WO2001098759A1 - Integrierte optische wellenleiter für mikrofluidische analysensysteme - Google Patents

Integrierte optische wellenleiter für mikrofluidische analysensysteme Download PDF

Info

Publication number
WO2001098759A1
WO2001098759A1 PCT/EP2001/005843 EP0105843W WO0198759A1 WO 2001098759 A1 WO2001098759 A1 WO 2001098759A1 EP 0105843 W EP0105843 W EP 0105843W WO 0198759 A1 WO0198759 A1 WO 0198759A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
waveguide
polymer
components
microstructured
Prior art date
Application number
PCT/EP2001/005843
Other languages
English (en)
French (fr)
Inventor
Matthias JÖHNCK
Thomas Greve
Günter Hauke
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to JP2002504471A priority Critical patent/JP2004501372A/ja
Priority to EP01960234A priority patent/EP1292822A1/de
Priority to AU2001281782A priority patent/AU2001281782A1/en
Publication of WO2001098759A1 publication Critical patent/WO2001098759A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44791Microapparatus
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0654Lenses; Optical fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0415Moving fluids with specific forces or mechanical means specific forces electrical forces, e.g. electrokinetic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12069Organic material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12069Organic material
    • G02B2006/12071PMMA
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12121Laser
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12123Diode
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12138Sensor

Definitions

  • the invention relates to microstructured miniaturized analysis systems based on polymers with integrated optical polymer optical waveguides for optical detection techniques and methods for their production.
  • Microfluidic analysis methods are known in particular in the field of capillary electrophoresis (CE).
  • CE capillary electrophoresis
  • chip technologies with planar microstructured analysis units
  • Very commonly used detection methods in the CE are e.g. optical absorption or fluorescence detection.
  • the absorption measurement in the UV range is clearly inferior to the sensitivity due to the limitation due to the short optical path length (inner diameter of the capillary) of the fluorescence measurement, in particular the laser-induced fluorescence measurement (LIF).
  • LIF laser-induced fluorescence measurement
  • Suitable arrangements for measuring fluorescence and absorption in quartz capillaries have been described in numerous cases. As a rule, they have in common that they bring optical power directly to the capillary via optical fibers.
  • excitation light is guided to a capillary through an optically higher refractive material. From this, fluorescent light is guided to a detector via optical fibers, which are connected directly to the capillary.
  • Hashimoto et al. Have also used optical fibers, which are attached directly in front of the capillary exits.
  • M. Hashimoto, K. Tsukagoshi, R. Nakajima, K. Kondo, "Compact detection cell using optical fiber for sensitization and simplification of capillary electrophoresis chemiluminescense detection," J. of Chromatography A, 832, 1999, 191-202) realized a chemiluminescence detector, an alternative The procedure is to position the optical transmitter and receiver directly in front of or behind the capillary.
  • Laser-induced fluorescence measurement is therefore generally used for chip CE detection technology.
  • a chip CE detection technology For this, a
  • Free-beam optics Laser light focused on the fluidic channel and the emission also measured using free-beam optics. However, this represents a major limitation of the detection methods for planar microstructured analysis units.
  • optical power can be routed directly to the channels of the analysis units via optical fibers by integrating optical optical fibers directly into the analysis units during the manufacturing process.
  • the coupling or decoupling of optical power in or out of the system can thus be ensured in a simple manner.
  • Microfluidic structures can be in direct or indirect contact with the optical structure.
  • the other manufacturing processes of microstructured systems based on polymers can be combined with the manufacture of the optical structures or do not impair them.
  • the present invention therefore relates to planar, microstructured, miniaturized, polymer-based analysis units which contain integrated optical polymer optical waveguides.
  • the substrate is microstructured and the cover has thin-film electrodes.
  • the present invention also relates to a method for producing microstructured, miniaturized, polymer-based analysis units which contain integrated optical polymer optical waveguides, a) providing suitable polymer-based components; b) the optical polymer optical waveguides are integrated in at least one component; c) the components are combined to form an analysis unit.
  • the present invention also relates to the use of the microstructured polymer-based analysis units which contain integrated optical polymer optical waveguides for the optical analysis of samples.
  • Figure 1 shows a microstructured analysis unit with integrated optical fibers.
  • Figure 2 shows the beam path of an absorption measurement with an analysis unit according to Figure 1.
  • Figure 3 shows an alternative microstructured analysis unit with integrated optical fibers.
  • FIGS 4 to 7 illustrate methods for producing the microstructured analysis units according to the invention with integrated optical fibers.
  • the analysis unit consists of a substrate (2) and a cover (4).
  • the substrate (2) has a channel structure (3).
  • the optical waveguides are designated by 1. If electrodes are applied to a component, they are designated by 7. Holes for e.g. Fluid connections are marked with 5.
  • Figures 1, 3, 4, 5, 6 and 7 the substrate is shown in Figure A, the lid in Figure B and the analysis unit composed of the two components, substrate and lid, in Figure C.
  • Figures 1, 3, 4, 5 and 6 each show a side view along the axis F indicated in Figure A or C.
  • FIGS. 1 and 2 The combination according to the invention of integrated optical waveguides with a microstructured fluidic analysis unit is shown schematically in FIGS. 1 and 2.
  • Planar microstructured analysis units in the sense of the invention generally consist of at least two components, for example a substrate and a lid. All components can have microstructuring, electrodes or other additional functionalities.
  • the analysis system contains at least one channel system, which is created by the microstructuring of at least one component.
  • the components can be further
  • Microstructuring e.g. Recesses for the integration or connection of functionalities, such as valves, pumps, reaction vessels, detectors etc., contain reservoirs, reaction chambers, mixing chambers, detectors etc. incorporated into the components.
  • the analysis systems according to the invention can be provided with all functionalities which are necessary for carrying out an analysis. It can also be an analysis system that only has the channel structure, the optical fiber integrated according to the invention and connections for further functionalities. In this case, the analysis systems must be provided with all the necessary functionalities before use.
  • the microstructured analysis systems according to the invention are used to analyze microfluidic systems, i.e. liquid systems and / or plasma processes, e.g. in the case of miniaturized microwave or direct current plasma.
  • the substrate 2 contains the microstructured depressions for the later channels ( Figure part A).
  • the cover 4 illustrated part B
  • the open structures in the substrate are sealed liquid-tight or gas-tight.
  • the electrodes are attached to the lid.
  • the microstructured channels are filled by Bores or recesses 5, which are usually made in the substrate.
  • the components of the analysis units preferably consist of commercially available thermoplastics, such as PMMA
  • thermosetting plastics such as epoxy resins. All components preferably exist, i.e. Substrates and lids, a system made of the same material.
  • the optical waveguide 1 can either be implemented in the substrate ( Figures 1, 5, 6 and 7) or in the cover ( Figures 3 and 4).
  • the waveguide geometry is variable over a wide range and can be adapted to the cross sections of the channel structure and the coupling conditions (light source, detector).
  • the optical properties of the waveguide e.g. Attenuation and numerical aperture are determined by the materials of the substrate or cover and waveguide.
  • the arrangement of the waveguide shown in Figure 1 is particularly well suited for fluorescence and absorption measurements
  • the arrangement shown in Figure 3 is e.g. especially suitable for fluorescence measurements.
  • Figure 2 shows the beam path for an absorption measurement with an analysis unit corresponding to Figure 1.
  • optical power is coupled into the waveguide.
  • a lens may have to be added for the coupling.
  • LEDs or SLED's a lens to be used in a rule, because of their high divergence.
  • the optical power emerging from the waveguide becomes after passage detected by the fluid in the channel 3 with the aid of the detector 11, typically a photomultiplier.
  • the wavelength range that can be used is determined by the absorption characteristics of the waveguide and substrate materials.
  • the waveguide need not be positioned on either side of the channel for fluorescence measurements.
  • a mirror surface or lens surface can also be impressed into the waveguide using the impression technique, which enables a 90 ° light deflection or focusing. This allows the coupling and uncoupling of the optical power into and out of the fluidic channel to be optimized for various applications.
  • the fluorescence in channel 3 can be excited by coupling in the optical power required for the excitation through the waveguide.
  • coupling in at a 90 ° angle to the course of the embedded optical waveguide is more suitable, since then significantly fewer stray light effects of the excitation light have to be masked out by optical filters for the detection.
  • Optical fiber-based components are well known.
  • single-mode and multi-mode integrated optical components such as optical splitters, thermo-optical switches, wavelength multiplexers, these include, above all, so-called POFs (polymer optical fibers).
  • POFs polymer optical fibers.
  • the manufacture of integrated optical components can be subdivided into several fields of technology: photobleaching (MBJ Diemer, FMM Suyten, ES Trommel, A. McDonach, JM Copeland, LW Jenneskens, WHG Horsthuis, "Photoinduced Channel waveguide formation in nonlinear optical polymers," Electron. Lett. 26, 379-380, 1990. / van der Vorst et al. In “Polymers for lightwave and integrated optics", (Ed.
  • the replication technologies include the combination of the impression technology (eg injection molding, hot stamping, reaction casting) for the production of inexpensive optical fiber structures with adhesive techniques.
  • the waveguides are formulated by filling trenches in polymers with adhesives which can be polymerized both thermally (for example by means of reaction casting) and photochemically (UV radiation).
  • the polymers formed in this process have a higher refractive index than the substrate or cover material and thus form the optical waveguides.
  • the two-component injection molding for the production of optical waveguide components represents a further process and has so far only been suitable for the production of multimode waveguides. The process is described by Groh (EP 0451549 A2) and Fischer (D. Fischer, "Multi-mode integrated optical waveguide circuits made of polymers", progress reports, VDI
  • the waveguides can be inserted both in the cover and in the substrate.
  • the analysis units according to the invention with integrated optical polymer optical waveguides, correspondingly designed components are initially provided, of which at least one component is microstructured. Depending on the method used to introduce the waveguide, the components are optionally additionally prepared for the integration of the optical structures by microstructuring or other pretreatment. Then the integration of the optical polymer optical waveguide takes place. As a rule, the polymer optical waveguide is only integrated in one of the components. Finally, the components are joined using suitable methods, preferably an adhesive process.
  • optical structure based on polymer into the components of the microstructured analysis unit based on polymer can be carried out using various techniques:
  • the nickel sheet is manufactured in accordance with the preform production for embossing the fluidic / optical structure. It should be noted here that the shrinkage of the PMMA fluidics / optics structure is taken into account by the molding process. This procedure is known to the person skilled in the art. So that the nickel sheet used to protect the fluidic structure does not adhere to the optical adhesive, about 0.1% by weight of palmitic acid is added to the adhesive as a release agent.
  • the adhesive is to be filled in either through filling and venting holes in the nickel sheet, but openings in the substrate have also proven to be suitable.
  • the adhesive is typically cured either photochemically or thermally. Any excess adhesive on the filler openings (openings in the nickel sheet) must be removed by brief polishing after hardening. If the filling openings are in the substrate, post-processing is not necessary, but the waveguide losses are then increased slightly, since the waveguide walls have cutouts with the diameter of the openings.
  • the waveguide is in direct contact with the fluid medium and is easier to connect to the optical source and detector from outside the chip.
  • the disadvantage is that that to protect the
  • the structured nickel sheet used for the fluidic structure must have an outer edge in order to prevent the adhesive from flowing out of the waveguide trench (section A in FIG. 5).
  • the waveguide trench shown in Figure 6 ends approx. 20 to 50 ⁇ m in front of the fluidic channel and also approx. 20 to 50 ⁇ m in front of the outer edge of the chip. Filling such a waveguide trench is largely unproblematic.
  • the disadvantage of this arrangement is that additional Waveguide-substrate interfaces negatively influence the optical properties due to additional Fresnel losses.
  • a trench is embossed in the cover, which is filled with a higher refractive index polymer.
  • the fluidic structures are molded into a substrate in a separate process step. Filling the trench embossed in the lid is much easier than filling the waveguide pits embossed in the substrate, since no fluidic structure has to be protected from the optical adhesive. This variant is therefore preferred.
  • the mold insert for the impression technique is manufactured using lithographic and / or micromechanical manufacturing techniques and the etching of e.g. Silicon.
  • the use of other microstructuring techniques is also possible.
  • the essential requirement for the structures, in particular the optical structures, is that the surface has a low roughness.
  • the waveguide material (NOA 61). This has a refractive index of 1.559 (589 nm, 20 ° C).
  • This glue which has an attenuation of ⁇ 0.2 dB / cm in the visible wavelength range is cured photochemically with a UV source (mercury vapor lamp HQL 125 W, Osram).
  • the substrate material or cover material used for this must be transparent at wavelengths> 350 nm.
  • the optical losses of the waveguides produced are typically between 0.2 and 0.6 dB / cm at a wavelength of 633 nm.
  • EP 0 738 306 describes a connection method in which a dissolved thermoplastic is spun onto the structured polymer substrate. This thermoplastic has a lower melting temperature than the parts to be glued. The lid and substrate are thermally bonded at 140 ° C. If waveguides are to be introduced into analysis units to be produced according to this method, the refractive index of this "bonding" thermoplastic must be smaller than that
  • the temperature stability of the waveguide material must also be greater than that of the "bond" thermoplastic. This represents a considerable disadvantage of this technology with regard to the material properties to be coordinated.
  • PDMS polydimethylsiloxane
  • the components are preferably joined together by a
  • the microstructured component is preferably first placed at those locations where none
  • an adhesive is applied.
  • the layer thickness is between 0.5 and 10 ⁇ m, preferably between 3 and 8 ⁇ m.
  • the application takes place by means of a flat roller application known from printing technology.
  • the adhesive used must not or only very slightly dissolve the surface of the components, so that any electrodes that may be present are not detached or interrupted by the adhesive during the bonding process.
  • the product NOA 72, thiol acrylate from Norland, New Brunswick, NJ, USA is therefore preferably used as the adhesive.
  • This adhesive is cured photochemically.
  • other types of adhesives such as e.g. thermally curing adhesives are used that meet the above requirements.
  • the second component is suitably positioned to the substrate, for example on an exposure machine, and the two components are brought into contact with suitable pressure.
  • suitable pressure for example on an exposure machine.
  • strong glass plates as a pressing surface so that the photochemical curing of the adhesive can be carried out directly by irradiation with an Hg lamp (emission wavelength 366 nm).
  • the positioning of the lid on the substrate can typically be done visually under manual control, passively mechanically with the aid of a latching device, optically mechanically with the aid of optical alignment marks or electrically mechanically with the help of electrical marks (contacts).
  • the component which is preferably provided with electrodes is wetted with the adhesive on the regions which do not lie over a channel when the two components are assembled or which need to be electrically contacted.
  • a method known in printing technology is used for this.
  • the component with the channel structures is then suitably positioned and pressed onto its counterpart. The curing takes place as described above.
  • the metallized lid and the substrate after they have been adjusted to one another, can first be tacked by means of laser welding.
  • the composite is then removed from the adjustment device and the adhesive used is cured in a separate exposure apparatus or an oven. This procedure means process acceleration and simplification, since curing no longer has to take place in the adjustment device.
  • thermoplastic materials which are preferably used are largely transparent to laser light in the visible and near-infrared wavelength range, laser welding requires them Wavelength range an absorber layer for absorbing the optical power at the interface between the lid and the substrate. This absorber layer is applied simultaneously with the application of the power or detector electrodes. For example, when the electrodes are sputtered with noble metal, the electrode cover can additionally be attached to others
  • the multi-component injection molding makes it possible to produce both the microfluidic structures and the optical waveguides for coupling to an optical unit outside the analysis unit in one process step.
  • the waveguide structure implemented in the cover is much easier to manufacture in this technology. This is done in a first cycle first a planar cover is molded.
  • the channel to be filled with the higher refractive index polymer ( Figure 3) is filled with the dimensions of the waveguide after pulling a core pull.
  • the sprue is removed by sawing and, if necessary, briefly polishing.
  • a non-continuous waveguide structure is sprayed onto a planar cover. This is complementary to a waveguide structure impressed into the substrate.
  • Thin-film electrodes can be included, with the above-mentioned methods, the arrangement of waveguide to fluid structure shown in Figure 1 or 4 is realized.
  • a higher refractive index polymer is pressed into a pit in a metallic mold insert (for example made of nickel) that corresponds to the waveguide structure.
  • a metallic mold insert for example made of nickel
  • an optically lower refractive polymer film is laminated to the waveguide polymer located in the pits. Pulling this combination out of the pit results in a cover with waveguides, shown in Figure 4, which can also be provided with thin-film electrodes.
  • Another manufacturing technology is to fill the trenches with the waveguide structure with an optically highly refractive adhesive which is polymerized either thermally or photochemically. After curing is complete, a polymer film is also laminated onto this polymer in the trenches, which has a lower film
  • the advantage of this technology is that it is easy to carry out, but the waveguide quality is significantly poorer than with the methods already mentioned.
  • the depth of the waveguide can be determined via the irradiation time using, for example, a low-pressure mercury lamp (TMN 15, Heraeus Noblelight), but is typically only a few micrometers.
  • the width of the waveguide is determined by the slot width in the masks.
  • the numerical aperture of the waveguides produced is only small due to the small refractive index stroke of ⁇ 0.01.
  • the waveguide attenuation is also very high at approximately 1.5 dB / cm at 633 nm.
  • the precise insertion of the film into the trench is ensured by the trench structure itself and a side stop with an accuracy of ⁇ 8 ⁇ m.
  • the optical insertion losses of waveguides produced in this way are approximately 0.5 dB / cm at a wavelength of 633 nm.
  • optical detection techniques based on absorption, scattering, refraction and optical emission, such as luminescence or fluorescence, can be implemented on these analysis units.
  • the usually cost-intensive optics is thus separated from the planar analysis unit, which is designed, for example, as a single-use item (plastic chip).
  • the introduction and removal of optical power from defined areas of the fluidic structure can be implemented in a cost-effective manner.
  • the typically planar microfluidic components are preferably used in the field of chemical and biochemical analysis.
  • the integration of optical waveguides is also suitable for the detection of optical emission or absorption in miniaturized analytical components based on polymers, which are based, for example, on plasma processes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Biochemistry (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Optical Integrated Circuits (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Optical Measuring Cells (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Die Erfindung betrifft mikrostrukturierte miniaturisierte Analysensysteme auf Polymerbasis mit integrierten optischen Polymerlichtwellenleitern für optische Detektionstechniken sowie Verfahren zu deren Herstellung.

Description

Integrierte optische Wellenleiter für mikrofluidische Analysensysteme
Die Erfindung betrifft mikrostrukturierte miniaturisierte Analysensysteme auf Polymerbasis mit integrierten optischen Polymerlichtwellenleitern für optische Detektionstechniken sowie Verfahren zu deren Herstellung.
Mikrofluidische Analysemethoden sind insbesondere im Bereich der Kapillarelektrophorese (CE) bekannt. Neben der „klassischen" CE mit Quarzglaskapillaren sind insbesondere sogenannte „Chip-Technologien" (mit planaren mikrostrukturierten Analyseeinheiten) Gegenstand zahlreicher Untersuchungen und Entwicklungen.
Sehr häufig verwendete Detektionsmethoden in der CE sind z.B. die optische Absorptions- bzw. Fluoreszenzdetektion. Die Absorptionsmessung im UV-Bereich ist aufgrund der Einschränkung durch die geringe optische Pfadlänge (Innendurchmesser der Kapillare) der Fluoreszenzmessung, insbesondere der Laser-induzierten Fluoreszenzmessung (LIF), hinsichtlich der Sensitivität deutlich unterlegen. Geeignete Anordnungen zur Fluoreszenz- und Absorptionsmessung in Quarzkapillaren sind zahlreich beschrieben. In der Regel ist diesen gemeinsam, daß sie optische Leistung über optische Fasern direkt an die Kapillare heran- bzw. wegführen. In EP 0616211 A1 z.B. wird Anregungslicht durch ein optisch höherbrechendes Material zu einer Kapillare geführt. Von dieser wird Fluoreszenzlicht über optische Fasern, welche direkt mit der Kapillare verbunden sind, zu einem Detektor geführt.
Ebenfalls mittels optischer Fasern, die allerdings direkt vor den Ausgängen der Kapillare angebracht sind, haben Hashimoto et al. (M. Hashimoto, K. Tsukagoshi, R. Nakajima, K. Kondo, „Compact detection cell using optical fiber for sensitization and simplification of capillary electrophoresis- chemiluminescense detection," J. of Chromatography A, 832, 1999, 191- 202) einen Chemilumineszenz-Detektor realisiert. Eine alternative Vorgehensweise ist die direkte Positionierung der optischen Sender und Empfänger vor bzw. hinter die Kapillare.
Für die Anwendung in planaren mikrostrukturierten miniaturisierten Analyseeinheiten sind beide zuvor genannten Vorgehensweisen nur bedingt geeignet, da es schwierig ist, die optischen Fasern bzw. Sende- und Empfangseinheiten direkt an die Kanäle heranzuführen.
Für die Chip-CE Detektionstechnik wird daher in der Regel die laserinduzierte Fluoreszenzmessung verwendet. Hierzu wird über eine
Freistrahloptik Laserlicht auf den Fluidikkanal fokussiert und die Emission ebenfalls mittels Freistrahloptik gemessen. Dies stellt jedoch eine große Einschränkung der Detektionsmethoden für planare mikrostrukturierte Analyseeinheiten dar.
Aufgabe der vorliegenden Erfindung war es daher, auch andere Detektionstechniken, wie z.B. die Absorptionsmessung, für planare mikrostrukturierte miniaturisierte Analyseeinheiten zugänglich zu machen.
Es wurde gefunden, daß optische Leistung über optische Fasern direkt an die Kanäle der Analyseeinheiten heran- bzw. weggeführt werden kann, indem optische Lichtwellenleiter während des Herstellungsprozesses direkt in die Analyseeinheiten integriert werden. Das Ein- oder Auskoppeln optischer Leistung in bzw. aus dem System kann somit in einfacher Weise gewährleistet werden. Mikrofluidische Strukturen können dabei im direkten oder indirekten Kontakt zu der optischen Struktur stehen. Die weiteren Herstellungsprozesse mikrostrukturierter Systeme auf Polymerbasis sind mit der Herstellung der optischen Strukturen kombinierbar bzw. beeinträchtigen diese nicht. Gegenstand der vorliegenden Erfindung sind daher planare mikrostrukturierte miniaturisierte Analyseeinheiten auf Polymerbasis, die integrierte optische Polymerlichtwellenleiter enthalten.
In einer bevorzugten Ausführungsform bestehen Substrat (2) und Deckel
(4) der Analyseeinheit aus PMMA.
In einer bevorzugten Ausführungsform ist das Substrat mikrostrukturiert und der Deckel weist Dünnschichtelektroden auf.
Gegenstand der vorliegenden Erfindung ist auch ein Verfahren zur Herstellung von mikrostrukturierten miniaturisierten Analyseeinheiten auf Polymerbasis, die integrierte optische Polymerlichtwellenleiter enthalten, wobei a) geeignete Bauteile auf Polymerbasis bereitgestellt werden; b) die optischen Polymerlichtwellenleiter in mindestens ein Bauteil integriert werden; c) die Bauteile zu einer Analyseeinheit zusammengefügt werden.
In einer bevorzugten Ausführungsform erfolgt die Integration der
Polymerlichtwellenleiter in Schritt b) durch Mehrkomponentenspritzguß.
In einer bevorzugten Ausführungsform erfolgt das Zusammenfügen der
Bauteile in Schritt c), indem j) mindestens ein Bauteil so mit Klebstoff benetzt wird, dass nach dem
Zusammenfügen der Bauteile das Innere des durch die Mikrostrukturierung erzeugten Kanalsystems nicht mit Klebstoff belegt ist; ii) die Bauteile justiert werden; iii) die Bauteile zusammengepresst werden; üü) der Klebstoff gehärtet wird. Gegenstand der vorliegenden Erfindung ist auch die Verwendung der mikrostrukturierten Analyseeinheiten auf Polymerbasis, die integrierte optische Polymerlichtwellenleiter enthalten, zur optischen Analyse von Proben.
Abbildung 1 zeigt eine mikrostrukturierte Analyseeinheit mit integrierten optischen Lichtwellenleitern.
Abbildung 2 zeigt den Strahlengang einer Absorptionsmessung mit einer Analyseeinheit entsprechend Abbildung 1.
Abbildung 3 zeigt eine alternative mikrostrukturierte Analyseeinheit mit integrierten optischen Lichtwellenleitern.
Die Abbildungen 4 bis 7 verdeutlichen Verfahren zur Herstellung der erfindungsgemäßen mikrostrukturierten Analyseeinheiten mit integrierten Lichtwellenleitern.
In allen Abbildungen werden die Bestandteile der Analyseeinheiten mit folgenden Ziffern gekennzeichnet:
Die Analyseeinheit besteht aus einem Substrat (2) und einem Deckel (4). Das Substrat (2) besitzt eine Kanalstruktur (3). Die optischen Wellenleiter werden mit 1 bezeichnet. Sofern auf ein Bauteil Elektroden aufgebracht sind, so sind diese mit 7 bezeichnet. Bohrungen für z.B. Fluidikanschlüsse sind mit 5 gekennzeichnet. In den Abbildungen 1 , 3, 4, 5, 6 und 7 ist in Abbildungsteil A das Substrat, in Abbildungsteil B der Deckel und in Abbildungsteil C die aus den beiden Bauteilen, Substrat und Deckel, zusammengefügte Analyseeinheit dargestellt. Zusätzlich findet sich auf den Abbildungen 1 , 3, 4, 5 und 6 jeweils die Darstellung einer Seitenansicht entlang der in Abbildungsteil A oder C angedeuteten Achse F.
Die Erläuterung der anderen Kennziffern findet sich bei der Erläuterung der jeweiligen Abbildung. Die erfindungsgemäße Kombination von integriert optischen Wellenleitern mit einer mikrostrukturierten fluidischen Analyseeinheit ist in den Abbildungen 1 und 2 schematisch gezeigt. Planare mikrostrukturierte Analyseeinheiten im Sinne der Erfindung bestehen in der Regel aus mindestens zwei Bauteilen, z.B. einem Substrat und einem Deckel. Alle Bauteile können Mikrostrukturierungen, Elektroden oder sonstige zusätzliche Funktionalitäten aufweisen. Das Analysensystem enthält jedoch zumindest ein Kanalsystem, das durch die Mikrostrukturierung mindestens eines Bauteils entsteht. Zusätzlich können die Bauteile weitere
Mikrostrukturierungen, wie z.B. Aussparungen zur Integration oder zum Anschluß von Funktionalitäten, wie Ventilen, Pumpen, Reaktionsgefäßen, Detektoren etc., in die Bauteile eingearbeitete Reservoirs, Reaktionskammem, Mischkammern, Detektoren usw. enthalten. Die erfindungsgemäßen Analysensysteme können mit allen Funktionalitäten versehen sein, die zur Durchführung einer Analyse notwendig sind. Genauso kann es sich um Analysensysteme handeln, die lediglich die Kanalstruktur, den erfindungsgemäß integrierten optischen Lichtwellenleiter und Anschlüsse für weitere Funktionalitäten besitzen. In diesem Fall müssen die Analysensysteme vor Gebrauch mit allen notwendigen Funktionalitäten versehen werden. Die erfindungsgemäßen mikrostrukturierten Analysensysteme dienen zur Analyse von mikrofluiden Systemen, d.h. flüssigen Systemen und / oder Plasmaprozessen, wie z.B. im Falle eines miniaturisierten Mikrowellen- oder Gleichstromplasmas.
Bevorzugt enthält, wie in Abbildung 1 dargestellt, lediglich ein Bauteil, das Substrat 2, die mikrostrukturierten Vertiefungen für die späteren Kanäle (Abbildungsteil A). Mit dem zweiten Bauteil, dem Deckel 4 (Abbildungsteil B), werden die offenen Strukturen im Substrat flüssigkeits- bzw. gasdicht verschlossen. Zumeist sind, falls vorhanden, die Elektroden auf den Deckel aufgebracht. Das Befüllen der mikrostrukturierten Kanäle erfolgt durch Bohrungen bzw. Aussparungen 5, welche in der Regel mit in das Substrat eingebracht werden.
