating center frequency of each composite board type oscillator was At a significantly different measurement frequency of 76 GHz, the isolation is smaller and, of course, the variation is larger.
具体例 1一 5の複合基板型サーキユレ一タ (素子番号 1一 5) の測定周波数 7 6 GHzにおける損失と比較例 1—5の複合基板型サーキュレータ (素子番号 6 - 10) の測定周波数 76 GHzにおける損失との差異も動作中心周波数のバラ ツキの差異に由来するものである。 共振条件からの変移が大きい比較例 1一 5の 複合基板型サーキユレ一タ (素子番号 6— 10) においては、 測定周波数 76G Hzにおける損失が増加しており、 また、 アイソレーションが大きくないことに 伴う漏洩も見掛け上の損失を大きくする要因となっている。  Example 11 Loss at the measurement frequency of 76 GHz of the composite board type circulator (element numbers 1 to 5) of 15 and the measurement frequency of 76 GHz of the composite board type circulator (element numbers 6 to 10) of Comparative Example 1-5 The difference from the loss in the above is also due to the difference in the variation of the operating center frequency. In the composite substrate type circuit controller (element Nos. 6-10) of Comparative Example 1-5, in which the deviation from the resonance condition was large, the loss at the measurement frequency of 76 GHz increased, and the isolation was not large. The accompanying leakage is also a factor that increases the apparent loss.
非磁性 N i _P膜 1を利用する具体例 1—5の複合基板型サーキユレ一夕 (素 子番号 1一 5) 相互間においても、 上述の周波数特性は非磁性 N i— P膜 1の膜 厚には依存しておらず、 実質的に同じものとなっている。 これは、 具体例 1—5 の複合基板型サーキユレ一夕 (素子番号 1—5) においては、 非磁性 N i— P膜 1を利用しているため、 動作中心周波数を決定しているバイァス磁界はフェライ ト 10による磁界のみであり、 Cu膜 3及び Au膜 2と同じく、 非磁性 N i— P 膜 1は、バイアス磁界に擾乱を与える余剰の磁界発生源でないことの結果である。 なお、 N i— Pは N iよりも電気抵抗は大きいが、 サ一キユレ一夕回路 13の パターン、 例えば、 マイクロストリップ' ライン 7の線路抵抗を有意に変えるほ どのものではない。 損失には僅かには影響を与えるものの、 動作中心周波数など の周波数特性への影響は全くないと言える程度である。  The above-mentioned frequency characteristics between the composite substrate-type circuit elements of the specific example 1-5 using the non-magnetic Ni-P film 1 (element numbers 115) are also obtained by the non-magnetic Ni-P film 1. It does not depend on thickness, but is virtually the same. This is because the nonmagnetic Ni-P film 1 is used in the composite substrate type circuit element (element number 1-5) in Example 1-5, so the bias magnetic field that determines the operating center frequency is Is only the magnetic field generated by the ferrite 10, and as with the Cu film 3 and the Au film 2, the non-magnetic Ni-P film 1 is a result of not being an extra magnetic field source that disturbs the bias magnetic field. It should be noted that Ni-P has a higher electrical resistance than Ni, but it is not enough to significantly change the pattern of the circuit 13 such as the line resistance of the microstrip line 7, for example. Although it has a small effect on the loss, it has no effect on the frequency characteristics such as the operating center frequency.
なお、 上述する周波数特性などの電気特性に加えて、 非磁性 N i— P膜 1を利 用する具体例 1一 5の複合基板型サーキユレ一夕 (素子番号 1一 5) は何れも良 好なボンディング性を示している。  In addition to the electric characteristics such as the frequency characteristics described above, all of the composite substrate type circuit elements (element numbers 115) of Example 1-15 using the nonmagnetic Ni—P film 1 are favorable. It shows excellent bonding properties.
