WO2001092236A1 - 4-halogenalkyltriazinverbindungen als herbizide - Google Patents

4-halogenalkyltriazinverbindungen als herbizide Download PDF

Info

Publication number
WO2001092236A1
WO2001092236A1 PCT/EP2001/005955 EP0105955W WO0192236A1 WO 2001092236 A1 WO2001092236 A1 WO 2001092236A1 EP 0105955 W EP0105955 W EP 0105955W WO 0192236 A1 WO0192236 A1 WO 0192236A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
compounds
phenyl
hydrogen
general formula
Prior art date
Application number
PCT/EP2001/005955
Other languages
English (en)
French (fr)
Inventor
Steffen Kudis
Peter Plath
Ulf Misslitz
Markus Menges
Matthias Witschel
Helmut Walter
Cyrill Zagar
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to AU74065/01A priority Critical patent/AU7406501A/en
Publication of WO2001092236A1 publication Critical patent/WO2001092236A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/661,3,5-Triazines, not hydrogenated and not substituted at the ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/22Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to two ring carbon atoms

Definitions

  • the present invention relates to 4-haloalkyltriazine compounds and their agriculturally useful salts and their use as herbicides, desiccants or defoliants.
  • X 1 is a halogen atom, for example fluorine
  • R 1 is hydrogen, methyl or ethyl and A is inter alia substituted phenyl.
  • Het-A- (CR 2 R 3 ) n R compounds of the formula Het-A- (CR 2 R 3 ) n R are known, in which Het represents an aromatic radical having one to three nitrogen atoms, for example a substituted triazine radical, A inter alia one via Carbon atom of the triazine radical can be NH group, n is a number from 1 to 5, the radicals R 2 and R 3 are, for example, hydrogen, alkyl, haloalkyl or aralkyl and R is optionally substituted phenyl, naphthyl, phenoxy or phenylthio or mean a heterocycle. Among others, compounds are described which have a trifluoromethyl group on the triazine residue in the 4-position. Similar triazine compounds are known from WO 97/20825.
  • the present invention is therefore based on the object of providing new herbicides with which harmful plants can be controlled better than hitherto.
  • the new herbicides are said to be beneficial have a high activity against harmful plants.
  • crop tolerance is desirable.
  • the present invention therefore relates to 4-haloalkyltriazine compounds of the general formula I.
  • R 2 is hydrogen or a group C (0) R 5 , C (S) R 5 , C (0) 0R 5 ,
  • R 3 is hydrogen or C ⁇ -C 4 alkyl
  • R 4 is hydrogen or -CC 4 alkyl
  • A is a single bond, linear or branched Ci-C ö alkylene, wherein one or two carbon atoms of the group X and the group CR 3 R 4 not adjacent, may be replaced by oxygen;
  • X can be a single bond or, if A is not a single bond, can also be an oxygen atom;
  • Y is CH 2 , NH, O, S or a chemical bond between the CH and the CH group to which Y is attached;
  • n 0, 1, 2 or 3;
  • R -CC 8 alkyl, C 3 -C 8 cycloalkyl which can also have one or two carbonyl or thiocarbonyl groups as ring members, phenyl, 5- or 6-membered, saturated or unsaturated heterocyclyl with one, two or three heteroatoms selected from 0, N or S, where the 5- or 6-membered heterocyclyl, a fused-on 5- or 6-membered carbocyclic, aromatic or non-aromatic ring and phenyl a fused-on 5- or 6-membered, carbocyclic or heterocyclic, aromatic or non-aromatic ring with 1, 2 or 3 heteroatoms, which can be selected from O, S and N, and where R can optionally have 1, 2, 3 or 4 substituents which independently of one another which are selected from OR 7 , -CC 6 -alkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -alkynyl, -C-C 4 -alkoxy-C
  • R 7 for H, -CC alkyl, -C-haloalkyl, -C-hydroxyalkyl, C 3 -C 6 alkenyl, C 3 -C 6 alkynyl, -C-alkoxy-C ⁇ -C -al- alkyl, -CC -alkoxycarbonyl -CC-C-alkyl,
  • Phenyl or phenyl-C ⁇ -C-alkyl is, where phenyl in the latter two groups in turn one, two or three substituents selected from halogen, -CC-alkyl, -C-C haloalkyl or -CC alkoxy, can have;
  • R 8 has the meanings given for R 7 or represents COR 7 or C0 2 R 7 ;
  • R 9 has the meanings given for R 7 or represents OR 7 ;
  • the invention also relates to the use of compounds I as herbicides, herbicidal compositions which comprise the compounds I and / or their salts as active substances,
  • the compounds of the formula I can have one or more centers of chirality both on the carbon which carries the group R 3 , on the CH group which carries the variable Y and in other parts of the molecule, for example in the substituents on R. They are then present as mixtures of enantiomers or diastereomers.
  • the invention relates both to the pure enantiomers or diastereomers and to their mixtures.
  • Agriculturally useful salts include, in particular, the salts of those cations or the acid addition salts of those acids whose cations or anions do not adversely affect the herbicidal activity of the compounds I. So come as cations in particular the ions of the alkali metals, preferably sodium and potassium, the alkaline earth metals, preferably calcium, magnesium and barium, and the transition metals, preferably manganese, copper, zinc and iron, as well as the ammonium ion, if desired one to four C ⁇ ⁇ C -Alkyl- and / or a phenyl or benzyl substituent can wear, preferably diisopropylammonium, tetramethylammonium, tetrabutylammonium, trimethylbenzylammonium, further phosphonium ions, sulfonium ions, preferably tri (C 1 -C 4 alkyl) sulfonium and sulfoxonium ions - preferably tri (
  • Anions of useful acid addition salts are primarily chloride, bromide, fluoride, hydrogen sulfate, sulfate, dihydrogen phosphate, hydrogen phosphate, phosphate, nitrate, hydrogen carbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate, and the anions of C 1 -C 4 alkanoic acids, preferably formate , Acetate, propionate and butyrate. They can be formed by reacting I with an acid of the corresponding anion, preferably hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid or nitric acid.
  • All carbon chains ie all alkyl, haloalkyl, phenylalkyl, cycloalkyl, alkoxy, haloalkoxy, alkylthio, alkylsulfonyl, alkenyl and alkynyl groups and corresponding parts of groups in larger groups such as alkoxycarbonyl, phenylalkyl, cycloalkylalkyl, alkoxycarbonylalkyl etc. can be straight-chain or branched be, the prefix C n -C m each indicating the possible number of carbon atoms in the group.
  • Halogenated substituents preferably carry one, two, three, four or five identical or different halogen atoms. Halogen is fluorine, chlorine, bromine or iodine.
  • -C -C alkyl for: CH 3 , C 2 H 5 , n-propyl, CH (CH 3 ) 2 , n-butyl, CH (CH 3 ) -C 2 H 5 , CH 2 -CH (CH 3 ) 2 and C (CH 3 ) 3 ;
  • Ci-Cs-alkyl for: -C 6 alkyl as mentioned above, and for example n-heptyl, 2-ethylhexyl and n-octyl;
  • Ci-C ß alkylene in which one or two carbon atoms can be replaced by oxygen atoms: for example methylene, ethane-1,2-diyl, ethane-1,1-diyl, propane-1,1-diyl, propane-1 , 2-diyl, propane-l, 3-diyl, propane-2,2-diyl, butane-1, 1-diyl, butane-l, 2-diyl, butane-l, 3-diyl, butane-l , 4-diyl, butane-2,3-diyl, butane-2,2-diyl, pentane-l, 5-diyl, 3-0xopentan-l, 5-diyl;
  • C 1 -C 6 -haloalkyl for: a C 1 -C 4 -alkyl radical as mentioned above which is partially or completely substituted by fluorine, chlorine, bromine and / or iodine, for example CHF, CHF 2 , CF 3 , CHC1, dichloromethyl, trichloromethyl , Chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2-fluoroethyl,
  • 2-chloroethyl 2-bromoethyl, 2-iodoethyl, 2,2-difluoroethyl, 2,2, 2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2, 2-dichloro 2-fluoroethyl, 2,2,2-trichloroethyl, C 2 F 5 , 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoropropyl, 2,3-difluoropropyl, 2-chloropropyl,
  • Phenyl-C 1 -C 6 -alkyl for: benzyl, 1-phenylethyl, 2-phenylethyl,
  • -C-C 4 alkoxy for: 0CH 3 , OC 2 H 5 , n-propoxy, OCH (CH 3 ) 2 , n-butoxy, OCH (CH 3 ) -C 2 H 5 , OCH 2 -CH (CH 3 ) 2 or OC (CH 3 ) 3 , preferably for 0CH 3 , OC 2 H 5 or OCH (CH 3 );
  • C 1 -C 4 -alkoxy-C 1 -C 4 -alkyl for: C 1 -C 4 -alkoxy - as mentioned above - substituted C ⁇ -C alkyl, for example for CH 2 -OCH 3 , CH 2 -OC 2 H 5 , n -Propoxymethy1, CH 2 -OCH (CH 3 ) 2 , n-butoxymethyl, (1-methylpropoxy) methyl, (2-methylpropoxy) methyl, CH 2 -OC (CH 3 ) 3 , 2- (methoxy) ethyl,
  • (-C-alkoxy) carbonyl -CC-C-alkyl for: by (-C-C 4 alkoxy) carbonyl such as CO-OCH 3 , CO-OC 2 H 5 , CO-OCH 2 -C 2 H 5 , CO -OCH (CH 3 ) 2 , n-butoxycarbonyl, CO-OCH (CH 3 ) -C 2 H 5 , CO-OCH 2 -CH (CH 3 ) 2 or CO-OC (CH 3 ) 3 , preferably CO-OCH 3 or
  • CO-OC 2 H 5 substituted -CC alkyl for example for CH 2 -CO-OCH 3 , CH 2 -CO-OC 2 H 5 , CH 2 -CO-OCH 2 -C 2 H 5 , CH 2 - CO-OCH (CH 3 ) 2 , n-butoxycarbonylmethyl, CH 2 -CO-OCH (CH 3 ) -C 2 H 5 , CH 2 -CO-OCH 2 -CH (CH 3 ) 2 , CH 2 -CO -OC (CH 3 ) 3 , 1- (C0-0CH 3 ) ethyl, l- (CO-OC 2 H 5 ) ethyl, l- (CO- OCH 2 -C 2 H 5 ) ethyl, l- [CH ( CH 3 ) 2 ] ethyl, 1- (n-butoxycarbonyl) ethyl, 1- [1-methylpropoxycarbonyl] ethyl, 1- [2-methylpropoxycarbon
  • C 2 -C 6 alkynyl for straight-chain or branched hydrocarbon groups having 2 to 6 carbon atoms and a triple bond in any position, e.g. B. ethynyl and C 3 -C 6 -alkynyl such as prop-1-in-l-yl, prop-2-in-l-yl, n-but-1-in-l-yl, n-but-l- in-3-yl, n-but-l-in-4-yl, n-but-2-in-l-yl, n-pent-1-in-l-yl, n-pent-l-in- 3-yl, n-pent-l-in-4-yl, n-pent-l-in-5-yl, n-pent-2-in-l-yl, n-pent-2-in-4- yl, n-pent-2-yn-5-yl, 3-methyl-but-l-yn-3-yl, 3-
  • cycloalkyl for: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl;
  • Thiocarbonyl ring member contains e.g. for cyclobutanon-2-yl, cyclobutanon-3-yl, cyclopentanon-2-yl, cyclopentanon-3-yl,
  • Cyclooctanthion-2-yl preferably for cyclopentanon-2-yl or cyclohexanon-2-yl
  • C 3 -C 8 cycloalkyl in which one or two non-adjacent ring members are replaced by heteroatoms: oxiranyl, oxetan-2-yl, 2- or 3-tetrahydrofuran-l-yl, 1-, 2-, 3- or 4-piperidinyl, 2-, 3- or 4-morpholinyl.
  • 5- or 6-membered aromatic heterocyclyl examples include furyl such as 2-furyl and 3-furyl, thienyl such as 2-thienyl and 3-thienyl, pyrrolyl such as 2-pyrrolyl and 3-pyrrolyl, isoxazolyl such as 3-isoxazolyl, 4- Isoxazolyl and 5-isoxazolyl, isothiazolyl such as 3-isothiazolyl, 4-isothiazolyl and 5-isothiazolyl, pyrazolyl such as 3-pyrazolyl, 4-pyrazolyl and 5-pyrazolyl, oxazolyl such as 2-oxazolyl, 4-0xazolyl and 5-0xazylylyl, thiazole 2-thiazolyl, 4-thiazolyl and 5-thiazolyl, idazolyl such as 2-imidazolyl and 4-imidazolyl, oxadiazolyl such as l, 2,4-oxadiazol-3-yl,
  • Examples of carbocyclic, fused rings include phenyl, cyclohexene, cyclohexenone, and cyclopentene.
  • Examples of heterocyclic fused rings are the aforementioned heteroaromatic groups, which have two adjacent carbon ring members, and their di- or
  • Tetrahydro derivatives e.g. Pyridine, pyrazine, pyridazine, pyrimidine, furan, dihydrofuran, thiophene, dihydrothiophene, pyrrole, dihydropyrrole, 1,3-dioxolane, 1, 3-dioxolan-2-one, isoxazole, oxazole, oxazolinone, isothiazole, thiazole, pyrazole, pyrazoline, Imidazole, imidazolinone, dihydroimidazole, 1,2,3-triazole,
  • R is phenyl with a fused carbocycle or heterocycle
  • R is z.
  • B for 2-benzofuryl, 3-benzofuryl, 2-benzothienyl, 3-benzothienyl, 2-indolyl, 3-indolyl, 1-isoindolyl, 1-indanyl, 2-indanyl, 3-benzopyrazolyl, 2-benzimidazolyl, 2-benzoxazolyl , 2-benzisoxazolyl, 2-benzothiazolyl, 3-benzisothiazolyl, benzo-l, 4-dioxanyl, benzo-l, 3-dioxolanyl, 1,3, 5-benzotriazin-2-yl, l, 2,4-benzotriazin-3 yl,
  • substituents on R are fluorine, chlorine, bromine, cyano, hydroxy, methyl, ethyl, n-propyl, iso-propyl, tert-butyl, methoxy, ethoxy, n-propoxy, iso-propoxy, tert-butoxy , Trifluoromethyl, 2, 2, 2-trifluoroethyl, trifluoromethoxy, difluoromethoxy, hydroxymethyl, 2-hydroxyethyl, 2-methoxyethan-l-yl, methoxycarbonylmethyl, l- (methoxycarbonyl) ethan-l-yl, methylthio, nitro, Amino, methylamino, ethylamino, isopropylamino, dimethylamino, diethylamino, ethenyl, ethynyl, allyl, propargyl, allyloxy, propargyloxy, phenyloxy,
  • R 1 trifluoromethyl, chlorodifluoromethyl, dichlorofluoromethyl, trichloromethyl
  • R 2 is hydrogen, a group C (0) R 5 or a group C (0) OR 5 , where R 5 has the meanings mentioned above and is in particular hydrogen or -CC alkyl;
  • R 3 is hydrogen or -CC alkyl, especially methyl
  • R 4 is hydrogen
  • X is oxygen or a single bond
  • R 3 is C 1 -C 4 -alkyl and in particular methyl and R 4 is hydrogen
  • Shark is preferably chlorine or fluorine.
  • groups R which are suitable according to the invention are: 2-, 3- or 4-chlorophenyl, 2-, 3- or 4-fluorophenyl, 2-, 3- or 4-hydroxyphenyl, 2-, 3- or 4-trifluoromethylphenyl, 2-, 3- or 4-trifluoromethoxyphenyl, 2-, 3- or 4-methylthiophenyl, 2-, 3- or 4-difluoromethoxyphenyl, 2-, 3- or 4-bromophenyl, 2-, 3- or 4-tolyl, 2-, 3- or 4-anisyl, 2-, 3- or 4-allyloxyphenyl, 2-, 3- or 4-propargyloxyphenyl, 2-, 3- or 4-nitrophenyl, 2-, 3- or 4-cyanophenyl, 3- or 4-isopropylphenyl, 3- or 4- (2, 2, 2-trifluoroethyl) phenyl 3- or 4-ethynylphenyl, 3- or 4-ethenylphenyl, 3- or 4-acetylphenyl, 3- or 4-acety
  • R 7 is preferably C 1 -C 6 -alkyl, phenyl or benzyl, where the latter two groups may be substituted.
  • R 9 is in particular hydrogen, -CC alkyl, -C 4 alkoxy, -C -C alkoxy -CC -alkyl or benzyl.
  • radicals R, R b and R c are, in addition to hydrogen, the substituents listed above for R.
  • Preferred radicals R a , R b and R c are fluorine, chlorine, bromine, -CC alkyl, in particular methyl, -C -alkoxy, especially methoxy, C ⁇ -C-haloalkyl, in particular trifluoromethyl, -C-C- Halogenalkoxy, especially difluoromethoxy, cyano or nitro and especially for fluorine or methyl.
  • Y denotes a CH 2 group.
  • Such compounds are referred to below as cyclopropyl compounds IA.
  • compounds of general formula IA.b are particularly preferred (compounds of general formula IA in which R 2 is formyl and R 4 are hydrogen, A and X together form a single bond and R c is hydrogen).
  • preferred compounds of the general formula IA.b are the compounds IA.b-1 to IA.b-876, in which in the formula IA.b the variables R 1 , R 3 , R a and R b together in each case one Row of Table 1 have the meanings given.
  • compounds of general formula IA.c are particularly preferred (compounds of general formula IA in which R 2 is acetyl and R 4 is hydrogen, A and X together form a single bond and R c is hydrogen).
  • preferred compounds of the general formula IA.c are the compounds IA.c-1 to IA.c-876, in which in the formula IA.c the variables R 1 , R 3 , R a and R b together the in each have one line of Table 1 meanings given.
  • compounds of general formula IA.d are particularly preferred (compounds of general formula IA in which R 2 and R 4 are hydrogen, A is methylene, X is a single bond and R c is hydrogen).
  • Examples of preferred compounds of the general formula IA.d are the compounds IA.d-1 to
  • compounds of general formula IA.e are particularly preferred (compounds of general formula IA in which R 2 is formyl and R 4 is hydrogen, A is methylene, X is a single bond and R c is hydrogen).
  • preferred compounds of the general formula IA.e are the compounds IA.e-1 to IA.e-876, in which the variables R 1 , R 3 , R a and R b in formula IA.e together are those in one each Row of Table 1 have the meanings given.
  • compounds of general formula IA.f are particularly preferred (compounds of general formula IA in which R 2 is acetyl and R 4 is hydrogen, A is methylene, X is a single bond and R c is hydrogen).
  • preferred compounds of the general formula IA.f are the compounds IA.f-1 to IA.f-876, in which the variables R 1 , R 3 , R a and R b in formula IA.f together are those in one each Row of Table 1 have the meanings given.
  • compounds of general formula IA.g are particularly preferred (compounds of general formula IA in which R 2 and R 4 are hydrogen, A is 1,2-ethylene, X is a single bond and R c is hydrogen).
  • preferred compounds of the general formula IA.g are the compounds IA.g-1 to IA.g-876, in which the variables R 1 , R 3 , R a and R b in formula IA.g together have the meanings given in one row of Table 1.
  • compounds of general formula IA.h are particularly preferred (compounds of general formula IA in which R 2 is formyl and R 4 is hydrogen, A is 1,2-ethylene, X is a single bond and R c is hydrogen).
  • preferred compounds of the general formula IA.h are the compounds IA.h-1 to IA.h-876, in which the variables R 1 , R 3 , R and R b in the formula IA.h together in each case in one line have the meanings given in Table 1.
  • compounds of general formula IA.i are particularly preferred (compounds of general formula IA in which R 2 is acetyl and R 4 is hydrogen, A is 1,2-ethylene, X is a single bond and R c is hydrogen).
  • preferred compounds of the general formula IA.i are the compounds IA.i-1 to IA.i-876, in which the variables R 1 , R 3 , R a and R b in the formula IA.i together in each case in one Row of Table 1 have the meanings given.
  • compounds of general formula IA.k are particularly preferred (compounds of general formula IA in which R 2 and R 4 are hydrogen, A is methylene, X is an oxygen atom and R c is hydrogen).
  • examples of preferred compounds of the general formula IA.k are the compounds IA.k-1 bis
  • compounds of general formula IA.I are particularly preferred (compounds of general formula IA in which R 2 is formyl and R 4 is hydrogen, A is methylene, X is an oxygen atom and R c is hydrogen).
  • Examples of preferred compounds of the general formula IA.I are the compounds IA.1-1 to IA.1-876, in which the variables R 1 , R 3 , R a and R b in the formula IA.I together in each case in one Row of Table 1 have the meanings given.
  • compounds of general formula IA.m are particularly preferred (compounds of general formula IA in which R 2 is acetyl and R 4 is hydrogen, A is methylene, X is an oxygen atom and R c is hydrogen).
  • preferred compounds of the general formula IA.m are the compounds IA.m-1 to IA.m-876, in which the variables R 1 , R 3 , R a and R b in the formula IA.m together are in each case one Row of Table 1 have the meanings given.
  • oxirane compounds IB preference is again given to compounds which obey the general formulas IB.a (compounds of the general formula IB in which R 2 and R 4 are hydrogen, A and X together form a single bond and R c is hydrogen). Also preferred are their formyl derivatives (compounds IB.b) and their acetyl derivatives (compounds IB.e).
  • Examples of preferred compounds of the general formula IB.a, IB.b and IB.e are the compounds IB.a-1 to IB.a-876, the compounds IB.b-1 to IB.b-876 and the compounds IB .c-1 to IB.c-876, in which the variables R 1 , R 3 , R a and R b together have the meanings given in one row of Table 1.
  • oxirane compounds IB preference is again given to compounds which comply with the general formulas IB.d (compounds of the general formula IB in which R 2 and R 4 are hydrogen, A is a CH 2 group and X is a single bond and R c Means hydrogen). Also preferred are their formyl derivatives (compounds IB.e) and their acetyl derivatives (compounds IB.f).
  • Examples of preferred compounds of the general formula IB.d, IB.e and IB.f are the compounds IB.d-1 to IB.d-876, the compounds IB.e-1 to IB.e-876 and the compounds IB .f-1 to IB.f-876, in which the variables R 1 , R 3 , R a and R b together have the meanings given in one row of Table 1.
  • oxirane compounds IB preference is again given to compounds which comply with the general formulas IB.g (compounds of the general formula IB in which R 2 and R 4 are hydrogen, A is a CH 2 -CH 2 group and X is a single bond and R c is hydrogen). Also preferred are their formyl derivatives (compounds iB.h) and their acetyl derivatives (compounds IB.i).
  • Examples of preferred compounds of the general formulas IB.g, IB.h and IB.i are the compounds IB.g-1 to IB.g-876, the compounds IB.h-1 to IB.h-876 and the compounds IB .i-1 to IB.i-876, in which the variables R 1 , R 3 , R a and R b together have the meanings given in one row of Table 1.
  • oxirane compounds IB preference is again given to compounds which comply with the general formulas IB.k (compounds of the general formula IB in which R 2 and R 4 are hydrogen, A is a CH 2 group and X is an oxygen atom and R c Means hydrogen). Also preferred are their formyl derivatives (compounds IB.I) and their acetyl derivatives (compounds IB.m).
  • Examples of preferred compounds of the general formula IB.k, IB.I and IB.m are the compounds IB.k-1 to IB.k-876, the compounds IB.1-1 to IB.1-876 and the compounds IB .m-1 to IB.m-876, in which the variables R 1 , R 3 , R a and R b together have the meanings given in one row of Table 1.
  • vinyl compounds IC those compounds are preferred which comply with the general formula IC.a (vinyl compounds of the general formula IC in which R 2 and R 4 are hydrogen, A and X together form a single bond and R c is hydrogen). Also preferred are their formyl derivatives (compounds iC.b) and their acetyl derivatives (compounds IC.c).
  • Examples of preferred compounds of the general formula IC.a, IC.b and IC.c are the compounds IC.a-1 to IC.a-876, the compounds IC.b-1 to IC.b-876 and the compounds IC .c-1 to IC.c876-, in which the variables R 1 , R 3 , R a and R b together have the meanings given in one row of Table 1.
  • vinyl compounds IC those compounds are preferred which comply with the general formulas IC.d (vinyl compounds of the general formula IC in which R 2 and R 4 are hydrogen, A is a CH 2 group and X is a single bond and R c Means hydrogen). Also preferred are their formyl derivatives (compounds iC.e) and their acetyl derivatives (compounds iC.f).
  • Examples of preferred compounds of the general formula IC.d, IC.e and IC.f are the compounds IC.d-1 to IC.d-876, the compounds IC.e-1 to IC.e-876 and the compounds IC .f-1 to IC.f-876, in which the variables R 1 , R 3 , R a and R b together have the meanings given in one row of Table 1.
  • vinyl compounds IC those compounds are preferred which comply with the general formulas IC.g (vinyl compounds of the general formula IC in which R 2 and R 4 are hydrogen, A is a CH 2 -CH 2 group and X is a Single bond and R c is hydrogen). Also preferred are their formyl derivatives (compounds IC.h) and their acetyl derivatives (compounds IC.i).
  • Examples of preferred compounds of the general formula IC.g, IC.h and IC.i are the compounds IC.g-1 to IC.g-876, the compounds IC.h-1 to IC.h-876 and the compounds IC .i-1 to IC.i-876, in which the variables R 1 , R 3 , R a and R b together have the meanings given in one row of Table 1.
  • vinyl compounds IC those compounds are preferred which comply with the general formulas ic.k (vinyl compounds of the general formula IC in which R and R 4 are hydrogen, A is a CH 2 group and X is an oxygen atom and R c is hydrogen means). Also preferred are their formyl derivatives (compounds IC.I) and their acetyl derivatives (compounds iC.m).
  • Examples of preferred compounds of the general formula IC.k, IC.I and IC.m are the compounds IC.k-1 to IC.k-876, the compounds IC.1-1 to IC.1-876 and the compounds IC .m-1 to IC.m-876, in which the variables R 1 , R 3 , R a and R b together have the meanings given in one row of Table 1.
  • R 1 , R 2 and R 3 have the meanings given above and R represents -C 6 -alkyl or C 3 -C 8 -cycloalkyl.
  • Examples of compounds of the formula I are the cyclopropyl compounds ID, in which Y in the general formula I" denotes a CH 2 group and R, R 1 , R 2 and R 3 have the meanings given in one row of Table 2 (Connections ID-1 to ID-72).
  • Examples of compounds of the general formula I are also the vinyl compounds IF, in which Y in formula I" denotes a chemical bond and R, R 1 , R 2 and R 3 have the meanings given in one row of Table 2 (Compounds 0 IF -1 to IF-72).
  • the compounds I according to the invention can be prepared in a simple manner by reacting 4-haloalkyl- (s) -triazine compounds of the general formula II with amines of the general 5 formula III according to the following reaction scheme 1:
  • Y is preferably a CH 2 group or a chemical bond.
  • reaction with acylating agents for introducing radicals R 5 C (0) the reaction with, for example, azidoformic acid esters R 5 OC (0) N 3 or carbonic anhydrides [R 5 OC (0)] 2 O for introduction of residues R 5 OC (0) or with isocyanates R 5 NCO to introduce residues R 5 NHC (0).
  • the preparation of compounds I shown in Scheme 1 succeeds by simply bringing the compounds II and III into contact. This is usually carried out in a diluent or solvent, preferably in a non-nucleophilic solvent, e.g. in an aprotic polar solvent such as acetonitrile, dimethylformamide, N-methylpyrrolidone, dimethylacetamide or mixtures thereof.
  • a diluent or solvent preferably in a non-nucleophilic solvent, e.g. in an aprotic polar solvent such as acetonitrile, dimethylformamide, N-methylpyrrolidone, dimethylacetamide or mixtures thereof.
  • aprotic polar solvent such as acetonitrile, dimethylformamide, N-methylpyrrolidone, dimethylacetamide or mixtures thereof.
  • other solvents are also possible, e.g.
  • reaction temperatures are in the ranges customary for such reactions, e.g. in the range from -20 to 150 ° C and advantageously in the range from 0 to 50 ° C.
  • Triazine compounds of the general formula II can be prepared, for example, in analogy to the processes according to Scheme 2 described in GB 912,112 and DE-A 44 38 137.
  • Y and R 1 have the meanings given above, Y being in particular CH 2 or a chemical bond.
  • the compound IV can be prepared, for example, in a known manner by basic condensation of amidine hydrochlorides of the formula V with trichloroacetonitrile (cf. GB 912.112 and Backer and Wanmaker, Rec. Trav. Chim. 70, 1951, p. 644).
  • the aziridine compounds I can also be prepared starting from the 2-vinyltriazines IC, using known processes for converting double bonds into aziridine groups (cf. J. March, pp. 729 and 741 and the literature cited therein).
  • the compounds I and their agriculturally useful salts are suitable - both as isomer mixtures and in the form of the pure isomers - as herbicides.
  • the herbicidal compositions containing I control vegetation very well on non-cultivated areas, particularly in the case of high quantities. In crops such as wheat, rice, maize, soybeans and cotton, they act against weeds and grass weeds without significantly damaging the crop plants. This effect occurs especially at low application rates.
  • the compounds I or compositions containing them can also be used in a further number of crop plants for eliminating undesired plants.
  • the following crops come into consideration, for example: Allium cepa, pineapple comosus, Arachis hypogaea, Asparagus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napo- brassica, Brassica rapa var.
  • the compounds I can also be used in crops which are tolerant to the action of herbicides by breeding, including genetic engineering methods.
  • the compounds I or the herbicidal compositions comprising them can be sprayed or atomized, for example in the form of directly sprayable aqueous solutions, powders, suspensions, including high-strength aqueous, oily or other suspensions or dispersions, emulsions, oil dispersions, pastes, dusts, sprays or granules , Dusting, scattering, pouring or treating the seed or mixing with the seed.
  • the forms of application depend on the purposes; in any case, they should ensure the finest possible distribution of the active compounds according to the invention.
  • the herbicidal compositions comprise a herbicidally effective amount of at least one compound of the formula I or an agriculturally useful salt of I and auxiliaries customary for the formulation of crop protection agents.
  • mineral oil fractions of medium to high boiling point such as kerosene or diesel oil, also coal tar oils and oils of vegetable or animal origin, aliphatic, cyclic and aromatic hydrocarbons, for example paraffin, tetrahydronaphthalene, alkylated naphthalenes or their derivatives, alkylated benzenes or their derivatives, alcohols such as methanol, ethanol, propanol, butanol, cyclohexanol, ketones such as cyclohexanone or strongly polar solvents, e.g. B. amines such as N-methylpyrrolidone or water.
  • Aqueous use forms can be prepared from emulsion concentrates, suspensions, pastes, wettable powders or water-dispersible granules by adding water.
  • emulsions, pastes or oil dispersions the compounds of the formula I as such or dissolved in an oil or solvent can be homogenized in water by means of wetting agents, adhesives, dispersants or emulsifiers.
  • concentrates consisting of an active substance, wetting agent, adhesive, dispersant or emulsifier and possibly solvent or oil can also be prepared which are suitable for dilution with water.
  • alkali, alkaline earth, ammonium salts of aromatic sulfonic acids e.g. Lignin, phenol, naphthalene and dibutylnaphthalenesulfonic acid, as well as of fatty acids, alkyl and alkylarylsulfonates, alkyl, lauryl ether and fatty alcohol sulfates, as well as salts of sulfated hexa-, hepta- and octadecanols as well as of fatty alcohol glycol ethers, condensation products of sulfonated naphthalene and its Derivatives with formaldehyde, condensation products of naphthalene or naphthalenesulfonic acids with phenol and formaldehyde, polyoxyethylene octylphenol ether, ethoxylated isooctyl, octyl or nonylphenol, alkylphenyl, tributyl
  • Powders, materials for broadcasting and dusts can be prepared by mixing or grinding the active substances together with a solid carrier.
  • Granules e.g. Coated, impregnated and homogeneous granules can be produced by binding the active ingredients to solid carriers.
  • Solid carriers are mineral soils such as silica, silica gels, silicates, talc, kaolin, limestone, lime, chalk, bolus, loess, clay, dolomite, diatomaceous earth, calcium and magnesium sulfate, magnesium oxide, ground plastics, fertilizers such as ammonium sulfate, ammonium phosphate, Ammonium nitrate, ureas and vegetable products such as corn flour, tree bark, wood and nutshell flour, cellulose powder or other solid carriers.
  • the concentrations of the active ingredients I in the ready-to-use preparations can be varied over a wide range.
  • the formulations generally contain 0.001 to 98% by weight, preferably 0.01 to 95% by weight, of at least one active ingredient.
  • the Active ingredients are used in a purity of 90% to 100%, preferably 95% to 100% (according to the NMR spectrum).
  • the compounds I according to the invention can be formulated, for example, as follows:
  • VI 20 parts by weight of compound I are intimately mixed with 2 parts by weight of calcium salt of dodecylbenzenesulfonic acid, 8 parts by weight of fatty alcohol polyglycol ether, 2 parts by weight of sodium salt of a phenol-urea-formaldehyde condesate and 68 parts by weight of a paraffinic mineral oil. A stable oily dispersion is obtained.
  • the herbicidal compositions or the active compounds can be applied pre- or post-emergence or together with the seeds of a crop. It is also possible to apply the herbicidal compositions or active ingredients by spreading seeds of a crop plant which have been pretreated with the herbicidal compositions or active ingredients. If the active ingredients are less compatible for certain crop plants, application techniques can be used in which the herbicidal compositions are sprayed with the aid of sprayers in such a way that the leaves of the sensitive crop plants are not hit wherever possible, while the active ingredients grow more on the leaves below unwanted plants or the uncovered floor area (post-directed, lay-by).
  • the amount of active ingredient used is 0.001 to 3.0, preferably 0.01 to 1.0 kg / ha of active substance (see also).
  • the compounds of the general formula I can be mixed with numerous representatives of other herbicidal or growth-regulating active compound groups and applied together.
  • 1,2,4-thiadiazoles, 1,3,4-thiadiazoles, amides, aminophosphoric acid and their come as mixing partners
  • Example 1 2- [(S-1-phenylethan-1-ylamino) -6-cyclopropyl-4-trifluoromethyl-1, 3,5-triazine (Compound No. IA.a-585; S-enantiomer)
  • racem racemate
  • S S configuration on the C atom bearing R 3 .
  • Example 31 2- [(S) -l-methoxyprop-2-ylamino] -6-cyclopropy1-4-trifluoromethyl-1,3,5-triazine (Compound No. ID-37)
  • the title compound was prepared in the manner described in Example 1.3 by reacting 6-cyclopropyl-2-trichloromethyl-4-trifluoromethyl-1,3,5-triazine with SJ-1-methoxy-2-aminopropane. Fixed point: 43 - 45 ° C.
  • Example 32 2- [(S) -l ⁇ methoxyprop-2-ylamino] -6-cyclopropyl-4-chlorodifluoromethyl-1,3,5-triazine (Compound No. ID-55)
  • the title compound was prepared in the manner described in Example 1.3 by reacting 6-cyclopropyl-2-trichloromethyl-4-chlorodifluoromethyl-1,3,5-triazine with (s-1-methoxy-2-aminopropane.
  • Plastic pots with loamy sand with about 3.0% humus as substrate served as culture vessels.
  • the seeds of the test plants were sown separately according to species.
  • the active ingredients suspended or emulsified in water were applied directly after sowing using finely distributing nozzles.
  • the tubes were lightly sprinkled to promote germination and growth, and then covered with clear plastic covers until the plants had grown. This cover causes the test plants to germinate evenly, unless this was affected by the active ingredients.
  • test plants were first grown to a height of 3 to 15 cm and then treated with the active ingredients suspended or emulsified in water.
  • the test plants were either sown directly and grown in the same containers, or they were first grown separately as seedlings and transplanted into the test containers a few days before the treatment.
  • the application rate for post-emergence treatment was 0.25 and 0.5 g a. S./ha.
  • the plants were kept at temperatures of 10 - 25 ° C or 20 - 35 ° C depending on the species.
  • the trial period lasted 2 to 4 weeks. During this time, the plants were cared for, and their response to each treatment was evaluated.
  • Evaluation was carried out on a scale from 0 to 100. 100 means no emergence of the plants or complete destruction of at least the aerial parts and 0 means no damage or normal growth.
  • the plants used in the greenhouse experiments are composed of the following types:
  • compound no. 1A-590 shows a very good herbicidal action against ABUTH, CHEAL and SINAL in the post-emergence.
  • compound no. IA.a-296 shows a very good herbicidal action against ABUTH, CHEAL, SINAL and SETFA in the post-emergence.
  • Compound No. IA.a-588 shows a very good herbicidal action against AMARE, CHEAL and GALAP at application rates of 0.5 kg / ha in the post-emergence and at application rates of 0.25 kg / ha in the post-emergence a very good herbicidal activity against CHEAL and a good to very good herbicidal activity against AMARE and GALAP.
  • compound no. IA.a-593 shows a very good herbicidal action against AMARE, CHEAL, PHBPU and SETFA in post-emergence.
  • compound no. IA.a-663 shows a very good herbicidal action against ABUTH, AMARE, PHBPU, POLPE and SETFA in post-emergence.
  • the compound shows at application rates of 0.25 or 0.5 kg / ha No. IA.a-669 (Example 28) in the post-emergence a very good herbicidal action against AMARE, CHEAL, POLPE and SETFA.
  • compound no. IA.a-666 shows a very good herbicidal action against AMARE, CHEAL, PHBPU and SETFA in the post-emergence.
  • compound no. IA.a-672 shows a very good herbicidal action against ABUTH, CHEAL and SETFA in the post-emergence.
  • compound no. IA.a-661 shows a very good herbicidal action against AMARE, CHEAL, POLPE and SETFA in the post-emergence.

