WO2001091178A1 - Dispositif de support de tranche - Google Patents

Dispositif de support de tranche Download PDF

Info

Publication number
WO2001091178A1
WO2001091178A1 PCT/JP2001/004204 JP0104204W WO0191178A1 WO 2001091178 A1 WO2001091178 A1 WO 2001091178A1 JP 0104204 W JP0104204 W JP 0104204W WO 0191178 A1 WO0191178 A1 WO 0191178A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor wafer
chuck
wafer
semiconductor
chuck mechanism
Prior art date
Application number
PCT/JP2001/004204
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Arakawa
Tsuguo Kurata
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Publication of WO2001091178A1 publication Critical patent/WO2001091178A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks

Definitions

  • the present invention relates to a wafer chuck mechanism used for fixing a semiconductor wafer, for example, used in an electron beam tester.
  • Fig. 1 schematically shows the configuration of an EB (Electron Beam) tester as an example of an apparatus equipped with this type of wafer chuck mechanism. First, the configuration and operation of this EB tester will be briefly described.
  • EB Electro Beam
  • a stage drive mechanism 12 is disposed in the vacuum chamber 11, and a chuck 13 is mounted on the stage drive mechanism 12.
  • the chuck 13 is moved in a horizontal plane and a vertical plane by the stage drive mechanism 12. It is possible to move.
  • the semiconductor wafer 14 is placed on the chuck 13, and the periphery of the semiconductor wafer 14 is pressed and fixed to the chuck 13 by a ring-shaped holding metal 15.
  • the holding member 15 is composed of, for example, a cylindrical portion 15a and a plate-like ring portion 15c attached to the cylindrical portion 15a so as to be freely opened and closed by a hinge 15b.
  • the semiconductor wafer 14 is placed on the chuck 13 with the 5c opened, then the plate ring 15c is closed, and the cylindrical portion 15a and the plate 15a on the opposite side of the hinge 15b are closed. Fix the ring part 15c with the fastener 15d.
  • the presser fitting 15 presses the semiconductor wafer 14 against the chuck 13 by, for example, a coil spring 16, and the semiconductor wafer 14 is fixed to the chuck 13.
  • the probe card 16 is positioned on the semiconductor wafer 14 and supported by the card support mechanism 17, and the probe 18 of the probe card 16 contacts the pads of the semiconductor integrated circuit formed on the semiconductor wafer 14. Can be done.
  • the semiconductor integrated circuit is operated by the IC tester 19 while the probe 18 is in contact with the pad, and the operating semiconductor integrated circuit is irradiated with the electron beam 21.
  • the electron beam 21 is emitted from the electron optical column 22 and the electron beam 21 and the stage drive mechanism 12 are It is controlled by the controller 23.
  • Secondary electrons are emitted from the semiconductor wafer 14 by the irradiation of the electron beam 21, and by detecting the amount of the emitted secondary electrons, data corresponding to the potential state at that point can be obtained. By analyzing the potential data (potential information), a defective portion (defect) in the semiconductor integrated circuit is detected.
  • the illustration of the detection system and the analyzer is omitted in the figure.
  • Many semiconductor integrated circuits are formed on the semiconductor wafer 14, and the semiconductor wafer 14 is later divided into many semiconductor integrated circuit chips (semiconductor chips). For the respective integrated circuits corresponding to the respective semiconductor chips, the above test is performed by moving the semiconductor wafer 14 by the stage drive mechanism 12.
  • the wafer chuck mechanism used in the EB tester 24 described above cannot be used because the vacuum chuck mechanism is used in a vacuum, and the electrostatic chuck mechanism can also be used due to potential problems. Since it is not possible, the chuck 13 is used to fix the semiconductor wafer 14 by simply mechanically pressing the periphery of the semiconductor wafer 14 with the chuck 13 using the ring 13 and the ring-shaped holder 15. You.
  • the semiconductor wafer 14 is warped so as to be convex upward as shown in FIG. 1, for example, the warp is not corrected, and the semiconductor wafer 14 of the chuck 13 is not warped.
  • the center portion of the semiconductor wafer 14 is left floating with respect to the mounting surface (flat surface) 13a, that is, the semiconductor wafer 14 is not in close contact.
  • the semiconductor wafer 14 analyzed by the EB tester 24 is normally warped by several tens to several hundreds of meters due to a thermal process, and the warpage is corrected. Without being fixed, the chuck 13 is fixed on the chuck 13, and a situation occurs in which a gap G occurs between the center of the semiconductor wafer 14 and the semiconductor wafer mounting surface 13.
  • the problem is that the semiconductor wafer 14 is brought into close contact with the semiconductor wafer mounting surface 13a by adsorbing the semiconductor wafer 14 to the semiconductor wafer mounting surface 13a by vacuum suction using a so-called vacuum chuck mechanism. be able to.
  • the vacuum chuck mechanism is expensive and large in size as compared with a chuck mechanism including the chuck 13 and the ring-shaped retainer 15.
  • An object of the present invention is to provide a simple wafer chuck mechanism in which even if a semiconductor wafer is warped, the entire surface thereof is fixed in close contact even when the semiconductor wafer is warped.
  • the semiconductor wafer of the chuck has a convex spherical shape to which the semiconductor wafer is fixed, and the semiconductor wafer conforms to the convex spherical surface by the fixing. ing.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an EB tester having a conventional wafer check mechanism.
  • FIG. 2 is a sectional view showing an embodiment of the present invention.
  • FIG. 3 is a diagram showing the relationship between the wafer fixing surface of the chuck and the semiconductor wafer having the maximum warpage.
  • FIG. 2 shows an embodiment of the present invention.
  • the mounting surface (wafer fixing surface) 3la of the chuck 31 on which the semiconductor wafer 14 is mounted has a convex spherical shape.
  • the peripheral portion of the semiconductor wafer 14 is pressed against the chuck 31 by a ring-shaped holding member 32 in the same manner as in the conventional case shown in FIG.
  • the holding member 32 is provided inside the cylindrical portion 32a through which the outer peripheral surface and the inner peripheral surface of the chuck 31 are inserted, and one end of the cylindrical portion 32a on the mounting surface 32a side.
  • a plate ring-shaped portion 32b extends the periphery of the semiconductor wafer 14 from the side opposite to the mounting surface 31a. 3 1 a.
  • the pressing force F of the holding bracket 32 is applied by a panel such as a coil panel 26, for example.
  • the semiconductor wafer 14 is deformed by being pressed against the chuck 31 by the holding bracket 32, and is deformed along the convex spherical mounting surface 3 la (along the That is, the semiconductor wafer 14 is fixed to the mounting surface 31 a of the chuck 31 over the entire surface thereof.
  • FIG. 2 shows a state in which the semiconductor wafer 14 is tightly fixed to the mounting surface 31a in this way.
  • the warpage of the semiconductor wafer 14 may be convex downward (dish-shaped), or may be convex upward, but in any case, according to this wafer chuck mechanism, the convex spherical surface is placed.
  • the semiconductor wafer 14 is brought into close contact with the surface 31a.
  • the height difference H between the central part and the peripheral part of the mounting surface (convex spherical surface) 31 a is larger than the maximum amount of warpage of the upward convex assumed on the semiconductor wafer 14 mounted on the chuck 31. That is, as shown in FIG. 3, the curvature radius R 1 of the mounting surface 31 a is selected so as to be smaller than the maximum curvature radius R 2 max of the semiconductor wafer 14. For example, when the maximum amount of warpage is assumed to be about 200 m, the height difference H of the mounting surface 31a is set to about 300 m.
  • the wafer chuck mechanism described above is used for the EB tester 24 shown in FIG. 1, since the entire surface of the semiconductor wafer 14 is in close contact with the chuck 31, the probe 18 of the probe force 16 is connected to the semiconductor 18.
  • the semiconductor wafer 14 does not bend even when pressed against the pad of the wafer, so that a required contact pressure can be obtained and high contact reliability can be obtained.
  • the semiconductor wafer 14 is generated by using the chuck 31 of the mounting surface 31 a of the convex spherical shape.
  • the height difference on the semiconductor wafer 14 can be sufficiently dealt with within the deflection range of the probe 18 if it is set to a portion corresponding to one semiconductor integrated circuit chip, and no poor contact between the probe and the pad occurs.
  • the present invention is characterized in that the semiconductor wafer fixing surface of the chuck 13 (the mounting surface in the example of FIG. 2) 31 a has a convex spherical shape.
  • the fixing means of the wafer to the chuck 13 is not limited to the ring-shaped holding metal fitting 32, but the semiconductor wafer 14 can be brought into close contact with the wafer fixing surface 31a of the chuck 13 and depending on its use.
  • any holding device that does not obstruct the contact of the probe with the pad may be used.
  • the pressing does not necessarily have to be performed over the entire periphery of the semiconductor wafer 14. In other words, it is not always necessary to make the parts of the semiconductor wafer 14 completely adhere to each other.
  • the probe 18 is reliably connected to the pads of the semiconductor wafer 14. What is necessary is just to be able to make good contact.
  • the wafer chuck mechanism of the present invention is not limited to the EB tester, and can be applied to, for example, processing using FIB (focused ion beam) or fixing of a wafer in film formation. In this case, since the curvature of the wafer surface is always kept constant, focusing can be easily performed.
  • FIB focused ion beam
  • the wafer chuck mechanism of the present invention is not limited to the inside of the vacuum chamber, and may be used, for example, in the atmosphere. In other words, when used in the atmosphere, an expensive and large vacuum chuck mechanism is not required.
  • the wafer chuck mechanism of the present invention when a semiconductor wafer is fixed, even if the semiconductor wafer is warped and the direction of the warp and the amount of warpage vary, The entire surface can be fixed to the chuck in close contact. Moreover, the configuration is very simple, and therefore, it can be inexpensively configured.
  • the wafer chuck mechanism of the present invention can be easily applied to fixing a semiconductor wafer in a vacuum chamber of an EB tester where a mechanism such as a vacuum chuck or an electrostatic chuck cannot be used. In this case, the semiconductor wafer is bent. Therefore, high contact reliability of the probe of the probe card can be realized.

Description

明 細 書 ウェハチヤック機構 技術分野
この発明は、 例えば電子ビームテスタに用いられ、 半導体ウェハを固定するた めに用いるウェハチャック機構に関する。 背景技術
図 1はこの種のウェハチャック機構を備えた装置の一例として、 E B (電子ビ ーム) テスタの構成概略を模式的に示したものである。 まず、 この E Bテスタの 構成、 動作について簡単に説明する。
真空チャンバ 1 1内にステージ駆動機構 1 2が配置され、 そのステージ駆動機 構 1 2上にチャック 1 3が取付けられ、 チャック 1 3はステージ駆動機構 1 2に より、 水平面内及び垂直面内で移動可能とされている。 チャック 1 3上に半導体 ウェハ 1 4が載置され、 リング状をなす押さえ金具 1 5によって半導体ウェハ 1 4の周縁部がチャック 1 3に押さえつけられて固定される。 押さえ金具 1 5は例 えば円筒部 1 5 aとこれに対しヒンジ 1 5 bにより開閉自在に取付けられた板状 リング部 1 5 cとよりなり、 円筒部 1 5 aに対し板状リング部 1 5 cを開いた状 態で半導体ウェハ 1 4をチャック 1 3上に載置し、 その後、 板状リング部 1 5 c を閉じ、 ヒンジ 1 5 bと反対側で円筒部 1 5 aと板状リング部 1 5 cとを留め具 1 5 dで固定する。 押え金具 1 5は例えばコイルばね 1 6により、 半導体ウェハ 1 4をチャック 1 3に押圧して、半導体ウェハ 1 4がチャック 1 3に固定される。 プローブカード 1 6が半導体ウェハ 1 4上に位置されてカード支持機構 1 7に 支持され、 半導体ウェハ 1 4に形成されている半導体集積回路のパッドに、 プロ —ブカード 1 6のプローブ 1 8を接触させることができる。 プローブ 1 8を前記 パッドに接触させた状態で半導体集積回路を I Cテスタ 1 9により動作させ、 こ の動作中の半導体集積回路に電子ビーム 2 1を照射する。 図中、 電子ビーム 2 1 は電子光学鏡筒 2 2から出射され、 電子ビーム 2 1及びステージ駆動機構 1 2は 制御装置 2 3により制御される。
電子ビーム 2 1の照射により、 半導体ウェハ 1 4からは二次電子が放出され、 この放出される二次電子の量を検出することにより、 その点の電位状態と対応し たデータを得ることができ、 この電位データ (電位情報) を解析することによつ て半導体集積回路内の不良箇所 (欠陥) が検出される。 なお、 図においては検出 系及び解析装置の図示は省略している。 半導体ウェハ 1 4上には多くの半導体集 積回路が形成されてあり、 後に半導体ウェハ 1 4が分割されて多くの半導体集積 回路チップ (半導体チップ) とされる。 この各半導体チップに相当する各集積回 路について、 ステージ駆動機構 1 2により半導体ウェハ 1 4を移動させて前記試 験を行う。
上記のような E Bテスタ 2 4において使用されているウェハチヤック機構は、 真空中で使用されることから真空チヤック機構を使用することはできず、 また静 電チャック機構も電位の問題から使用することができないため、 チャック 1 3と リング状押さえ金具 1 5とを用いて、 単に半導体ウェハ 1 4の周縁部を機械的に チャック 1 3に押さえて、 半導体ウェハ 1 4を固定するといつた構造となってい る。
このような構造のウェハチャック機構では、 半導体ウェハ 1 4が例えば図 1に 示すように上に凸をなすように反っている場合には、 その反りが矯正されず、 チ ャック 1 3の半導体ウェハ載置面 (平面) 1 3 aに対し、 半導体ウェハ 1 4の中 央部が浮いたままの、 つまり密着しない状態となってしまう。