一方、 比較例 1一 5の複合基板型サーキユレータ (素子番号 6— 10) におい ては、 磁性 N i膜の膜厚が 0. 5〃mと 0. 3〃mのものではボンディング性が 不良となっている。 すなわち、 N iメツキ膜ではボンディング性が不良となるよ うな薄い膜厚であっても、 N i—Pメツキ膜はなお十分な強度を有している。 こ の差異は両者のビッカース硬度の顕著な差異にあるものと考えられる。すなわち、 上述の差異は N i—Pメツキ膜 1のビッカース硬度 (5 0 0 H v以上) が N iメ ツキ膜のビッカース硬度 (Ι Ο Ο Η ν程度) よりも大きいことの結果である。 ただし、 メツキ膜の膜厚をあまりに薄くすると、 ピンホールが発生する頻度が 増すため、 実用上は好ましいものではない。 On the other hand, in the composite substrate type circulator (element numbers 6-10) of Comparative Examples 1-5, the bondability was poor when the magnetic Ni film thickness was 0.5 μm and 0.3 μm. Has become. That is, the bonding property is poor in the Ni plating film. Even with such a small film thickness, the Ni-P plating film still has sufficient strength. This difference is considered to be due to the remarkable difference in Vickers hardness between the two. That is, the above difference is a result of the fact that the Vickers hardness of the Ni-P plating film 1 (500 Hv or more) is larger than the Vickers hardness of the Ni plating film (about Ι Ο Η ν). However, if the thickness of the plating film is too small, the frequency of occurrence of pinholes increases, which is not preferable in practical use.
このように、 N i—Pはボンディング性の向上にも有効であり、 より好ましい 非磁性導電性材料の一つであることが判る。 N i 一 P膜を中間層の非磁性導電性 材料膜 1として利用する際には、 メツキ法を用いる場合のピンホール発生を回避 するため、 膜厚の下限を 0. 3 mに選択することが好ましい。  Thus, Ni-P is also effective for improving the bonding property, and it is understood that Ni-P is one of the more preferable nonmagnetic conductive materials. When the Ni-P film is used as the nonmagnetic conductive material film 1 of the intermediate layer, the lower limit of the film thickness should be set to 0.3 m to avoid pinholes when using the plating method. Is preferred.
なお、 マイクロスト リップ ' ライン 7の線路抵抗は最上層の A u膜 2の電気伝 導度により支配され、 中間層の非磁性 N i—P膜 1の寄与は僅かであるが、 N i _ P自体は導電性材料としては比較的抵抗率が高いので、 余り膜厚を厚くするこ とは好ましくない。 従って、 非磁性 N i— P膜 1の膜厚の上限を設け、 例えば、 5〃mに上限を選択することが好ましい。 さらに、 非磁性 N i — P膜 1をメツキ で形成することをも考慮すると、 非磁性 N i — P膜 1の膜厚の上限を 5 mに選 択すると、 作業性の面でも好ましいものとなる。  The line resistance of the microstrip line 7 is governed by the electrical conductivity of the uppermost Au film 2, and the contribution of the nonmagnetic Ni—P film 1 in the intermediate layer is slight, but Ni_ Since P itself has a relatively high resistivity as a conductive material, it is not preferable to make the film too thick. Therefore, it is preferable to set an upper limit of the thickness of the non-magnetic Ni—P film 1, and select an upper limit of, for example, 5 μm. Furthermore, considering that the nonmagnetic Ni-P film 1 is formed by plating, if the upper limit of the thickness of the nonmagnetic Ni-P film 1 is selected to be 5 m, it is preferable in terms of workability. Become.
上述の具体例 1一 5に示したように、 上面のサーキュレータ回路パターン 1 3 とグランドパッ ト 8とを、 例えば、 下層に C u膜 3、 中間層の非磁性導電性材料 膜に N i 一 P膜 1、 最上層に A u膜 2をそれぞれ用いた異種金属三層構造から構 成すると、 動作中心周波数のバラツキの低減を図ることができ、 周波数特性など の電気特性の再現性が高い複合基板型サ一キユレ一夕を作製することができる。 この周波数特性の改善は、 非磁性導電性材料膜 1の膜厚には依存せず、 また、 複 合基板型サーキュレータの構造にも依存しない。  As shown in the above specific example 115, the circulator circuit pattern 13 on the upper surface and the ground pad 8 are, for example, a Cu film 3 in the lower layer and a Ni 1 film in the non-magnetic conductive material film in the intermediate layer. When composed of a three-layer structure of dissimilar metals using a P film 1 and an Au film 2 as the uppermost layer, variations in the operating center frequency can be reduced and composites with high reproducibility of electrical characteristics such as frequency characteristics can be achieved. A substrate-type solar cell can be manufactured. The improvement of the frequency characteristics does not depend on the thickness of the nonmagnetic conductive material film 1 and does not depend on the structure of the composite substrate type circulator.
加えて、 前記の電気特性の改善効果は非磁性導電性材料膜 1の膜厚には本質的 に依存しないため、 利用する非磁性導電性材料の硬度に応じて、 非磁性導電性材 料膜 1の膜厚を所望のボンディング性を得るのに適した膜厚に選択することがで ぎる。  In addition, since the effect of improving the electrical characteristics described above does not essentially depend on the thickness of the nonmagnetic conductive material film 1, the nonmagnetic conductive material film depends on the hardness of the nonmagnetic conductive material used. The film thickness of 1 can be selected to a film thickness suitable for obtaining a desired bonding property.
このように、 本実施例に係る複合基板型サ一キユレータによれば、 ボンディン グ性の向上を図りつつ、 同時に、 周波数特性などの電気特性の改善もなされる。 特に、 高硬度の非磁性導電性材料、 例えば、 具体例に示した N i—P膜などを利 用すると、 前述のボンディング性の向上及び周波数特性などの電気特性の改善を 一層容易に達成することができる。 産業上の利用可能性 Thus, according to the composite substrate type oscillator according to the present embodiment, the bond At the same time, electrical characteristics such as frequency characteristics are improved. In particular, when a high-hardness non-magnetic conductive material, such as the Ni-P film shown in the specific examples, is used, the above-described improvement in bonding properties and improvement in electrical characteristics such as frequency characteristics can be more easily achieved. be able to. Industrial applicability
本発明に係る複合基板型サーキュレ一タにおいては、 サーキュレータ回路パタ —ン 1 3とグランドパッ ト 8を、 中間層として非磁性導電性材料膜を用いる異種 金属三層構造から構成する。 これにより、 中間層として磁性金属膜を用いていた 従来の複合基板型サーキュレータと比較して、 動作中心周波数のバラツキを格段 に低減することができ、 同時に、 アイソレーションの大きさを増大させ、 損失を 少なくし、 また、 それらのバラツキを低減させることができる。 すなわち、 本発 明に係る複合基板型サーキュレータは従来の複合基板型サーキュレータよりも格 段に優れた電気特性を有する。  In the composite substrate type circulator according to the present invention, the circulator circuit pattern 13 and the ground pad 8 are formed of a heterometallic three-layer structure using a nonmagnetic conductive material film as an intermediate layer. As a result, compared with a conventional composite substrate type circulator using a magnetic metal film as the intermediate layer, it is possible to significantly reduce the variation of the operating center frequency, and at the same time, increase the magnitude of the isolation and reduce the loss. And variations thereof can be reduced. That is, the composite substrate type circulator according to the present invention has much better electrical characteristics than the conventional composite substrate type circulator.
この中間層に非磁性導電性材料膜を用いた異種金属三層構造を採用することに 伴う周波数特性などの電気特性の改善は、 複合基板型サーキュレータの構造には 無関係に、 達成することが可能である。 すなわち、 多様な素子構造をとる複合基 板型サーキュレータの何れにおいても、 そのような改善を施すことができる。 加えて、 前述の周波数特性の向上の効果は中間層の非磁性導電性材料膜の厚さ には本質的に依存しない。 このため、 利用する非磁性導電性材料材料の硬度に応 じて、所望のボンデイング性を得るのに適した膜厚を自由に選択することができ、 ボンディング性の向上をも併せて図ることができる。  The improvement of electrical characteristics such as frequency characteristics due to the adoption of a dissimilar metal three-layer structure using a nonmagnetic conductive material film for the intermediate layer can be achieved irrespective of the structure of the composite substrate type circulator. It is. That is, such improvements can be made in any of the composite board type circulators having various element structures. In addition, the effect of improving the frequency characteristics described above does not essentially depend on the thickness of the nonmagnetic conductive material film of the intermediate layer. For this reason, it is possible to freely select a film thickness suitable for obtaining a desired bonding property according to the hardness of the nonmagnetic conductive material to be used, and to improve the bonding property. it can.

Claims

請求の範囲 The scope of the claims
1 . 第一の誘電体基板と、 1. a first dielectric substrate;
前記第一の誘電体基板の片面上に形成された金属膜層と、  A metal film layer formed on one surface of the first dielectric substrate,
前記金属膜層上に導電性接着剤層を介して固定されたフ Xライ ト円板と、 前記金属膜層上において前記フヱライ ト円板を埋め込むように前記フヱライ ト 円板の周囲に設けられた第二の誘電体材料膜と、  An X-light disc fixed on the metal film layer via a conductive adhesive layer, and provided around the light disc so as to embed the light disc on the metal film layer. A second dielectric material film,
前記フェライ ト円板及び前記第二の誘電体材料膜上に形成された導電性薄膜か らなる回路と、  A circuit comprising a conductive thin film formed on the ferrite disk and the second dielectric material film;
からなる複合基板型サーキュレー夕であって、  It is a composite substrate type circulator consisting of
前記導電性薄膜は、  The conductive thin film,
前記フ Xライ ト円板と第二の誘電体材料膜の上面に形成された第一の導電性膜 と、  A first conductive film formed on the upper surface of the X light disk and the second dielectric material film,
前記第一の導電性膜上に形成された非磁性導電性材料膜と、  A non-magnetic conductive material film formed on the first conductive film,
前記非磁性導電性材料膜上に形成された第二の導電性膜と、  A second conductive film formed on the non-magnetic conductive material film,
からなる三層の積層構造を有することを特徴とする複合基板型サーキュレー夕。  A composite substrate type circulator, having a three-layer laminated structure consisting of:
2. 前記第一の導電性膜は銅 (C u ) からなるものであることを特徴とする 請求の範囲第 1項に記載の複合基板型サーキユレ一夕。 2. The composite substrate type circuit according to claim 1, wherein the first conductive film is made of copper (Cu).
3. 前記第二の導電性膜は金 (A u ) からなるものであることを特徴とする 請求の範囲第 1項に記載の複合基板型サ一キュレー夕。 3. The composite substrate type circulator according to claim 1, wherein the second conductive film is made of gold (Au).
4. 前記非磁性導電性材料膜が N i — P膜であることを特徴とする請求の範 囲第 1項乃至第 3項の何れか一項に記載の複合基板型サーキュレータ。 4. The circulator according to claim 1, wherein the nonmagnetic conductive material film is a Ni—P film.
5. 前記非磁性導電性材料膜の膜厚が 0. 3 以上かつ 5 m以下である ことを特徴とする請求の範囲第 1項乃至第 3項の何れか一項に記載の複合基板型 サーキュレー夕。 5. The composite substrate type circular according to any one of claims 1 to 3, wherein the nonmagnetic conductive material film has a thickness of 0.3 or more and 5 m or less. evening.
6. 前記非磁性導電性材料膜の膜厚が 1 m以上かつ 3 u m以下であること を特徴とする請求の範囲第 5項に記載の複合基板型サーキュレータ。 6. The circulator according to claim 5, wherein a thickness of the nonmagnetic conductive material film is 1 m or more and 3 μm or less.
7. 前記非磁性導電性材料膜はメツキにより形成された膜であることを特徴 とする請求の範囲第 1項乃至第 3項の何れか一項に記載の複合基板型サーキュレ 一夕。 7. The circuit board according to claim 1, wherein the nonmagnetic conductive material film is a film formed by plating.
8. 前記第二の導電性膜はメツキにより形成された膜であることを特徴とす る請求の範囲第 1項乃至第 3項の何れか一項に記載の複合基板型サーキュレータ。 8. The composite substrate type circulator according to any one of claims 1 to 3, wherein the second conductive film is a film formed by plating.
9. 前記第一の導電性膜はメツキにより形成された膜であることを特徴とす る請求の範囲第 1項乃至第 3項の何れか一項に記載の複合基板型サ一キュレー夕。 9. The composite substrate type circulator according to any one of claims 1 to 3, wherein the first conductive film is a film formed by plating.
1 0. 前記第二の誘電体材料膜が非導電性樹脂膜であることを特徴とする請 求の範囲第 1項乃至第 3項の何れか一項に記載の複合基板型サーキユレ一夕。 10. The composite substrate type circuit according to any one of claims 1 to 3, wherein the second dielectric material film is a non-conductive resin film.
1 1 . 前記第一の誘電体基板がアルミナ基板あるいはガラスセラミック基板 であることを特徴とする請求の範囲第 1項乃至第 3項の何れか一項に記載の複合 基板型サーキュレ一タ。 11. The composite substrate type circulator according to claim 1, wherein the first dielectric substrate is an alumina substrate or a glass ceramic substrate.
1 2. 前記金属層膜は銅 (C u ) 膜であることを特徴とする請求の範囲第 1 項乃至第 3項の何れか一項に記載の複合基板型サーキュレ一夕。 1 2. The composite substrate type circular circuit according to claim 1, wherein the metal layer film is a copper (Cu) film.
1 3. 前記非磁性導電性材料膜は磁性 N iよりもビッカース硬度が大きい材 料からなる膜であることを特徴とする請求の範囲第 1項乃至第 3項の何れか一項 に記載の複合基板型サーキユレ一夕。 1 3. The nonmagnetic conductive material film according to any one of claims 1 to 3, wherein the nonmagnetic conductive material film is a film made of a material having a Vickers hardness greater than magnetic Ni. A composite board type circuit.
1 4. 前記第一の導電性膜と前記非磁性導電性材料膜と前記第二の導電性膜 とは同一形状を有することを特徴とする請求の範囲第 1項乃至第 3項の何れか一 項に記載の複合基板型サーキュレー夕。 1 4. The first conductive film, the non-magnetic conductive material film, and the second conductive film The composite substrate type circulator according to any one of claims 1 to 3, wherein the circulator has the same shape as that of the circulator.
1 5. 前記非磁性導電性材料膜は前記第一の導電性膜の上面及び側面を覆う ようにして形成されており、 前記第二の導電性膜は前記非磁性導電性材料膜の上 面及び側面を覆うようにして形成されていることを特徴とする請求の範囲第 1項 乃至第 3項の何れか一項に記載の複合基板型サーキュレ一タ。 1 5. The non-magnetic conductive material film is formed so as to cover an upper surface and side surfaces of the first conductive film, and the second conductive film is an upper surface of the non-magnetic conductive material film. The composite substrate type circulator according to any one of claims 1 to 3, wherein the circulator is formed so as to cover the side surface.
1 6. 前記第一の導電性膜は 2 乃至 7 mの範囲の厚さを有しているこ とを特徴とする請求の範囲第 1項乃至第 3項の何れか一項に記載の複合基板型サ1 6. The composite according to any one of claims 1 to 3, wherein the first conductive film has a thickness in the range of 2 to 7 m. Substrate type
―ャュレ一タ。 -Jyureta.
1 7. 前記第二の導電性膜は 0. 5 m乃至 5 mの範囲の厚さを有してい ることを特徴とする請求の範囲第 1項乃至第 3項の何れか一項に記載の複合基板 型サーキュレータ。 17. The second conductive film according to any one of claims 1 to 3, wherein the second conductive film has a thickness in a range of 0.5 m to 5 m. Composite board type circulator.
1 8. 請求の範囲第 1項乃至第 1 7項の何れか一項に記載の複合基板型サー キュレ一タを備え、 1 8. comprising the composite substrate type circulator according to any one of claims 1 to 17,
前記導電性薄膜からなる回路の入力端及び出力端となる三本のマイクロストリ ップ · ラインのうちの一つに終端抵抗が接続されてなるアイソレ一夕。  An isolator in which a terminating resistor is connected to one of three microstrip lines serving as an input terminal and an output terminal of the circuit made of the conductive thin film.
PCT/JP2001/005220 2000-06-23 2001-06-19 Composite substrate type circulator WO2001099225A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-189504 2000-06-23
JP2000189504A JP2002009508A (en) 2000-06-23 2000-06-23 Composite board circulator

Publications (1)

Publication Number Publication Date
WO2001099225A1 true WO2001099225A1 (en) 2001-12-27

Family

ID=18689128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005220 WO2001099225A1 (en) 2000-06-23 2001-06-19 Composite substrate type circulator

Country Status (2)

Country Link
JP (1) JP2002009508A (en)
WO (1) WO2001099225A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292039A (en) * 2021-05-31 2021-08-24 中国电子科技集团公司第九研究所 MEMS silicon-based cavity circulator/isolator circuit film layer structure and preparation method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9136572B2 (en) 2013-07-26 2015-09-15 Raytheon Company Dual stripline tile circulator utilizing thick film post-fired substrate stacking
US9899717B2 (en) * 2015-10-13 2018-02-20 Raytheon Company Stacked low loss stripline circulator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232421A (en) * 1987-03-20 1988-09-28 Nippon Paint Co Ltd Microwave monolithic integrated circuit
JPH02241680A (en) * 1989-03-14 1990-09-26 Toshiba Corp Joining structure between laminatedly combined metal including copper layer and ceramics and microstrip line circulator using its joining structure
JP2000323905A (en) * 1999-05-07 2000-11-24 Nec Corp High-frequency irreversible circuit element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232421A (en) * 1987-03-20 1988-09-28 Nippon Paint Co Ltd Microwave monolithic integrated circuit
JPH02241680A (en) * 1989-03-14 1990-09-26 Toshiba Corp Joining structure between laminatedly combined metal including copper layer and ceramics and microstrip line circulator using its joining structure
JP2000323905A (en) * 1999-05-07 2000-11-24 Nec Corp High-frequency irreversible circuit element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292039A (en) * 2021-05-31 2021-08-24 中国电子科技集团公司第九研究所 MEMS silicon-based cavity circulator/isolator circuit film layer structure and preparation method
CN113292039B (en) * 2021-05-31 2024-03-22 中国电子科技集团公司第九研究所 MEMS silicon-based cavity circulator/isolator circuit film layer structure and preparation method

Also Published As

Publication number Publication date
JP2002009508A (en) 2002-01-11

Similar Documents

Publication Publication Date Title
JP3724405B2 (en) Common mode choke coil
US11735353B2 (en) Inductor component and method of manufacturing same
JP6447369B2 (en) Coil parts
JP3615024B2 (en) Coil parts
JP5073373B2 (en) Common mode choke coil
JP4214700B2 (en) Common mode choke coil array
US6136458A (en) Ferrite magnetic film structure having magnetic anisotropy
US9928953B2 (en) Coil component and method of manufacturing the same
US10699839B2 (en) Thin film-type inductor
WO2007145189A1 (en) Laminated ceramic electronic component
JP2012104673A (en) Coil component and manufacturing method therefor
GB2083952A (en) Microcoil Assembly
US20160196906A1 (en) Coil-embedded substrate and method of manufacturing the same
WO2006008878A1 (en) Coil component
CN109215973B (en) Thin film type inductor
JP4877157B2 (en) ANTENNA WITH THIN FILM COIL, ANTENNA SYSTEM, AND ANTENNA MANUFACTURING METHOD
US7808339B2 (en) Non-reciprocal circuit element
JP2017017142A (en) Coil component and manufacturing method for the same
WO2001099225A1 (en) Composite substrate type circulator
KR20160084716A (en) Coil component and method of manufacturing the same
JP3885749B2 (en) 2-port nonreciprocal circuit device, composite electronic component, and communication device
US20040060164A1 (en) High-performance substrate for magnetic isolator
CN1066143A (en) Magnetic head and manufacture method thereof
CN114628108B (en) Coil component
KR102669918B1 (en) Coil component

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase