WO2001094073A1 - Ergonomically friendly orbital sander construction - Google Patents

Ergonomically friendly orbital sander construction Download PDF

Info

Publication number
WO2001094073A1
WO2001094073A1 PCT/US2001/015218 US0115218W WO0194073A1 WO 2001094073 A1 WO2001094073 A1 WO 2001094073A1 US 0115218 W US0115218 W US 0115218W WO 0194073 A1 WO0194073 A1 WO 0194073A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
orbital sander
set forth
shaft
columns
Prior art date
Application number
PCT/US2001/015218
Other languages
English (en)
French (fr)
Inventor
Paul William Huber
Original Assignee
Chao, Hao, Chien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chao, Hao, Chien filed Critical Chao, Hao, Chien
Priority to AU2001263052A priority Critical patent/AU2001263052A1/en
Priority to JP2002501622A priority patent/JP2004508204A/ja
Priority to EP01937302A priority patent/EP1305138B1/de
Priority to DE60134554T priority patent/DE60134554D1/de
Publication of WO2001094073A1 publication Critical patent/WO2001094073A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/007Weight compensation; Temperature compensation; Vibration damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/04Portable grinding machines, e.g. hand-guided; Accessories therefor with oscillating grinding tools; Accessories therefor

Definitions

  • the present invention relates to an improved ergonomically friendly surface-treating tool in which a flat surface of a pad engages the surface of a workpiece for the purpose of abrading or polishing it and more particularly to an improved orbital sander.
  • orbital sanders create forces at the sanding surface which are transmitted back to the operator's hand and arm through a lever which is the height of the orbital sander between the face of the sanding disc and the top of the casing at the vertical centerline of the sander. Therefore, if this height is as short as possible, the operator's effort in overcoming the forces produced at the face of the sanding disc are less than if the height was greater.
  • connection between the housing and the pad should be sufficiently flexible to permit good orbital action but it should also provide good columnar strength so that the pad will oscillate in a very close plane, that is, movement in a vertical direction should be limited as much as possible.
  • prior orbital sanders there were various types of connections between the housing and pad.
  • a central relatively soft rubber post connected the pad to the housing. While this provided sufficient orbital flexibility, it permitted the pad to move out of a desired plane.
  • thin rigid plastic multi-columnar post units were located at the corners of the pad between the pad and the housing.
  • a further object of the present invention is to provide an improved structural arrangement for essentially preventing foreign matter from entering the eccentric housing containing the spindle bearings of an orbital sander, thus prolonging the life of the bearings to a much greater extent than was heretofore possible by the use of prior types of seals.
  • the present invention relates to an orbital sander comprising a housing, a compressed air motor in said housing, a pad support secured to said motor, and first and second elongated rows of spaced plastic columns located on opposite sides of said motor and located between said housing and said pad support.
  • the present invention also relates to an orbital sander as set forth in the preceding paragraph including a shaft in said motor, a rotor mounted on said shaft, a compressed air duct in said motor for conducting compressed air to said rotor, an eccentric housing mounted on said shaft, a chamber in said eccentric housing, at least one bearing in said eccentric housing, said pad support being secured to said eccentric housing, and means in said motor for conducting compressed air to said chamber.
  • the present invention also relates to a plastic columnar unit for an orbital sander comprising an upper bar member, a lower bar member, and a row of a plurality of spaced columns between said upper and lower bar members.
  • FIG. 1 is a fragmentary plan view of a central vacuum orbital sander with the vacuum hose and the compressed air hose connected to the orbital sander;
  • FIG. 1A is an enlarged fragmentary cross sectional view taken substantially along line 1A-1A of FIG. 1;
  • FIG. IB is a cross sectional view taken substantially along line IB-IB of FIG. 1A;
  • FIG. 1C is a cross sectional view taken substantially along line 1C-1C of FIG. 1A;
  • FIG. ID is a cross sectional view taken substantially along line ID-ID of FIG. 1A;
  • FIG. IE is a cross sectional view taken substantially along line IE-IE of FIG. 1A;
  • FIG. IF is a cross sectional view taken substan- tially along line 1F-1F of FIG. 1A;
  • FIG. 2 is a fragmentary side elevational view of the orbital sander of FIG. 1;
  • FIG. 2A is a fragmentary cross sectional view taken substantially along line 2A-2A of FIG. 2 and showing the support structure for the dust discharge tube;
  • FIG. 2B is a fragmentary extension of the top of the structure shown in FIG. 2A;
  • FIG. 3 is a fragmentary view, partially in cross section, taken substantially along line 3-3 of FIG. 1, and showing the relationship between the shroud and the dust discharge tube and the discharge hose; and also showing the relationship between the motor exhaust tube and the dust discharge tube;
  • FIG. 4 is a fragmentary plan view of a self- generated vacuum orbital sander with the vacuum hose and the compressed air hose connected to the orbital sander and to each other;
  • FIG. 5 is a fragmentary side elevational view of the sander of FIG. 4;
  • FIG. 6 is an enlarged fragmentary cross sectional view taken substantially along line 6-6 of FIG. 5 and showing the structure of the motor exhaust tube, the dust discharge tube containing an aspirator, the connection therebetween and the connection between the dust discharge tube and the flexible hose;
  • FIG. 6A is a cross sectional view taken substantially along line 6A-6A of FIG. 6
  • FIG. 7 is a fragmentary enlarged cross sectional view taken substantially along line 7-7 of FIG. 4 and showing the compressed air valve inlet structure
  • FIG. 8 is a fragmentary cross sectional view taken substantially along line 8-8 of FIG. 7 and showing the compressed air flow adjusting valve in a full open position;
  • FIG. 9 is a view similar to FIG. 8 but showing the valve in a partially open position
  • FIG. 10 is a view similar to FIG. 8 and showing the valve in a fully closed position
  • FIG. 11 is an enlarged fragmentary enlarged cross sectional view similar to FIG. 7 but showing the compressed air inlet valve in an open position;
  • FIG. 11A is an enlarged perspective view of the compressed air flow control valve;
  • FIG. 11B is a side elevational view of the compressed air flow control valve
  • FIG. 12 is a fragmentary cross sectional view taken substantially along line 12-12 of FIG. 11 and showing the relationship between the position between the compressed air inlet valve and the air flow adjusting valve when the latter is in a fully open position;
  • FIG. 13 is a view similar to FIG. 12 but showing the relationship when the air flow adjusting valve is in a partially open position
  • FIG. 14 is a view similar to FIG. 12 but showing the relationship when the air flow adjusting valve is in a closed position;
  • FIG. 15 is a side elevational view of a central vacuum type orbital sander showing the various dimensions which are considered in determining ergonomics;
  • FIG. 16 is a side elevational view of a self- generated vacuum type of orbital sander showing the various dimensions which are considered in determining ergonomics;
  • FIG. 17 is a cross sectional view taken substantially along line 17-17 of FIG. IF and showing a modification of the rotor shaft for positively pressurizing the bearings in the eccentric housing;
  • FIG. 18 is an exploded view of the rotor shaft and related structure of FIG. 17;
  • FIG. 19 is a modified form of FIG. 1A showing another embodiment for conducting compressed air to the bearings in the eccentric housing;
  • FIG. 20 is a view similar to FIG. 19 and showing a duct in the form of a slot in the rotor shaft for conducting compressed air to the bearings in the eccentric housing;
  • FIG. 21 is a view similar to FIG. 19 and showing another embodiment of a duct which includes an inclined duct or bore in the rotor shaft for conducting compressed air to the bearings in the eccentric housing;
  • FIG. 22 is a perspective view of the improved orbital sander of the present invention having the unique columnar mounting units between the housing and the pad;
  • FIG. 23 is a cross sectional view taken substan- tially along line 23-23 of FIG. 22;
  • FIG. 24 is a cross sectional view taken substantially along line 24-24 of FIG. 23;
  • FIG. 25 is an exploded view of the orbital sander of FIGS. 22-24;
  • FIG. 26 is an enlarged exploded view of a portion of FIG. 25 showing the lower housing section and the columnar units which join the pad to the housing sections;
  • FIG. 27 is a fragmentary perspective view showing the lower housing sections assembled with the columnar units
  • FIG. 28 is a cross sectional view taken substantially along line 28-28 of FIG. 27;
  • FIG. 29 is a cross sectional view of the columnar unit taken substantially along line 29-29 of FIG. 26;
  • FIG. 29A is a view showing the preferred structure of a column of the columnar unit;
  • FIG. 30 is a cross sectional view taken substantially along line 30-30 of FIG. 29;
  • FIG. 31 is a cross sectional view taken substantially along line 31-31 of FIG. 29. DETAILED DESCRIPTION OF THE INVENTION
  • the present invention relates to an orbital sander which has a relatively low height and thus is ergonomically friendly, while also providing good columnar strength to maintain the pad in a close orbital plane and also permitting good orbital flexibility.
  • Its low height is due in part to the compressed air motor which drives it, and this motor is the same that is used in the three previous types of random orbital sanders which are described hereafter. Its low height is also due to the use of a columnar connection between the housing in the pad which provides good columnar strength while providing good orbital flexibility.
  • the compressed air motor which is used in the orbital sander of the present invention is also used in the three basic types of random orbital sanders which are described hereafter.
  • the first and most rudimentary type is the non-vacuum type which does not have any vacuum associated with it for the purpose of conveying away the dust which is generated during a sanding operation.
  • the second type is the central vacuum type which has a vacuum hose attached at one end to a central vacuum source and at its other end to a fitting which is in communication with the shroud of the sander so as to create a suction which carries away the dust which is generated during a sanding operation.
  • the third type is a self-generated vacuum type wherein the exhaust air from the air motor is associated with an aspirator in communication with the shroud for carrying away the dust which is generated during a sanding operation. While not specifically shown in the orbital sander of the present invention of FIGS. 22-31, it will be appreciated that the above features of the central vacuum type and self-generated vacuum type may be incorporated therein.
  • the orbital sander of the present invention shown in FIGS. 22-31 includes the compressed air motor of the foregoing type of sanders which, in part, permits the sander of the present invention to have a relatively low height, which thus reduces stresses experienced by the operator.
  • the elongated rows of spaced plastic columns which secure the pad plate to the housing in FIGS. 22-31 may be used with other motors which do not have the low height of the motor described hereafter.
  • FIGS. 1, 1A, 2, 2A, 2B and 3 a central vacuum type of random orbital sander 10 is disclosed wherein a flexible vacuum hose 11 is connected between the dust discharge tube 12 and the shroud 13 which surrounds the sanding disc 14.
  • the only difference between the central vacuum type orbital sander 10 and a non-vacuum type is that the latter does not have the dust discharge tube 12 or the flexible hose 11.
  • FIG. 1A which is taken along line 1A-1A of FIG. 1.
  • the sander of the foregoing figures is being described hereafter for the purpose of setting forth the structure of the compressed air motor used in the orbital sander of the present invention shown in FIGS. 22 et seq. which contributes in part to the low height of the sander of the present invention.
  • the basic construction of the random orbital sander of FIGS. 1-3 includes a housing grip 15 of a rubber type material which is mounted on plastic housing 17 and secured thereon by coacting with ribs 19, 20 and 21 which extend partially around housing 17.
  • Housing 17 also includes a lower portion 22 which terminates at a skirt 23 having an annular rib 24 ' thereon onto which flexible plastic shroud 13 is mounted with a snap fit.
  • An air motor is located within housing 17, and it includes a cylinder 24 in which a rotor 25 keyed to shaft 27 by key 28 is mounted.
  • the ends of shaft 27 are mounted in bearings 29 and 30 (FIG. 1A) , and a snap ring 31 retains shaft 27 in position.
  • the cylinder 24 is part of a cylinder assembly which includes an upper plate 32 and a lower plate 33.
  • the bearing 29 is mounted into annular portion 63 of upper plate 32, and the bearing 30 is mounted into annular portion 28 of lower plate 33.
  • the end plates 32 and 33 include planar surfaces 34 and 35, respectively, which bear against the ends of cylinder 24 to thereby provide the required sealing with the adjacent portions of the cylinder 24.
  • a pin 37 has an upper end which is received in a bore 39 in housing 17. Pin 37 passes through a circular bore 40 in end plate 32 and through a bore 41 in cylinder 24 and into a bore 42 in end plate 33, thereby aligning the end plates 32 an 33 with the cylinder 24.
  • Rotor shaft 27 has an eccentric housing 57 formed integrally therewith into which bearings 55 are mounted and retained therein by snap ring 56 which bears on Belleville washer 58. Housing 57 is an eccentric having two counterweights 54 and 57'. A stub shaft 53 is press- fitted into bearings 55 and it is formed into a nut 59 at its outer end.
  • rotor shaft 27 will rotate and eccentric housing 57 will simultaneously rotate with shaft 27.
  • a threaded shaft 60 extends upwardly from sanding disc 14 and is received in stub shaft 53.
  • a compressed air inlet conduit 38 is in communication with bore 134 in cylinder 24, and bore 134 is in communication with bore 134' which extends axially between upper cylinder surface 50 (FIG. ID) and lower cylinder surface 35 (FIG. 1A) .
  • Bore 134' is in communication with groove 136 (FIG. ID) in upper cylinder surface 50 and a like groove (not shown) in lower cylinder surface 35.
  • upper plate 32 When upper plate 32 is in assembled position, it causes groove 136 to be a conduit leading to chamber 138 (FIG. ID) within cylinder 24.
  • Lower plate 33 forms a similar conduit with the groove which corresponds to groove 136 in lower cylinder surface 35.
  • a plurality of vanes 136' (FIG. ID) are slidably mounted in radial slots 139' in plastic rotor 25 and their outer ends contact the inner surface of cylinder 24 because they are forced outwardly by air pressure which is conducted to the inner ends of slots 139' by groove 140' (FIG. IB) in the surface 64 of plate 32.
  • Groove 140' is in communication with groove 136.
  • Lower plate 33 (FIG.
  • FIG. 1C has a groove 141' which corresponds to groove 140' and is in communication with a groove which corresponds to groove 136.
  • Air is exhausted from chamber 142' of cylinder through narrow slots 143' (FIG. IF) a few millimeters wide in the central portion of cylinder 24, and this exhaust air passes into chamber 144' between cylinder 24 and housing 17, and it thereafter passes through bore 142 (FIGS. IF and 3) into exhaust conduit 87.
  • the air motor is of a conventional type which has been constructed for causing the overall height of the above-described unit in FIG. 5 to be lower than existing orbital sanders having a similar construction and for causing it to have a lower weight.
  • the modifications which have been made are as follows:
  • the top 60 of housing 17 is 2.0 millimeters thick. Additionally, the clearance at 61 between the inner surface 62 of housing 17 and the edge 63 is 0.6 millimeters.
  • the thickness of end plate 32 between surface 50 and surface 64 is 2.5 millimeters, and the thickness of end plate 33 between surface 35 and surface 67 is 2.5 millimeters.
  • the cylinder 24' has an axial length of 20 millimeters.
  • the clearance 69 is 0.5 millimeters.
  • nut 59 is 4.0 millimeters thick.
  • the eccentric has a height of 21.4 millimeters.
  • the basic structure of the air motor is a well known conventional type having 150 watts minimum power at 0.61 bar air pressure minimum.
  • the above features of the presently described air motor cause the orbital sander of FIGS. 1-21 to be of a relatively low height and a relatively low weight. Otherwise, the internals of the air motor are conventional.
  • the reduced height of sander 10 is depicted by letter A in FIG. 15. The fact that the entire height of sander 10 is lower, results in the lowering of the centerline of the outlet of the dust discharge tube to a dimension B and also results in the lowering of the centerline of the compressed air inlet 80 to a dimension C. As noted above, the lowering of dimensions B and C also results in enhancing the ease of handling of the orbital sander 10.
  • the dust discharge tube 12 (FIG. 3) of sander 10 has a centerline 86 and is inclined to the horizontal at an angle a.
  • the dust discharge tube 12 consist of a longer section 83 and a shorter section 84 which has a centerline 88 and which has a circular outlet which mounts on cylindrical stub pipe 85 formed integrally with shroud 13.
  • the dust discharge tube portion 83 is located immediately below the motor exhaust inlet fitting 87.
  • the air motor exhaust conduit 87 is within housing portion 90 which is molded integrally with housing 17. Housing portion 90 also contains compressed air inlet conduit 80 (FIGS. 1 and 2A) .
  • the dust discharge tube 12 is also attached to housing portion 90 by a bolt 91 which extend through horizontal portion 92 of unit 90 and also extends through web 93 which spans legs 94 and 95 molded integrally with dust discharge tube 12.
  • a bolt 91 which extend through horizontal portion 92 of unit 90 and also extends through web 93 which spans legs 94 and 95 molded integrally with dust discharge tube 12.
  • the compressed air inlet 80 includes a valve 100 (FIG. 1A) which is biased against seat 101 by spring 102 which has its outer end 103 bearing against the end of hollow compressed air fitting 104 which is threaded into housing portion 90.
  • Fitting 104 (FIGS. 1, 2, 4 and 5) receives the end of compressed air hose 106 with a conventional connection.
  • Hose 106 is attached to vacuum hose 11 by strap 108.
  • lever 105 is pivotally mounted at 107 on boss 109 which is molded integrally with housing portion 90.
  • lever 105 When lever 105 is depressed, it will depress pin 110 from the position shown in FIG. 7 to the position shown in FIG. 9 against the bias of spring 102 in view of the fact that the extension 111 of valve 100 is received in a bore 112 at the lower end of pin 110.
  • the spring 102 When lever 105 is released, the spring 102 will return valve 100 to the position of FIG. 7 and pin 110 will be raised to the position of FIG. 7 by virtue of its connection with valve extension 111.
  • the foregoing structure of valve 100 is conventional .
  • a flow adjusting valve 115 (FIGS. 1A, 7, 11A and 11B) is located in bore 117 of housing portion 90 and it is retained therein by snap ring 119 (FIG. 7). Bore 117 has a wall 118.
  • An O-ring 120 is mounted in a groove 122 of base 126 of valve body 121 (FIG.11A). O-ring 120 performs both a sealing function and a frictional holding function to retain valve 115 in any adjusted position in bore 117.
  • the valve consists of a portion 123 of a cylinder extending upwardly from base 126 and having an outer cylindrical surface 124.
  • a handle 125 is molded integrally with valve body 121.
  • the upstanding wall 123 includes an aperture 127 and an inclined groove 129 in communication with bore 127.
  • the outer surface 124 is in sliding contact with wall 130 of bore 117.
  • bore 127 is in communication with bore 38 (FIG. 1A) of housing 17.
  • Bore 38 terminates at wall 132 of air motor cylinder 25.
  • An O-ring 133 is inserted in wall 132 (FIG. IF) around bore 134 which provides a seal with the outer end of conduit 38.
  • valve 115 is fully open in the position shown in FIG. 8. In FIG. 9 it is partially open and it can thus be seen that the air flow must pass along inclined groove 129 which restricts the opening to conduit 38. It will be appreciated that the more that wall 121 is moved in a counterclockwise direction, the smaller will be the path of communication leading to duct 38.
  • FIG. 10 the valve is shown in a fully closed position wherein the wall 124 completely closes off duct 38. At this time the edge 135 engages shoulder 137 to define the limit of counterclockwise movement of valve 115, as shown in FIG. 10.
  • the clockwise limit of movement of wall 124 is determined when edge 139 engages shoulder 140, as shown in FIG. 10.
  • the range of movement of valve 125 is 90° from a full open position to a full closed position.
  • FIGS. 12, 13 and 14 correspond to FIGS. 8, 9 and 10, respectively, but are taken along cross section line 12-12 above valve extension 111 whereas FIGS. 8, 9 and 10 are taken through valve extension 111 in FIG. 7.
  • motor air exhaust housing 87 is shown which is in communication with the exhaust of air motor cylinder 24 (FIG. 1A) through conduit 142 (FIG. 3).
  • Housing 90 includes a muffler 143 which is held in position in bore 144 by plug 145 and the exhaust air exits housing 90 through perforated cap 147.
  • a self-generated vacuum random orbital sander 150 is shown in FIGS. 4, 5, 6 and 7 .
  • This sander has the same internal structure described above relative to the central vacuum type, as shown in FIG. 1A.
  • it has the same type of sanding pad 14 and it has the same type of valve 115 described above which is located in housing unit 90.
  • the inlet valve 115 is identical to valve 125 described above in FIGS. 1A, 8, 9 and 10.
  • the self-generated vacuum random orbital sander 150 includes a dust discharge tube 151 which is also inclined to the horizontal at an angle a (FIG. 5).
  • Dust discharge tube 151 includes an elongated portion 152 which has a centerline 156 (FIG. 16) and is received in elbow 153 which has a centerline 158 and which in turn is mounted on stub pipe 154 of shroud 13.
  • a tubular strap portion 155 is formed integrally with portion 156.
  • Motor exhaust unit 159 contains a porous muffler 160.
  • a fitting 161 extends through strap 155 and is threaded into motor exhaust housing 159 at 162 and it includes a bore 163 and a plurality of apertures leading from bore 163 to conduit 165 which is the entry portion of bore 167 which functions as an aspirator 176 in conjunction with the areas 169 and 170 of elongated dust discharge tube portion 150. It is to be especially noted that the dust discharge from shroud 13 enters the straight portion of dust discharge tube 152 and the fact that there is no sharp bend in the immediate vicinity of areas 171 and 169, there will be greater efficiency than if such a bend existed immediately adjacent to conduit 165.
  • the flexible dust discharge hose 11 is received in the enlarged portion 172 at the outer end of dust discharge tube 151 in the same manner as described above relative to the embodiment of FIGS. 1-3.
  • the outer portion 170 of aspirator 176 is nested within the innermost portion of dust discharge hose 11 (FIG. 6), thereby contributing to the overall relative shortness of dust discharge tube 151.
  • the dust discharge tube 151 is inclined at an angle a to the horizontal and that elbow 153 is inclined at an angle b to the horizontal.
  • the centerline of dust discharge tube 151 at the outer end of portion 172 is a distance E from the vertical centerline 71 of the random orbital sander 150. Dust discharge tube 151, in addition to being inclined, is relatively short so that any downward force at its outer end will be relatively close to the vertical centerline 71 and will therefore create less of a force which the operator must oppose than if it were longer.
  • A is the height between top of sander and sanding disc pad surface at vertical centerline of sander.
  • B is the height between centerline of discharge tube and sanding disc pad surface at outlet of discharge tube.
  • C is the height between centerline of compressed air inlet and sanding disc pad surface.
  • D is the horizontal distance between vertical centerline of sander and extreme outer portion of compressed air inlet.
  • E is the horizontal distance between vertical centerline of sander and extreme outer portion of the dust discharge tube.
  • Angle a is the angle between the horizontal, or the face of the pad, and the centerline of the dust discharge tube.
  • Angle b is the angle between the centerlines of the two portions of the dust discharge tube.
  • the dimension E is 130.05 millimeters for the central vacuum sander and 147.28 millimeters for the self-generated vacuum sander.
  • the threaded connection at outer end portion 89 (FIG. 3) of dust discharge tube 12 of the central vacuum sander is decreased by two threads at 5 millimeters each, then the 130.05 dimension E would be decreased about 10 millimeters to about 120 millimeters.
  • the threaded end portion 172 of the self-generated vacuum sander is decreased by two threads at 5 millimeters each, the 147.28 dimension E would be decreased 10 millimeters to about 137 millimeters.
  • the closest known prior art sander of the above-described type shown in FIGS. 1-21 has a height dimension of approximately 89 millimeters as compared to height dimension A of 82.92 millimeters of the above-described sander. As further noted above there is a difference of about 7% between the two dimensions.
  • the 82.92 millimeter dimension is the ultimate low dimension which was able to be achieved while still retaining the various component parts of the sander in a commercially operable manner for providing the desired output parameters noted above and also recited hereafter.
  • the height dimension A of the present sander can be increased a few millimeters by not reducing the thickness and height of the various components as much as was done. Accordingly, it is contemplated that the height dimension A can be increased to 86 millimeters which would still be a reduction in height from 89 millimeters or approximately 3.5%.
  • the closest known prior art sander of the present type has a weight of 0.82 kilograms as compared to the weight of the present sander of 0.68 kilograms, or a difference of 0.14 kilograms or a weight reduction of approximately 17%. It will be appreciated that the weight of the sander of the present invention may be increased to .75 kilograms which would be a difference of approximately .07 kilograms, and this would be a weight reduction of approximately 8.3% which also could be significant.
  • the preferred angle a shown above in the table is an acute angle of 10°. However, this angle may be as small as about 5° and as high as about 30°. The exact acute angle for any specific device will depend on various factors such as the length of the motor exhaust body which is located directly above it and the vertical spacing between the shroud outlet and the motor exhaust body.
  • the angle b is 130°, but it can be any obtuse angle consistent with the acute angle a of the dust discharge tube.
  • the non-vacuum sander, the central vacuum sander 10 and the self-generated vacuum sander 150 utilize a 150 watt power air motor which operates from a source providing 6.1 bar air pressure and the air motor is capable of providing up to 10,000 revolutions per minute.
  • the bearings 276 (FIG. 23), which are analogous to the bearings 55 (FIGS. 1A and 17), are supplied with compressed air and a one-way valve which prevents foreign matter from effectively entering the eccentric housing 57 in which they are located.
  • compressed air is conducted from bore 38 (FIGS. 1A and IF) through bore 134 and into bore 134'.
  • the compressed air then passes into groove 136 (FIG. ID) in cylinder surface 50 and a counterpart groove (not shown) in cylinder surface 35.
  • the compressed air then passes through groove 140' (FIG.
  • the shaft 27 of the air motor has been modified to be shaft 27' shown in FIGS. 17 and 18.
  • a cross bore 183 has been drilled in shaft 27'
  • a coaxial duct in the form of a bore 184 has been drilled in the lower part of shaft 27' in communication with bore 183
  • a counterbore 185 has been drilled in the lower end of bore 184.
  • Counterbore 185 is in communication with the chamber 187 of eccentric housing 57 in which bearings 55 are located.
  • a filter disc 188 which is fabricated of spunbonded polyester, and a duckbill one-way valve 190 are located in counterbore 185 and retained therein by retaining sleeve 191 which is press-fitted into counterbore 185 and bears against the enlarged annular portion 186 of valve 190.
  • the filter 188 filters the compressed air passing through the duckbill valve.
  • Spacers 192 and 193 are thin annular metal discs which fit on stub shaft 53, and their outer diameters bear on the inner races of bearing 55 without obstructing the spaces between the inner and outer races.
  • the upper spacer 192 spaces the two bearings 55 so that their outer races do not contact each other.
  • the lower spacer 193 also functions somewhat as a labyrinth seal to create a tortuous path back to the lower bearing 55 when air tends to suck upwardly into the lower bearing 55 when the motor stops.
  • the foregoing structure thus causes air flow into chamber 187 and through bearings 55 and through the annular space 196 between Belleville washer 58 and portion 195 of stub shaft or spindle 53 into the space above sanding disc 14.
  • FIG. 19 another embodiment of the present invention is disclosed. All parts which are identical to the numerals in FIG. 1A represent identical elements of structure.
  • motor shaft 27 has been modified by creating a duct in the form of a bore 200 therein which extends from the top of shaft 27 to counterbore 201 which is in communication with space 189 within eccentric housing chamber 187.
  • a duckbill valve 202 is located in counterbore 201 and is retained therein by press-fitted sleeve 203, as in the embodiment of FIGS. 17 and 18.
  • a filter 204 which is of the same type described above and designated 188 is located above valve 202 within counterbore 201. Bore 200 receives its air from clearance space
  • Another way of conducting compressed air to bore 200 in FIG. 19 is to drill a small hole (not shown) in upper plate 32 so that compressed air will pass through this hole, through bearing 29 (FIG. 1A) and through space 61 into duct or bore 200.
  • This hole may receive its air from duct 140' (FIG. IB) or from the clearance between planar surface 34 of plate 32 and cylinder 24.
  • the hole in plate 32 need not be directed to bearing 29, but may be positioned to communicate with clearance space 61 through the clearance between the planar surface 34 of plate 32 and cylinder 24 and through annular portion 63 (FIG. IB) of plate 32.
  • bore 200 may obtain compressed air because of leakage around the outer circumferential edge 43 of plate 32 into clearance space 61.
  • FIG. 20 Still another way of providing compressed air to bearing chamber 187 is shown in FIG. 20, and it would be to form a duct in the form of a slot 211 on the outside of the portion of shaft 27 which is abreast of bearing 30 and drill a hole 212 in line with slot 211 through the top of housing 57 into chamber 187.
  • Slot 211 would have its open side covered by the contiguous inner race of bearing 30. Compressed air could thus pass from clearance space 213 into bearing chamber 187, the clearance space 213 receiving its compressed air through the clearance between the undersurface of rotor 25 and the planar upper surface of plate 33 and through keyway 180. In this embodiment the compressed air does not pass through a duckbill valve and filter.
  • FIG. 20 Another way of conducting compressed air to chamber 187 is shown in FIG.
  • Orbital sander 220 is of the same general type shown in FIG. 4, namely, a non-vacuum type of sander which does not have any vacuum associated with it for the purpose of conveying an abrasive dust which is generated during a sanding operation.
  • a non-vacuum type of sander which does not have any vacuum associated with it for the purpose of conveying an abrasive dust which is generated during a sanding operation.
  • it may be of the other types noted above, namely, the central vacuum type which has a vacuum hose attached at one end to a central vacuum source or the type which is a self-generated vacuum type wherein the exhaust air from the air motor is associated with an aspirator in communication with the shroud for carrying the weighted dust which is generated during a sanding operation.
  • the orbital sander 220 includes an upper housing section 221 having an integral air inlet duct 222.
  • Lever 223 is pivotally mounted on pin 224 and it functions in the same manner described above relative to FIG. 11, or it can function in any other suitable way known in the art to control the flow of air to compressed air motor 225 which may be identical in all respects to that shown above in FIGS. 1A through IF except that the shaft 227 is of a different configuration as are the eccentric housing 229 and the counterweights 230 and 231.
  • the housing grip 232 of rubber-type material is mounted on housing section 221.
  • a pad 233 is secured to pad backing plate 234 by a plurality of screws 235 (FIG. 25) which extend through openings, such as 237 in pad 233, and through openings 239 in pad backing plate 234 and are received in nuts 240 which are molded integrally into the bases or lower bar members 241 of columnar units 242 each having a row of a plurality of spaced plastic columns 243 molded integrally therewith, with said columns 243 being molded integrally with upper bar member 244.
  • Each bar 244 includes nuts 245 molded therein. While the columns 243 of each row are shown in alignment, it will be appreciated that they may be staggered or offset.
  • the columns are of tapered circular cross section throughout and have the dimensions shown in FIG.
  • each column has their smallest dimension at each midpoint, which is the most flexible part of each column.
  • the columns flare outwardly from positions substantially at their midpoints.
  • the columns may be of other cross sectional shapes, such as cylindrical, and that such shapes could function, but they would not function in the same manner as the specific shape show.
  • the smallest cross sectional dimension of each column need not be located substantially at its midpoint, but can be placed anywhere between its ends. Also, it will be appreciated that there can be more than one reduced cross sectional area in each column.
  • the preferred shape and dimensions of the columns 243 are shown in millimeters in FIG. 29A, along with the height dimension of the columnar unit 241.
  • each columnar unit 242 includes an embedded metal plate 247 (FIGS. 29 and 30).
  • the configuration of metal plate 247 is such that it has apertures 249 therein through which the molded plastic of base 241 extends.
  • plates 249 rigidize bases 241.
  • the nuts 235 in addition to being molded into bases 241, are also set into plates 247.
  • each base 241 is essentially reinforced plastic which provides great rigidity.
  • Each upper bar member 244 also includes a metal plate 250 confined fully within upper bar member 244.
  • Metal plate 250 includes a plurality of apertures 251 similar to apertures 249 of lower bar member 241 through which the molded plastic of header 242 extends.
  • Nuts 245, as noted above, are molded into each upper bar member 244, and these nuts also are in abutting relationship to each apertured plate 250.
  • the plastic of column assemblies 241 is molded polyester and is grade "High Performance" and can be commercially obtained from DuPont Engineering Polymers Company under the trademark HYTREL and is further identified by number 5546. This plastic provides good columnar strength while permitting good lateral flexibility so that the pad 233 secured to lower bar members 241 of columnar units 242 will have a good orbital motion while the plastic columns 243 provide good columnar strength.
  • the outside height dimension across bar members 241 and 244 is 27.85 millimeters before it is mounted (FIG. 29A) . It will be appreciated that other suitable plastics may be used.
  • the columnar units 242 are secured to housing sections 253 by screws 254 which extend through suitable apertures 255 in housing sections 253 and are received in nuts 245.
  • the upper bar members 244 of columnar units 242 fit into recesses 257 of identical housing sections 253.
  • Housing section 221 is identical to housing section 22 of FIGS. 2 and 1A.
  • housing section 221 includes an annular groove 259 (FIG. 23) which receives ridge 260 of each identical lower housing section 253.
  • a ridge 261 (FIG. 23) is received in groove 262 of lower housing sections 253.
  • Ridge 261 of upper housing section 221 is of complementary mating relationship to groove 262 in that it is interrupted to receive the ridge configurations 263 and 264 of upper housing sections 253 which act as keys to prevent relative rotation between upper housing section 221 and lower housing section 253. Any other suitable connection between the upper housing section 221 and lower housing sections 253 can be used.
  • the lower housing sections 253 are secured to each other and to upper housing section 221 by nut and bolt assemblies.
  • bolts 265 extend through bores 267 in lower housing sections 253 and are retained therein by nuts 269 such that lower housing sections 253 assume an end-to-end abutting relationship such as shown in FIGS. 22 and 27 along seam 270.
  • upper housing section 221 is firmly attached to lower housing section 253.
  • the upper bar members 244 of columnar units 242 are firmly secured to lower housing sections 253, and the pad plate 234 is firmly secured to lower bar members 241 of columnar units 242.
  • the only contact between pad plate 234 and lower housing sections 253 is through columnar units 242.
  • upper bar members 244 are firmly attached to lower housing sections 253 and lower bar members 241 of columnar units 242 are firmly attached to pad plate 234.
  • a bolt 273 extends through aperture 274 in pad plate 234 and is threadably received in spindle 275 which is retained with a press-fit in the inner races of the bearings 276 which are located in eccentric housing 229.
  • a pin 279 (FIG. 23), which is fixedly mounted in bore 281 in spindle 271, extends through a bore 280 in pad plate 234 to prevent rotation of pad plate 234 as it is secured to spindle 275 by bolt 273 during assembly, and it also provides an orbital driving connection to the pad during sander operation.
  • columns 243 are distorted and not perfectly symmetrical as shown in FIG. 28. This is due to the fact that when the pin 279 and bolt 273 secure the pad plate 234 to spindle 275, columns 243 will always be distorted. The reason they are perfectly symmetrical in FIG. 28 is because they are not shown in the position they assume when the pad plate 234 is connected to the spindle by bolt 273 and pin 279. In FIG. 23 a duct arrangement is shown in shaft
  • This duct arrangement may be identical to that described above relative to FIGS. 17-19 and may function in the same manner. Also, the arrangement for conducting compressed air to chamber 278 of eccentric housing 229 may also be the same as described above relative to FIGS. 20 and 21 and also as described above without being illustrated.
  • Conventional clips 290 which are well known in the art, are mounted at opposite ends of pad plate 272 for securing opposite ends of the sanding paper which extends across the pad 233.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
PCT/US2001/015218 2000-06-05 2001-05-11 Ergonomically friendly orbital sander construction WO2001094073A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2001263052A AU2001263052A1 (en) 2000-06-05 2001-05-11 Ergonomically friendly orbital sander construction
JP2002501622A JP2004508204A (ja) 2000-06-05 2001-05-11 人体工学に該当する軌道研磨機
EP01937302A EP1305138B1 (de) 2000-06-05 2001-05-11 Ergonomische schwingschleiferkonstruktion
DE60134554T DE60134554D1 (de) 2000-06-05 2001-05-11 Ergonomische schwingschleiferkonstruktion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US58771100A 2000-06-05 2000-06-05
US09/587,711 2000-06-05

Publications (1)

Publication Number Publication Date
WO2001094073A1 true WO2001094073A1 (en) 2001-12-13

Family

ID=24350889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/015218 WO2001094073A1 (en) 2000-06-05 2001-05-11 Ergonomically friendly orbital sander construction

Country Status (5)

Country Link
EP (1) EP1305138B1 (de)
JP (1) JP2004508204A (de)
AU (1) AU2001263052A1 (de)
DE (1) DE60134554D1 (de)
WO (1) WO2001094073A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1674202A1 (de) * 2004-12-23 2006-06-28 Black & Decker, Inc. Modularer Aufbau eines Handschleifgerätgehäuses

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3136392A1 (fr) * 2022-06-14 2023-12-15 Gys Machine de ponçage pneumatique avec mise en route automatique d’un aspirateur de poussières

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414781A (en) * 1981-09-01 1983-11-15 Black & Decker Inc. Turbine sander
US4624078A (en) * 1983-10-17 1986-11-25 Skil Corporation Surface sander
US5558569A (en) * 1995-04-12 1996-09-24 Lee; Tai-Wang Grinding head mounting structure for portable grinding machines
US5597348A (en) * 1994-11-29 1997-01-28 Hutchins Manufacturing Company Water feed for sanding tool
US5709595A (en) * 1993-02-04 1998-01-20 Robert Bosch Gmbh Power tool for surface treatment
US5885146A (en) * 1995-12-06 1999-03-23 Black & Decker Inc. Oscillating hand tool
US6007412A (en) * 1998-01-30 1999-12-28 Hutchins Manufacturing Company Rotary abrading or polishing tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414781A (en) * 1981-09-01 1983-11-15 Black & Decker Inc. Turbine sander
US4624078A (en) * 1983-10-17 1986-11-25 Skil Corporation Surface sander
US5709595A (en) * 1993-02-04 1998-01-20 Robert Bosch Gmbh Power tool for surface treatment
US5597348A (en) * 1994-11-29 1997-01-28 Hutchins Manufacturing Company Water feed for sanding tool
US5558569A (en) * 1995-04-12 1996-09-24 Lee; Tai-Wang Grinding head mounting structure for portable grinding machines
US5885146A (en) * 1995-12-06 1999-03-23 Black & Decker Inc. Oscillating hand tool
US6007412A (en) * 1998-01-30 1999-12-28 Hutchins Manufacturing Company Rotary abrading or polishing tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1305138A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1674202A1 (de) * 2004-12-23 2006-06-28 Black & Decker, Inc. Modularer Aufbau eines Handschleifgerätgehäuses
US7198559B2 (en) 2004-12-23 2007-04-03 Black & Decker, Inc. Modular sander-casing architecture

Also Published As

Publication number Publication date
DE60134554D1 (de) 2008-08-07
JP2004508204A (ja) 2004-03-18
EP1305138A1 (de) 2003-05-02
AU2001263052A1 (en) 2001-12-17
EP1305138B1 (de) 2008-06-25
EP1305138A4 (de) 2005-07-13

Similar Documents

Publication Publication Date Title
US6855040B2 (en) Ergonomically friendly orbital sander construction
US6979254B1 (en) Ergonomically friendly orbital sander construction
EP1220736B1 (de) Ergonomisch-freundlicher aufbau für wahlfreien schwingschleifer
EP1009590B1 (de) Ergonomisch-freundlicher aufbau für exzenterschleifer
EP1285727B1 (de) Exzenterschleifer mit Gleichstrommotor für hohe Geschwindigkeiten und einer frei rotierenden Schleifplatte
US5411386A (en) Random orbital sander
JPH0579467B2 (de)
EP0799675A1 (de) Motorgetriebenes Schleifgerät
US20090209186A1 (en) Grinding disc for an eccentric grinder
US4986036A (en) Abrading or polishing tool
EP1305138B1 (de) Ergonomische schwingschleiferkonstruktion
US4590713A (en) Polishing apparatus
EP0167679A1 (de) Poliergerät
JPH06226709A (ja) 電動工具の集塵装置
US9821432B2 (en) Exchangeable abrasive means for an abrasion appliance having a suction extraction arrangement
CN221364243U (zh) 砂光机
KR200243321Y1 (ko) 에어샌더
KR20210110421A (ko) 밸브 연마장치 및 방법
CN117718856A (zh) 砂光机
NZ529445A (en) Orbital sander with fan blades arranged assymetrically to balance eccentrically mounted assembly
JPS61223291A (ja) ベ−ンポンプ
KR20040044045A (ko) 역류방지용 이중안전장치를 갖는 발전기용 버큠펌프

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 501622

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2001937302

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001937302

Country of ref document: EP