Die Bauteile der Analyseeinheiten bestehen bevorzugt aus kommerziell erhältlichen thermoplastischen Kunststoffen, wie PMMA
(Polymethylmethacrylat), PC (Polycarbonat), Polystyrol oder PMP (Polymethylpenten), cycloolefinischen Copolymeren oder duroplastischen Kunststoffen, wie beispielsweise Epoxidharzen. Bevorzugterweise bestehen alle Bauteile, d.h. Substrate und Deckel, eines Systems aus demselben Material.
Der optische Wellenleiter 1 kann entweder in das Substrat (Abbildung 1, 5, 6 und 7) oder in den Deckel (Abbildungen 3 und 4) implementiert sein. Die Wellenleitergeometrie ist in weiten Bereichen variabel und kann den Querschnitten der Kanalstruktur und den Koppelbedingungen (Lichtquelle, Detektor) angepaßt werden. Die optischen Eigenschaften des Wellenleiters, wie z.B. Dämpfung und numerische Apertur, werden durch die Materialien von Substrat bzw. Deckel und Wellenleiter bestimmt.
Während sich die in Abbildung 1 gezeigte Anordnung des Wellenleiters für Fluoreszenz- und Absorptionsmessungen besonders gut eignet, ist die in Abbildung 3 gezeigte Anordnung z.B. insbesondere für Fluoreszenzmessungen geeignet.
Abbildung 2 zeigt den Strahlengang für eine Absorptionsmessung mit einer Analyseeinheit entsprechend Abbildung 1. Ausgehend von der Lichtquelle 10 wird optische Leistung in den Wellenleiter eingekoppelt. Je nach Entfernung zwischen Wellenleiterstirnfläche und Lichtquelle und in Abhängigkeit der Divergenz der Lichtquelle muß eventuell eine Linse für das Einkoppeln ergänzt werden. Insbesondere bei LED's bzw. SLED's ist aufgrund deren hoher Divergenz eine Linse in der Regel zu verwenden. Die aus dem Wellenleiter austretende optische Leistung wird nach Durchtritt durch das im Kanal 3 befindliche Fluid mit Hilfe des Detektors 11, typischerweise einem Photomultiplier, detektiert.
Der verwendbare Wellenlängenbereich ist durch die Absorptions- charakteristika der Wellenleiter- und der Substratmaterialien bestimmt.
Für Fluoreszenzmessungen muß der Wellenleiter nicht zu beiden Seiten des Kanals positioniert sein. Auch kann in die Wellenleiter mit Hilfe der Abformtechnik eine Spiegelfläche oder Linsenoberfläche eingeprägt werden, die eine 90°-Lichtumlenkung bzw. eine Fokussierung ermöglicht. Dadurch läßt sich das Ein- und Auskoppeln der optischen Leistung in den bzw. aus dem Fluidikkanal für verschiedene Anwendungen optimieren.
Die Anregung der Fluoreszenz in dem Kanal 3 kann erfolgen, indem durch den Wellenleiter zur Anregung benötigte optische Leistung eingekoppelt wird. Geeigneter ist jedoch eine Einkopplung in einem 90°-Winkel zum Verlauf der eingebetteten optischen Wellenleiter, da dann deutlich weniger Streulichteffekte des Anregungslichtes durch optische Filter für die Detektion ausgeblendet werden müssen.
Lichtwellenleitende Komponenten auf Polymerbasis sind hinlänglich bekannt. Diese umfassen neben einmodigen und mehrmodigen integriert optischen Bauteilen, wie optischen Verzweigern, thermooptischen Schaltern, Wellenlängenmultiplexern vor allem sogenannte POFs (Polymer Optische Fasern). Die Herstellung integriert optischer Bauteile ist in mehrere Technologiefelder zu unterteilen: das Photobleaching (M.B.J. Diemer, F.M.M. Suyten, E.S. Trommel, A. McDonach, J.M. Copeland, L.W. Jenneskens, W.H.G. Horsthuis, „Photoinduced Channel waveguide formation in nonlinear optical polymers," Electron. Lett. 26, 379-380, 1990. / van der Vorst et al. in „Polymers for lightwave and integrated optics", (Ed. L.A. Hornak), Marcel Dekker Inc., New York, 365-395, 1992.), das Photolocking (E.A. Chandross, CA. Pryde, W.J. Tomlinson, H.P. Weber, „Photolocking - A new technique for fabricating optical waveguide circuits", Appl. Phys. Lett. 24, 72-74, 1974. / B.L Booth, „Low loss Channel waveguides in polymers," J. Lightwave Techn. 7, 1445-1453, 1989.), die selektive Photopoiymerisation (R.R. Krchnavek, G.R. Lalk, D.H.
Hartmann, „Laser direct writing of Channel waveguides using spin-on polymers," J. Appl. Phys. 66 (11), 5156-5160, 1989, das reaktive lonenätzen (R. Yoshimura, M. Hikita, S. Tomaru, S. Imamuar, „Low-Ioss polymeric optical waveguides fabricated with deuterated polyfluoromethacrylate," J. Lightw. Techn. 16 (6), 1030-1037, 1998.), die Replikationstechnologien (A. Neyer, T. Knoche, L. Müller, „Fabrication of low-loss polymer waveguides using injection moulding technology," Electron. Lett. 29, 399-401 , 1993.) sowie andere Techniken (Y.Y. Maruo, S. Sasaki, T. Tamamura,
„Embedded Channel polyimide waveguide fabrication by direct electron beam writing method," J. Lightwave Technol. 13, 1718-1723, 1995. / R. Moosburger, K. Petermann, „4 x 4 digital optical matrix switch using polymeric oversized rib waveguides," IEEE Photonics Technology Lett. 10, 684- 686, 1998.).
Die Replikationstechnologien umfassen die Kombination der Abformtechnologie (z.B. Spritzguß, Heißprägen, Reaktionsguß) zur Herstellung von kostengünstigen Lichtwellenleiterstrukturen mit Klebetechniken. Die Formulierung der Wellenleiter erfolgt demnach durch Auffüllen von Gräben in Polymeren mit Klebstoffen, welche sowohl thermisch (z.B. mittels Reaktionsguß) als auch photochemisch (UV- Strahlung) polymerisiert werden können. Die dabei gebildeten Polymere haben einen höheren Brechungsindex als das Substrat- bzw. Deckelmaterial und bilden somit die Lichtwellenleiter. Der Zweikomponentenspritzguß zur Herstellung optischer Wellenleiterkomponenten stellt ein weiteres Verfahren dar und eignet sich bislang nur zur Herstellung mehrmodiger Wellenleiter. Der Prozeß ist bei Groh (EP 0451549 A2) und Fischer (D. Fischer, „Mehrmodige integriert- optische Wellenleiterschaltungen aus Polymeren", Fortschritt-Berichte, VDI
Verlag, Reihe 10, Nr. 477) beschrieben. Mit dieser Technologie können die Wellenleiter sowohl in den Deckel als auch in das Substrat eingebracht werden.
Zur Herstellung der erfindungsgemäßen Analyseeinheiten mit integriert optischen Polymerlichtwellenleitern werden zunächst entsprechend konzipierte Bauteile bereitgestellt, von denen zumindest ein Bauteil mikrostrukturiert ist. Je nach dem Verfahren, das zum Einbringen der Wellenleiter verwendet wird, werden die Bauteile gegebenenfalls zusätzlich durch Mikrostrukturierung oder andere Vorbehandlung für die Integration der optischen Strukturen vorbereitet. Dann erfolgt die Integration der optischen Polymerlichtwellenleiter. In der Regel wird der Polymerlichtwellenleiter nur in eines der Bauteile integriert. Abschließend werden die Bauteile mit geeigneten Methoden, vorzugsweise einem Klebeprozeß, zusammengefügt.
Die Integration der optischen Struktur auf Polymerbasis in die Bauteile der mikrostrukturierten Analyseeinheit auf Polymerbasis kann durch verschiedene Techniken erfolgen:
1.) Herstellung entsprechend Abbildung 5 und 6 Diese Abbildungen zeigen zusätzlich die Kombination mit Dünnschichtelektroden 7 für Detektionszwecke oder als Leistungselektrode für den Fluidiktransport (elektrokinetischer Fluß). In einem Spritzguß-, Heißpräge- oder Reaktionsgußverfahren werden sowohl die fluidischen als auch die optischen Strukturen (Kanäle in z.B.PMMA) in einem Abformschritt in einen polymeren Träger, im folgenden Substrat genannt, eingebracht. Die Herstellung der optischen Strukturen erfolgt nun dadurch, daß die für die optische Wellenleiterführung vorgesehenen Gräben mit einem optisch höherbrechenden Material gefüllt werden. Beim Verfüllen der Wellenleiterstruktur muß die Fluidikstruktur vor dem typischerweise niedrigviskosen Kleber durch ein strukturiertes Nickel-Blech oder eine ähnlich geeignete Vorrichtung 6 geschützt werden. Das Nickel-Blech wird entsprechend der Vorformherstellung zum Prägen der Fluidik/Optik-Struktur hergestellt. Zu beachten hierbei ist, daß das Schrumpfen der PMMA- Fluidik/Optik-Struktur durch den Abformprozeß berücksichtigt wird. Dem Fachmann ist diese Vorgehensweise bekannt. Damit das zum Schutz der Fluidikstruktur verwendete Nickelblech nicht an dem optischen Kleber haftet, wird dem Kleber ca. 0,1 Gewichts% Palmitinsäure als Trennmittel zugesetzt. Einzufüllen ist der Klebstoff entweder durch Einfüll- und Entlüftunslöcher im Nickelblech, doch haben sich auch Öffnungen im Substrat als geeignet erwiesen. Ausgehärtet wird der Kleber typischerweise entweder photochemisch oder thermisch. Überstehender Klebstoff an den Einfüllöffnungen (Öffnungen im Nickelblech) muß nach der Aushärtung durch kurzes Polieren entfernt werden. Befinden sich die Einfüllöffnungen im Substrat ist eine Nachbearbeitung nicht notwendig, doch sind die Wellenleiterverluste dann geringfügig erhöht, da die Wellenleiterwände Aussparungen vom Durchmesser der Öffnungen aufweisen.
In Abbildung 5 hat der Wellenleiter direkten Kontakt mit dem fluidischen Medium und ist von außerhalb des Chips leichter mit optischer Quelle und Detektor zu verbinden. Nachteilig ist, daß jenes zum Schutz der
Fluidikstruktur verwendete strukturierte Nickelblech eine äußere Kante aufweisen muß, um das Hinausfließen des Klebstoffs aus dem Wellenleitergraben zu verhindern (Schnitt A in Abbildung 5). Der in Abbildung 6 dargestellte Wellenleitergraben endet ca. 20 bis 50 μm vor dem Fluidikkanal und ebenfalls ca. 20 bis 50 μm vor der Außenkante des Chips. Das Auffüllen eines solchen Wellenleitergrabens ist weitestgehend unproblematisch. Nachteilig ist bei dieser Anordnung, daß zusätzliche Wellenleiter-Substrat-Grenzflächen die optischen Eigenschaften durch zusätzliche Fresnel-Verluste negativ beeinflussen.
Alternativ wird in einem Abformprozeß in den Deckel ein Graben eingeprägt, welcher mit einem höherbrechenden Polymer aufgefüllt wird.
Die fluidischen Strukturen werden in einem getrennten Prozeßschritt in ein Substrat abgeformt. Das Auffüllen des in den Deckel geprägten Grabens ist wesentlich einfacher als das Auffüllen der in das Substrat geprägten Wellenleitergruben, da keine Fluidikstruktur vor dem optischen Kleber geschützt werden muß. Diese Ausführungsvariante ist daher bevorzugt.
Die Herstellung des Formeinsatzes für die Abformtechnik erfolgt je nach Kanalquerschnitt und Wellenleiterquerschnitt mit lithographischen und/oder mikromechanischen Fertigungstechniken sowie dem Ätzen von z.B. Silizium. Auch die Verwendung anderer Mikrostrukturierungstechniken ist möglich. Wesentliche Anforderung an die Strukturen, insbesondere die optischen Strukturen, ist die nach einer geringen Rauheit der Oberfläche.
Bei Verwendung von lithografischen Methoden (z.B. Mehrfachbelichtung in AR 3220, Allresist Berlin) werden nach Umkopieren der Struktur in Nickel (Nickelsulfamat-Elektrolyt) und dem Abformen in PMMA (Heißprägetechnik in PMMA XT, Röhm) Wellenleiter-Seitenwandrauheiten von Ra = 50 nm und Wellenleiter-Bodenrauheiten von Ra = 20 nm erreicht. Feinmechanisch (Diamant-Fräser in Messing Ms 58 mit Hochgeschwindigkeitsspindel) bearbeitete Strukturen weisen Rauheiten von minimal Ra = 50 nm und typisch ca. Ra = 130 nm auf.
Als Wellenleitermaterial wird z.B. ein Kleber der Fa. Norland (Brunswick, USA) verwendet (NOA 61). Dieser hat einen Brechungsindex von 1,559 (589 nm, 20°C). Die numerische Apertur (NA) des Wellenleiters beträgt bei Verwendung von PMMA (nD 20 = 1,491) als Deckel- bzw. Substratmaterial 0,46, was einem Öffnungswinkel von ca. 54° entspricht. Dieser Kleber, welcher im sichtbaren Wellenlängenbereich eine Dämpfung von < 0,2 dB/cm aufweist, wird photochemisch mit einer UV-Quelle (Quecksilberdampflampe HQL 125 W, Fa. Osram) ausgehärtet. Das verwendete Substratmaterial bzw. Deckelmaterial muß hierzu bei Wellenlängen > 350 nm transparent sein. Die optischen Verluste der hergestellten Wellenleiter betragen typischerweise zwischen 0,2 und 0,6 dB/cm bei einer Wellenlänge von 633 nm.
Abschließend werden die Bauteile der Analyseeinheit, typischerweise Substrat und Deckel, aufeinandergefügt. Eine mögliche Technik ist das in DE 19846958 offenbarte Verfahren. Dieses ist jedoch nur dann einsetzbar, wenn sowohl das Material von Deckel und Substrat als auch das Wellenleitermaterial nach diesem Verfahren zu verbinden sind. In EP 0 738 306 wird ein Verbindungsverfahren beschrieben, bei dem ein gelöster Thermoplast auf das strukturierte Polymersubstrat aufgeschleudert wird. Dieser Thermoplast hat eine niedrigere Schmelztemperatur als die zu verklebenden Teile. Das thermische Verbinden von Deckel und Substrat erfolgt bei 140°C. Sollen Wellenleiter in nach diesem Verfahren herzustellende Analyseeinheiten eingebracht werden, so muß der Brechungsindex dieses ,Nerbindungs"-Thermoplasten kleiner als der
Brechungsindex des Wellenleiters sein. Auch die Temperaturstabilität des Wellenleitermaterials muß größer als die des ,Nerbindungs"-Thermoplasten sein. Dies stellt hinsichtlich der aufeinander abzustimmenden Materialeigenschaften einen erheblichen Nachteil dieser Technologie dar.
In WO 97/38300 wird ein Verfahren beschrieben, bei dem ein mit PDMS (Polydimethylsiloxan) beschichteter Deckel mit einer Kanalstruktur auf Polyacrylatbasis verklebt wird. Aufgrund des niedrigen Brechungsindex von PDMS (nD 20 = 1,41) ist dieses Verfahren prinzipiell geeignet, Strukturen, die Wellenleiter auf Basis von Materialien mit höheren Brechungsindizes beinhalten, ohne Beeinträchtigung der Wellenleitereigenschaften zu verschließen. Alle funktionalen Bestandteile, d.h. Wellenleiter, offene Mikrostrukturen und Elektroden, müssen dann in z.B. dem Substrat vereinigt sein, da z.B. Elektroden sonst durch das Aufschleudern von PDMS elektrisch isoliert würden.
Bevorzugt erfolgt das Aufeinanderfügen der Bauteile durch ein
Bondingverfahren, das in DE 199 27 533 bzw. WO 00/77509 beschrieben wird. Dieses Verfahren ist besonders vorteilhaft, da alle Seiten des Kanalsystems aus demselben Material bestehen können und kein störender Klebstoff in den Kanal, auf gegebenenfalls integrierte Elektroden (z.B. Dünnschichtelektroden, Möglichkeiten zum Aufbringen von Elektroden werden in DE 199 27 533 bzw. WO 00/77509 offenbart) oder die Stirnflächen der optischen Wellenleiter gelangt. Dadurch können besonders empfindliche und gut reproduzierbare Trennungen und Analysen durchgeführt werden. Bei diesem Verfahren wird bevorzugt zunächst auf das mikrostrukturierte Bauteil an den Stellen, an denen keine
Strukturierung vorliegt, ein Klebstoff aufgebracht. Die Schichtdicke beträgt zwischen 0,5 und 10 μm, bevorzugt zwischen 3 und 8 μm. Typischerweise erfolgt die Auftragung mittels einem aus der Drucktechnik bekannten flächigen Walzenautrag. Der verwendete Klebstoff darf die Oberfläche der Bauteile nicht oder nur sehr schwach anlösen, damit die gegebenenfalls vorhandenen Elektroden beim Verklebungsprozeß nicht vom Klebstoff abgelöst oder unterbrochen werden. Bevorzugterweise wird daher als Klebstoff das Produkt NOA 72, Thiolacrylat der Firma Norland, New Brunswick NJ, USA verwendet. Dieser Kleber wird photochemisch ausgehärtet. Es können jedoch für das Verfahren auch andere Arten von Klebern, wie z.B. thermisch härtende Kleber, verwendet werden, die die oben genannten Voraussetzungen erfüllen.
Nach dem Aufbringen des Klebstoffs wird das zweite Bauteil, gegebenenfalls mit den Dünnschichtelektroden, beispielsweise auf einer Belichtungsmaschine zu dem Substrat geeignet positioniert und beide Bauteile mit geeignetem Druck in Kontakt gebracht. Bevorzugt ist die Verwendung von starken Glasplatten als Preßfläche, so daß direkt die photochemische Härtung des Klebers durch Bestrahlung mit einer Hg- Lampe (Emissionswellenlänge 366 nm) durchgeführt werden kann.
Die Positionierung des Deckels auf dem Substrat kann für den Klebevorgang typischerweise visuell unter manueller Kontrolle, passiv mechanisch mit Hilfe einer Einrastvorrichtung, optisch mechanisch unter Zuhilfenahme von optischen Justagemarken oder elektrisch mechanisch mit Hilfe von elektrischen Marken (Kontakten) erfolgen.
In einer anderen bevorzugten Ausführungsform wird das bevorzugt mit Elektroden versehene Bauteil auf den Bereichen, die beim Zusammensetzen der beiden Bauteile nicht über einem Kanal liegen oder elektrisch kontaktiert werden müssen mit dem Kleber benetzt. Hierfür wird beispiels- weise ein in der Drucktechnik bekanntes Verfahren (Tampon-Druck) verwendet. Das Bauteil mit den Kanalstrukturen wird anschließend geeignet zu seinem Gegenstück positioniert und aufgepreßt. Die Aushärtung erfolgt wie oben beschrieben.
Wird der Aushärteprozeß des Klebers außerhalb der zur Positionierung von Deckel und Substrat verwendeten Justagevorrichtung durchgeführt, können der metallisierte Deckel und das Substrat, nachdem sie zueinander justiert wurden, mittels Laserschweißen zunächst geheftet werden. Hiernach wird der Verbund aus der Justagevorrichtung genommen und in einer separaten Belichtungsappartur oder einem Ofen wird der verwendete Klebstoff ausgehärtet. Diese Vorgehensweise bedeutet eine Prozeßbeschleunigung und Vereinfachung, da das Aushärten nicht mehr in der Justagevorrichtung erfolgen muß.
Da die bevorzugterweise verwendeten thermoplastischen Materialien für Laserlicht im sichtbaren und nahinfraroten Wellenlängenbereich weitestgehend transparent sind, erfordert das Laserschweißen in diesem Wellenlängenbereich eine Absorberschicht zum Absorbieren der optischen Leistung an der Grenzfläche zwischen Deckel und Substrat. Diese Absorberschicht wird gleichzeitig mit dem Aufbringen der Leistungs- bzw. Detektorelektroden aufgebracht. Beispielsweise kann der Elektrodendeckel beim Besputtern der Elektroden mit Edelmetall zusätzlich an weiteren
Stellen mit einer Edelmetallschicht als Absorberschicht besputtert werden.
Das Verschweißen eines mit 200 nm dicken Platin-Elektroden versehenen Elektrodendeckels, der somit auch zusätzliche Platin-Flächen zum Absorbieren der Laserleistung beinhaltet, mit einem Substrat (beide aus PMMA) erfolgt mit Diodenlaserstrahlung (Wellenlängengemisch aus 808, 940 und 980 nm) mit einer Leistung von 40 Watt bei einem Fokusdurchmesser von 1 ,6 mm. Die Platin-Schicht wird beim Verschweißen zerstört.
2. Herstellung mittels Mehrkomponentenspritzguß Die Heranführung der optischen Struktur an die fluidische Struktur durch Anwendung des Mehrkomponentenspritzgusses ist eine potentiell sehr kostengünstige Herstellungsvariante.
Der Mehrkomponentenspritzguß ermöglicht es, sowohl die mikrofluidischen Strukturen als auch die optischen Wellenleiter zur Ankopplung an eine optische Einheit außerhalb der Analyseeinheit in einem Prozeßschritt herzustellen. Hierzu wird zunächst die Fluidikstruktur aus einem Standard- Spritzgußmaterial (z.B. PMMA VQ 101 S, nD 20 = 1 ,491) gespritzt. Die optische Wellenleiterstruktur, welche aus einem im Vergleich mit dem Basismaterial optisch höherbrechenden Kunststoff (z.B. SAN, no20 = 1 ,568, LURAN 358N, BASF) besteht, wird innerhalb des gleichen Prozesses auf dieses aufgespritzt.
In dieser Technologie wesentlich einfacher herstellbar ist die in den Deckel implementierte Wellenleiterstruktur. Hierbei wird in einem ersten Zyklus zunächst ein planarer Deckel abgeformt. Der mit dem höherbrechenden Polymer zu füllende Kanal (Abbildung 3) wird nach dem Ziehen eines Kernzugs mit den Abmessungen des Wellenleiters ausgefüllt. Der Anguß wird durch Sägen und, sofern notwendig, kurzes Polieren entfernt.
In einer zweiten Ausführungsvariante (Abbildung 4) wird auf einen planaren Deckel eine nicht durchgehende Wellenleiterstruktur aufgespritzt. Diese ist komplementär mit einer in das Substrat eingeprägten Wellenleiterstruktur.
Nach dem Zusammenfügen der Bauteile, welche ebenfalls
Dünnschichtelektroden beinhalten können, mit den oben genannten Verfahren wird so die in Abbildung 1 bzw. 4 gezeigte Anordnung von Wellenleiter zu Fluidikstruktur realisiert.
3.) Kombination von Prägetechnik und Laminiertechnik
Eine andere Herstellungstechnologie zur Herstellung von Wellenleitern, welche auf einer planaren Kunststofffläche stehen (Deckel entsprechend Abbildung 4), besteht in der Kombination von Prägetechnik und Laminiertechnik.
In einem ersten Prozeßschritt wird hierzu ein höherbrechendes Polymer in eine Grube in einem metallischen Formeinsatz (z.B. aus Nickel) gepreßt, die der Wellenleiterstruktur entspricht. In einem zweiten Prozeßschritt wird eine optisch niedriger brechende Polymerfolie auf das in den Gruben befindliche Wellenleiterpolymer laminiert. Zieht man diese Kombination aus der Grube hinaus, resultiert ein in Abbildung 4 gezeigter Deckel mit Wellenleitern, welcher zusätzlich mit Dünnschichtelektroden versehen sein kann. Der Vorteil dieser Technologie gegenüber der Spritzgußtechnologie besteht darin, daß eine nachträgliche Bearbeitung der Wellenleiterstirnflächen (Abtrennen des Angusses unter Erhalt einer glatten Wellenleiterstirnfläche) nicht notwendig ist. Eine weitere Herstellungstechnologie besteht darin, die Gräben mit der Wellenleiterstruktur mit einem optisch hochbrechenden Klebstoff zu füllen, welcher entweder thermisch oder photochemisch polymerisiert wird. Nach abgeschlossener Aushärtung wird auf dieses in den Gräben befindliche Polymer ebenfalls eine Polymerfolie auflaminiert, welche einen geringeren
Brechungsindex als das in den Gräben befindliche Polymer hat. Zieht man diese Kombination aus der Grube hinaus, resultiert ebenfalls der in Abbildung 4 gezeigte Deckel mit Wellenleitern.
Abschließend wird nach allen Verfahren der Deckelherstellung dieser mit dem Substrat entsprechend der oben beschriebenen Verfahren flüssigkeitsdicht verbunden.
4.) Generierung der Wellenleiter durch Bestrahlung Die Generierung der Wellenleiter erfolgt durch Bestrahlung definierter Bereiche entweder im Substrat (Abbildung 7) oder im Deckel. Hierzu werden durch eine metallische Lochmaske 8, welche Aussparungen 9 mit den Dimensionen herzustellender Lichtwellenleiter beinhaltet, das Substrat oder der Deckel mit starker UV-Strahlung belichtet (Abbildungsteil A'). Die theoretischen und experimentellen Grundlagen dieser Technologie z.B. in W.F.X. Frank, B. Knödler, A. Schösser, T.K. Strempel, T. Tschudi, F. Linke, D. Muschert, A. Stelmaszyk, H. Strack, „Waveguides in polymers," SPIE 2290, 125-132, 1994 oder A. Schösser, B. Knödler, T. Tschudi, W.F.X. Frank, A. Stelmaszyk, D. Muschert, D. Rück, S. Brunner, F. Pozzi, S. Morasca, C. de Bemardi, „Optical components in polymers," SPIE 2540, 110-117, 1995, zusammengefaßt worden.
Der Vorteil dieser Technologie ist ihre einfache Durchführbarkeit, doch ist die Wellenleiterqualität deutlich schlechter als bei den bereits genannten Verfahren. Die Tiefe der Wellenleiter kann über die Bestrahlungszeit mit z.B. einer Quecksilber-Niederdrucklampe (TMN 15, Heraeus Noblelight) bestimmt werden, beträgt aber typischerweise nur wenige Mikrometer. Die Breite der Wellenleiter wird durch die Schlitzbreite in den Masken bestimmt. Aufgrund des nur geringen erzeugten Brechzahlhubs von < 0,01 ist die numerische Apertur der erzeugten Wellenleiter nur gering. Auch die Wellenleiterdämpfung ist mit ca. 1 ,5 dB/cm bei 633 nm sehr hoch.
5.)
Das Einlegen von präzisen z.B. Polycarbonat-Folienabschnitten in dafür vorgesehene Gruben, welche vorzugsweise in das PMMA-Substrat bzw. den PMMA-Deckel geprägt werden, führt zur Bildung von optischen Wellenleitern. Bei Verwendung von PC-Folien mit einem no20 = 1,590 (Europlex PC, Fa. Otto Wolff, Bochum) und PMMA als Substrat- bzw. Deckelmaterial ergibt sich eine NA von 0,55. Das Schneiden mit einer Wafersäge bzw. Prägen von Polycarbonat resultiert in Folien mit hinreichend geringen Rauheiten von Ra « 120 nm). Durch das Einbetten der Folienabschnitte in PMMA mit einem optisch hochbrechenden
Klebstoff, wie dem NOA 72 (Norland, nD 20 = 1,56), werden die Rauheiten aus optischer Sichtweise weiter gemindert. Das präzise Einlegen der Folie in den Graben wird durch die Grabenstruktur selbst und einen seitlichen Anschlag mit einer Genauigkeit von < 8 μm gewährleistet. Die optischen Einfügeverluste derart hergestellter Wellenleiter betragen ca. 0,5 dB/cm bei einer Wellenlänge von 633 nm.
Durch die Kombination dieser Wellenleiter-Herstellungstechnologien mit der Herstellungstechnologie für mikrofluidische Analyseeinheiten lassen sich alle gängigen optischen Detektionstechniken, die auf Absorption, Streuung, Brechung, als auch auf optischer Emission, wie z.B. Lumineszenz- oder Fluoreszenz, beruhen, auf diesen Analyseeinheiten realisieren. Die in der Regel kostenintensive Optik ist somit von der planaren Analyseeinheit, die z.B. als Einmalartikel (Plastikchip) konzipiert ist, getrennt. Das Heranführen und Wegführen optischer Leistung von definierten Bereichen der Fluidikstruktur kann auf kostengünstige Weise realisiert werden. Die typischerweise planaren mikrofluidischen Komponenten werden bevorzugt im Bereich der chemischen und biochemischen Analytik verwendet. Auch für die Detektion von optischer Emission bzw. Absorption in miniaturisierten Analytikkomponenten auf Polymerbasis, die z.B. auf Plasmaprozessen beruhen, eignet sich die Integration von optischen Wellenleitern.
Auch ohne weitere Ausführungen wird davon ausgegangen, daß ein Fach- mann die obige Beschreibung im weitesten Umfang nutzen kann. Die bevorzugten Ausführungsformen und Beispiele sind deswegen lediglich als beschreibende, keineswegs als in irgendeiner Weise limitierende Offenbarung aufzufassen.
Die vollständige Offenbarung aller vor- und nachstehend aufgeführten Anmeldungen, Patente und Veröffentlichungen, insbesondere der korrespondierenden Anmeldung DE 10029946, eingereicht am 17.06.2000, ist durch Bezugnahme in diese Anmeldung eingeführt.

Claims

Ansprüche
1. Planare mikrostrukturierte miniaturisierte Analyseeinheit auf Polymerbasis, die integrierte optische Polymerlichtwellenleiter enthält.
2. Planare mikrostrukturierte miniaturisierte Analyseeinheit nach Anspruch 1 , dadurch gekennzeichnet, dass Substrat (2) und Deckel (4) der Analyseeinheit aus PMMA bestehen.
3. Planare mikrostrukturierte miniaturisierte Analyseeinheit nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Substrat mikrostrukturiert ist und der Deckel Dünnschichtelektroden aufweist.
4. Verfahren zur Herstellung von mikrostrukturierten miniaturisierten Analyseeinheiten auf Polymerbasis, die integrierte optische
Polymerlichtwellenleiter enthalten, dadurch gekennzeichnet, daß a) mindestens zwei geeignete Bauteile auf Polymerbasis bereitgestellt werden; b) optische Polymerlichtwellenleiter in mindestens ein Bauteil integriert werden; c) die Bauteile zu einer Analyseeinheit zusammengefügt werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Integration der Polymerlichtwellenleiter in Schritt b) durch Mehrkomponentenspritzguß erfolgt.
6. Verfahren nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, dass das Zusammenfügen der Bauteile in Schritt c) erfolgt, indem i) mindestens ein Bauteil so mit Klebstoff benetzt wird, dass nach dem Zusammenfügen der Bauteile das Innere des durch die Mikrostrukturierung erzeugten Kanalsystems nicht mit Klebstoff belegt ist; ii) die Bauteile justiert werden; iii) die Bauteile zusammengepresst werden; iiii) der Klebstoff gehärtet wird.
7. Verwendung der mikrostrukturierten Analyseeinheiten auf Polymerbasis entsprechend einem der Ansprüche 1 bis 3 zur optischen Analyse von Proben.
PCT/EP2001/005843 2000-06-17 2001-05-22 Integrierte optische wellenleiter für mikrofluidische analysensysteme WO2001098759A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002504471A JP2004501372A (ja) 2000-06-17 2001-05-22 ミクロ流体分析システム用の集積光導波路
EP01960234A EP1292822A1 (de) 2000-06-17 2001-05-22 Integrierte optische wellenleiter für mikrofluidische analysensysteme
AU2001281782A AU2001281782A1 (en) 2000-06-17 2001-05-22 Integrated optical waveguides for microfluidic analysis systems

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10029946.6 2000-06-17
DE10029946A DE10029946A1 (de) 2000-06-17 2000-06-17 Integrierte optische Wellenleiter für mikrofluidische Analysensysteme

Publications (1)

Publication Number Publication Date
WO2001098759A1 true WO2001098759A1 (de) 2001-12-27

Family

ID=7646134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/005843 WO2001098759A1 (de) 2000-06-17 2001-05-22 Integrierte optische wellenleiter für mikrofluidische analysensysteme

Country Status (6)

Country Link
US (1) US20030161572A1 (de)
EP (1) EP1292822A1 (de)
JP (1) JP2004501372A (de)
AU (1) AU2001281782A1 (de)
DE (1) DE10029946A1 (de)
WO (1) WO2001098759A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1396719A1 (de) * 2002-07-26 2004-03-10 Enplas Corporation Plattenverband
US6949176B2 (en) 2001-02-28 2005-09-27 Lightwave Microsystems Corporation Microfluidic control using dielectric pumping
US7016560B2 (en) 2001-02-28 2006-03-21 Lightwave Microsystems Corporation Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices
US7245379B2 (en) 2001-12-12 2007-07-17 Proimmune Limited Device and method for investigating analytes in liquid suspension or solution
DE102007021544A1 (de) * 2007-05-08 2008-11-13 Siemens Ag Messeinheit und Verfahren zur optischen Untersuchung einer Flüssigkeit auf eine Analytkonzentration
DE102009025073A1 (de) * 2009-06-16 2010-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optischer Sensor
DE102009025072A1 (de) 2009-06-16 2010-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Erzeugen eines Bereiches mit erhöhtem Brechungsindex und ein Substrat mit örtlich variablem Brechungsindex
DE102018118110A1 (de) * 2018-07-26 2020-01-30 Osram Opto Semiconductors Gmbh Sensorvorrichtung und verfahren zur herstellung einer sensorvorrichtung

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003227950A (ja) * 2002-02-01 2003-08-15 Omron Corp 光学素子およびその製造方法
JP3880930B2 (ja) * 2002-07-26 2007-02-14 株式会社エンプラス プレートの接着部構造
JP3880931B2 (ja) * 2002-08-23 2007-02-14 株式会社エンプラス プレートの組立構造
JP4014500B2 (ja) * 2002-12-20 2007-11-28 住友ベークライト株式会社 マイクロチップ基板の接合方法及びマイクロチップ
US20060246573A1 (en) * 2003-07-04 2006-11-02 Kubota Corporation Bio-chip
US20070276193A1 (en) * 2003-11-27 2007-11-29 Florence Rivera Vivo Diagnostic and Therapy Micro-Device
DE102004015906B4 (de) * 2004-03-31 2006-02-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrofluidische Vorrichtung für die optische Analyse
US7155082B2 (en) * 2004-04-12 2006-12-26 Colorado School Of Mines Switchable microfluidic optical waveguides
DE102004033440A1 (de) * 2004-07-08 2006-02-02 NMI Naturwissenschaftliches und Medizinisches Institut an der Universität Tübingen Mikrostrukturierte Vorrichtung und Verfahren zu ihrer Herstellung
US20090097808A1 (en) * 2004-07-30 2009-04-16 President And Fellows Of Harvard College Fluid waveguide and uses thereof
WO2006086551A2 (en) * 2005-02-08 2006-08-17 President And Fellows Of Harvard College Microfluidic lasers
DE112006000642B4 (de) * 2005-03-18 2014-03-13 Nanyang Technological University Mikrofluidischer Sensor zur Messung der Grenzflächenspannung und Verfahren zum Messen der Grenzflächenspannung
US8351741B2 (en) 2005-10-03 2013-01-08 Creatv Microtech, Inc. Sensitive emission light gathering and flow through detection system
US9976192B2 (en) 2006-03-10 2018-05-22 Ldip, Llc Waveguide-based detection system with scanning light source
US9528939B2 (en) 2006-03-10 2016-12-27 Indx Lifecare, Inc. Waveguide-based optical scanning systems
US8399101B2 (en) * 2006-09-19 2013-03-19 E I Du Pont De Nemours And Company Toughened poly(hydroxyalkanoic acid) compositions
KR100799267B1 (ko) * 2006-10-13 2008-01-29 이화여자대학교 산학협력단 Noa로 제조한 마이크로 또는 나노 유체칩 및 이를사용하여 제조한 바이오분석 플랫폼
WO2008078264A1 (en) * 2006-12-21 2008-07-03 Koninklijke Philips Electronics N.V. Wiregrid waveguide
US20100032582A1 (en) * 2008-08-07 2010-02-11 General Electric Company Fluorescence detection system and method
DE102008038993B4 (de) * 2008-08-13 2011-06-22 Karlsruher Institut für Technologie, 76131 Optisches Element und Verfahren zu seiner Herstellung
DE102012103628B4 (de) * 2012-04-25 2020-12-31 Avl Emission Test Systems Gmbh Vorrichtung zur Bestimmung der Konzentration zumindest eines Gases in einem Probengasstrom
US9513224B2 (en) 2013-02-18 2016-12-06 Theranos, Inc. Image analysis and measurement of biological samples
WO2014018805A2 (en) 2012-07-25 2014-01-30 Theranos,Inc. Image analysis and measurement of biological samples
US9113570B2 (en) * 2012-10-31 2015-08-18 Tyco Electronics Services Gmbh Planar electronic device having a magnetic component
US10036709B2 (en) * 2014-05-20 2018-07-31 Roche Diabetes Care, Inc. BG meter illuminated test strip
EP3175222B1 (de) * 2014-07-29 2019-08-21 Ldip, Llc Vorrichtung zum nachweis eines analytenniveaus in einer probe
WO2016138427A1 (en) 2015-02-27 2016-09-01 Indx Lifecare, Inc. Waveguide-based detection system with scanning light source
US10823661B2 (en) 2015-08-18 2020-11-03 University Of Cincinnati Analyte sensor and method of use
US10768105B1 (en) 2016-07-29 2020-09-08 Labrador Diagnostics Llc Image analysis and measurement of biological samples
US10974241B2 (en) 2017-03-30 2021-04-13 TE Connectivity Services Gmbh Fluid sensing system
DE102018202591A1 (de) * 2018-02-21 2019-08-22 Robert Bosch Gmbh Optisches System sowie ein Verfahren zur Herstellung eines optischen Systems
US20220143606A1 (en) * 2019-07-26 2022-05-12 Hewlett-Packard Development Company, L.P. Microfluidic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5644395A (en) * 1995-07-14 1997-07-01 Regents Of The University Of California Miniaturized flow injection analysis system
WO1997038300A1 (en) * 1996-04-04 1997-10-16 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
US5690841A (en) * 1993-12-10 1997-11-25 Pharmacia Biotech Ab Method of producing cavity structures
WO1998045693A1 (en) * 1997-04-04 1998-10-15 Aclara Biosciences Methods for fabricating enclosed microchannel structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054034A (en) * 1990-02-28 2000-04-25 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
US5046800A (en) * 1990-10-09 1991-09-10 At&T Bell Laboratories Article comprising a passive optical waveguide
US5313545A (en) * 1993-02-19 1994-05-17 Motorola, Inc. Molded waveguide with a unitary cladding region and method of making
DE19642088A1 (de) * 1996-10-12 1998-04-16 Bosch Gmbh Robert Verfahren zur Herstellung eines mikrostrukturierten Körpers, eines Gußrahmens und eines integriert-optischen Bauteils
US6788862B2 (en) * 2002-05-14 2004-09-07 Corning, Inc. Microstructured optical waveguide having large optical nonlinearity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5690841A (en) * 1993-12-10 1997-11-25 Pharmacia Biotech Ab Method of producing cavity structures
US5644395A (en) * 1995-07-14 1997-07-01 Regents Of The University Of California Miniaturized flow injection analysis system
WO1997038300A1 (en) * 1996-04-04 1997-10-16 Aclara Biosciences, Inc. Acrylic microchannels and their use in electrophoretic applications
WO1998045693A1 (en) * 1997-04-04 1998-10-15 Aclara Biosciences Methods for fabricating enclosed microchannel structures

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6949176B2 (en) 2001-02-28 2005-09-27 Lightwave Microsystems Corporation Microfluidic control using dielectric pumping
US7016560B2 (en) 2001-02-28 2006-03-21 Lightwave Microsystems Corporation Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices
US7283696B2 (en) 2001-02-28 2007-10-16 Lightwave Microsystems, Inc. Microfluidic control for waveguide optical switches, variable attenuators, and other optical devices
US7245379B2 (en) 2001-12-12 2007-07-17 Proimmune Limited Device and method for investigating analytes in liquid suspension or solution
US7477384B2 (en) 2001-12-12 2009-01-13 Proimmune Limited Device and method for investigating analytes in liquid suspension or solution
EP1396719A1 (de) * 2002-07-26 2004-03-10 Enplas Corporation Plattenverband
DE102007021544A1 (de) * 2007-05-08 2008-11-13 Siemens Ag Messeinheit und Verfahren zur optischen Untersuchung einer Flüssigkeit auf eine Analytkonzentration
DE102009025073A1 (de) * 2009-06-16 2010-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optischer Sensor
DE102009025072A1 (de) 2009-06-16 2010-12-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Erzeugen eines Bereiches mit erhöhtem Brechungsindex und ein Substrat mit örtlich variablem Brechungsindex
DE102018118110A1 (de) * 2018-07-26 2020-01-30 Osram Opto Semiconductors Gmbh Sensorvorrichtung und verfahren zur herstellung einer sensorvorrichtung
DE102018118110B4 (de) 2018-07-26 2023-01-05 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Sensorvorrichtung und verfahren zur herstellung einer sensorvorrichtung

Also Published As

Publication number Publication date
JP2004501372A (ja) 2004-01-15
DE10029946A1 (de) 2001-12-20
US20030161572A1 (en) 2003-08-28
AU2001281782A1 (en) 2002-01-02
EP1292822A1 (de) 2003-03-19

Similar Documents

Publication Publication Date Title
EP1292822A1 (de) Integrierte optische wellenleiter für mikrofluidische analysensysteme
EP0560043B1 (de) Verfahren zum Herstellen von Bauelementen für Lichtwellenleiternetze und nach diesem Verfahren hergestellte Bauelemente
EP3359993B1 (de) Verfahren zur herstellung von mikrostrukturen auf optischen fasern
DE4212208A1 (de) Verfahren zur Herstellung optischer Polymerbauelemente mit integrierter Faser-Chip-Kopplung in Abformtechnik
DE102009020663A1 (de) Mikroskopie eines Objektes mit einer Abfolge von optischer Mikroskopie und Teilchenstrahlmikroskopie
DE19619353A1 (de) Verfahren zur Herstellung eines integriert optischen Wellenleiterbauteiles sowie Anordnung
AT391030B (de) Vorrichtung zur messung chemischer und physikalischer parameter eines fluessigen oder gasfoermigen mediums
EP3162549B1 (de) Verfahren und vorrichtung zur herstellung eines optischen elements mit zumindest einem funktionalen bereich, sowie verwendung der vorrichtung
EP1188047A1 (de) Miniaturisiertes analysensystem
DE60114656T2 (de) Chip-element für mikrochemische systeme und ein das chip-element verwendendes mikrochemisches system
EP1333937B1 (de) Verfahren zum verbinden von kunststoffteilen
DE19607671A1 (de) Verfahren zur Herstellung optischer Bauelemente mit angekoppelten Lichtwellenleitern und nach diesem Verfahren hergestellte Bauelemente
DE4411860C2 (de) Verfahren zur Herstellung von dreidimensionalen Wellenleiterstrukturen
WO2010146077A1 (de) Verfahren zum erzeugen eines bereiches mit erhöhtem brechungsindex und ein substrat mit örtlich variablem brechungsindex
DE102016015587B4 (de) Substrat und dessen Herstellung
DE19927535B4 (de) Miniaturisiertes Analysensystem mit Vorrichtung zum Ausschleusen von Substanzen
DE102009025073A1 (de) Optischer Sensor
DE4200396C1 (de)
DE102005039421B3 (de) Verfahren zum Erzeugen eines Bauelementträgers mit eingebettetem optischer Wellenleiter und Strahlumlenkung
EP1274534B1 (de) Vorrichtung zur fokussierung eines aus einer glasfaser austretenden laserstrahls
DE19846958C2 (de) Verfahren zur Herstellung einer Einrichtung zum Transport von kleinsten Flüssigkeitsmengen
EP0523514A1 (de) Verfahren zur Herstellung eines planaren optischen Kopplers
Rabus et al. Polymer photonic integrated circuits by DUV-induced modification
De Bortoli Study of light driven phenomena in integrated opto-microfluidic lithium niobate platforms
EP1023593A1 (de) Einrichtung zum transport von kleinsten flüssigkeitsmengen und verfahren zu deren herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001960234

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 504471

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2001960234

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10311287

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2001960234

Country of ref document: EP