上述した E Bテスタ 2 4を例にあげれば、 E Bテスタ 2 4で解析する半導体ゥ ェハ 1 4は熱プロセスの影響で通常、 数十 mから数百 m反っているため、 そ の反りが矯正されないまま、 チャック 1 3上に固定され、 半導体ウェハ 1 4の中 央部と半導体ウェハ載置面 1 3 との間に間隔 Gが生じているといった状況が発 生する。
このような場合、 プローブ 1 8を半導体ウェハ 1 4のパッドに押しつけようと すると、 その押し付け力によって半導体ウェハ 1 4がたわみ、 その結果、 パッド に対するプローブ 1 8の所要の (充分な) 接触圧が得られないといった状況が生 じ、 試験の信頼性が損なわれる。 大気中においても、 半導体ウェハ 1 4に対し、 プローブカードのプローブ 1 8を 接触させる場合に、 図 1に示したようなチャック 1 3とリング状押さえ金具 1 5 とにより半導体ウェハ 1 4を固定すると、 前述したように半導体ウェハ 1 4の中 央部と半導体載置面 1 3 aとの間に間隔が生じ、 同様の問題が生じる。 この問題 は、 いわゆる真空チャック機構により半導体ウェハ 1 4を半導体ウェハ載置面 1 3 aに、 真空引きにより吸着させることにより、 半導体ウェハ 1 4を半導体ゥェ ハ載置面 1 3 aに密着させることができる。 しかし真空チャック機構は、 チヤッ ク 1 3とリング状押さえ金具 1 5とよりなるチャック機構と比較して高価になり、 かつ大掛かりになる。
この発明の目的は上述した問題に鑑み、 半導体ウェハが反っていても、 その全 面が密着されて固定されるようにした簡易なウェハチヤック機構を提供すること にある。
発明の開示
この発明によれば、 半導体ウェハをチャック上に固定するウェハチャック機構 において、 上記チャックの半導体ウェハが固定される凸球面状であり、 上記固定 により、 その凸球面に半導体ウェハがならう構造とされている。
図面の簡単な説明
図 1は従来のウェハチヤック機構を備えた E Bテスタの構成概略を示す模式図 である。
図 2はこの発明の一実施例を示す断面図である。
図 3はチャックのウェハ固定面と最大反りの半導体ウェハとの関係を示す図で ある。
発明を実施するための最良の形態
この発明の実施の形態を図面を参照して実施例により説明する。
図 2はこの発明の一実施例を示したものである。 この例では半導体ウェハ 1 4 が載置されるチャック 3 1は、 その載置面 (ウェハ固定面) 3 l aが凸球面状を している。
半導体ウェハ 1 4のチャック 3 1への固定は、 チャック 3 1の載置面 3 1 a上 に半導体ウェハ 1 4を載置し、 半導体ウェハ 1 4の周縁部を載置 3 1 aに押さえ て行う。 例えば図 2に示すように図 1に示した従来と同様に、 リング状をなす押 さえ金具 3 2によって、 半導体ウェハ 1 4の周縁部をチャック 3 1に押さえつけ る。 つまり押さえ金具 3 2はチヤック 3 1の外周面と内周面が挿通している円筒 状部 3 2 aと、 その円筒状部 3 2 aの載置面 3 2 a側の一端の内側に設けられた 鍔状部、 つまり板リング状部 3 2 bとより構成され、 板リング状部 3 2 bが半導 体ウェハ 1 4の周縁部を載置面 3 1 aの反対側から載置面 3 1 aに押さえる。 こ の押さえ金具 3 2による押圧力 Fは、 例えばコイルパネ 2 6等のパネによって付 与されるものとなっている。
この図 2に示したウェハチャック機構によれば、 半導体ウェハ 1 4は押さえ金 具 3 2によってチャック 3 1に押さえつけられることにより変形し、 凸球面状の 載置面 3 l aにならつて (沿って) 固定され、 つまり半導体ウェハ 1 4はその全 面にわたってチヤック 3 1の載置面 3 1 aに密着して固定されることになる。 図 2はこのようにして半導体ウェハ 1 4が載置面 3 1 aに密着固定された状態を示 している。
半導体ウェハ 1 4の反りは下に凸 (皿状) の場合もあれば、 その逆に上に凸の 場合もあるが、 いずれにしてもこのウェハチャック機構によれば、 その凸球面の 載置面 3 1 aにならつて半導体ウェハ 1 4は密着される。
なお、 載置面 (凸球面) 3 1 aの中央部と周囲部との高低差 Hは、 チャック 3 1に載置される半導体ウェハ 1 4に想定される上に凸の最大反り量より大、 つま り図 3に示すように載置面 3 1 aの曲率半径 R 1が半導体ウェハ 1 4の最大の反 りの曲率半径 R 2 m a xより小となるように選定される。 例えば最大反り量が 2 0 0 m程度と想定される場合には載置面 3 1 aの高低差 Hは 3 0 0 m程度と される。
上記のようなウェハチヤック機構を図 1に示した E Bテスタ 2 4に用いれば、 半導体ウェハ 1 4はその全面がチャック 3 1に密着されているため、 プローブ力 ―ド 1 6のプローブ 1 8を半導体ウェハのパッドに押しつけても半導体ウェハ 1 4にたわみは発生せず、 よって所要の接触圧が得られ、 高い接触信頼性を得るこ とができる。
なお、 この場合、 凸球面状の載置面 3 1 aのチャック 3 1を使用して発生する 半導体ウェハ 1 4上の高低差は、 1半導体集積回路チップ相当の部分にすればプ ローブ 1 8のたわみ範囲内で十分に対応することができ、 プローブとパッ卜との 接触不良は生じない。
以上の説明から理解されるように、 この発明はチャック 1 3の半導体ウェハ固 定面 (図 2の例では載置面) 3 1 aが凸球面状である点に特徴があり、 従って半 導体ウェハのチャック 1 3への固定具はリング状押さえ金具 3 2に限られるもの でなく、 半導体ウェハ 1 4をチヤック 1 3のウェハ固定面 3 1 aに密着させるこ とができ、 かつその用途により例えばプローブのパッドへの接触を妨害しないよ うな押さえ具であればよい。 一般には半導体ウェハ 1 4の周縁部をウェハ固定面 3 1 aに押えることができればよく、 その際、 必ずしも半導体ウェハ 1 4の全周 縁に渡って押えなくてもよいことは明らかであろう。 つまり、 半導体ウェハ 1 4 の各部を必ずしも完全に密着させなくてもよく、 要は、 その使用目的に応じて、 例えば、 E Bテスタの場合は、 プローブ 1 8を半導体ウェハ 1 4のパッドに信頼 性よく接触させることができればよい。
またこの発明ウェハチャック機構は E Bテスタに限らず、 例えば F I B (フォ 一カスドイオンビーム) を用いる加工や成膜におけるウェハの固定にも適用する ことができる。 この場合はウェハ表面の曲率が常に一定に維持されることから、 焦点合わせを簡単に行えるものとなる。
更にこの発明のウェハチャック機構は真空チャンバ内に限らず、 例えば大気中 で用いてもよい。 つまり大気中で用いれば、 高価にて大かがりな真空チャック機 構を必要としない。
以上説明したように、 この発明のウェハチャック機構によれば半導体ウェハを 固定する際、 その半導体ウェハに反りがあり、 かつその反りの方向、 反り量にば らつきがある場合であっても、 その全面をチャックに密着させて固定することが できる。 しかもその構成が頗る簡単であり、 従って安価に構成できる。
特に、 真空チャックゃ静電チャックといった機構を用いることができない E B テスタの真空チャンバ内における半導体ウェハの固定に、 この発明のウェハチヤ ック機構を簡単に適用でき、 この場合、 半導体ウェハにたわみが生じないため、 プローブカードのプローブの高い接触信頼性を実現することができる。

Claims

請求の範囲
1 . 半導体ウェハをチャック上に固定するウェハチヤック機構であって、 上記チャックの半導体ウェハが固定される面が凸球面状であり、
上記固定により上記半導体ウェハが上記凸球面にならう構造とされていること を特徴とするウェハチャック機構。
2. 上記半導体ウェハ周縁部を、上記半導体ウェハ固定面に押える押え具を備え、 その押え具により上記半導体ウェハが上記チャックに固定されることを特徴とす る請求の範囲第 1項記載のウェハチヤック機構。
3. 上記押え具はリング状金具であることを特徴とする請求の範囲第 2項記載の ウェハチャック機構。
4. 上記ウェハチャック機構は真空チャンバ内に設けられていることを特徴とす る請求の範囲第 1項乃至第 3項の何れかに記載のウェハチヤック機構。
PCT/JP2001/004204 2000-05-23 2001-05-21 Dispositif de support de tranche WO2001091178A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000151468 2000-05-23
JP2000-151468 2000-05-23

Publications (1)

Publication Number Publication Date
WO2001091178A1 true WO2001091178A1 (fr) 2001-11-29

Family

ID=18657021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004204 WO2001091178A1 (fr) 2000-05-23 2001-05-21 Dispositif de support de tranche

Country Status (1)

Country Link
WO (1) WO2001091178A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040432B2 (en) 2013-02-22 2015-05-26 International Business Machines Corporation Method for facilitating crack initiation during controlled substrate spalling
US9502278B2 (en) 2013-04-22 2016-11-22 International Business Machines Corporation Substrate holder assembly for controlled layer transfer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068646U (ja) * 1983-10-19 1985-05-15 島田理化工業株式会社 ウエ−ハ試験用試料台
JPH06204179A (ja) * 1992-10-27 1994-07-22 Tokyo Electron Ltd プラズマ処理方法
US5725718A (en) * 1992-10-27 1998-03-10 Applied Materials, Inc. Clamp ring for domed heated pedestal in wafer processing chamber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068646U (ja) * 1983-10-19 1985-05-15 島田理化工業株式会社 ウエ−ハ試験用試料台
JPH06204179A (ja) * 1992-10-27 1994-07-22 Tokyo Electron Ltd プラズマ処理方法
US5725718A (en) * 1992-10-27 1998-03-10 Applied Materials, Inc. Clamp ring for domed heated pedestal in wafer processing chamber

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040432B2 (en) 2013-02-22 2015-05-26 International Business Machines Corporation Method for facilitating crack initiation during controlled substrate spalling
US9502278B2 (en) 2013-04-22 2016-11-22 International Business Machines Corporation Substrate holder assembly for controlled layer transfer

Similar Documents

Publication Publication Date Title
JP5403852B2 (ja) 検出装置及び検査装置
US6067153A (en) Pattern defect inspecting apparatus
JP5391252B2 (ja) 荷電粒子ビームを用いた検査方法及び検査装置
US7202476B2 (en) Charged-particle beam instrument
US20060186351A1 (en) Inspection method and inspection apparatus using charged particle beam
US20050045821A1 (en) Testing apparatus using charged particles and device manufacturing method using the testing apparatus
JP4943733B2 (ja) 荷電粒子ビームを用いた検査方法及び検査装置
KR20040038877A (ko) 프로브 장치에 설치되는 고정 기구
JP2004363085A (ja) 荷電粒子線による検査装置及びその検査装置を用いたデバイス製造方法
US20110142578A1 (en) Sample conveying mechanism
JP4362414B2 (ja) ワークセンタリング・クランプ装置、回転駆動装置及び電子ビーム露光装置
US20140306109A1 (en) Method for detecting defect of substrate
US10643818B2 (en) Load lock system for charged particle beam imaging
JP2004071729A (ja) レチクル保持方法、レチクル保持装置及び露光装置
JP2020004586A (ja) 荷電粒子ビーム画像取得装置
WO2001091178A1 (fr) Dispositif de support de tranche
JP2016152334A (ja) プローブ装置
JPH07192984A (ja) 薄板固定装置
JP2000149845A (ja) 試料の保持方法,試料の保持装置、および荷電粒子線装置
US20230017599A1 (en) Substrate Inspection Device
WO2022033661A1 (en) Method for defect review measurement on a substrate, apparatus for imaging a substrate, and method of operating thereof
TW202020923A (zh) 基板定位器件及電子束檢測工具
JP2000100917A (ja) 静電チャック装置
JPH09139418A (ja) 電子線描画装置
US20240110974A1 (en) Probe card and method for repairing probe card

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE JP KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP