WO2001094270A1 - Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant - Google Patents

Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant Download PDF

Info

Publication number
WO2001094270A1
WO2001094270A1 PCT/FR2001/001707 FR0101707W WO0194270A1 WO 2001094270 A1 WO2001094270 A1 WO 2001094270A1 FR 0101707 W FR0101707 W FR 0101707W WO 0194270 A1 WO0194270 A1 WO 0194270A1
Authority
WO
WIPO (PCT)
Prior art keywords
binder
phosphomagnesium
phosphate
mixture
weight
Prior art date
Application number
PCT/FR2001/001707
Other languages
English (en)
Inventor
Gilles Orange
Nathalie Riche
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to EP01940667A priority Critical patent/EP1289907A1/fr
Priority to CA002408504A priority patent/CA2408504A1/fr
Priority to AU2001274179A priority patent/AU2001274179A1/en
Priority to MXPA02011902A priority patent/MXPA02011902A/es
Publication of WO2001094270A1 publication Critical patent/WO2001094270A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/02Phosphate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures

Definitions

  • the invention relates to a new hydraulic phosphomagnesium binder and a mortar obtained from this new binder.
  • Phosphomagnesium cements are hydraulic binders, that is to say binders which, in the presence of water, solidify. They are characterized by a binder based on phosphorus and magnesium compounds.
  • cements are particularly interesting for their rapid setting and their high mechanical properties. This very rapid setting is particularly advantageous in applications such as the repair of structures for which rapid return to service is desired.
  • Phosphomagnesium binders like most hydraulic binders, however, exhibit a degradation of their mechanical properties after exposure to high temperatures. This degradation does not allow them to be used in applications such as sealing for chimney flues or fire panels.
  • the object of the present invention is to provide a new phosphomagnesium binder which makes it possible to obtain a material which retains its mechanical properties after exposure to high temperatures.
  • This object is achieved by the present invention which relates to a phosphomagnesium binder which comprises at least one magnesium compound and a mixture of phosphorus compounds, the mixture of phosphorus compounds comprising at least two compounds chosen from an aluminum phosphate, a phosphate potassium and an ammonium phosphate.
  • the invention also relates to a cement matrix which comprises the phosphomagnesium binder of the invention and granular elements.
  • the invention also relates to a method for preparing a mortar which comprises adding water to the cementitious matrix and, mixing the matrix added with water to obtain a homogeneous and fluid mortar, the quantity of water added being such that the ratio E / L is between 0.20 and 0.50, E representing the amount of water and L the amount of magnesium compound and phosphorus compound, the mortar thus obtained, and the articles capable of 'be obtained from phosphomagnesium mortar.
  • a phosphomagnesium binder comprising a particular mixture of phosphorus compounds makes it possible to obtain articles which have good mechanical properties at room temperature and whose mechanical properties are preserved after exposure to high temperatures.
  • the term "mortar” indifferently denotes mortars or grouts based on phosphomagnesium binder.
  • phosphorus compound all of the phosphorus-based compounds can be used insofar as they comprise phosphorus pentoxide, available directly or in the form of a precursor.
  • ammonium, aluminum and potassium salts of the following phosphorus compounds may be mentioned without intending to be limited, as ammonium phosphate, potassium phosphate and aluminum phosphate: phosphorus pentoxide, phosphoric acid or derivatives such as orthophosphoric acid, pyrophosphoric acid, polyphosphoric acid.
  • the phosphomagnesium hydraulic binder can contain these phosphorus compounds alone or as a mixture provided that a mixture as defined above is obtained.
  • the mixture of phosphates is a mixture which comprises an ammonium phosphate and at least one phosphorus compound chosen from a potassium phosphate and an aluminum phosphate.
  • the phosphate mixture comprises an aluminum phosphate and a potassium phosphate.
  • the mixture comprises an aluminum phosphate, an ammonium phosphate and a potassium phosphate.
  • the ammonium salt is a phosphate or an ammonium hydrogenphosphates, alone or as a mixture. Even more preferably, the ammonium salt is ammonium dihydrogenophosphate, optionally mixed with ammonium tripolyphosphate.
  • the potassium salt is a potassium phosphate.
  • the aluminum salt is an aluminum phosphate or metaphosphate, alone or as a mixture. Even more preferably, the aluminum salt is aluminum metaphosphate.
  • the amount of each of the phosphorus compounds in the mixture varies depending on the intended application.
  • the quantity of ammonium phosphate (s) is predominant compared to the total quantity of phosphorus compounds entering into the composition of the phosphomagnesium binder.
  • the phosphorus compounds can be in liquid or solid form, preferably solid.
  • the phosphorus compounds are in the form of particles whose particle size is more particularly at most 300 ⁇ m. It should be noted that this value is not critical and that, if it is possible to use constituents whose particle size is greater than 300 ⁇ m, grinding before incorporation into the composition according to the invention may be desirable . This grinding can improve the kinetics of dissolution of phosphorus compounds.
  • the phosphorus compounds are used in a form adsorbed on a porous support.
  • a porous support mention may be made, for example, of diatomaceous earth, clay, bentonite, silica, alumina.
  • the adsorption is carried out in a manner known per se.
  • the phosphorus compounds, in solution or in suspension are brought into contact with the support, with stirring, then the resulting suspension is heated so as to evaporate the excess liquid.
  • This operation can likewise be carried out by impregnating the support in a drum or on a rotating disc.
  • the phosphomagnesium binder also comprises at least one magnesium compound.
  • Any magnesium-based compound is suitable for the present invention as long as it reacts with the phosphorus compound in the presence of water.
  • the following magnesium compounds magnesium oxide, magnesium hydroxide, magnesium carbonate.
  • a compound based on magnesium oxide is used.
  • Particularly suitable for so-called “dead bumed” magnesia usually obtained after calcination of magnesium carbonate at temperatures above 1200 ° C.
  • the magnesium oxide can be used in a pure form or can optionally comprise at least one element of the calcium, silicon, aluminum or even iron type, these elements being generally in the form of oxide or hydroxide.
  • this type of compound mention may be made of dolomite, a mixture comprising in particular magnesium oxide and calcium oxide.
  • magnesium oxide is used in pure form, the purity of the oxide is at least 80%.
  • Magnesium compounds are preferably used whose specific surface is less than 10 m 2 / g. More specifically, the specific surface is less than 2 m 2 / g.
  • the particle size of the magnesium compound is usually between 10 and 500 ⁇ m. It would be possible to use compounds whose particle size is outside the aforementioned range, but without this bringing any particular advantages. Thus, if the particle size is greater than 500 ⁇ m, a grinding step prior to incorporation into the composition may be necessary. Furthermore, if the particle size of said constituents was less than 10 ⁇ m, one could observe a modification of the properties of the composition brought into contact with water. One can in particular note an increase in the setting speed of the cement, except to increase the content of agent delaying the setting, which will be discussed in the following description. As a result, the mortar according to the invention could be less advantageous from the point of view of implementation or from an economic point of view. In the phosphomagnesium binder, the proportion of the magnesium compound
  • the phosphomagnesium binder of the present invention can be used for the preparation of mortar.
  • a mortar is obtained from a cementitious matrix which comprises, in addition to the phosphomagnesium binder as defined above, granular elements whose average size varies according to the envisaged application, and optionally additives known in the field of hydraulic binders.
  • the size of the granular elements can conventionally vary between 1 and 500 ⁇ m.
  • the mortar is prepared by kneading the cement matrix with water, the W / L ratio being between 0.20 and 0.5, preferably 0.22 and 0.38, E representing the amount of water, L the amount of phosphorus compounds and magnesium compounds constituting the binder.
  • sand SiO 2 , TiO 2 , AI 2 O 3 , ZrO 2 , Cr 2 O 3 , talc, mica, kaolin, bentonite, metakaolin, crude dolomite , chromium ore, clinker, vermiculite, periite, mica, cellulose, slag.
  • They can be synthetic products. They can be crystallized or amorphous compounds obtained, for example, by grinding and sieving to the desired size. It is also possible to use the smoke of condensed silica, ground silica, fumed silica, fly ash.
  • a mixture of mineral fillers preferred according to the invention is a mixture which contains little or no sand-lime sands.
  • stable mineral elements will be used in the temperature range considered.
  • the fly ash that can be used are generally silicoaluminous ashes from combustion in thermal power plants in particular.
  • the particle size of these ashes is usually between 0.5 and 200 ⁇ m.
  • the condensed silica smoke, optionally constituting the composition according to the invention generally has a specific surface of between 20 and 30 m 2 / g.
  • the amount of granular elements is between 0 and 1000 parts by weight per 100 parts by weight of binder.
  • the amount of sand, silica or the other granular elements mentioned in this list is generally between 0 and 900 parts by weight relative to the same reference as above.
  • the amount of condensed silica smoke or fly ash is between 0 and 100 parts by weight.
  • the binder can comprise any conventional additive in the field of hydraulic binders, such as water repellents; plasticizers, in particular alkoxysilanes; anti-foaming agents, in particular anti-foaming agents based on polydimethyl-siloxanes.
  • defoaming agents mention may in particular be made of silicones in the form of a solution, of a solid, and preferably in the form of a resin, of an oil or of an emulsion, preferably , in water.
  • Particularly suitable are silicones essentially comprising M units ) and D (R2SiO).
  • the radicals R which are identical or different, are more particularly chosen from hydrogen and alkyl radicals comprising 1 to 8 carbon atoms, the methyl radical being preferred.
  • the number of patterns is preferably between 30 and 120.
  • the amount of silicone used in the cement according to the invention is less than or equal to 10 parts by weight per 100 parts by weight of binder, and preferably less than or equal to 5 parts by weight.
  • the binder may include texturing and viscosity agents, for example cellulose fibers, guar, starch, cellulose ether, starch ethers, polyvinyl alcohol.
  • the cement comprises an agent delaying setting. More particularly, this agent is chosen from compounds capable of complexing magnesium.
  • the latter may in particular be carboxylic acids, such as citric, oxalic, tartaric acids, acids, esters or salts containing boron, acids, esters or salts containing phosphorus, such as sodium tripolyphosphate, ferrous sulfate, sodium sulfate and lignosulfonate, zinc chloride, copper acetate, sodium gluconate, sulfate sodium acetate cellulose, the product of the reaction of formaldehyde with aminolignosulfate, dialdehyde starch, N, N- dimethyloldihydroxyethylene urea, silicofluorides, tall oil and sucrose, these compounds being taken alone or as a mixture.
  • carboxylic acids such as citric, oxalic, tartaric acids, acids, esters or salts containing boron
  • acids, esters or salts containing phosphorus such as sodium tripolyphosphate, ferrous sulfate, sodium sulfate and lignosulf
  • the carboxylic acids are used, alone or as a mixture, and preferably the acids, esters or salts containing boron.
  • the acids, esters or salts containing boron there may be mentioned, without intending to be limited, boric acid and its salts, such as the alkali metal salts, such as sodium (borax), the amine or ammonium.
  • Esters of acid boric are also suitable for the implementation of the invention, such as trialkyloxyborates, triaryloxyborates.
  • the amount of agent delaying setting is at most 10% by weight relative to the weight of binder. Preferably, this amount is at most 5%. Generally, such additives do not represent more than 10 parts by weight per 100 parts by weight of binder phase. Preferably, the amount of additives is between 0 and 5 parts by weight. According to a particular mode, the additive (s) are used in the form of a powder whose average diameter is from 10 to 200 ⁇ m.
  • the amount of water to be introduced for the preparation of the mortar according to the invention is such that a homogeneous and malleable plastic paste is obtained. It depends on the subsequent application of the mortar. Indeed, if one wishes to make internal coatings of piping, the paste is in general more cohesive than a mortar intended to constitute a floor covering, or the preparation of slabs or panels.
  • the mixing of the phosphomagnesium binder, the granular elements, any additives and water can be carried out by any suitable method.
  • a composition is generally prepared comprising the phosphomagnesium binder, the granular elements, if necessary the retarding agent and all or part of the optional additives previously mentioned in general in solid form.
  • This composition is then mixed with water, the latter comprising, if this is the case, the elements not introduced in the previous stage of preparation of the composition, such as liquid additives.
  • a cement matrix all of the elements of which are in the form of a powder, in order to have to add only water during mixing.
  • the essential point of the process is that it is implemented so as to obtain a distribution of all the constituent elements as homogeneous as possible in the mass of the mortar.
  • the components are mixed by any known means and preferably under shearing conditions, for example using a mixer.
  • the mixing operation is advantageously carried out at a temperature close to room temperature.
  • the mortar thus obtained can be used as repair and sealing mortars, for example in the rapid repair of structures. It can be used to seal cracks, holes or cover degraded areas as well as for the repair of reinforced structures.
  • mortars or grouts in addition to resistance to exposure to high temperatures, have good adhesion to so-called Portland cements and significant mechanical properties of resistance to bending and compression, making them particularly suitable for this type. applications. They can also be used as floor coverings, pipes, even in contact with aggressive media.
  • the mortar can also be used for the production of panels, in particular interior or exterior facing panels which can be exposed to high temperatures.
  • the mortar is poured into a suitable mold, to give slabs or panels.
  • Mortar can also be sprayed.
  • the molded or sprayed products are then allowed to dry, advantageously at a temperature close to room temperature.
  • the mortar of the present invention previously described may contain fibers.
  • Composite materials are thus obtained.
  • polypropylene polyester
  • polyaramide fibers such as, for example, KEVLAR®
  • carbon fibers polyamide
  • polyvinyl alcohol polyvinyl alcohol
  • amorphous cast ribbons glass fibers.
  • glass fibers usually used in cements are suitable. It is therefore possible to use alkali-resistant fibers, such as special glass fibers obtained in particular by treatment with zirconium, as well as soda-lime glass fibers. Standard fibers are also suitable for obtaining composite materials according to the invention. Thus, conventional glasses like borosilicate glasses usually destroyed in an alkaline medium.
  • the fibers have lengths varying from 1 mm to several tens of millimeters.
  • the amount of fibers in the composite material according to the invention is between 0.1 and 10% relative to the weight of binder, preferably between 0.1 and 4%.
  • the composite materials according to the invention are obtained by mixing the cement as described above, with the fibers.
  • the samples tested are produced using a Perrier type mixer by mixing the constituents described below for 4 minutes to dryness, then adding water. Then knead two minutes at slow speed and then two minutes at fast speed. The mixture is poured into prismatic molds (10mmX10mmX10 cm).
  • test pieces are removed from the mold 1 hour after setting time and stabilized in an air-conditioned atmosphere at 20 ° C. and constant humidity for 1 to 2 days. The test pieces are then placed in an oven at the desired temperature for 1/2 day. The flexural rupture stresses are measured after cooling.
  • the tests are carried out in three-point bending (NFP 18407) with a spacing of 70 mm and a speed of 0.5 mm per minute on six test pieces using a hydraulic testing machine (200 kN).
  • the following phosphomagnesium binder is produced (% by weight) 50% by weight of MgO (magnesia)
  • the following phosphomagnesium binder is produced (% by weight)
  • the Water / Binder ratio is equal to 0.26.
  • the following phosphomagnesium binder is produced (% by weight) 50% MgO
  • ammonium phosphate binder (NH 4 ) 2 HPO 4 marketed by Rhodia 5% aluminum phosphate (analytical purity, marketed by Aldrich), 17.5% potassium phosphate (analytical purity, marketed by Aldrich), 10% aluminum metaphosphate, (analytical purity, marketed by Aldrich).
  • the water / binder ratio is equal to 0.16.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

L'invention concerne un nouveau liant hydraulique phosphomagnésien ainsi qu'un mortier obtenu à partir de ce nouveau liant. Le liant phosphomagnésien comprend au moins un composé du magnésium et un mélange de composés du phosphore, le mélange comprenant au moins deux composés choisis parmi un phosphate d'aluminium, un phosphate de potassium et un phosphate d'ammonium. Ce liant conserve de bonnes propriétés mécaniques après exposition aux hautes températures.

Description

NOUVEAU LIANT HYDRAULIQUE PHOSPHOMAGNESIEN, ET MORTIER OBTENU A
PARTIR DE CE LIANT.
L'invention concerne un nouveau liant hydraulique phosphomagnésien ainsi qu'un mortier obtenu à partir de ce nouveau liant.
Les ciments phosphomagnésiens sont des liants hydrauliques, c'est à dire des liants qui, en présence d'eau, se solidifient. Ils sont caractérisés par un liant à base de composés du phosphore et de magnésium.
Ces ciments sont particulièrement intéressants pour leur rapidité de prise et leurs propriétés mécaniques élevées. Cette prise très rapide est particulièrement avantageuse dans des applications comme la réparation d'ouvrages dont on souhaite une remise en service rapide.
Les liants phosphomagnésiens comme la plus part des liants hydrauliques présentent cependant une dégradation de leurs propriétés mécaniques après exposition aux hautes températures. Cette dégradation ne permet pas de les utiliser dans des applications telles le scellement pour conduits de cheminées ou les panneaux anti-feu.
Le but de la présente invention est de proposer un nouveau liant phosphomagnésien qui permet d'obtenir un matériau qui conserve ses propriétés mécaniques après exposition aux hautes températures. Ce but est atteint par la présente invention qui concerne un liant phosphomagnésien qui comprend au moins un composé du magnésium et un mélange de composés du phosphore, le mélange de composés du phosphore comprenant au moins deux composés choisis parmi un phosphate d'aluminium, un phosphate de potassium et un phosphate d'ammonium. L'invention concerne aussi une matrice cimentaire qui comprend le liant phosphomagnésien de l'invention et des éléments granulaires.
L'invention concerne également un procédé de préparation d'un mortier qui comprend l'addition d'eau à la matrice cimentaire et, le mélange de la matrice additionnée d'eau pour obtenir un mortier homogène et fluide, la quantité d'eau additionnée étant telle que le rapport E/L est compris entre 0,20 et 0,50, E représentant la quantité d'eau et L la quantité de composé du magnésium et de composé du phosphore, le mortier ainsi obtenu, et les articles susceptibles d'être obtenus à partir du mortier phosphomagnésien.
Il a été trouvé de façon surprenante que la mise en œuvre d'un liant phosphomagnésien comprenant un mélange particulier de composés du phosphore permet d'obtenir des articles qui présentent de bonnes propriétés mécaniques à température ambiante et dont les propriétés mécaniques sont conservées après exposition aux hautes températures. Dans le cadre de l'invention, le terme "mortier" désigne indifféremment des mortiers ou des coulis à base de liant phosphomagnésien.
Pour ce qui est du composé du phosphore, tous les composés à base de phosphore sont utilisables dans la mesure où ils comprennent du pentoxyde de phosphore, disponible directement ou sous la forme d'un précurseur.
Dans le cadre de l'invention, on peut mentionner sans intention de se limiter comme phosphate d'ammonium, phosphate de potassium et phosphate d'aluminium les sels d'ammonium, d'aluminium, et de potassium des composés du phosphore suivants : le pentoxyde de phosphore, l'acide phosphorique ou des dérivés comme l'acide orthophosphorique, l'acide pyrophosphorique, l'acide polyphosphorique. Le liant hydraulique phosphomagnésien peut contenir ces composés du phosphore seul ou en mélange à la condition d'obtenir un mélange tel que défini précédemment.
Il est à noter que les rejets contenant du phosphore des industries fabriquant des fertilisants, ou encore des aciéries (décapage de l'acier, traitement pour réduire la corrosion) peuvent être employés comme composés du phosphore.
Selon un mode de réalisation particulier, le mélange de phosphates est un mélange qui comprend un phosphate d'ammonium et au moins un composé du phosphore choisi parmi un phosphate de potassium et un phosphate d'aluminium.
Selon un autre mode de réalisation, le mélange de phosphate comprend un phosphate d'aluminium et un phosphate de potassium.
Selon un autre mode de réalisation, le mélange comprend un phosphate d'aluminium, un phosphate d'ammonium et un phosphate de potassium.
De préférence, le sel d'ammonium est un phosphate ou un hydrogénophosphates d'ammonium, seul ou en mélange. D'une façon encore plus préférée, le sel d'ammonium est le dihydrogenophosphate d'ammonium, éventuellement mélangé à du tripolyphosphate d'ammonium.
De préférence, le sel de potassium est un phosphate de potassium.
De préférence, le sel d'aluminium est un phosphate ou métaphosphate d'aluminium, seul ou en mélange. D'une façon encore plus préférée, le sel d'aluminium est le métaphosphate d'aluminium.
La quantité de chacun des composés du phosphore dans le mélange varie en fonction de l'application envisagée.
L'homme du métier, en fonction de l'utilisation envisagée, peut déterminer par des essais de routine, les quantités optimales de chacun des composés du phosphore dans le liant phosphomagnésien.
Selon un mode de réalisation particulier, la quantité de phosphate(s) d'ammonium est majoritaire par rapport à la quantité totale de composés du phosphore entrant dans la composition du liant phosphomagnésien. Les composés du phosphore peuvent se présenter sous forme liquide ou solide, de préférence solide.
Selon une première variante, les composés du phosphore se trouvent sous la forme de particules dont la granulométrie est plus particulièrement d'au plus 300 μm. Il est à noter que cette valeur n'est pas critique et que, s'il est possible d'utiliser des constituants dont la taille des particules est supérieure à 300 μm, un broyage avant incorporation dans la composition selon l'invention peut être souhaitable. Ce broyage peut améliorer la cinétique de dissolution des composés du phosphore.
Selon une seconde variante, les composés du phosphore sont utilisés sous une forme adsorbee sur un support poreux. A titre de support, on peut mentionner par exemple les terres de diatomées, l'argile, la bentonite, la silice, l'alumine. L'adsorption est effectuée de manière connue en soi. Ainsi, d'une façon classique les composés du phosphore, en solution ou en suspension, sont mis en contact avec le support, sous agitation, puis la suspension résultante est chauffée de façon à faire évaporer le liquide en excès. Cette opération peut de même être réalisée par imprégnation du support dans un tambour ou sur disque tournant.
Le liant phosphomagnésien comprend aussi au moins un composé du magnésium.
Tout composé à base de magnésium convient à la présente invention dans la mesure où il réagit avec le composé du phosphore, en présence d'eau. A titre d'exemple, on peut citer comme convenant à la mise en oeuvre de l'invention, les composés du magnésium suivants : l'oxyde de magnésium, l'hydroxyde de magnésium, le carbonate de magnésium.
De préférence, on utilise un composé à base d'oxyde de magnésium. Convient notamment la magnésie dite "dead bumed" habituellement obtenue après calcination de carbonate de magnésium à des températures supérieures à 1200 °C.
D'une façon avantageuse, l'oxyde de magnésium peut être mis en œuvre sous une forme pure ou peut éventuellement comprendre au moins un élément du type calcium, silicium, aluminium ou encore fer, ces éléments se trouvant en général sous forme d'oxyde ou d'hydroxyde. A titre d'exemple de ce type de composé, on peut citer la dolomie, mélange comprenant notamment de l'oxyde de magnésium et de l'oxyde de calcium.
Si l'oxyde de magnésium est utilisé sous forme pure, la pureté de l'oxyde est d'au moins 80 %.
On utilise de préférence des composés du magnésium dont la surface spécifique est inférieure à 10 m2/g. Plus particulièrement, la surface spécifique est inférieure à 2 m2/g.
Par ailleurs, la granulométrie du composé du magnésium est habituellement comprise entre 10 et 500 μm. Il serait envisageable d'utiliser des composés dont la granulométrie se trouve en dehors de la gamme précitée, mais sans que cela n'apporte d'avantages particuliers. Ainsi, si la granulométrie est supérieure à 500 μm, une étape de broyage préalable à l'incorporation dans la composition peut être nécessaire. Par ailleurs, si la granulométrie desdits constituants était inférieure à 10 μm, on pourrait constater une modification des propriétés de la composition mise en contact avec l'eau. On peut notamment constater un accroissement de la vitesse de prise du ciment, sauf à augmenter la teneur en agent retardant la prise, dont il sera question dans la suite de la description. De ce fait, le mortier selon l'invention pourrait être moins intéressant sur le plan de la mise en œuvre ou sur le plan économique. Dans le liant phosphomagnésien, la proportion du composé du magnésium
(exprimée en poids de MgO) rapportée à celle des composés du phosphore (exprimée en poids de 2O5) est plus particulièrement comprise entre 1 et 4.
Le liant phosphomagnésien de la présente invention peut être utilisé pour la préparation de mortier. Un mortier est obtenu à partir d'une matrice cimentaire qui comprend en plus du liant phosphomagnésien tel que défini précédemment des éléments granulaires dont la taille moyenne varie en fonction de l'application envisagée, et optionnellement des additifs connus dans le domaine des liants hydrauliques. La taille des éléments granulaires peut varier de façon classique entre 1 et 500 μm.
La préparation du mortier s'effectue par malaxage de la matrice cimentaire avec de l'eau, le rapport E/L étant compris entre 0,20 et 0,5, de préférence 0,22 et 0,38 , E représentant la quantité d'eau, L la quantité de composés du phosphore et composés du magnésium constituant le liant.
A titre d'éléments granulaires, on peut mentionner le sable, SiO2, TiO2, AI2O3, ZrO2, Cr2O3, le talc, le mica, le kaolin, la bentonite, le métakaolin, la dolomie brute, le minerai de chrome, le clinker, la vermiculite, la periite, le mica, la cellulose, le laitier. Il peut s'agir de produits de synthèse. Ce peut être des composés cristallisés ou amorphes obtenus par exemple par broyage, et tamisage à la taille désirée. On peut utiliser également la fumée de la silice condensée, de la silice broyée, de la silice pyrogénée, des cendres volantes. Un mélange de charges minérales préféré selon l'invention est un mélange qui ne contient pas ou peu de sables silico-calcaires. De préférence, on utilisera des éléments minéraux stables dans le domaine de température considéré.
Les cendres volantes pouvant être utilisées sont en général des cendres silicoalumineuses issues de la combustion dans les centrales thermiques notamment. La granulométrie de ces cendres est habituellement comprise entre 0,5 et 200 μm. La fumée de silice condensée, éventuellement constituant de la composition selon l'invention, présente en général une surface spécifique comprise entre 20 et 30 m2/g.
Habituellement, la quantité d'éléments granulaires est comprise entre 0 et 1000 parties en poids pour 100 parties en poids de liant. Selon un mode de réalisation particulier, la quantité de sable, silice ou des autres éléments granulaires cités dans cette liste, est généralement comprise entre 0 et 900 parties en poids rapporté à la même référence que précédemment. De plus, la quantité de fumée de silice condensée ou de cendres volantes est comprise entre 0 et 100 parties en poids.
Enfin, le liant peut comprendre tout additif classique dans le domaine des liants hydrauliques, comme les agents hydrofugeants ; des fluidifiants, notamment les alcoxysilanes ; des agents antimousses notamment les antimousses à base de polydiméthyl-siloxanes. Parmi ce type d'agents antimousses, on peut citer notamment les silicones sous la forme d'une solution, d'un solide, et de préférence sous la forme d'une résine, d'une huile ou d'une émulsion, de préférence, dans l'eau. Conviennent tout particulièrement les silicones comprenant essentiellement des motifs M
Figure imgf000006_0001
) et D (R2SiO). Dans ces formules, les radicaux R, identiques ou différents, sont plus particulièrement choisis parmi l'hydrogène et les radicaux alkyles comprenant 1 à 8 atomes de carbone, le radical méthyle étant préféré. Le nombre de motifs est de préférence compris entre 30 et 120.
La quantité de silicone utilisée dans le ciment selon l'invention est inférieure ou égale à 10 parties en poids pour 100 parties en poids de liant, et de préférence inférieure ou égale à 5 parties en poids. Le liant peut comprendre des agents de texture et de viscosité, par exemple des fibres de cellulose, guar, amidon, éther cellulosique, éthers d'amidon, alcool polyvinylique. De façon classique, le ciment comprend un agent retardant la prise. Plus particulièrement, cet agent est choisi parmi des composés susceptibles de complexer le magnésium. Ces derniers peuvent être notamment des acides carboxyliques, tels que les acides citrique, oxalique, tartrique, des acides, esters ou sels contenant du bore, des acides, esters ou sels contenant du phosphore, comme le tripolyphosphate de sodium, le sulfate ferreux, le sulfate et lignosulfonate de sodium, le chlorure de zinc, l'acétate de cuivre, le gluconate de sodium, le sulfate acétate de sodium cellulose, le produit de la réaction du formaldehyde avec l'aminolignosulfate, le dialdehyde amidon, la N,N- diméthyloldihydroxyéthylène urée, les silicofluorures, le tall oil et le sucrose, ces composés étant pris seuls ou en mélange.
De préférence, on utilise, seuls ou en mélange, les acides carboxyliques, et de préférence, les acides, esters ou sels contenant du bore. Ainsi, dans cette dernière catégorie de composés, on peut mentionner, sans intention de se limiter, l'acide borique et ses sels, tels que les sels de métaux alcalins, comme le sodium (borax), les sels d'aminé ou d'ammonium. Les esters de l'acide borique conviennent aussi à la mise en oeuvre de l'invention, comme les trialkyloxyborates, les triaryloxyborates.
La quantité d'agent retardant la prise est d'au plus 10 % poids par rapport au poids de liant. De préférence, cette quantité est d'au plus 5 %. D'une façon générale, de tels additifs ne représentent pas plus de 10 parties en poids pour 100 parties en poids de phase liante. De préférence, la quantité d'additifs est comprise entre 0 et 5 parties en poids. Selon un mode particulier, le ou les additifs sont mis en œuvre sous la forme d'une poudre dont le diamètre moyen est de 10 à 200 μm. La quantité d'eau à introduire pour la préparation du mortier selon l'invention est telle que l'on obtienne une pâte plastique, homogène et malléable. Elle dépend de l'application ultérieure du mortier. En effet, si l'on désire faire des revêtements internes de tuyauterie, la pâte est en général plus cohésive qu'un mortier destiné à constituer un revêtement de sol, ou la préparation de dalles ou de panneaux.
Le mélange du liant phosphomagnésien, des éléments granulaires, des additifs éventuels et de l'eau peut être effectué selon toute méthode appropriée. Ainsi, on peut procéder en apportant tous les éléments du mortier, simultanément ou séparément. Selon cette dernière possibilité, on prépare en général une composition comprenant le liant phosphomagnésien, les éléments granulaires, le cas échéant l'agent retardant et tout ou partie des additifs éventuels précédemment cités en général sous forme solide. On mélange ensuite cette composition avec de l'eau, celle-ci comprenant, si tel est le cas, les éléments non introduits dans l'étape antérieure de préparation de la composition, comme les additifs liquides.
On préfère toutefois avoir une matrice cimentaire dont tous les éléments sont sous forme de poudre pour avoir à rajouter uniquement de l'eau lors du malaxage. L'essentiel du procédé est qu'il soit mis en œuvre de façon à obtenir une répartition de tous les éléments constitutifs la plus homogène possible dans la masse du mortier.
Le mélange des éléments constitutifs se fait par tout moyen connu et de préférence dans des conditions cisaillantes, en utilisant par exemple un malaxeur.
L'opération de mélange est avantageusement effectuée à une température voisine de la température ambiante.
Le mortier ainsi obtenu peut être utilisé en tant que mortiers de réparation et de scellement, par exemple dans la réfection rapide d'ouvrages. Il peut être utilisé pour obturer des craquelures, des trous ou recouvrir des zones dégradées ainsi que pour la réparation d'ouvrages armés. En effet, les mortiers ou coulis, outre une résistance à l'exposition aux hautes températures, présentent une bonne adhérence aux ciments dits de Portland et des propriétés mécaniques de résistance à la flexion et à la compression importantes, les rendant particulièrement appropriés pour ce type d'applications. Ils peuvent de même être employés en tant que revêtements de sols, de tuyauteries, même en contact de milieux agressifs.
On peut également les utiliser pour la réalisation de panneaux, en particulier de panneaux de parement intérieurs ou extérieurs pouvant être exposés à des températures élevées. Pour cela, le mortier est coulé dans un moule approprié, pour donner des dalles ou des panneaux. Le mortier peut également être projeté. Les produits moulés ou projetés sont ensuite mis à sécher, d'une façon avantageuse à une température voisine de la température ambiante.
Enfin, il est possible de préparer à partir de ces mortiers des composés réfractaires devant résister à de hautes températures tels que des mortiers de scellement pour conduits de cheminées ou des panneaux anti-feu.
Le mortier de la présente invention précédemment décrit peut contenir des fibres.
On obtient ainsi des matériaux composites. A titre d'exemple, on peut citer les fibres en polypropylène, en polyester, en polyaramide, comme par exemple le KEVLAR®, les fibres de carbone, le polyamide, l'alcool polyvinylique, les rubans de fontes amorphes, des fibres de verre.
Toutes les fibres de verre employées habituellement dans les ciments conviennent. On peut donc employer des fibres alcali-résistantes, comme les fibres de verres spéciaux obtenus notamment par traitement avec du zirconium, de même que les fibres de verres sodo-calciques. Les fibres standards conviennent aussi à l'obtention de matériaux composites selon l'invention. Ainsi, les verres classiques comme les verres borosilicatés habituellement détruits en milieu alcalin.
Les fibres ont des longueurs variant de 1 mm à plusieurs dizaines de millimètres.
La quantité de fibres dans le matériau composite selon l'invention est comprise entre 0,1 et 10 % par rapport au poids de liant, de préférence entre 0,1 et 4 %.
Les matériaux composites selon l'invention sont obtenus par mélange du ciment tel que décrit précédemment, avec les fibres.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
EXEMPLES
Préparation des échantillons
On réalise les échantillons testés à l'aide d'un malaxeur du type Perrier en mélangeant les constituants décrits ci-après pendant 4 minutes à sec, puis en ajoutant l'eau. On malaxe ensuite deux minutes à vitesse lente puis deux minutes à vitesse rapide. Le mélange est coulé dans des moules prismatiques (10mmX10mmX10 cm).
Ces éprouvettes sont démoulées 1 heure après le temps de prise et stabilisées en atmosphère climatisée à 20°C et taux d'humidité constant pendant 1 à 2 jours. Les éprouvettes sont alors placées dans un four à température voulue pendant 1/2 journée. On mesure après refroidissement les contraintes de rupture en flexion.
Les essais sont réalisés en flexion en trois points (NFP 18407) avec un écartement de 70 mm et une vitesse de 0,5 mm par minute sur six éprouvettes à l'aide d'une machine d'essai hydraulique (200 kN).
Exemple 1 (Comparatif)
On réalise le liant phosphomagnésien suivant (% en poids) 50 % en poids de MgO (magnésie)
50 % en poids de phosphate d'ammonium (NH4)2HPO4 commercialisé par Rhodia.
A ce liant, on ajoute
5 % en poids de silice T92 commercialisée par Rhodia par rapport au poids de liant
2,5 % en poids d'acide borique par rapport au poids de liant. Cette composition est malaxée dans les conditions décrites ci-dessus avec de l'eau, le rapport en poids eau/liant étant de 0,22.
On obtient les résultats suivants en fonction du traitement thermique.
Figure imgf000009_0001
Ces résultats montrent que lorsque le liant ne contient que du phosphate d'ammonium, la résistance en flexion après exposition à température élevée chute rapidement.
Exemple 2
On réalise le liant phosphomagnésien suivant (% en poids)
50 % MgO
40 % de liant de phosphate d'ammonium (NH4)2HPO4 commercialisé par Rhodia
10 % de phosphate d'aluminium (pureté analytique, commercialisé par Aldrich).
A ce liant, on ajoute
5 % en poids de silice T92 commercialisée par Rhodia par rapport au poids de liant,
2,5 % en poids d'acide borique par rapport au poids de liant. Le rapport Eau/Liant est égal à 0,26.
On obtient les résultats suivants en fonction du traitement thermique.
Figure imgf000010_0001
Ces résultats montrent que la résistance en flexion après exposition à haute température (par ex : 850°C) est améliorée par l'utilisation de phosphate d'ammonium et d'un phosphate d'aluminium.
Exemple 3
On réalise le liant phosphomagnésien suivant (% en poids) 50 % MgO
17,5 % de liant de phosphate d'ammonium (NH4)2HPO4 commercialisé par Rhodia 5 % de phosphate d'aluminium (pureté analytique, commercialisé par Aldrich), 17,5 % de phosphate de potassium (pureté analytique, commercialisé par Aldrich), 10 % de métaphosphate d'aluminium, (pureté analytique, commercialisé par Aldrich).
A ce liant, on ajoute
5 % en poids de silice T92 commercialisée par Rhodia par rapport au poids de liant,
2,5 % en poids d'acide borique par rapport au poids de liant, Le rapport Eau/Liant est égal à 0,16.
On obtient les résultats suivants en fonction du traitement thermique.
Figure imgf000010_0002
Ces résultats montrent que la résistance en flexion, après exposition aux hautes températures est améliorée par l'utilisation de phosphate d'ammonium, de phosphate d'aluminium, et de phosphate de potassium.

Claims

REVENDICATIONS
1. Liant phosphomagnésien qui comprend au moins un composé du magnésium et un mélange de composés du phosphore, le mélange comprenant au moins deux composés choisis parmi un phosphate d'aluminium, un phosphate de potassium et un phosphate d'ammonium.
2. Liant selon la revendication 1 dans lequel le mélange comprend un phosphate d'ammonium et au moins un phosphate d'aluminium et un phosphate de potassium.
3. Liant selon la revendication 1 dans lequel le mélange comprend un phosphate d'aluminium et un phosphate de potassium.
4. Liant selon la revendication 1 dans lequel le mélange comprend un phosphate d'ammonium, un phosphate d'aluminium et un phosphate de potassium.
5. Matrice cimentaire comprenant un liant phosphomagnésien tel que défini selon l'une quelconque des revendications 1 à 4, des éléments granulaires et optionnellement un ou plusieurs additifs,
6. Matrice selon la revendication 5 dans laquelle les éléments granulaires ont une taille comprise entre 0,1 et 500 μm.
7. Procédé d'obtention d'un mortier phosphomagnésien qui comprend l'addition d'eau à la matrice cimentaire définie selon l'une des revendications 5 ou 6, le mélange de la matrice additionnée d'eau pour obtenir un mortier homogène et fluide, la quantité d'eau additionnée étant telle que le rapport E/L est compris entre 0,20 et 0,50 , E représentant la quantité d'eau et L la quantité de composé du magnésium et de composé du phosphore.
8. Articles comprenant un liant tel que défini selon l'une quelconque des revendications 1 à 4.
PCT/FR2001/001707 2000-06-05 2001-06-01 Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant WO2001094270A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP01940667A EP1289907A1 (fr) 2000-06-05 2001-06-01 Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant
CA002408504A CA2408504A1 (fr) 2000-06-05 2001-06-01 Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant
AU2001274179A AU2001274179A1 (en) 2000-06-05 2001-06-01 Novel phosphomagnesium hydraulic binder, and mortar obtained from same
MXPA02011902A MXPA02011902A (es) 2000-06-05 2001-06-01 Aglutinante hidraulico de fosfomagnesio novedoso, mortero obtenido a partir del mismo.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/07146 2000-06-05
FR0007146A FR2809724B1 (fr) 2000-06-05 2000-06-05 Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant

Publications (1)

Publication Number Publication Date
WO2001094270A1 true WO2001094270A1 (fr) 2001-12-13

Family

ID=8850954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001707 WO2001094270A1 (fr) 2000-06-05 2001-06-01 Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant

Country Status (7)

Country Link
US (1) US20030127025A1 (fr)
EP (1) EP1289907A1 (fr)
AU (1) AU2001274179A1 (fr)
CA (1) CA2408504A1 (fr)
FR (1) FR2809724B1 (fr)
MX (1) MXPA02011902A (fr)
WO (1) WO2001094270A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2809391B1 (fr) * 2000-05-29 2003-05-09 Rhodia Chimie Sa Nouveau mortier phosphomagnesien, procede d'obtention de ce mortier
US7204880B1 (en) * 2004-05-21 2007-04-17 Turner Terry A Rapid setting cement
US7699928B2 (en) 2006-07-14 2010-04-20 Grancrete, Inc. Sprayable and pumpable phosphate cement
US8409346B2 (en) 2008-10-06 2013-04-02 Grancrete, Inc. Waste storage vessels and compositions therefor
US8273172B2 (en) * 2008-10-07 2012-09-25 Grancrete, Inc. Heat resistant phosphate cement
WO2013052732A1 (fr) 2011-10-07 2013-04-11 Boral Industries Inc. Composites de polymère inorganique/polymère organique et procédés pour les préparer
US8864901B2 (en) 2011-11-30 2014-10-21 Boral Ip Holdings (Australia) Pty Limited Calcium sulfoaluminate cement-containing inorganic polymer compositions and methods of making same
FR3003252B1 (fr) * 2013-03-13 2015-04-17 Commissariat Energie Atomique Liant et son utilisation pour le conditionnement de dechets contenant de l'aluminium metallique
DE202019000813U1 (de) * 2019-02-20 2020-05-28 Intocast Aktiengesellschaft Feuerfestprodukte Und Giesshilfsmittel Kalthärtende Rieselmasse
CN113772986B (zh) * 2021-10-29 2022-08-16 沈阳建筑大学 一种适用于铵基磷酸镁水泥体系的缓凝剂及其使用方法
CN115231880B (zh) * 2022-09-22 2023-02-03 太原理工大学 煤系偏高岭土-氧化石墨烯水泥砂浆复合材料及制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2401185A1 (de) * 1973-01-15 1974-07-25 Set Products Bindemittel
US4394174A (en) * 1982-06-01 1983-07-19 E. I. Du Pont De Nemours & Co. Phosphate cement and mortar
EP0088170A1 (fr) * 1979-12-10 1983-09-14 Celtite Inc. Composition autodurcissable et cartouche la contenant
US4504555A (en) * 1982-09-07 1985-03-12 Masonite Corporation Composition and process for forming inorganic resins and resulting product
US4836854A (en) * 1984-06-27 1989-06-06 J. R. Simplot Co. Stabilization of setting times of phosphate-bonded magnesia cements
WO1996035647A1 (fr) * 1995-05-10 1996-11-14 James Hardie Research Pty. Limited Procede de ralentissement de la vitesse de prise des ciments au phosphate de magnesium
WO1997021639A1 (fr) * 1995-12-08 1997-06-19 Rhodia Chimie Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisaton pour la preparation de mortiers
FR2764285A1 (fr) * 1997-06-10 1998-12-11 Rhodia Chimie Sa Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisation pour la preparation de mortiers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3960580A (en) * 1974-11-21 1976-06-01 W. R. Grace & Co. Magnesium phosphate concrete compositions
FR2714668B1 (fr) * 1993-12-31 1996-01-26 Rhone Poulenc Chimie Préparation de ciments phosphomagnésiens.
FR2749007B1 (fr) * 1996-05-24 1998-08-14 Rhone Poulenc Chimie Nouvelle composition de ciment phosphomagnesien comprenant un polymere sous forme de particules
GB9617010D0 (en) * 1996-08-13 1996-09-25 Shaw Richard D Improved refractory binder
US5766337A (en) * 1996-11-25 1998-06-16 Moon; Leonard H. Magnesium oxyphosphate cement
US6136088A (en) * 1997-10-09 2000-10-24 Mbt Holding Ag Rapid setting, high early strength binders
US6458423B1 (en) * 1999-08-03 2002-10-01 David M. Goodson Sprayable phosphate cementitious coatings and a method and apparatus for the production thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2401185A1 (de) * 1973-01-15 1974-07-25 Set Products Bindemittel
EP0088170A1 (fr) * 1979-12-10 1983-09-14 Celtite Inc. Composition autodurcissable et cartouche la contenant
US4394174A (en) * 1982-06-01 1983-07-19 E. I. Du Pont De Nemours & Co. Phosphate cement and mortar
US4504555A (en) * 1982-09-07 1985-03-12 Masonite Corporation Composition and process for forming inorganic resins and resulting product
US4836854A (en) * 1984-06-27 1989-06-06 J. R. Simplot Co. Stabilization of setting times of phosphate-bonded magnesia cements
WO1996035647A1 (fr) * 1995-05-10 1996-11-14 James Hardie Research Pty. Limited Procede de ralentissement de la vitesse de prise des ciments au phosphate de magnesium
WO1997021639A1 (fr) * 1995-12-08 1997-06-19 Rhodia Chimie Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisaton pour la preparation de mortiers
FR2764285A1 (fr) * 1997-06-10 1998-12-11 Rhodia Chimie Sa Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisation pour la preparation de mortiers

Also Published As

Publication number Publication date
EP1289907A1 (fr) 2003-03-12
FR2809724B1 (fr) 2003-05-09
MXPA02011902A (es) 2003-04-22
CA2408504A1 (fr) 2001-12-13
FR2809724A1 (fr) 2001-12-07
AU2001274179A1 (en) 2001-12-17
US20030127025A1 (en) 2003-07-10

Similar Documents

Publication Publication Date Title
EP0865416B1 (fr) Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisaton pour la preparation de mortiers
EP0661242B1 (fr) Préparation de ciments phosphomagnésiens
EP1263690B1 (fr) Composition de beton ultra haute performance resistant au feu
FR2769619A1 (fr) Liants a prise rapide, a haute resistance initiale
EP2467349A2 (fr) Ciment geopolymerique et son utilisation
WO2001094270A1 (fr) Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant
EP0910556B1 (fr) Nouvelle composition de ciment phosphomagnesien comprenant un polymere sous forme de particules
CN111675509A (zh) 一种高性能抗裂混凝土及其制备方法
EP0691314B1 (fr) Ciments phosphomagnesiens comprenant des polysaccharides, des protéines végétales et leur mode de préparation
FR2764285A1 (fr) Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisation pour la preparation de mortiers
CN116161929A (zh) 一种再生混凝土及其制备方法
WO2001092181A1 (fr) Mortier phosphomagnesien et procede d'obtention de ce mortier
FR2769308A1 (fr) Suspension aqueuse contenant des particules de silice
FR2589854A1 (fr) Compositions pour refractaires monolithiques contenant un agregat refractaire basique et un phosphate peu soluble
FR2785604A1 (fr) Composition de beton pret a l'emploi resistant a une temperature de 1 000°c
KR101958911B1 (ko) 시멘트계 경화체용 결합재, 이를 포함하는 콘크리트 및 이를 이용하여 제조되는 콘크리트 구조체
FR2690439A1 (fr) Bétons réfractaires isolants résistant aux atmosphères corrosives.
FR3133393A1 (fr) Composition de liant hydraulique de laitiers de hauts fourneaux
BE672933A (fr)
WO2001004067A1 (fr) Materiau renforce a base de liant hydraulique, en particulier beton, composition correspondante et procede de preparation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001940667

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2408504

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10297073

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/011902

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2001940667

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001940667

Country of ref document: EP