Landscapes

  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Die Erfindung betrifft 4-Halogenalkyltriazinverbindungen der allgemeinen Formel: worin die Variablen R?1, R2, R3, R4¿, A, X,Y, Hal, n und R die in Anspruch 1 genannten Bedeutungen haben, sowie die Verwendung dieser Verbindungen als Herbizide.

Description

4-Halogenalkyltriazinverbindungen
Die vorliegende Erfindung betrifft 4-Halogenalkyltriazinverbin- düngen sowie deren landwirtschaftliche brauchbaren Salze und deren Verwendung als Herbizide, Desikkantien oder Defoliantien.
Im Stand der Technik wurden verschiedentlich 4-Halogenalkyltria- zine als Pflanzenschutzmittel beschrieben. Aus der EP-A 411 153 sind Triazinverbindungen der allgemeinen Formel
Figure imgf000002_0001
bekannt, worin X1 ein Halogenatom, z.B. Fluor, und R1 Wasserstoff, Methyl oder Ethyl bedeuten und A unter anderem für substituiertes Phenyl steht.
Aus der JP 246528/99 sind Verbindungen der Formel Het-A- (CR2R3 )nR bekannt, in denen Het für einen aromatischen Rest mit ein bis drei Stickstoffatomen, z.B. für einen substituierten Triazinrest steht, A unter anderem eine über ein Kohlenstoffatom des Triazin- restes gebundene NH-Gruppe bedeuten kann, n eine Zahl von 1 bis 5 bedeutet, die Reste R2 und R3 z.B. Wasserstoff, Alkyl, Halogenal- kyl oder Aralkyl bedeuten und R gegebenenenfalls substituiertes Phenyl, Naphtyl, Phenoxy oder Phenylthio oder einen Heterocyclus bedeuten. Unter anderem werden Verbindungen beschrieben, die am Triazinrest in der 4-Position eine Trifluormethylgruppe aufweisen. Ähnliche Triazinverbindungen sind aus der WO 97/20825 bekannt.
Die aus dem Stand der Technik bekannten Herbizide mit einem durch Halogenalkyl substituierten Triazinring lassen teilweise hinsichtlich ihrer Aktivität und/oder Selektivität gegenüber Schadpflanzen zu wünschen übrig. Außerdem besteht ein ständiges Be- dürfnis an der Bereitstellung neuer herbizid wirksamer Substanzen, um eine mögliche Resistenzbildung gegen bekannte Herbizide zu umgehen.
Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, neue Herbizide bereitzustellen, mit denen sich Schadpflanzen besser als bisher bekämpfen lassen. Die neuen Herbizide sollen vorteil- hafterweise eine hohe Aktivität gegenüber Schadpflanzen aufweisen. Außerdem ist eine Kulturpflanzenverträglichkeit gewünscht.
Diese Aufgabe wird überraschenderweise durch die 4-Halogenalkyl- triazinverbindungen der nachstehend definierten, allgemeinen Formel I gelöst.
Gegenstand der vorliegenden Erfindung sind daher 4-Halogenalkyl- triazinverbindungen der allgemeinen Formel I
Figure imgf000003_0001
worin die Variablen R1, R2, R3, R4, A, X, Y, Hai, n und R die folgenden Bedeutungen haben:
R1 Cι-C -Halogenalkyl;
R2 Wasserstoff oder eine Gruppe C(0)R5, C(S)R5 , C(0)0R5,
C(0)NHR6 oder S02R6, worin R5 und R6 unabhängig voneinander für Wasserstoff, Cι-C4-Alkyl, C3-C8-Cycloalkyl, Phenyl oder
Phenyl-C!-C-alkyl stehen, wobei Phenyl einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Cι-C4-Alkyl, Cχ-C -Halogenalkyl oder Cι-C -Alkoxy aufweisen kann;
R3 Wasserstoff oder Cτ-C4-Alkyl;
R4 Wasserstoff oder Cι-C4-Alkyl;
A eine Einfachbindung, lineares oder verzweigtes Ci-Cö-Alkylen, worin ein oder zwei Kohlenstoffatome, die der Gruppe X und der Gruppe CR3R4 nicht benachbart sind, durch Sauerstoff ersetzt sein können;
X eine Einfachbindung oder, sofern A keine Einfachbindung be- deutet, auch ein Sauerstoffatom sein kann;
Y CH2, NH, O, S oder eine chemische Bindung zwischen der CH und der CH-Gruppe, an die Y gebunden ist;
Hai ein Halogensubstituent; n 0 , 1 , 2 oder 3 ;
R Cι-C8-Alkyl, C3-C8-Cycloalkyl, das auch ein oder zwei Carbo- nyl- oder Thiocarbonylgruppen als Ringglieder aufweisen kann, Phenyl, 5- oder 6-gliedriges, gesättigtes oder ungesättigtes Heterocyclyl mit einem, zwei oder drei Heteroatomen, ausgewählt unter 0, N oder S, wobei das 5- oder 6-gliedrige Heterocyclyl, einen anellierten 5- oder 6-gliedrigen carbocycli- schen, aromatischen oder nicht-aromatischen Ring und Phenyl einen anellierten 5- oder 6-gliedrigen, carbocyclischen oder heterocyclischen, aromatischen oder nicht-aromatischen Ring mit 1, 2 oder 3 Heteroatomen, die ausgewählt sind unter O, S und N, aufweisen können, und wobei R gegebenenfalls 1, 2, 3 oder 4 Substituenten aufweisen kann, die unabhängig voneinan- der ausgewählt sind unter OR7, Cι-C6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, Cι-C4-Alkoxy-Cι-C-alkyl, Cχ-C4-Halogenalkyl, C!-C4-Hydroxyalkyl, Halogen, CN, COR7, C02R7, 0C(0)R7, CR9=NOR7, N02, S02R7, NR7R8, S02NR7R8, SR7, C3-C8-Cycloalkyl, worin ein oder zwei nicht benachbarte Ringglieder durch Sau- erstoff, Schwefel oder eine Iminogruppe ersetzt sein können, Phenyl oder Phenyl-Cι-C -alkyl, wobei Phenyl in den zwei letztgenannten Gruppen seinerseits einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Cι-C -Alkyl, Cι-C4-Halo- genalkyl oder Cι-C-Alkoxy, aufweisen kann; wobei
R7 für H, Cι-C -Alkyl, Cι-C-Halogenalkyl, Cι-C-Hydroxyal- kyl, C3-C6-Alkenyl, C3-C6-Alkinyl, Cι-C -Alkoxy-Cι-C -al- kyl, Cι-C -Alkoxycarbonyl-Cι-C-alkyl,
Phenyl oder Phenyl-Cχ-C-alkyl steht, wobei Phenyl in den zwei letztgenannten Gruppen seinerseits einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Cι-C -Al- kyl, Cι-C -Halogenalkyl oder Cι-C-Alkoxy, aufweisen kann;
R8 die für R7 angegebenen Bedeutungen besitzt oder für COR7 oder C02R7 steht; und
R9 die für R7 angegebenen Bedeutungen besitzt oder für OR7 steht;
sowie die landwirtschaftlich brauchbaren Salze von I.
Außerdem betrifft die Erfindung die Verwendung von Verbindungen I als Herbizide, herbizide Mittel, welche die Verbindungen I und/oder ihre Salze als wirksame Substanzen enthalten,
Verfahren zur Herstellung der Verbindungen I, Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs (Schadpflanzen) mit den Verbindungen I und/oder deren Salzen.
Die Verbindungen der Formel I können sowohl am Kohlenstoff, der die Gruppe R3 trägt, an der CH-Gruppe, die die Variable Y trägt, als auch in anderen Molekülteilen, z.B. in den Substituenten an R, ein oder mehrere ChiralitätsZentren aufweisen. Sie liegen dann als Enantiomeren- oder Diastereomerengemische vor. Gegenstand der Erfindung sind sowohl die reinen Enantiomeren oder Diastereomeren als auch deren Gemische.
Unter landwirtschaftlich brauchbaren Salzen kommen vor allem die Salze derjenigen Kationen oder die Säureadditionssalze derjenigen Säuren in Betracht, deren Kationen beziehungsweise Anionen die herbizide Wirkung der Verbindungen I nicht negativ beeinträchtigen. So kommen als Kationen insbesondere die Ionen der Alkalimetalle, vorzugsweise Natrium und Kalium, der Erdalkalimetalle, vorzugsweise Calcium, Magnesium und Barium, und der Übergangsmetalle, vorzugsweise Mangan, Kupfer, Zink und Eisen, sowie das Ammoniumion, das gewünschtenfalls ein bis vier Cι~C -Alkyl- substituenten und/oder einen Phenyl- oder Benzylsubstituenten tragen kann, vorzugsweise Diisopropylammonium, Tetramethylammonium, Tetrabutylammonium, Trimethylbenzylammonium, des weiteren Phosphoniumionen, Sulfoniumionen, vorzugsweise Tri(Cι-C -alkyl)sulfonium und Sulfoxoniumionen, vorzugsweise Tri(Cι-C -alkyl)sulfoxonium, in Betracht.
Anionen von brauchbaren Säureadditionssalzen sind in erster Linie Chlorid, Bromid, Fluorid, Hydrogensulfat, Sulfat, Dihydrogen- phosphat, Hydrogenphosphat, Phosphat, Nitrat, Hydrogencarbonat, Carbonat, Hexafluorosilikat, Hexafluorophosphat, Benzoat, sowie die Anionen von Cι-C-Alkansäuren, vorzugsweise Formiat, Acetat, Propionat und Butyrat. Sie können durch Reaktion von I mit einer Säure des entsprechenden Anions, vorzugsweise der Chlorwasser- stoffsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure oder Salpetersäure, gebildet werden.
Die bei der Definition der Substituenten R1, R2, R3, R4, R5, R6, R7, R8 und R9 oder als Reste an Cycloalkyl-, Phenyl- oder hetero- cyclischen Ringen genannten organischen Molekülteile stellen - wie die Bedeutung Halogen - Sammelbegriffe für individuelle Aufzählungen der einzelnen Gruppenmitglieder dar. Sämtliche Kohlenstoffketten, also alle Alkyl-, Halogenalkyl-, Phenylalkyl-, Cycloalkyl-, Alkoxy-, Halogenalkoxy-, Alkylthio-, Alkylsulfonyl-, Alkenyl- und Alkinyl-Gruppen sowie entsprechende Gruppenteile in größeren Gruppen wie Alkoxycarbonyl, Phenylalkyl-, Cycloalkyl- alkyl, Alkoxycarbonylalkyl etc. können geradkettig oder verzweigt sein, wobei das Präfix Cn-Cm jeweils die mögliche Anzahl von Kohlenstoffatomen in der Gruppe angibt. Halogenierte Substituenten tragen vorzugsweise ein, zwei, drei, vier oder fünf gleiche oder verschiedene Halogenatome. Die Bedeutung Halogen steht jeweils für Fluor, Chlor, Brom oder Iod.
Ferner stehen beispielsweise:
Cι-C -Alkyl für: CH3, C2H5, n-Propyl, CH(CH3)2, n-Butyl, CH(CH3)-C2H5, CH2-CH(CH3)2 und C(CH3)3;
Ci-Cg-Al yl für: Cι-C-Alkyl wie vorstehend genannt, sowie z.B. n-Pentyl, 1-Methylbutyl, 2-Methylbutyl, 3-Methylbutyl, 2,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 1, 1-Dimethylpropyl, 1,2-Dimethylpropyl, 1-Methylpentyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1, 1-Dimethylbutyl, 1,2-Dimethylbutyl, 1,3-Dimethylbutyl, 2,2-Dimethylbutyl, 2,3-Dimethylbutyl, 3,3-Dimethylbutyl, 1-Ethylbutyl, 2-Ethylbutyl, 1, 1,2-Trimethylpropyl, 1,2,2-Trimethylpropyl, 1-Ethyl-1-methylpropyl oder l-Ethyl-2-methylpropyl, vorzugsweise Methyl, Ethyl, n-Propyl, 1-Methylethyl, n-Butyl, 1, 1-Dimethylethyl, n-Pentyl oder n-Hexyl;
- Ci-Cs-Alkyl für: Cι-C6-Alkyl wie vorstehend genannt, und z.B. n-Heptyl, 2-Ethylhexyl und n-Octyl;
Ci-Cß-Alkylen, worin ein oder zwei Kohlenstoffatome durch Sauerstoffatome ersetzt sein können: z.B. Methylen, Ethan-l,2-diyl, Ethan-1, 1-diyl, Propan-1, 1-diyl, Pro- pan-l,2-diyl, Propan-l,3-diyl, Propan-2,2-diyl, Bu- tan-1, 1-diyl, Butan-l,2-diyl, Butan-l,3-diyl, Butan-l,4-diyl, Butan-2,3-diyl, Butan-2,2-diyl, Pentan-l,5-diyl, 3-0xopen- tan-l,5-diyl;
Cι-C -Halogenalkyl für: einen Cι-C4-Alkylrest wie vorstehend genannt, der partiell oder vollständig durch Fluor, Chlor, Brom und/oder Iod substituiert ist, also z.B. CHF, CHF2, CF3, CHC1, Dichlormethyl, Trichlormethyl, Chlorfluormethyl, Dichlorfluormethyl, Chlordifluormethyl, 2-Fluorethyl,
2-Chlorethyl, 2-Bromethyl, 2-Iodethyl, 2,2-Difluorethyl, 2,2, 2-Trifluorethyl, 2-Chlor-2-fluorethyl, 2-Chlor-2,2-difluorethyl, 2, 2-Dichlor-2-fluorethyl, 2,2,2-Trichlorethyl, C2F5, 2-Fluorpropyl, 3-Fluorpropyl, 2,2-Difluorpropyl, 2,3-Difluorpropyl, 2-Chlorpropyl,
3-Chlorpropyl, 2,3-Dichlorpropyl, 2-Brompropyl, 3-Brompropy1, 3,3, 3-Trifluorpropyl, 3,3,3-Trichlorpropyl, 2,2,3,3, 3-Pentafluorpropyl, Heptafluorpropyl, 1- (Fluormethyl) -2-fluorethyl, l-(Chlormethyl )-2-chlorethyl, l-(Brommethyl) -2-bromethyl, 4-Fluorbutyl, 4-Chlorbutyl, 4-Brombutyl oder Nonafluorbutyl . Besonders bevorzugt sind hierunter Trifluormethyl, Trichlormethy1, Dichlorfluormethyl, Difluormethyl, Difluorchlormethyl, Dichlormethyl ;
Phenyl-Cι-C -alkyl für: Benzyl, 1-Phenylethyl, 2-Phenylethyl,
1-Phenylprop-l-yl, 2-Phenylprop-l-yl, 3-Phenylprop-l-yl, 1-Phenylbut-l-yl, 2-PhenyIbut-l-yl, 3-Phenylbut-l-yl,
4-Phenylbut-l-yl, l-Phenylbut-2-yl, 2-Phenylbut-2-yl,
3-Phenylbut-2-yl, 4-Phenylbut-2-yl,
1- (Phenylmethyl ) -eth-l-yl ,
1- (Phenylmethyl ) -1- (methyl ) -eth-l-yl oder l-(Phenylmethyl )-prop-l-yl, vorzugsweise Benzyl oder
2-Phenylethyl;
Cι-C4-Alkoxy für: 0CH3, OC2H5, n-Propoxy, OCH(CH3)2, n-Butoxy, OCH(CH3)-C2H5, OCH2-CH(CH3)2 oder OC(CH3)3, vorzugsweise für 0CH3, OC2H5 oder OCH(CH3) ;
Cι-C4-Alkoxy-Cι-C -alkyl für: durch Cι-C -Alkoxy - wie vorstehend genannt - substituiertes Cχ-C -Alkyl, also z.B. für CH2-OCH3, CH2-OC2H5, n-Propoxymethy1, CH2-OCH(CH3)2, n-Butoxymethyl, ( 1-Methylpropoxy)methyl, (2-Methylpropoxy)methyl, CH2-OC(CH3)3, 2-(Methoxy)ethyl,
2- Ethoxy) ethyl, 2-(n-Propoxy)ethyl, 2-( 1-Methylethoxy) ethyl, 2- n-Butoxy) ethyl, 2- ( 1-Methylpropoxy)ethyl, 2- 2-Methylpropoxy) ethyl, 2-( 1, 1-Dimethylethoxy)ethyl, 2- Methoxy)propy1 , 2-(Ethoxy)propyl, 2-(n-Propoxy)propyl, 2- 1-Methylethoxy)propy1, 2- (n-Butoxy)propyl, 2- 1-Methylpropoxy)propyl, 2- ( 2-Methylpropoxy) propyl, 2- 1, 1-Dimethylethoxy)propyl, 3- (Methoxy)propyl, 3- Ethoxy) ropyl , 3- ( n-Propoxy) propyl, 3- 1-Methylethoxy)propyl , 3- ( n-Butoxy) ropyl , 3- 1-Methylpropoxy)propyl , 3- ( 2-Methylpropoxy)propyl, 3- 1 , 1-Dimethylethoxy)propyl, 2- (Methoxy) buty1 , 2- Ethoxy) buty1, 2- (n-Propoxy)butyl, 2-( l-Methylethoxy)butyl, 2- n-Butoxy)butyl, 2- ( 1-Methylpropoxy)butyl, 2- 2-Methylpropoxy)buty1, 2- ( 1, 1-Dimethylethoxy)butyl, 3- Methoxy)butyl, 3- (Ethoxy)butyl, 3- (n-Propoxy)butyl, 3- 1-Methylethoxy)butyl, 3- (n-Butoxy)butyl, 3- 1-Methylpropoxy)butyl, 3- ( 2-Methylpropoxy)butyl, 3- 1, 1-Dimethylethoxy)butyl, 4- (Methoxy)butyl, 4- Ethoxy)butyl, 4- (n-Propoxy)butyl, 4-(l-Methylethoxy)butyl, 4- n-Butoxy)butyl, 4- ( 1-Methylpropoxy)butyl, 4- 2-Methylpropoxy)butyl oder 4- (1, 1-Dimethylethoxy)butyl, vorzugsweise für CH2-OCH3, CH2-OC2H5, 2-Methoxyethyl oder 2-Ethoxyethyl;
Hydroxy-Cχ-C-alkyl für: z. B. Hydroxymethyl, 2-Hydroxyeth- 1-yl, 2-Hydroxy-prop-l-yl, 3-Hydroxy-prop-l-yl, 1-Hydroxy- prop-2-yl, 2-Hydroxy-but-l-yl, 3-Hydroxy-but-l-yl, 4-Hydroxy- but-l-yl, l-Hydroxy-but-2-yl, l-Hydroxy-but-3-yl, 2-Hydroxy- but-3-yl, l-Hydroxy-2-methyl-prop-3-yl, 2-Hydroxy-2-methyl- prop-3-yl oder 2-Hydroxymethyl-prop-2-yl, insbesondere für 2-Hydroxyethyl;
(Cι-C-Alkoxy)carbonyl-Cι-C-alkyl für: durch (Cι-C4-Alkoxy)carbonyl wie CO-OCH3, CO-OC2H5, CO-OCH2-C2H5, CO-OCH(CH3)2, n-Butoxycarbonyl, CO-OCH(CH3)-C2H5, CO-OCH2-CH(CH3)2 oder CO-OC(CH3)3, vorzugsweise CO-OCH3 oder
CO-OC2H5 substituiertes Cι-C-Alkyl, also z.B. für CH2-CO-OCH3, CH2-CO-OC2H5, CH2-CO-OCH2-C2H5, CH2-CO-OCH(CH3)2, n-Butoxycar- bonylmethyl, CH2-CO-OCH(CH3)-C2H5, CH2-CO-OCH2-CH(CH3)2, CH2-CO-OC(CH3)3, 1-(C0-0CH3)ethyl, l-(CO-OC2H5)ethyl, l-(CO- OCH2-C2H5)ethyl, l-[CH(CH3)2]ethyl, 1- (n-Butoxycarbonyl)ethyl, 1- [ 1-Methylpropoxycarbonyl]ethyl, 1- [ 2-Methylpropoxycarbo- nyl]ethyl, 2-(CO-OCH3)ethyl, 2-(CO-OC2H5)ethyl, 2-(CO- OCH2-C2H5) ethyl, 2-[CO-OCH(CH3)2]ethyl, 2-(n-Butoxycarbo- nyl)ethyl, 2-[ 1-Methylpropoxycarbonyl]ethyl, 2-[2-Methylpro- poxycarbonyl]ethyl, 2-[CO-OC(CH3)3]ethyl, 2- (CO-OCH3)propyl, 2- (CO-OC2H5)propyl, 2- (CO-OCH2-C2H5)propyl, 2-[CO- OCH(CH3)2]propyl, 2- (n-Butoxycarbonyl)propyl, 2- [ 1-Methylpropoxycarbonyl ]propyl, 2- [2-Methylpropoxycarbonyl]propyl, 2-[CO-OC(CH3)3]propyl, 3- (CO-OCH3) -propyl, 3- (CO-OC2H5) ropyl, 3- (CO-OCH2-C2H5)propyl, 3-[CO-OCH(CH3)2]propyl, 3-(n-Butoxy- carbonyl) ropyl, 3- [ 1-Methylpropoxycarbonyl]propyl, 3-[2-Me- thylpropoxycarbonyl]propyl, 3- [CO-OC(CH3)3]propyl, 2-(CO- 0CH3)butyl, 2-(CO-OC2H5)butyl, 2-(CO-OCH2-C2H5)butyl, 2-[CO- OCH(CH3)2]butyl, 2- (n-Butoxycarbonyl)butyl, 2-[ 1-Methylpropo- xycarbonyl]butyl, 2-[2-Methylpropoxycarbonyl]butyl, 2-[C0- OC(CH3)3]butyl, 3-(CO-OCH3 )butyl, 3-(CO-OC2H5)butyl, 3-(C0- 0CH2-C2H5)butyl, 3-[CO-OCH(CH3 )2 ]butyl, 3-(n-Butoxycarbo- nyl)butyl, 3- [ 1-Methylpropoxycarbonyl ]butyl, 3-[2-Methylpro- poxycarbonyl]butyl, 3-[CO-OC(CH3)3]butyl, 4-(CO-OCH3)butyl, 4-(CO-OC2H5)butyl, 4-(CO-OCH2-C2H5)butyl, 4-[CO-OCH(CH3 ) 2]bu- tyl, 4- (n-Butoxycarbonyl)butyl, 4-[l-Methylpropoxy- carbonyl] utyl, 4-[2-Methylpropoxycarbonyl]butyl oder 4-[CO- OC(CH3)3]butyl, vorzugsweise für CH2-CO-OCH3, CH2-CO-OC2H5, l-(CO-OCH3)ethyl oder 1- (CO-OC2H5)ethyl; C-C6-Alkenyl für geradkettige oder verzweigte Kohlenwasserstoffreste mit 2 bis 6 Kohlenstoffatomen und einer Doppelbindung in einer beliebigen Position, z. B. Ethenyl (Vinyl) , Prop-1-en-l-yl, Allyl, 1-Methylethenyl, 1-Buten-l-yl, l-Buten-2-yl, l-Buten-3-yl, 2-Buten-l-yl,
1-Methyl-prop-l-en-l-yl, 2-Methyl-prop-l-en-l-yl, l-Methyl-prop-2-en-l-yl, 2-Methyl-prop-2-en-l-yl, n-Penten-1-yl, n-Penten-2-yl, n-Penten-3-yl, n-Penten-4-yl, 1-Methyl-but-l-en-l-yl, 2-Methyl-but-l-en-l-yl, 3-Methyl-but-l-en-l-yl, l-Methyl-but-2-en-l-yl, 2-Methyl-but-2-en-l-yl, 3-Methyl-but-2-en-l-yl, l-Methyl-but-3-en-l-yl, 2-Methyl-but-3-en-l-yl, 3-Methyl-but-3-en-l-yl, 1, l-Dimethyl-prop-2-en-l-yl, 1 , 2-Dimethyl-prop-l-en-l-yl, 1 , 2-Dimethyl-prop-2-en-l-yl, l-Ethyl-prop-l-en-2-yl, l-Ethyl-prop-2-en-l-yl, n-Hex-1-en-l-yl, n-Hex-2-en-l-yl, n-Hex-3-en-l-yl, n-Hex-4-en-l-yl, n-Hex-5-en-l-yl, 1-Methyl-pent-l-en-l-yl, 2-Methyl-pent-l-en-l-yl, 3-Methyl-pent-l-en-l-yl, 4-Methyl-pent-l-en-l-yl, l-Methyl-pent-2-en-l-yl, 2-Methyl-pent-2-en-l-yl, 3-Methyl-pent-2-en-l-yl, 4-Methyl-pent-2-en-l-yl, l-Methyl-pent-3-en-l-yl, 2-Methy1-pent-3-en-1-y1, 3-Methyl-pent-3-en-1-y1, 4-Methyl-pent-3-en-l-yl, l-Methyl-pent-4-en-l-yl, 2-Methyl-pent-4-en-l-yl, 3-Methyl-pent-4-en-l-yl, 4-Methyl-pent-4-en-l-yl, 1, l-Dimethyl-but-2-en-l-yl, l,l-Dimethyl-but-3-en-l-yl, 1,2-Dimethyl-but-l-en-l-yl, 1 , 2-Dimethyl-but-2-en-l-yl, 1 , 2-Dimethyl-but-3-en-l-yl, 1 , 3-Dimethyl-but-l-en-l-yl, 1 , 3-Dimethyl-but-2-en-l-yl, l,3-Dimethyl-but-3-en-l-yl, 2 ,2-Dimethyl-but-3-en-l-yl, 2,3-Dimethyl-but-l-en-l-yl, 2,3-Dimethyl-but-2-en-l-yl, 2 , 3-Dimethyl-but-3-en-l-yl, 3 , 3-Dimethyl-but-l-en-l-yl, 3,3-Dimethyl-but-2-en-l-yl, 1-Ethyl-but-l-en-l-yl, l-Ethyl-but-2-en-l-yl, l-Ethyl-but-3-en-l-yl, 2-Ethyl-but-l-en-l-yl, 2-Ethyl-but-2-en-l-yl, 2-Ethyl-but-3-en-l-yl, 1, l,2-Trimethyl-prop-2-en-l-yl, 1-Ethyl-l-methyl-prop-2-en-l-yl, 1-Ethy1-2-methy1-prop-l-en-l-yl oder 1-Ethy1-2-methyl-prop-2-en-l-yl;
C2-C6-Alkinyl für geradkettige oder verzweigte Kohlenwasserstoffgruppen mit 2 bis 6 Kohlenstoffatomen und einer Dreifachbindung in einer beliebigen Position, z. B. Ethinyl und C3-C6-Alkinyl wie Prop-1-in-l-yl, Prop-2-in-l-yl, n- But-1-in-l-yl, n-But-l-in-3-yl, n-But-l-in-4-yl, n- But-2-in-l-yl, n-Pent-1-in-l-yl, n-Pent-l-in-3-yl, n- Pent-l-in-4-yl, n-Pent-l-in-5-yl, n-Pent-2-in-l-yl, n- Pent-2-in-4-yl, n-Pent-2-in-5-yl, 3-Methyl-but-l-in-3-yl, 3-Methyl-but-l-in-4-yl, n-Hex-1-in-l-yl, n-Hex-l-in-3-yl, n-Hex-l-in-4-yl, n-Hex-l-in-5-yl, n-Hex-l-in-6-yl, n-Hex-2-in-l-yl, n-Hex-2-in-4-yl, n-Hex-2-in-5-yl, n-Hex-2-in-6-yl, n-Hex-3-in-l-yl, n-Hex-3-in-2-yl, 3-Methyl-pent-l-in-l-yl, 3-Methyl-pent-l-in-3-yl, 3-Methyl-pent-l-in-4-yl, 3-Methyl-pent-l-in-5-yl, 4-Methyl-pent-l-in-l-yl, 4-Methyl-pent-2-in-4-yl oder 4-Methyl-pent-2-in-5-yl, vorzugsweise für Prop-2-in-l-yl;
- C3-C8-Cycloalkyl für: Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl oder Cyclooctyl;
C3-C8-Cycloalkyl, das ein Carbonyl- oder
Thiocarbonyl-Ringglied enthält, z.B. für Cyclobutanon-2-yl, Cyclobutanon-3-yl, Cyclopentanon-2-yl, Cyclopentanon-3-yl,
Cyclohexanon-2-yl, Cyclohexanon-4-yl, Cycloheptanon-2-yl,
Cyclooctanon-2-yl, Cyclobutanthion-2-yl,
Cyclobutanthion-3-yl, Cyclopentanthion-2-yl,
Cyclopentanthion-3-yl, Cyclohexanthion-2-yl, Cyclohexanthion-4-yl, Cycloheptanthion-2-yl oder
Cyclooctanthion-2-yl, vorzugsweise für Cyclopentanon-2-yl oder Cyclohexanon-2-yl;
C3-C8-Cycloalkyl, worin ein oder zwei nichtbenachbarte Ring- glieder durch Heteroatome ersetzt sind: Oxiranyl, Oxe- tan-2-yl, 2- oder 3-Tetrahydrofuran-l-yl, 1-, 2-, 3- oder 4-Piperidinyl, 2-, 3- oder 4-Morpholinyl.
Beispiele für 5- oder 6-gliedriges, aromatisches Heterocyclyl sind Furyl wie 2-Furyl und 3-Furyl, Thienyl wie 2-Thienyl und 3-Thienyl, Pyrrolyl wie 2-Pyrrolyl und 3-Pyrrolyl, Isoxazolyl wie 3-Isoxazolyl, 4-Isoxazolyl und 5-Isoxazolyl, Isothiazolyl wie 3-Isothiazolyl, 4-Isothiazolyl und 5-Isothiazolyl, Pyrazolyl wie 3-Pyrazolyl, 4-Pyrazolyl und 5-Pyrazolyl, Oxazolyl wie 2-Oxazolyl, 4-0xazolyl und 5-0xazolyl, Thiazolyl wie 2-Thiazolyl, 4-Thiazolyl und 5-Thiazolyl, I idazolyl wie 2-Imidazolyl und 4-Imidazolyl, Oxadiazolyl wie l,2,4-Oxadiazol-3-yl, l,2,4-Oxadiazol-5-yl und l,3,4-Oxadiazol-2-yl, Thiadiazolyl wie l,2,4-Thiadiazol-3-yl, l,2,4-Thiadiazol-5-yl und l,3,4-Thiadiazol-2-yl, Triazolyl wie 1,2,4-Triazol-l-yl, l,2,4-Triazol-3-yl und l,2,4-Triazol-4-yl, Pyridinyl wie 2-Pyridinyl, 3-Pyridinyl und 4-Pyridinyl, Pyridazinyl wie 3-Pyridazinyl und 4-Pyridazinyl, Pyrimidinyl wie 2-Pyrimidinyl, 4-Pyrimidinyl und 5-Pyrimidinyl, des weiteren 2-Pyrazinyl, l,3,5-Triazin-2-yl und l,2,4-Triazin-3-yl, insbesondere Pyridyl, Pyrimidyl, Furyl und Thienyl. Beipiele für carbocyclische, anellierte Ringe sind neben Phenyl, Cyclohexen, Cyclohexenon, und Cyclopenten. Beispiele für heterocyclische anellierte Ringe sind die vorgenannten heteroaromatischen Gruppen, die zwei benachbarte Kohlenstoffringglieder aufweisen, und deren Di- oder
Tetrahydroderivate, z.B. Pyridin, Pyrazin, Pyridazin, Pyrimidin, Furan, Dihydrofuran, Thiophen, Dihydrothiophen, Pyrrol, Dihydropyrrol, 1,3-Dioxolan, l,3-Dioxolan-2-on, Isoxazol, Oxazol, Oxazolinon, Isothiazol, Thiazol, Pyrazol, Pyrazolin, Imidazol, Imidazolinon, Dihydroimidazol, 1,2,3-Triazol,
1, 1-Dioxodihydroisothiazol, Dihydro-l,4-dioxin, Pyridon, Dihydro-l,4-oxazin, Dihydro-l,4-oxazin-2-on, Dihydro-l,4-oxazin-3-on, Dihydro-l,3-oxazin, Dihydro-l,3-thiazin-2-on, Dihydro-l,4-thiazin, Dihydro-l,4-thiazin-2-on, Dihydro-l,4-thiazin-3-on, Dihydro-l,3-thiazin und Dihydro-l,3-thiazin-2-on.
Wenn R für Phenyl mit einem anellierten Carbocyclus oder Heterocyclus steht, dann steht R z. B. für 2-Benzofuryl, 3-Benzofuryl, 2-Benzothienyl, 3-Benzothienyl, 2-lndolyl, 3-Indolyl, 1-Isoindolyl, 1-lndanyl, 2-lndanyl, 3-Benzopyrazolyl, 2-Benzimidazolyl, 2-Benzoxazolyl, 2-Benzisoxazolyl, 2-Benzothiazolyl, 3-Benzisothiazolyl, Benzo-l,4-dioxanyl, Benzo-l,3-dioxolanyl, 1,3, 5-Benzotriazin-2-yl, l,2,4-Benzotriazin-3-yl,
1-Naphthyl, 2-Naphthyl, 5,6,7, 8-Tetrahydronaphth-l-yl, 5,6, 7,8-Tetrahydronaphth-2-yl, 2-Chinolinyl, 3-Chinolinyl, 4-Chinolinyl, 1-Isochinolinyl, 3-Isochinolinyl, 4-Isochinolinyl, 3-Benzopyrazinyl, 4-Benzopyrazinyl, 2-Benzopyrimidinyl, 4-Benzopyrimidinyl, 2-Benzopyrazinyl, die in der für R angegebenen Weise substituiert sein können.
Beispiele für geeignete Substituenten an R sind Fluor, Chlor, Brom, Cyano, Hydroxy, Methyl, Ethyl, n-Propyl, iso-Propyl, tert.- Butyl, Methoxy, Ethoxy, n-Propoxy, iso-Propoxy, tert.-Butoxy, Trifluormethyl, 2, 2, 2-Trifluorethyl, Trifluormethoxy, Difluorme- thoxy, Hydroxymethyl, 2-Hydroxyethyl, 2-Methoxyethan-l-yl, Methoxycarbonylmethyl, l-(Methoxycarbonyl)ethan-l-yl, Methylthio, Ni- tro, Amino, Methylamino, Ethylamino, Isopropylamino, Dimethyla- mino, Diethylamino, Ethenyl, Ethinyl, Allyl, Propargyl, Allyloxy, Propargyloxy, Phenyloxy, Benzyloxy, 4-Halogenbenzyloxy, Formyl, Acetyl, Acetyloxy, Methoxycarbony1, Ethoxycarbonyl, ter . -Butoxy- carbonyl, Benzyloxycarbonyl, Acetyloxy, Benzoyloxy, N-Acetyla- mino, N-Benzoylamino, Methylsulfonyl, Phenylsulfonyl und Methyla- minosulfonyl, Methoxyiminomethyl (CH3ON=CH), Ethoxyiminomethyl und Hydroxyiminomethyl . Im Hinblick auf die Verwendung der Triazinverbindungen I als Herbizide sind diejenigen Verbindungen I bevorzugt, in denen die Variablen R1, R2, R3, R4, A, X und Y die folgende Bedeutung haben, und zwar jeweils für sich allein oder in Kombination:
R1 Trifluormethyl, Chlordifluormethyl, Dichlorfluormethyl, Trichlormethyl;
R2 Wasserstoff, eine Gruppe C(0)R5 oder eine Gruppe C(0)OR5, wo- rin R5 die zuvor genannten Bedeutungen hat und insbesondere für Wasserstoff oder Cι-C-Alkyl steht;
R3 Wasserstoff oder Cι-C-Alkyl, insbesondere Methyl;
R4 Wasserstoff;
A Einfachbindung, Methylen oder 1,2-Ethandiyl;
X Sauerstoff oder eine Einfachbindung; und
Y CH2, O oder eine chemische Bindung.
Unter den Verbindungen I, in denen R3 für Cι-C-Alkyl und insbesondere für Methyl steht und R4 Wasserstoff bedeutet, sind solche Verbindungen bevorzugt, an denen das Kohlenstoffatom, das die Gruppe R3 trägt, eine S-Konfiguration aufweist.
Hai steht für einen Halogensubstituenten, d. h. ein Halogenatom, welches ein Wasserstoffatom der in der 6-Position des Triazin- rings befindlichen Gruppe substituiert. Dementsprechend bedeutet n = 0 eine unsubstituierte Gruppe, wohingegen bei n = 3 alle drei Wasserstoffatome durch Halogen, das gleich oder verschieden sein kann, substituiert sind. Bevorzugt ist n 0 oder 1, insbesondere 0. Wenn n = 1 gilt, dann ist vorzugsweise das Wasserstoffatom substituiert, welches sich an dem C-Atom befindet, das dem Tria- zinring benachbart ist. Bevorzugt steht Hai für Chlor oder Fluor. Besonders bevorzugt steht die in der 6-Position des Triazinrings befindliche Gruppe für Cyclopropyl (Y = CH2, n = 0), 1-Fluorcyclo- propyl (Y = CH2, n = 1, Hai = F), 1-Chlorcyclopropyl (Y = CH2, n = 1, Hai = Cl), Vinyl (Y = chemische Bindung, n = 0), 1-Fluor- vinyl (Y = chemische Bindung, n = 1, Hai = F) oder 1-Chlorvinyl (Y = chemische Bindung, n = 1, Hai = Chlor).
Beispiele für erfindungsgemäß geeignete Gruppen R sind: 2-, 3- oder 4-Chlorphenyl, 2-, 3- oder 4-Fluorphenyl, 2-, 3- oder 4-Hy- droxyphenyl, 2-, 3- oder 4-Trifluormethylphenyl, 2-, 3- oder 4-Trifluormethoxyphenyl, 2-, 3- oder 4-Methylthiophenyl, 2-, 3- oder 4-Difluormethoxyphenyl, 2-, 3- oder 4-Bromphenyl, 2-, 3- oder 4-Tolyl, 2-, 3- oder 4-Anisyl, 2-, 3- oder 4-Allyloxyphenyl, 2-, 3- oder 4-Propargyloxyphenyl, 2-, 3- oder 4-Nitrophenyl, 2-, 3- oder 4-Cyanophenyl, 3- oder 4-Isopropylphenyl, 3- oder 4- (2, 2, 2-Trifluorethyl)phenyl 3- oder 4-Ethinylphenyl, 3- oder 4-Ethenylphenyl, 3- oder 4-Acetylphenyl, 3- oder 4-Acetylamino- phenyl, 3- oder 4-Diethylaminophenyl, 3- oder 4-Methoxycarbony1- phenyl, 3- oder 4-Ethoxycarbonylphenyl, 3- oder 4-Phenyloxycarbo- nylphenyl, 3- oder 4-Benzyloxycarbonylphenyl, 3- oder 4-Methyl- sulfonylphenyl, 3- oder 4-Methylaminosulfonylphenyl, 4-tert.-Bu- tylphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dimethoxyphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dimethylphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3, 5-Bis(trifluormethyl)phenyl, 2,4,5- oder 2, 4, 6-Trifluorphenyl, 2,4,5- oder 2,4,6-Trichlorphenyl, 2-Chlor-3-fluorphenyl, 2-Chlor-4-fluorphenyl, 2-Chlor-5-fluorphenyl, 3-Chlor-4-fluorphenyl, 3-Chlor-5-fluorphenyl, 3-Chlor-2-fluorphenyl, 4-Chlor-2-fluorphenyl, 5-Chlor-2-fluorphenyl, 2-Brom-3-fluorphenyl, 2-Brom-4-fluorphenyl, 2-Brom-5-fluorphenyl, 3-Brom-4-fluorphenyl, 3-Brom-5-fluorphenyl, 3-Brom-2-fluorphenyl, 4-Brom-2-fluorphenyl, 5-Brom-2-fluorphenyl, 2-Chlor-3-methoxyphenyl, 2-Chlor-4-methoxy- phenyl, 2-Chlor-5-methoxyphenyl, 3-Chlor-4-methoxyphenyl, 3-Chlor-5-methoxyphenyl, 3-Chlor-2-methoxyphenyl, 4-C lor-2-me- thoxyphenyl, 5-Chlor-2-methoxyphenyl, 2-Fluor-3-methoxyphenyl, 2-Fluor-4-methoxyphenyl, 2-Fluor-5-methoxyphenyl, 3-Fluor-4-me- thoxyphenyl, 3-Fluor-5-methoxyphenyl, 3-Fluor-2-methoxyphenyl, 4-Fluor-2-methoxyphenyl, 5-Fluor-2-methoxyphenyl, 2-Chlor-3-me- thylphenyl, 2-Chlor-4-methylphenyl, 2-Chlor-5-methylphenyl, 3-Chlor-4-meth lphenyl, 3-Chlor-5-methylphenyl, 3-Chlor-2-methyl- phenyl, 4-Chlor-2-methylphenyl, 5-Chlor-2-methylphenyl, 2-Fluor-3-methylphenyl, 2-Fluor-4-methylphenyl, 2-Fluor-5-methyl- phenyl, 3-Fluor-4-methylphenyl, 3-Fluor-5-methylphenyl, 3-Fluor-2-methylphenyl, 4-Fluor-2-methylphenyl, 5-Fluor-2-methyl- phenyl, 2-Chlor-4-cyanophenyl, 3-Chlor-4-cyanophenyl,
2-Fluor-4-cyanophenyl, 3-Fluor-4-cyanophenyl, 2-Chlor-4-trifluor- methylpheny1, 3-Chlor-4-trifluormethylphenyl, 2-Fluor-4-trifluor- methylpheny1, 3-Fluor-4-trifluormethylphenyl, 2-Chlor-4-isopro- pylphenyl, 3-Chlor-4-isopropylpheny1, 2-Fluor-4-isopropylphenyl, 3-Fluor-4-isopropylphenyl, 2-Chlor-3-fluor-5-methylpheny1,
2-Chlor-5-fluor-4-methylphenyl, 3-Chlor-5-fluor-4-methylpheny1, 3-Chlor-4-fluor-6-methylphenyl, 3-Chlor-5-fluorphenyl, 2-, 3- oder 4-Pyridyl, 2-, 3-, 4-, 5-, 6- oder 7-Benzofuranyl, 2-, 3-, 4-, 5-, 6- oder 7-Benzothienyl, 2-, 3-, 4-, 5-, 6- oder 7-Indo- lyl, 2-, 3-, 4-, 5-, 6- oder 7-(l-Methyl)indolyl, 2-, 4-, 5-, 6- oder 7-Benzoxazolyl, 2-, 4-, 5-, 6- oder 7-Benzothiazolyl, 2-, 4-, 5-, 6- oder 7-Benzimidazolyl, 2-, 4- oder 5-Benzotriazolyl, 5-Chlorbenzofuran-2-yl, 5-Methylbenzofuran-2-yl, 6-Methoxybenzo- furanyl, α- oder ß-Naphthyl, Cyclohexyl oder Cι-C4-Alkyl, z.B. Methyl oder Ethyl.
Erfindungsgemäß bevorzugt sind insbesondere solche Verbindungen in denen R für eine Phenylgruppe steht, die einen, zwei oder drei der vorstehend genannten Substituenten aufweisen kann. Erfindungsgemäß bevorzugt sind daher insbesondere die Verbindungen der allgemeinen Formel I ' ,
(
Figure imgf000014_0001
worin R1, R2, R3, R4, A, X, Hai, n und Y die zuvor und insbesondere die zuvor als bevorzugt angegebenen Bedeutungen haben, und Ra, Rb und Rc unabhängig ausgewählt sind unter Wasserstoff, OR7, Cι-C6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, Cι-C -Alkoxy-Cι-C-alkyl, Cχ-C-Halogenalkyl, Cτ-C -Hydroxyalkyl, Halogen, CN, COR7, C02R7, 0C(0)R7, CR9=NOR7, N02, S02R7 , NR7R8, S02NR7R8, SR7 und C3-C8-Cyclθ- alkyl, worin ein oder zwei nicht benachbarte Ringglieder durch Sauerstoff, Schwefel oder eine Iminogruppe ersetzt sein können, Phenyl oder Phenyl-Cτ-C4-alkyl, wobei Phenyl in den zwei letztge- nannten Gruppen seinerseits einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Cι-C-Alkyl, Cχ-C4-Halogenalkyl oder Cι-C -Alkoxy, aufweisen kann, worin R7, R8 und R9 die zuvor angegebenen Bedeutungen haben. Bevorzugt steht R7 für Cτ-C-Alkyl, Phenyl oder Benzyl, wobei die zwei letztgenannten Gruppen gegebenen- falls substituiert sein können. R9 steht insbesondere für Wasserstoff, Cι-C-Alkyl, Cι-C4-Alkoxy, Cι-C -Alkoxy-Cι-C -alkyl oder Benzyl.
Besonders bevorzugt sind Verbindungen I', in denen Ra, Rb und Rc für Wasserstoff stehen oder in denen einer oder zwei der Reste Ra, Rb und Rc eine von Wasserstoff verschiedene Bedeutung haben und die verbleibenden Reste Wasserstoff bedeuten. Hierunter besonders bevorzugt sind solche Verbindungen I', die in der 4-Position einen von Wasserstoff verschiedenen Substituenten tragen.
Beispiele für Reste R , Rb und Rc sind neben Wasserstoff die zuvor für R aufgeführten Substituenten. Bevorzugte Reste Ra, Rb und Rc sind Fluor, Chlor, Brom, Cι-C -Alkyl, insbesondere Methyl, Cι-C -Alkoxy, insbesondere Methoxy, Cτ-C-Halogenalkyl, insbeson- dere Trifluormethyl, Cι-C-Halogenalkoxy, insbesondere Difluorme- thoxy, Cyano oder Nitro und insbesondere für Fluor oder Methyl. Unter den Verbindungen der allgemeinen Formel I' sind wiederum solche Verbindungen bevorzugt, in denen Y eine CH2-Gruppe bedeutet. Derartige Verbindungen werden im Folgenden als Cyclopropyl- Verbindungen IA bezeichnet. Unter den Verbindungen der allgemeinen Formel I' sind außerdem solche Verbindungen bevorzugt, in denen Y für Sauerstoff steht. Derartige Verbindungen werden im Folgenden als Oxiranverbindungen IB bezeichnet. Unter den Verbindungen der allgemeinen Formel I ' sind außerdem solche Verbindungen bevorzugt, in denen Y für chemische Bindung steht. Derartige Verbindungen werden im Folgenden als Vinylverbindungen IC bezeichnet.
Unter den CyclopropylVerbindungen IA sind wiederum solche Verbin- düngen bevorzugt, die der allgemeinen Formel IA.a gehorchen (Verbindungen der allgemeinen Formel IA, in denen R2 und R4 für Wasserstoff stehen, A und X gemeinsam eine Einfachbindung bilden und R° Wasserstoff bedeutet) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.a sind die Verbindungen IA.a-1 bis IA.a-876, in denen in Formel IA.a die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000015_0001
Tabelle 1:
Figure imgf000015_0002
Figure imgf000016_0001
Figure imgf000017_0001
Figure imgf000018_0001
Figure imgf000019_0001
Figure imgf000020_0001
Figure imgf000021_0001
Figure imgf000022_0001
Figure imgf000023_0001
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Figure imgf000029_0001
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Weiterhin sind Verbindungen allgemeinen Formel IA.b besonders bevorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 für Formyl und R4 für Wasserstoff stehen, A und X gemeinsam eine Ein- fachbindung bilden und Rc Wasserstoff bedeutet) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.b sind die Verbindungen lA.b-1 bis IA.b-876, in denen in Formel IA.b die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000033_0001
Weiterhin sind Verbindungen allgemeinen Formel IA.c besonders be- vorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 für Acetyl und R4 für Wasserstoff stehen, A und X gemeinsam eine Einfachbindung bilden und Rc Wasserstoff bedeutet) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.c sind die Verbindungen IA.c-1 bis IA.c-876, in denen in Formel IA.c die Varia- blen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000033_0002
Weiterhin sind Verbindungen allgemeinen Formel IA.d besonders bevorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 und R4 für Wasserstoff stehen, A Methylen, X eine Einfachbindung und Rc Wasserstoff bedeuten) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.d sind die Verbindungen IA.d-1 bis
IA.d-876, in denen die Variablen R1, R3, Ra und Rb in Formel IA.d gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000034_0001
Weiterhin sind Verbindungen allgemeinen Formel IA.e besonders be- vorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 für Formyl und R4 für Wasserstoff stehen, A Methylen, X eine Einfachbindung und Rc Wasserstoff bedeuten) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.e sind die Verbindungen IA.e-1 bis IA.e-876, in denen die Variablen R1, R3, Ra und Rb in Formel IA.e gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000034_0002
Weiterhin sind Verbindungen allgemeinen Formel IA.f besonders bevorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 für Acetyl und R4 für Wasserstoff stehen, A Methylen, X eine Einfachbindung und Rc Wasserstoff bedeuten) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.f sind die Verbindungen IA.f-1 bis IA.f-876, in denen die Variablen R1, R3, Ra und Rb in Formel IA.f gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000034_0003
Weiterhin sind Verbindungen allgemeinen Formel IA.g besonders bevorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 und R4 für Wasserstoff stehen, A 1,2-Ethylen, X eine Einfachbindung und Rc Wasserstoff bedeuten) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.g sind die Verbindungen IA.g-1 bis IA.g-876, in denen die Variablen R1, R3, Ra und Rb in Formel IA.g gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000035_0001
Weiterhin sind Verbindungen allgemeinen Formel IA.h besonders bevorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 für Formyl und R4 für Wasserstoff stehen, A 1,2-Ethylen, X eine Einfachbindung und Rc Wasserstoff bedeuten) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.h sind die Verbindungen IA.h-1 bis IA.h-876, in denen die Variablen R1, R3, R und Rb in Formel IA.h gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000035_0002
Weiterhin sind Verbindungen allgemeinen Formel IA.i besonders bevorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 für Acetyl und R4 für Wasserstoff stehen, A 1,2-Ethylen, X eine Einfachbindung und Rc Wasserstoff bedeuten) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.i sind die Verbindungen IA.i-1 bis IA.i-876, in denen die Variablen R1, R3, Ra und Rb in Formel IA.i gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000035_0003
Weiterhin sind Verbindungen allgemeinen Formel IA.k besonders bevorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 und R4 für Wasserstoff stehen, A Methylen, X ein Sauerstoffatom und Rc Wasserstoff bedeuten) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.k sind die Verbindungen IA.k-1 bis
IA.k-876, in denen die Variablen R1, R3, Ra und Rb in Formel IA.k gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000036_0001
Weiterhin sind Verbindungen allgemeinen Formel IA.I besonders bevorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 für Formyl und R4 für Wasserstoff stehen, A Methylen, X ein Sauerstoffatom und Rc Wasserstoff bedeuten) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.I sind die Verbindungen IA.1-1 bis IA.1-876, in denen die Variablen R1, R3, Ra und Rb in Formel IA.I gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000036_0002
Weiterhin sind Verbindungen allgemeinen Formel IA.m besonders bevorzugt (Verbindungen der allgemeinen Formel IA, in denen R2 für Acetyl und R4 für Wasserstoff stehen, A Methylen, X ein Sauerstoffatom und Rc Wasserstoff bedeuten) . Beispiele für bevorzugte Verbindungen der allgemeinen Formel IA.m sind die Verbindungen IA.m-1 bis IA.m-876, in denen die Variablen R1, R3, Ra und Rb in Formel IA.m gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000037_0001
Unter den Oxiranverbindungen IB sind wiederum solche Verbindungen bevorzugt, die der allgemeinen Formeln IB.a gehorchen (Verbindungen der allgemeinen Formel IB, in denen R2 und R4 für Wasserstoff stehen, A und X gemeinsam eine Einfachbindung bilden und Rc Wasserstoff bedeutet) . Bevorzugt sind ausserdem deren Formylderivate (Verbindungen IB.b) und deren Acetylderivate (Verbindungen IB.e). Beispiele für bevorzugte Verbindungen der allgemeinen Formel IB.a, IB.b und IB.e sind die Verbindungen IB.a-1 bis IB.a-876, die Verbindungen IB.b-1 bis IB.b-876 und die Verbindungen IB.c-1 bis IB.c-876, in denen die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000037_0002
Unter den Oxiranverbindungen IB sind wiederum solche Verbindungen bevorzugt, die der allgemeinen Formeln IB.d gehorchen (Verbindungen der allgemeinen Formel IB, in denen R2 und R4 für Wasserstoff stehen, A eine CH2-Gruppe und X eine Einfachbindung bedeuten und Rc Wasserstoff bedeutet) . Bevorzugt sind ausserdem deren Formylde- rivate (Verbindungen IB.e) und deren Acetylderivate (Verbindungen IB.f). Beispiele für bevorzugte Verbindungen der allgemeinen Formel IB.d, IB.e und IB.f sind die Verbindungen IB.d-1 bis IB.d-876, die Verbindungen IB.e-1 bis IB.e-876 und die Verbindungen IB.f-1 bis IB.f-876, in denen die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000038_0001
Unter den Oxiranverbindungen IB sind wiederum solche Verbindungen bevorzugt, die der allgemeinen Formeln IB.g gehorchen (Verbindungen der allgemeinen Formel IB, in denen R2 und R4 für Wasserstoff stehen, A eine CH2-CH2-Gruppe und X eine Einfachbindung bedeuten und Rc Wasserstoff bedeutet) . Bevorzugt sind ausserdem deren For- mylderivate (Verbindungen iB.h) und deren Acetylderivate (Verbin- düngen IB.i). Beispiele für bevorzugte Verbindungen der allgemeinen Formel IB.g, IB.h und IB.i sind die Verbindungen IB.g-1 bis lB.g-876, die Verbindungen IB.h-1 bis IB.h-876 und die Verbindungen lB.i-1 bis IB.i-876, in denen die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000038_0002
Unter den Oxiranverbindungen IB sind wiederum solche Verbindungen bevorzugt, die der allgemeinen Formeln IB.k gehorchen (Verbindungen der allgemeinen Formel IB, in denen R2 und R4 für Wasserstoff stehen, A eine CH2-Gruppe und X ein Sauerstoffatom bedeuten und Rc Wasserstoff bedeutet). Bevorzugt sind ausserdem deren Formylderi- vate (Verbindungen IB.I) und deren Acetylderivate (Verbindungen IB.m). Beispiele für bevorzugte Verbindungen der allgemeinen Formel IB.k, IB.I und IB.m sind die Verbindungen IB.k-1 bis IB.k-876, die Verbindungen IB.1-1 bis IB.1-876 und die Verbindungen lB.m-1 bis IB.m-876, in denen die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000039_0001
Unter den Vinylverbindungen IC sind wiederum solche Verbindungen bevorzugt, die der allgemeinen Formeln IC.a gehorchen (Vinylverbindungen der allgemeinen Formel IC, in denen R2 und R4 für Wasserstoff stehen, A und X gemeinsam eine Ξinfachbindung bilden und Rc Wasserstoff bedeutet). Bevorzugt sind ausserdem deren Formylde- rivate (Verbindungen iC.b) und deren Acetylderivate (Verbindungen IC.c). Beispiele für bevorzugte Verbindungen der allgemeinen Formel IC.a, IC.b und IC.c sind die Verbindungen IC.a-1 bis IC.a-876, die Verbindungen IC.b-1 bis IC.b-876 und die Verbindungen IC.c-1 bis IC.c876-, in denen die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000039_0002
Unter den Vinylverbindungen IC sind wiederum solche Verbindungen bevorzugt, die der allgemeinen Formeln IC.d gehorchen (Vinylverbindungen der allgemeinen Formel IC, in denen R2 und R4 für Wasserstoff stehen, A eine CH2-Gruppe und X eine Einfachbindung bedeuten und Rc Wasserstoff bedeutet) . Bevorzugt sind ausserdem de- ren Formylderivate (Verbindungen iC.e) und deren Acetylderivate (Verbindungen iC.f). Beispiele für bevorzugte Verbindungen der allgemeinen Formel IC.d, IC.e und IC.f sind die Verbindungen IC.d-1 bis IC.d-876, die Verbindungen IC.e-1 bis IC.e-876 und die Verbindungen IC.f-1 bis IC.f-876, in denen die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000040_0001
Unter den Vinylverbindungen IC sind wiederum solche Verbindungen bevorzugt, die der allgemeinen Formeln IC.g gehorchen (Vinyler- bindungen der allgemeinen Formel IC, in denen R2 und R4 für Wasserstoff stehen, A eine CH2-CH2-Gruppe und X eine Einfachbindung bedeuten und Rc Wasserstoff bedeutet) . Bevorzugt sind ausserdem deren Formylderivate (Verbindungen IC.h) und deren Acetylderivate (Verbindungen IC.i). Beispiele für bevorzugte Verbindungen der allgemeinen Formel IC.g, IC.h und IC.i sind die Verbindungen IC.g-1 bis IC.g-876, die Verbindungen IC.h-1 bis IC.h-876 und die Verbindungen IC.i-1 bis IC.i-876, in denen die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 ange- gebenen Bedeutungen aufweisen.
Figure imgf000040_0002
Unter den Vinylverbindungen IC sind wiederum solche Verbindungen bevorzugt, die der allgemeinen Formeln ic.k gehorchen (Vinylverbindungen der allgemeinen Formel IC, in denen R und R4 für Wasserstoff stehen, A eine CH2-Gruppe und X ein Sauerstoffatom bedeuten und Rc Wasserstoff bedeutet) . Bevorzugt sind ausserdem deren Formylderivate (Verbindungen IC.I) und deren Acetylderivate (Verbindungen iC.m). Beispiele für bevorzugte Verbindungen der allgemeinen Formel IC.k, IC.I und IC.m sind die Verbindungen IC.k-1 bis IC.k-876, die Verbindungen IC.1-1 bis IC.1-876 und die Verbindungen lC.m-1 bis IC.m-876, in denen die Variablen R1, R3, Ra und Rb gemeinsam die in jeweils einer Zeile der Tabelle 1 angegebenen Bedeutungen aufweisen.
Figure imgf000041_0001
Bevorzugt sind ausserdem Verbindungen der allgemeinen Formel I worin A für Cι-C6-Alkylen, insbesondere Methylen oder 1,2-Ethylen, steht, X ein Sauerstoffatom bedeutet und R für Cι-C6-Alkyl, insbesondere Methyl oder für C3-C8-Cycloalkyl, insbesondere Cyclohexyl steht. Hierunter bevorzugt sind die Verbindungen der allgemeinen Formel I",
Figure imgf000041_0002
worin Y, R1, R2 und R3 die zuvor genannten Bedeutungen haben und R für Cι-C6-Alkyl oder C3-C8-Cycloalkyl steht.
Beispiele für Verbindungen der Formel I" sind die CyclopropylVerbindungen ID, worin Y in der allgemeinen Formel I" eine CH2-Gruρpe bedeutet und R, R1, R2 und R3 die in jeweils einer Zeile der Ta- belle 2 angegebenen Bedeutungen haben (Verbindungen ID-1 bis ID-72) .
Tabelle 2 :
Figure imgf000041_0003
Figure imgf000042_0001
Figure imgf000043_0002
° Beispiele für Verbindungen der allgemeinen Formel I" sind weiterhin die Oxiranverbindungen IE, bei denen Y in Formel I" ein Sauerstoffatom bedeutet und R, R1, R2 und R3 die in jeweils einer Zeile der Tabelle 2 angegebenen Bedeutungen haben (Verbindungen IE-1 bis IE-72) . 5
Beispiele für Verbindungen der allgemeinen Formel I" sind weiterhin die Vinylverbindungen IF, bei denen Y in Formel I" eine chemische Bindung bedeutet und R, R1, R2 und R3 die in jeweils einer Zeile der Tabelle 2 angegebenen Bedeutungen haben (Verbindungen0 IF-1 bis IF-72) .
Die Herstellung der erfindungsgemäßen Verbindungen I gelingt in einfacher Weise durch Umsetzung von 4-Halogenalkyl-(s)-triazin- verbindungen der allgemeinen Formel II mit A inen der allgemeinen5 Formel III gemäß dem folgenden Reaktionsschema 1:
Schema 1 :
Figure imgf000043_0001
5
In diesem Schema haben die Variablen R1, R3, R4, A, X, Y, Hai, n und R die zuvor genannten Bedeutungen. Y steht dabei vorzugsweise für eine CH2-Gruppe oder eine chemische Bindung. Q steht für eine nucleophil verdrängbare Abgangsgruppe, beispielsweise für ein Ha¬0 logenatom wie Fluor, Chlor oder Brom, oder für eine Trichlorme- thylgruppe. Analoge Verfahren zur Substitution von Abgangsgruppen Q in Triazinen durch Amine wurden in der Literatur verschiedentlich beschrieben, z.B. in der WO 97/20825. 5 Die nach Schema 1 erhaltenen Verbindungen I mit R2 = H können in Analogie zu bekannten Verfahren zur Derivatisierung von sekundären Aminen in andere Verbindungen I mit R2 H umgewandelt wer- den. Zu nennen ist insbesondere die Umsetzung mit Acylierungsmit- teln zur Einführung von Resten R5C(0), die Umsetzung z.B. mit Azi- doameisensäureestern R5OC(0)N3 oder Kohlensäureanhydriden [R5OC(0)]2O zur Einführung von Resten R5OC(0) oder mit Isocyanaten R5NCO zur Einführung von Resten R5NHC(0).
In der Regel gelingt die in Schema 1 dargestellte Herstellung von Verbindungen I durch einfaches in-Kontakt-bringen der Verbindungen II und III. Üblicherweise arbeitet man hierzu in einem Ver- dünnungs- oder Lösungsmittel, vorzugsweise in einem nicht-nucleo- philen Lösungsmittel, z.B. in einem aprotisch polaren Lösungsmittel wie Acetonitril, Dimethylformamid, N-Methylpyrrolidon, Dime- thylacetamid oder deren Mischungen. Es kommen aber auch andere Lösungsmittel in Betracht, z.B. aliphatische oder cyclische Ether wie Diethylether, Tetrahydrofuran, Dioxan, aliphatische oder aromatische Kohlenwasserstoffe wie Toluol oder Xylole, Halogenkohlenwasserstoffe wie Dichlormethan, Dichlorethan und vergleichbare sowie Mischungen der vorgenannten Lösungsmittel. Die Reaktionstemperaturen liegen in den für derartige Umsetzungen üblichen Be- reichen, z.B. im Bereich von -20 bis 150°C und vorteilhafterweise im Bereich von 0 bis 50°C.
Triazinverbindungen der allgemeinen Formel II können beispielsweise in Analogie zu den in der GB 912,112 und der DE-A 44 38 137 beschriebenen Verfahren gemäß Schema 2 hergestellt werden. In Schema 2 haben Y und R1 die zuvor genannten Bedeutungen, wobei Y insbesondere für CH2 oder eine chemische Bindung steht. Die Herstellung von II mit Q = CCI3 gelingt beispielsweise durch Umsetzung des N-(Amidinyl)trichloracetamidins IV mit einem Carbonsäu- reanhydrid der allgemeinen Formel [R2-C(0)]20 unter den in der GB 912,112 angegebenen Reaktionsbedingungen. Die Herstellung der Verbindung IV gelingt z.B. in bekannter Weise durch basische Kondensation von Amidinhydrochloriden der Formel V mit Trichlorace- tonitril (vgl. GB 912,112 sowie Backer und Wanmaker, Rec. Trav. Chim. 70, 1951, S. 644).
Schema 2 :
Figure imgf000044_0001
Die in Schema 1 eingesetzten Amine III sind teilweise bekannt und kommerziell verfügbar oder können nach bekannten Verfahren zur Herstellung von primären Aminen hergestellt werden.
Selbstverständlich ist es auch möglich, nach bekannten Verfahren Substituenten in die Gruppe R der Verbindungen I einzuführen oder bereits vorhandene Substituenten umzuwandeln.
Außerdem können die Vinylverbindungen IC (Y = chemische Bindung) in einfacher Weise zur Herstellung von Verbindungen I, worin Y für NH, O oder S oder eine CH2-Grupppe steht, eingesetzt werden. Die Herstellung der Oxiranverbindungen IB (Y = O) gelingt beispielsweise durch Epoxidation der C=C-Doppelbindung in den den Vinylverbindungen IC mit einer Persäure wie m-Chlorperbenzoesäure nach dem von G. Baianikas et al. (J. Org. Chem. 53, 1988, S.
1007-1010) beschriebenen Verfahren. Die Oxiranverbindungen IB ihrerseits können beispielsweise über die entsprechenden ß-Aminoal- kohole durch sukzessive Umsetzung mit Aminen und Triphenylphosp- hindibromid in die Aziridinverbindungen (Y = NH) umgewandelt wer- den (vgl. J.March, Advanced Organic Chemistry 2nd. Ed., J. Wiley, New York 1985, S. 367 und dort zit. Literatur). Die Herstellung der Aziridinverbindungen I kann auch ausgehend von den 2-Vinyl- triazinen IC, nach bekannten Verfahren zur Umwandlung von Doppelbindungen in Aziridin-Gruppen erfolgen (vgl. J. March, S. 729 und 741 sowie dort zitierte Literatur) . Die Herstellung der Thiiran- verbindungen (Y = S) gelingt durch Umwandlung der Oxirangruppe in den Verbindungen IB (vgl. J. March, S. 362 und dort zit. Literatur) oder durch Umwandlung der C=C-Doppelbindung in den Vinyl- triazinen IC nach bekannten Verfahren (vgl. z.B. J. March, S. 728 und dort zitierte Literatur).
Die Verbindungen I und deren landwirtschaftlich brauchbaren Salze eignen sich - sowohl als Isomerengemische als auch in Form der reinen Isomeren - als Herbizide. Die I enthaltenden herbiziden Mittel bekämpfen Pflanzenwuchs auf Nichtkulturflächen sehr gut, besonders bei hohen Auf andmengen. In Kulturen wie Weizen, Reis, Mais, Soja und Baumwolle wirken sie gegen Unkräuter und Schadgräser, ohne die Kulturp lanzen nennenswert zu schädigen. Dieser Effekt tritt vor allem bei niedrigen Aufwandmengen auf.
In Abhängigkeit von der jeweiligen Applikationsmethode können die Verbindungen I bzw. sie enthaltende Mittel noch in einer weiteren Zahl von Kulturpflanzen zur Beseitigung unerwünschter Pflanzen eingesetzt werden. In Betracht kommen beispielsweise folgende Kulturen: Allium cepa, Ananas comosus, Arachis hypogaea, Aspara- gus officinalis, Beta vulgaris spec. altissima, Beta vulgaris spec. rapa, Brassica napus var. napus, Brassica napus var. napo- brassica, Brassica rapa var. silvestris, Camellia sinensis, Cart- hamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica) , Cucu- is sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arbo- reum, Gossypium herbaceum, Gossypium vitifolium) , Helianthus an- nuus, Hevea brasiliensis, Hordeum vulgäre, Humulus lupulus, Ipo- oea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec, Manihot esculenta, Medi- cago sativa, Musa spec, Nicotiana tabacum (N.rustica), Olea eu- ropaea, Oryza sativa, Phaseolus lunatus, Phaseolus vulgaris, Pi- cea abies, Pinus spec, Pisum sativum, Prunus avium, Prunus per- sica, Pyrus communis, Ribes sylvestre, Ricinus communis, Saccha- rum officinarum, Seeale cereale, Solanum tuberosum, Sorghum bico- lor (s. vulgäre), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera, Zea mays.
Darüber hinaus können die Verbindungen I auch in Kulturen, die durch Züchtung einschließlich gentechnischer Methoden gegen die Wirkung von Herbiziden tolerant sind, verwandt werden.
Die Verbindungen I bzw. die sie enthaltenden herbiziden Mittel können beispielsweise in Form von direkt versprühbaren wäßrigen Lösungen, Pulvern, Suspensionen, auch hochprozentigen wäßrigen, öligen oder sonstigen Suspensionen oder Dispersionen, Emulsionen, Öldispersionen, Pasten, Stäubemitteln, Streumitteln oder Granulaten durch Versprühen, Vernebeln, Verstäuben, Verstreuen, Gießen oder Behandlung des Saatgutes bzw. Mischen mit dem Saatgut angewendet werden. Die Anwendungsformen richten sich nach den Verwen- dungszwecken; sie sollten in jedem Fall möglichst die feinste Verteilung der erfindungsgemäßen Wirkstoffe gewährleisten. Die herbiziden Mittel enthalten eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I und für die Formulierung von Pflanzen- Schutzmitteln übliche Hilfsstoffe.
Als inerte Zusatzstoffe kommen im Wesentlichen in Betracht: Mineralölfraktionen von mittlerem bis hohem Siedepunkt, wie Kerosin oder Dieselöl, ferner Kohlenteeröle sowie Öle pflanzlichen oder tierischen Ursprungs, aliphatische, cyclische und aromatische Kohlenwasserstoffe, z.B. Paraffin, Tetrahydronaphthalin, alky- lierte Naphthaline oder deren Derivate, alkylierte Benzole oder deren Derivate, Alkohole wie Methanol, Ethanol, Propanol, Buta- nol, Cyclohexanol, Ketone wie Cyclohexanon oder stark polare Lö- sungsmittel, z. B. Amine wie N-Methylpyrrolidon oder Wasser. Wässrige Anwendungsformen können aus Emulsionskonzentraten, Suspensionen, Pasten, netzbaren Pulvern oder wasserdispergierbaren Granulaten durch Zusatz von Wasser bereitet werden. Zur Herstellung von Emulsionen, Pasten oder Öldispersionen können die Ver- bindungen der Formel I als solche oder in einem Öl oder Lösungsmittel gelöst, mittels Netz-, Haft-, Dispergier- oder Emulgiermittel in Wasser homogenisiert werden. Es können aber auch aus wirksamer Substanz, Netz-, Haft-, Dispergier- oder Emulgiermittel und eventuell Lösungsmittel oder Öl bestehende Konzentrate herge- stellt werden, die zur Verdünnung mit Wasser geeignet sind.
Als oberflächenaktive Stoffe kommen die Alkali-, Erdalkali-, Ammoniumsalze von aromatischen Sulfonsäuren, z.B. Lignin-, Phenol-, Naphthalin- und Dibutylnaphthalinsulfonsäure, sowie von Fettsäu- ren, Alkyl- und Alkylarylsulfonaten, Alkyl-, Laurylether- und Fettalkoholsulfaten, sowie Salze sulfatierter Hexa-, Hepta- und Octadecanolen sowie von Fettalkoholglykolether, Kondensationsprodukte von sulfoniertem Naphthalin und seiner Derivate mit Formaldehyd, Kondensationsprodukte des Naphthalins bzw. der Naphthalin- sulfonsäuren mit Phenol und Formaldehyd, Polyoxyethylenoctylphe- nolether, ethoxyliertes Isooctyl-, Octyl- oder Nonylphenol, Al- kylphenyl-, Tributylphenylpolyglykolether, Alkylarylpolyetheral- kohole, Isotridecylalkohol, Fettalkoholethylenoxid-Kondensate, ethoxyliertes Rizinusöl, Polyoxyethylenalkylether oder Polyoxy- propylenalkylether, Laurylalkoholpolyglykoletheracetat, Sorbitester, Lignin-Sulfitablaugen oder Methylcellulose in Betracht.
Pulver-, Streu- und Stäubemittel können durch Mischen oder gemeinsames Vermählen der wirksamen Substanzen mit einem festen Trägerstoff hergestellt werden.
Granulate, z.B. Umhüllungs-, Imprägnierungs- und Homogengranulate können durch Bindung der Wirkstoffe an feste Trägerstoffe hergestellt werden. Feste Trägerstoffe sind Mineralerden wie Kiesel- säuren, Kieselgele, Silikate, Talkum, Kaolin, Kalkstein, Kalk, Kreide, Bolus, Löß, Ton, Dolomit, Diatomeenerde, Calcium- und Magnesiumsulfat, Magnesiumoxid, gemahlene Kunststoffe, Düngemittel, wie Ammoniumsulfat, Ammoniumphosphat, Ammoniumnitrat, Harnstoffe und pflanzliche Produkte wie Getreidemehl, Baumrinden-, Holz- und Nußschalenmehl, Cellulosepulver oder andere feste Trägerstoffe.
Die Konzentrationen der Wirkstoffe I in den anwendungsfertigen Zubereitungen können in weiten Bereichen variiert werden. Die Formulierungen enthalten im allgemeinen 0,001 bis 98 Gew.-%, vor- zugsweise 0,01 bis 95 Gew.-%, mindestens eines Wirkstoffs. Die Wirkstoffe werden dabei in einer Reinheit von 90% bis 100%, vorzugsweise 95% bis 100% (nach NMR-Spektrum) eingesetzt.
Die erfindungsgemäßen Verbindungen I können beispielsweise wie folgt formuliert werden:
I 20 Gewichtsteile der Verbindung I werden in einer Mischung gelöst, die aus 80 Gewichtsteilen alkyliertem Benzol, 10 Gewichtsteilen des Anlagerungsproduktes von 8 bis 10 Mol Ethy- lenoxid an 1 Mol Ölsäure-N-monoethanolamid, 5 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure und 5 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ri- cinusöl besteht. Durch Ausgießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.
II 20 Gewichtsteile der Verbindung I werden in einer Mischung gelöst, die aus 40 Gewichtsteilen Cyclohexanon, 30 Gewichtsteilen Isobutanol, 20 Gewichtsteilen des Anlagerungsproduktes von 7 Mol Ethylenoxid an 1 Mol Isooctylphenol und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs ent- hält.
III 20 Gewichtsteile der Verbindung I werden in einer Mischung gelöst, die aus 25 Gewichtsteilen Cyclohexanon, 65 Gewichtsteilen einer Mineralölfraktion vom Siedepunkt 210 bis 280°C und 10 Gewichtsteilen des Anlagerungsproduktes von 40 Mol
Ethylenoxid an 1 Mol Ricinusöl besteht. Durch Eingießen und feines Verteilen der Lösung in 100 000 Gewichtsteilen Wasser erhält man eine wäßrige Dispersion, die 0,02 Gew. % des Wirkstoffs enthält.
IV 20 Gewichtsteile der Verbindung I werden mit 3 Gewichtsteilen des Natriumsalzes der Diisobutylnaphthalinsulfonsäure, 17 Gewichtsteilen des Natriumsalzes einer Ligninsulfonsäure aus einer Sulfit-Ablauge und 60 Gewichtsteilen pulverförmigem Kieselsäuregel gut vermischt und in einer Hammermühle vermählen. Durch feines Verteilen der Mischung in 20 000 Gewichtsteilen Wasser erhält man eine Spritzbrühe, die 0,1 Gew. % des Wirkstoffs enthält. V 3 Gewichtsteile der Verbindung I werden mit 97 Gewichtsteilen feinteiligem Kaolin vermischt. Man erhält auf diese Weise ein Stäubemittel, das 3 Gew. % des Wirkstoffs enthält.
VI 20 Gewichtsteile der Verbindung I werden mit 2 Gewichtsteilen Calciumsalz der Dodecylbenzolsulfonsäure, 8 Gewichtsteilen Fettalkohol-polyglykolether, 2 Gewichtsteilen Natriumsalz eines Phenol-Harnstoff-Formaldehyd-Kondesates und 68 Gewichtsteilen eines paraffinischen Mineralöls innig vermischt. Man erhält eine stabile ölige Dispersion.
VII 1 Gewichtsteil der Verbindung I wird in einer Mischung gelöst, die aus 70 Gewichtsteilen Cyclohexanon, 20 Gewichtsteilen ethoxyliertem Isooctylphenol und 10 Gewichtsteilen etho- xyliertem Rizinusöl besteht. Man erhält ein stabiles Emulsionskonzentrat .
VIII 1 Gewichtsteil der Verbindung I wird in einer Mischung gelöst, die aus 80 Gewichtsteilen Cyclohexanon und 20 Gewichts- teilen Wettol ® EM 31 (nicht ionischer Emulgator auf der Basis von ethoxyliertem Ricinusöl) . Man erhält ein stabiles Emulsionskonzentrat.
Die Applikation der herbiziden Mittel bzw. der Wirkstoffe kann im Vorauflauf-, im Nachauflaufverfahren oder zusammen mit dem Saatgut einer Kulturpflanze erfolgen. Es besteht auch die Möglichkeit, die herbiziden Mittel bzw. Wirkstoffe dadurch zu applizie- ren, dass mit den herbiziden Mitteln bzw. Wirkstoffen vorbehandeltes Saatgut einer Kulturpflanze ausgebracht wird. Sind die Wirkstoffe für gewisse Kulturpflanzen weniger verträglich, so können Ausbringungstechniken angewandt werden, bei welchen die herbiziden Mittel mit Hilfe der Spritzgeräte so gespritzt werden, dass die Blätter der empfindlichen Kulturpflanzen nach Möglichkeit nicht getroffen werden, während die Wirkstoffe auf die Blät- ter darunter wachsender unerwünschter Pflanzen oder die unbedeckte Bodenfläche gelangen (post-directed, lay-by) .
Die Aufwandmengen an Wirkstoff betragen je nach Bekämpfungsziel, Jahreszeit, Zielpflanzen und Wachstumsstadium 0.001 bis 3.0, vor- zugsweise 0.01 bis 1.0 kg/ha aktive Substanz (a. S.).
Zur Verbreiterung des WirkungsSpektrums und zur Erzielung synergistischer Effekte können die Verbindungen der allgemeinen Formel I mit zahlreichen Vertretern anderer herbizider oder wachstumsre- gulierender Wirkstoffgruppen gemischt und gemeinsam ausgebracht werden. Beispielsweise kommen als Mischungspartner 1,2,4-Thia- diazole, 1,3,4-Thiadiazole, Amide, Aminophosphorsäure und deren Derivate, Aminotriazole, Anilide, (Het)-Aryloxyalkansäure und deren Derivate, Benzoesäure und deren Derivate, Benzothiadiazinone, 2-Aroyl-l,3-cyclohexandione, 2-Hetaroyl-l,3-cyclohexandione, He- taryl-Aryl-Ketone, Benzylisoxazolidinone, Meta-CF3-phenylderi- vate, Carbamate, Chinolincarbonsäure und deren Derivate, Chlora- cetanilide, Cyclohexenonoximet er -Derivate, Diazine, Dichlorpro- pionsäure und deren Derivate, Dihydrobenzofurane, Dihydrofu- ran-3-one, Dinitroaniline, Dinitrophenole, Diphenylether, Dipyri- dyle, Halogencarbonsäuren und deren Derivate, Harnstoffe, 3-Phe- nyluracile, Imidazole, Imidazolinone, N-Phenyl-3,4,5, 6-tetrahy- drophthalimide, Oxadiazole, Oxirane, Phenole, Aryloxy- oder Hete- roaryloxyphenoxypropionsäureester, Phenylessigsäure und deren Derivate, Phenylpropionsäure und deren Derivate, Pyrazole, Phenyl- pyrazole, Pyridazine, Pyridincarbonsäure und deren Derivate, Py- rimidylether, Sulfonamide, Sulfonylharnstoffe, Triazine, Triazi- none, Triazolinone, Triazolcarboxamide, Uracile in Betracht.
Außerdem kann es von Nutzen sein, die Verbindungen I allein oder in Kombination mit anderen Herbiziden auch noch mit weiteren Pflanzenschutzmitteln gemischt, gemeinsam auszubringen, beispielsweise mit Mitteln zur Bekämpfung von Schädlingen oder phy- topathogenen Pilzen bzw. Bakterien. Von Interesse ist ferner die Mischbarkeit mit Mineralsalzlösungen, welche zur Behebung von Er- nährungs- und Spurenelementmängeln eingesetzt werden. Es können auch nichtphytotoxische Öle und Olkonzentrate zugesetzt werden.
HerStellungsbeispiele
Die folgenden Beispiele sollen die Erfindung verdeutlichen, ohne sie jedoch einzuschränken.
Beispiel 1: 2-[ (S -l-Phenylethan-l-ylamino)-6-cyclopropyl-4-tri- fluormethyl-l,3,5-triazin (Verbindung Nr. IA.a-585; S-Enantiomer)
1.1 Herstellung von N-(Cyclopropylamidinyl)trichloracetamidin
5 g (0,041 mol) Cyclopropylamidinhydrochlorid (CH8N2* HC1) wurden in 50 ml Methanol vorgelegt. Hierzu tropfte man bei 10 bis 20°C 7,46 g einer 30 gew.-% Lösung von Natriummethanolat in Methanol, rührte 30 min. bei dieser Temperatur nach, kühlte die Reaktionsmischung auf 5-10°C ab, gab hierzu dann 6,0 g Trichloracetonitril und rührte weitere 48 h bei Raumtemperatur. Die Reaktionsmischung wurde im Vakuum zur Trockne eingeengt, in Ethylacetat aufgenommen und 3 mal mit Wasser gewaschen. Die organische Phase wurde getrocknet undim Vakuum zur Trockne eingeengt. Hierbei fiel N-(Cyclopropylamidi- nyl)trichloracetamidin in Form heller Kristalle an. Ausbeute 49,2 g (63,6 % der Theorie).
1.2 6-Cyclopropyl-2-trichlormethyl-4-trifluormethyl-1 ,3 ,5-triazin
3,0 g des nach 1.1 hergestellten N-(Cyclopropylamidi- nyl)trichloracetamidins wurden in 100 ml Toluol vorgelegt. Hierzu tropfte man 5,5 g Trifluoressigsäureanhydrid und rührte die Mischung insgesamt 18 h bei Raumtemperatur. An- schließend rührte man die Reaktionsmischung in 200 ml Ethyla- cetat ein, wusch die organische Phase mit 5 gew.%iger, wäss- riger Kaliu carbonat und mit Wasser, trocknete und engte im Vakuum ein. Hierbei erhielt man 3,2 g der Titelverbindung in Form eines gelben Öls. Ausbeute 80,4 %.
1.3 2-[ (S)-l-Phenylethan-l-ylamino)-6-cyclopropyl-4-trifluorme- thyl-1 , 3 , 5-triazin
0,5 g 6-Cyclopropyl-2-trichlormethyl-4-trifluorme- thyl-(s)-triazin aus 1.2 wurden in 30 ml Acetonitril vorgelegt, mit 0,197 g SJ-1-Phenyl-l-aminoethan versetzt und 20 h bei Raumtemperatur gerührt. Die Reaktionsmischung wurde anschließend im Vakuum zur Trockne eingeengt und der Rückstand an Kieselgel mit einem Hexan/Ethylacetat-Gradienten (100/0 - 70/30) chromatographier . Man erhielt nach Abdestillieren des Lösungsmittels im Vakuum 450 mg der Titelverbindung in Form eines hellen Öls.
iH-NMR (CDC13): δ 7,3 (m, 5H) , 5,9 ( , 1H), 5,1 ( , 1H) , 2,0 (m, 3H), 1,6 (d, 3H), 1,0-1,4 (m, 4).
Beispiel 2 :
Analog 1.2 wurde ausgehend von N-(Cyclopropylamidinyl)trichlor- acetamidin und Chlordifluoressigsäureanhydrid die Verbindung
6-Cyclopropyl-2-trichlormethyl-4-chlordifluormethyl-1, 3 , 5-triazin erhalten.
In analoger Weise wurden ausgehend von 6-Cyclopropyl-2-trichlor- methyl-4-trifluormethyl-l,3,5-triazin bzw. 6-Cyclopropyl-2-trich- lormethyl-4-chlordifluormethyl-l,3,5-triazin die Verbindungen der Beispiele 3 bis 30 hergestellt (Verbindungen der Formel IA.a mit den in Tabelle 3 angegebenen Bedeutungen für R1, R3, Ra und Rb) .
Tabelle 3: Verbindungen der Beispiele 3 bis 30:
Figure imgf000052_0001
Figure imgf000052_0002
Figure imgf000053_0001
Figure imgf000054_0001
1) Nr.: Verbindungsnummer gemäß Tabelle 1.
2) racem: Racemat; (S) : S-Konfiguration am C-Atom, das R3 trägt.
3) Die dem Substituenten vorangestellte Zahl gibt dessen Position am Phenylring an.
4) s: Singulett, m: Multiplett, d: Dublett, t: Triplett
Beispiel 31: 2-[ (S)-l-Methoxyprop-2-ylamino]-6-cyclopropy1-4-trifluormethyl-1,3, 5-triazin (Verbindung Nr. ID-37) Auf die in Beispiel 1.3 beschriebene Weise wurde durch Umsetzung von 6-Cyclopropyl-2-trichlormethyl-4-trifluormethyl-l,3,5-triazin mit SJ-l-Methoxy-2-aminopropan die Titelverbindung hergestellt. Festpunkt: 43 - 45 °C.
Beispiel 32: 2-[ (S)-l~Methoxyprop-2-ylamino]-6-cyclopro- pyl-4-chlordifluormethyl-l,3,5-triazin (Verbindung Nr. ID-55)
Auf die in Beispiel 1.3 beschriebene Weise wurde durch Umsetzung von 6-Cyclopropyl-2-trichlormethyl-4-chlordifluormethyl-1 , 3 , 5- triazin mit (s -l-Methoxy-2-aminopropan die Titelverbindung hergestellt.
iH-NMR: δ 1,0-1,3 (m, 4H), 1,3 (d, 3H), 1,9-2,1 (m, IH), 3,4 (s, 3H), 3,4 (d, 2H), 4,3 (m, IH) , 5,9 (m, IH) .
Anwendungsbeispiele
Die herbizide Wirkung der Verbindungen der Formel I ließ sich durch Gewächshausversuche zeigen:
Als Kulturgefäße dienten Plastiktöpfe mit lehmigem Sand mit etwa 3,0% Humus als Substrat. Die Samen der Testpflanzen wurden nach Arten getrennt eingesät.
Bei Vorauflaufbehandlung wurden die in Wasser suspendierten oder emulgierten Wirkstoffe direkt nach Einsaat mittels fein verteilender Düsen aufgebracht. Die Gefäße wurden leicht beregnet, um Keimung und Wachstum zu fördern, und anschließend mit durchsich- tigen Plastikhauben abgedeckt, bis die Pflanzen angewachsen waren. Diese Abdeckung bewirkt ein gleichmäßiges Keimen der Testpflanzen, sofern dies nicht durch die Wirkstoffe beeinträchtigt wurde .
Zum Zweck der Nachauflaufbehandlung wurden die Testpflanzen je nach Wuchsform erst bis zu einer Wuchshöhe von 3 bis 15 cm angezogen und dann mit den in Wasser suspendierten oder emulgierten Wirkstoffen behandelt. Die Testpflanzen wurden dafür entweder direkt gesät und in den gleichen Gefäßen aufgezogen oder sie wurden erst als Keimpflanzen getrennt angezogen und einige Tage vor der Behandlung in die Versuchsgefäße verpflanzt. Die Aufwandmenge für die Nachauflaufbehandlung betrug 0,25 und 0,5 g a. S./ha.
Die Pflanzen wurden artenspezifisch bei Temperaturen von 10 - 25°C bzw. 20 - 35°C gehalten. Die Versuchsperiode erstreckte sich über 2 bis 4 Wochen. Während dieser Zeit wurden die Pflanzen gepflegt, und ihre Reaktion auf die einzelnen Behandlungen wurde ausgewertet.
Bewertet wurde nach einer Skala von 0 bis 100. Dabei bedeutet 100 kein Aufgang der Pflanzen bzw. völlige Zerstörung zumindest der oberirdischen Teile und 0 keine Schädigung oder normaler Wachstumsverlauf .
Die in den Gewächshausversuchen verwendeten Pflanzen setzten sich aus folgenden Arten zusammen:
Figure imgf000056_0001
Bei Aufwandmengen von 0,5 kg/ha zeigt die Verbindung Nr. lA.a-590 (Beispiel 5) im Nachauflauf eine sehr gute herbizide Wirkung gegen ABUTH, CHEAL und SINAL.
Bei Aufwandmengen von 0,5 kg/ha zeigt die Verbindung Nr. IA.a-296 (Beispiel 8) im Nachauflauf eine sehr gute herbizide Wirkung gegen ABUTH, CHEAL, SINAL und SETFA.
Die Verbindung Nr. IA.a-588 (Beispiel 4) zeigt bei Aufwandmengen von 0,5 kg/ha im Nachauflauf eine sehr gute herbizide Wirkung ge- gen AMARE, CHEAL und GALAP und bei Aufwandmengen von 0,25 kg/ha im Nachauflauf eine sehr gute herbizide Wirkung gegen CHEAL und eine gute bis sehr gute herbizide Wirkung gegen AMARE und GALAP.
Bei Aufwandmengen von 0,25 kg/ha bzw. 0,5 kg/ha zeigt die Verbin- düng Nr. IA.a-593 (Beispiel 12) im Nachauflauf eine sehr gute herbizide Wirkung gegen AMARE, CHEAL, PHBPU und SETFA.
Bei Aufwandmengen von 0,25 bzw. 0,5 kg/ha zeigt die Verbindung Nr. IA.a-663 (Beispiel 25) im Nachauflauf eine sehr gute herbi- zide Wirkung gegen ABUTH, AMARE, PHBPU, POLPE und SETFA.
Bei Aufwandmengen von 0,25 bzw. 0,5 kg/ha zeigt die Verbindung Nr. IA.a-669 (Beispiel 28) im Nachauflauf eine sehr gute herbizide Wirkung gegen AMARE, CHEAL, POLPE und SETFA.
Bei Aufwandmengen von 0,25 bzw. 0,5 kg/ha zeigt die Verbindung Nr. IA.a-666 (Beispiel 26) im Nachauflauf eine sehr gute herbizide Wirkung gegen AMARE, CHEAL, PHBPU und SETFA.
Bei Aufwandmengen von 0,25 bzw. 0,5 kg/ha zeigt die Verbindung Nr. IA.a-672 (Beispiel 29) im Nachauflauf eine sehr gute herbi- zide Wirkung gegen ABUTH, CHEAL und SETFA.
Bei Aufwandmengen von 0,25 bzw. 0,5 kg/ha zeigt die Verbindung Nr. IA.a-661 (Beispiel 24) im Nachauflauf eine sehr gute herbizide Wirkung gegen AMARE, CHEAL, POLPE und SETFA.

Claims

Patentansprüche
1. 4-Halogenalkyltriazinylverbindungen der allgemeinen Formel I,
(
Figure imgf000058_0001
worin die Variablen R1, R2, R3, R4, A, X, Y, Hai, n und R die fol- genden Bedeutungen haben:
Ri Cχ-C4-Halogenalkyl;
R2 Wasserstoff oder eine Gruppe C(0)R5, C(S)R5 , C(0)OR5, C(0)NHR6 oder S02R6, worin R5 und R6 unabhängig voneinander für Wasserstoff, Cχ-C -Alkyl, C3-C8-Cycloalkyl, Phenyl oder Phenyl-Cι-C-alkyl stehen, wobei Phenyl einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Cι-C4-Alkyl, Cι-C4-Halogenalkyl oder Cι-C -Alkoxy aufwei- sen kann;
R3 Wasserstoff oder Cι-C-Alkyl;
R4 Wasserstoff oder Cι-C-Alkyl;
A eine Einfachbindung, lineares oder verzweigtes C-C6-Al- kylen, worin ein oder zwei Kohlenstoffatome, die der Gruppe X und der Gruppe CR3R4 nicht benachbart sind, durch Sauerstoff ersetzt sein können;
X eine Einfachbindung oder, sofern A keine Einfachbindung bedeutet, auch ein Sauerstoffatom sein kann;
Y CH / NH, 0, S oder eine Bindung zwischen der CH und der CH2-Gruppe an die Y gebunden ist; Hai ein Halogensubstituent;
n 0, 1, 2 oder 3;
R Cι-C8-Alkyl, C3-C8-Cycloalkyl, das auch ein oder zwei Car- bonyl- oder Thiocarbonylgruppen als Ringglieder aufweisen kann, Phenyl, 5- oder 6-gliedriges, gesättigtes oder ungesättigtes Heterocyclyl mit einem, zwei oder drei Heteroatomen, ausgewählt unter 0, N oder S, wobei das 5- oder 6-gliedrige Heterocyclyl, einen anellierten 5- oder
6-gliedrigen carbocyclischen, aromatischen oder nichtaromatischen Ring und Phenyl einen anellierten 5- oder 6-gliedrigen, carbocyclischen oder heterocyclischen, aromatischen oder nicht-aromatischen Ring mit 1, 2 oder 3 Heteroatomen, die ausgewählt sind unter 0, S und N, aufweisen können,
und wobei R gegebenenfalls 1, 2, 3 oder 4 Substituenten aufweisen kann, die unabhängig voneinander ausgewählt sind unter OR7, Cι-C6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, Cι-C-Alkoxy-Cι-C-alkyl, Cj-d-Halogenalkyl, Cι-C -Hydro- xyalkyl, Halogen, CN, COR7, C02R7, 0C(0)R7, CR9=NOR7, N02, S02R7, NR7R8, S02NR7R8, SR7, C3-C8-Cycloalkyl, worin ein oder zwei nicht benachbarte Ringglieder durch Sauerstoff, Schwefel oder eine Iminogruppe ersetzt sein können, Phenyl oder Phenyl-Cι-C4-alkyl, wobei Phenyl in den zwei letztgenannten Gruppen seinerseits einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Cι-C4-Alkyl, Cχ-C-Halogenalkyl oder Cι-C-Alkoxy, aufweisen kann; wo- bei
R7 für H, Cι-C4-Alkyl, Cι-C-Halogenalkyl, Cι-C4-Hydroxy- alkyl, C3-C6-Alkenyl, C3-C6-Alkinyl, C1-C4-Al- koxy-Cι-C-alkyl, C1-C-Alkoxycarbonyl-Cι-C-alkyl, Phenyl oder Phenyl-Cχ-C-alkyl steht, wobei Phenyl in den zwei letztgenannten Gruppen seinerseits einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Cι-C4-Alkyl, Cι-C-Halogenalkyl oder Cι-C-Al- koxy, aufweisen kann;
R8 die für R7 angegebenen Bedeutungen besitzt oder für COR7 oder C02R7 steht; und
R9 die für R7 angegebenen Bedeutungen besitzt oder für eine Gruppe OR7 steht; sowie die landwirtschaftlich brauchbaren Salze von I.
2. Verbindungen nach Anspruch 1 der allgemeinen Formel I'
(
Figure imgf000060_0001
worin R1, R2, R3, R4, A, X, Y, Hai, n und R die in Anspruch 1 angegebenen Bedeutungen haben, und
Ra, Rb und Rc unabhängig voneinander ausgewählt sind unter Wasserstoff, OR7, Cχ-C6-Alkyl, C2-C6-Alkenyl, C2-C6-Alkinyl, Cι-C4-Alkoxy-Cχ-C4-alkyl, Cι-C4-Halogenalkyl, C1-C -Hydroxyal- kyl, Halogen, CN, COR7, C02R7, OC(0)R7, CR9=NOR7, N02, S02R7, NR7R8, S02NR7R8, SR7, C3~C8-Cycloalkyl, worin ein oder zwei nicht benachbarte Ringglieder durch Sauerstoff, Schwefel oder eine Iminogruppe ersetzt sein können, Phenyl oder Phenyl- Cι-C -alkyl, wobei Phenyl in den zwei letztgenannten Gruppen seinerseits einen, zwei oder drei Substituenten, ausgewählt unter Halogen, Cι-C4-Alkyl, Cτ-C -Halogenalkyl oder Cι-C4-Al- koxy, aufweisen kann, worin R7, R8 und R9 die in Anspruch 1 angegebenen Bedeutungen haben.
3. Verbindungen nach Anspruch 1 , worin X für Sauerstoff steht und R Cι-C6-Alkyl bedeutet.
4. Verbindungen nach einem der vorhergehenden Ansprüche, worin Ri für Trifluormethyl, Trichlormethyl , Dichlorfluormethyl oder Chlordifluormethyl steht.
5. Verbindungen nach einem der vorhergehenden Ansprüche, worin R3 für Wasserstoff steht und R4 Wasserstoff oder Cχ-C -Alkyl bedeutet .
6. Verbindungen nach Anspruch 5, worin R3 für Wasserstoff steht und R4 Methyl bedeutet.
7. Verbindungen nach einem der vorhergehenden Ansprüche, worin A für eine Einfachbindung, Methylen oder Ethylen steht.
8. Verbindungen nach einem der vorhergehenden Ansprüche, worin X für eine Einfachbindung steht.
9. Verwendung von Verbindungen der Formel I und deren landwirtschaftlich brauchbaren Salzen, gemäß Anspruch 1, als Herbizide oder zur Desikkation/Defoliation von Pflanzen.
10. Mittel, enthaltend eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, und mindestens einen inerten flüssigen und/oder festen Trägerstoff sowie ge- wünschtenfalls mindestens einen oberflächenaktiven Stoff.
11. Verfahren zur Bekämpfung von unerwünschtem Pflanzenwuchs, dadurch gekennzeichnet, dass man eine herbizid wirksame Menge mindestens einer Verbindung der Formel I oder eines landwirtschaftlich brauchbaren Salzes von I, gemäß Anspruch 1, auf Pflanzen, deren Lebensraum oder auf Saatgut einwirken lässt.
12. Verfahren zur Herstellung von Verbindungen der allgemeinen Formel I mit R2 = Wasserstoff, dadurch gekennzeichnet, dass man ein 4-Halogenalkyltriazin der allgemeinen Formel II
Figure imgf000061_0001
worin die Variablen R1, Hai, n und Y die in Anspruch 1 angegebene Bedeutung aufweisen und Q für eine nucleophil ver- drängbare Abgangsgruppe steht, mit einem Amin der allgemeinen Formel III,
Figure imgf000061_0002
worin die Variablen A, X, R, R3 und R4 die in Anspruch 1 angegebenen Bedeutungen aufweisen, umsetzt.
PCT/EP2001/005955 2000-05-26 2001-05-23 4-halogenalkyltriazinverbindungen als herbizide WO2001092236A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU74065/01A AU7406501A (en) 2000-05-26 2001-05-23 4-alkyl halide triazine compounds used as herbicides

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10026232 2000-05-26
DE10026232.5 2000-05-26

Publications (1)

Publication Number Publication Date
WO2001092236A1 true WO2001092236A1 (de) 2001-12-06

Family

ID=7643724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/005955 WO2001092236A1 (de) 2000-05-26 2001-05-23 4-halogenalkyltriazinverbindungen als herbizide

Country Status (2)

Country Link
AU (1) AU7406501A (de)
WO (1) WO2001092236A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153822B2 (en) 2002-01-29 2006-12-26 Wyeth Compositions and methods for modulating connexin hemichannels
EP2327700A1 (de) 2009-11-21 2011-06-01 Bayer CropScience AG Dialkyl-Triazinamine und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwachstums

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108708A2 (de) * 1982-10-06 1984-05-16 Ciba-Geigy Ag N-(Cyclopropyl-triazinyl- und -pyrimidinyl)-N'-(arylsulfonyl)harnstoffe mit herbizider Wirkung
EP0130939A1 (de) * 1983-06-06 1985-01-09 Ciba-Geigy Ag Verwendung von Triazin-Derivaten zum Schützen von Mais- und Sorghumpflanzen
EP0411153A1 (de) * 1989-02-20 1991-02-06 Idemitsu Kosan Company Limited Triazin-derivate und unkrautvertilgungsmittel daraus
WO1997020825A1 (fr) * 1995-12-07 1997-06-12 Tomono Agrica Co., Ltd. Derives de triazine et sels de ces derives
WO2001027093A1 (de) * 1999-10-08 2001-04-19 Aventis Cropscience Gmbh Alkyl-amino-1,3,5-triazine, und ihren verwendung als herbizide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0108708A2 (de) * 1982-10-06 1984-05-16 Ciba-Geigy Ag N-(Cyclopropyl-triazinyl- und -pyrimidinyl)-N'-(arylsulfonyl)harnstoffe mit herbizider Wirkung
EP0130939A1 (de) * 1983-06-06 1985-01-09 Ciba-Geigy Ag Verwendung von Triazin-Derivaten zum Schützen von Mais- und Sorghumpflanzen
EP0411153A1 (de) * 1989-02-20 1991-02-06 Idemitsu Kosan Company Limited Triazin-derivate und unkrautvertilgungsmittel daraus
WO1997020825A1 (fr) * 1995-12-07 1997-06-12 Tomono Agrica Co., Ltd. Derives de triazine et sels de ces derives
WO2001027093A1 (de) * 1999-10-08 2001-04-19 Aventis Cropscience Gmbh Alkyl-amino-1,3,5-triazine, und ihren verwendung als herbizide

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; WAKABAYASHI, KO ET AL: "s-Triazines. III. Monoamination reaction of 2-(trichloromethyl)-s- triazine and other 2-substituted-4,6-bis(trichloromethyl)-s- triazines with aliphatic amines", XP002173707, retrieved from STN Database accession no. 72:3469 *
DATABASE WPI Section Ch Week 199730, Derwent World Patents Index; Class B02, AN 1997-332466, XP002173725 *
YUKI GOSEI KAGAKU KYOKAI SHI (1969), 27(9), 868-74 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153822B2 (en) 2002-01-29 2006-12-26 Wyeth Compositions and methods for modulating connexin hemichannels
EP2327700A1 (de) 2009-11-21 2011-06-01 Bayer CropScience AG Dialkyl-Triazinamine und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwachstums

Also Published As

Publication number Publication date
AU7406501A (en) 2001-12-11

Similar Documents

Publication Publication Date Title
WO2004037787A1 (de) 1-phenylpyrrolidin-2-on-3-carboxamide
EP0338465A1 (de) 1-Chlorpyrimidinyl-1H-1,2,4-triazol-3-sulfonsäureamide, Verfahren zu ihrer Herstellung und ihre Verwendung als Mittel mit herbizider Wirkung
EP0523533A1 (de) Substituierte Pyrimidinderivate und ihre Verwendung zur Bekämpfung unerwünschten Pflanzenwuchses
WO1998042671A1 (de) Substituierte 2-benz(o)ylpyridin derivate, deren herstellung und deren verwendung als herbizide
EP0152890A1 (de) 2-Substituierte Phenyl-3-Chlorotetrahydro-2H-Indazole, deren Herstellung und Anwendung
JP2946656B2 (ja) ウラシル誘導体および除草剤
US5350736A (en) Iminothiazolines, their production and use as herbicides, and intermediates for their production
EP1527052B1 (de) 3-heterocyclyl-substituierte benzoesäurederivate
EP0851858B1 (de) Substituierte 2-phenylpyridine als herbizide
EP0808310B1 (de) 3-(4-cyanophenyl)uracile
EP1034166B1 (de) Substituierte 2-phenyl-3(2h)-pyridazinone
WO2001092236A1 (de) 4-halogenalkyltriazinverbindungen als herbizide
WO2001090085A2 (de) 6-methyl-4-trihalogenmethyltriazinverbindungen
US5292715A (en) Iminothiazolines, their production and use as herbicides
CH655312A5 (de) Chloracetamide.
JP2762505B2 (ja) 縮合ヘテロ環誘導体、その製法及び除草剤
JPH03204867A (ja) アラルキルオキシアミン誘導体および除草剤
EP0274066B1 (de) Benzothiazolone, ihre Herstellung und ihre Anwendung
EP0410238A2 (de) 2H-Pyridazinon-Derivate
EP1301483A1 (de) 1-aryl-4-halogenalkyl-2-(1h)-pyridone und ihre verwendung als herbizide
WO1997006143A1 (de) Substituierte 2-phenylpyridine als herbizide
WO1997015559A1 (de) Substituierte 4,5-di(trifluormethyl)pyrazole und ihre verwendung als herbizide und zur desikkation/defoliation von pflanzen
EP0172551A2 (de) 2,4-Bis-(alkoximinoalkyl)-cyclohexan-1,3-dione
WO1999059983A1 (de) Substituierte 6-aryl-3-thioxo-5-(thi)oxo-2,3,4,5-tetrahydro-1,2,4-triazine
WO1998033796A1 (de) Substituierte 2-(2,4(1h,3h)-pyrimidindion-3-yl)benzthiazole

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP