WO2001088365A1 - Injection assembly for an accumulator fuel-injection system of an internal combustion engine - Google Patents

Injection assembly for an accumulator fuel-injection system of an internal combustion engine Download PDF

Info

Publication number
WO2001088365A1
WO2001088365A1 PCT/DE2001/001123 DE0101123W WO0188365A1 WO 2001088365 A1 WO2001088365 A1 WO 2001088365A1 DE 0101123 W DE0101123 W DE 0101123W WO 0188365 A1 WO0188365 A1 WO 0188365A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
shut
injection
control chamber
valve control
Prior art date
Application number
PCT/DE2001/001123
Other languages
German (de)
French (fr)
Inventor
Andreas Kellner
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to AT01929256T priority Critical patent/ATE306613T1/en
Priority to JP2001584731A priority patent/JP2003533635A/en
Priority to EP01929256A priority patent/EP1287253B1/en
Priority to KR1020027000679A priority patent/KR20020019538A/en
Priority to DE50107694T priority patent/DE50107694D1/en
Publication of WO2001088365A1 publication Critical patent/WO2001088365A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • F02M59/468Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means using piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators

Definitions

  • the invention is based on an injection arrangement for a fuel storage injection system of an internal combustion engine according to the type defined in more detail in claim 1.
  • fuel accumulator injection systems for example common rail injection systems, have a high-pressure fuel distributor or rail for an internal combustion engine with a plurality of combustion chambers, from which a plurality of high-pressure fuel supply paths, each to one of the combustion chambers of the internal combustion engine protruding injection nozzle.
  • the fuel injection into the respective combustion chamber is controlled by means of a nozzle needle, which opens and closes the respective injection nozzle depending on the pressure in a valve control chamber.
  • an always open inlet channel can be provided, through which the fuel under the rail pressure from the respective can flow into the valve control chamber.
  • a separate drain eg allows fuel to be drained from the valve control chamber, thus relieving pressure in the valve control chamber.
  • the drain path can be blocked at a shut-off point by means of a shut-off device, so that the pressure level in the valve control chamber and thus the position of the nozzle needle can be influenced by optionally blocking and releasing the drain path.
  • the drain path With an inward opening valve, the drain path is opened to open the valve, fuel flowing out of the valve control chamber.
  • the associated drop in pressure in the valve control chamber leads to the lifting of the nozzle needle from the injection nozzle, and fuel emerges from the injection nozzle. If the drainage path is blocked again, the pressure in the valve control chamber increases again due to the fuel flowing in via the inlet channel. As a result of this pressure increase, the nozzle needle is pressed against the injection nozzle again and closes it.
  • the drain path and the inlet channel are usually designed so that when the drain path is open, the flow rate of the fuel flowing through the drain path is greater than the flow rate of the fuel flowing through the inlet channel, so that the fuel volume in the valve control chamber is effectively smaller.
  • the injector In order to be able to precisely meter the amount of fuel injected, it is essential that the injector can be opened and closed quickly.
  • the closing process in particular has proven to be critical in practice. Because of the comparatively small Passage cross section of the inlet channel often flows in too little fuel to achieve the desired fast closing times. This is particularly true if the pressure in the control chamber does not drop very far below the pressure in the fuel supply path after the valve has closed, during the injection process. The then only comparatively small pressure difference between the fuel supply path and the valve control chamber leads to a correspondingly low inflowing fuel flow.
  • bypass duct branches off from the fuel supply path and opens directly into the discharge path upstream of the shut-off point of the drainage path, if one considers the fuel's drainage direction along the drainage path. If the downstream part of the outlet path is blocked, this bypass channel forms an auxiliary channel connected in parallel to the inlet channel, through which an additional quantity of fuel can flow from the fuel supply path via the upstream part of the outlet path into the valve control chamber. It has been shown that higher closing speeds of the nozzle needle can be achieved in this way.
  • a counterforce is derived from the prevailing fuel pressure on the nozzle needle, which counteracts the force exerted on the nozzle needle by the pressure in the valve control chamber.
  • the throttle in the fuel supply path now brings about a pressure drop in these downstream parts of the fuel supply path and thus a reduction in the counterforce.
  • a lower pressure in the valve control chamber is then sufficient to move the nozzle needle into its closed position.
  • the two throttles in the bypass channel and in the fuel supply path entail considerable additional expenditure in terms of production technology, since they are very small structures in which compliance with the permissible tolerances is very difficult in terms of production technology.
  • the throttle in the fuel supply path leads to a reduced injection pressure with which the power substance is injected into the combustion chamber. The loss of injection pressure can easily amount to up to 200 bar.
  • the injection arrangement according to the invention for a fuel accumulator injection system of an internal combustion engine with the features of claim 1 has the advantage that, by quickly closing the nozzle needle, a highly precise metering of the fuel injection quantity with little leakage and a valve that is easy to manufacture is possible.
  • the injection arrangement has an injection nozzle which projects into a combustion chamber of the internal combustion engine and can be supplied with fuel from a high-pressure fuel distributor of the accumulator injection system via a high-pressure fuel supply path, and an injection needle which opens and closes the injection nozzle depending on the pressure in a valve control chamber.
  • an inlet channel branching off from the fuel supply path opens into the valve control chamber, and an outlet path starting from the valve control chamber enables the fuel to flow out of the valve control chamber.
  • An auxiliary channel opening into the drain path also branches off from the fuel supply path.
  • a shut-off device is provided, by means of which the drainage path — based on a fuel drainage device — downstream of the junction parts of the auxiliary channel in the drainage path can be blocked against fuel drainage.
  • the shut-off device is also used to block the auxiliary channel against fuel flow. is formed, in such a way that when the drain path is blocked, the auxiliary channel is unlocked and vice versa.
  • the auxiliary channel can be blocked. If the drain path is open during an injection process, fuel can thus be prevented from flowing unused through the auxiliary channel from the fuel supply path.
  • the auxiliary channel can be optimized essentially only so that the valve control chamber is refilled as quickly as possible after the drain path has been blocked, and the nozzle needle is moved back into its closed position as quickly as possible.
  • auxiliary channel can be substantially unthrottled over its entire length. This simplifies the manufacture of the injection arrangement.
  • the shut-off device has two separately operable shut-off bodies for the auxiliary channel and the drainage path. This can be expedient, for example, if the auxiliary channel and the drain path are not to be opened or locked in a time-synchronous manner, but rather with a time delay. However, a solution can be implemented with less effort in which the shut-off device has shut-off surfaces formed on a common shut-off body for locking the drain path and for locking the auxiliary channel.
  • shut-off body is designed as a seat element which can be moved back and forth between two opposite valve seats, one of the valve seats forming a shut-off point for the drainage path and the other valve seat forming a shut-off point for the auxiliary channel.
  • the shut-off body is designed as a slide element of a slide valve.
  • a piezoelectric actuator arrangement can preferably be used to actuate the shut-off device, but alternatively an electromagnetic actuator arrangement can also be provided.
  • FIG. 1 shows a schematic, partial representation of a storage injection system according to the invention with an injector assembly for internal combustion engines shown in longitudinal section, and
  • FIG. 2 shows a simplified, partial illustration of a shut-off valve of the injector assembly according to FIG. 1.
  • the storage injection system shown in FIG. 1, which represents a so-called common rail injection system, has a symbolically indicated pressure source 10, which preferably feeds diesel fuel into a manifold or rail 12 at a high pressure of, for example, more than 1500 bar. From the manifold 12 go several fuel supply lines 14, each one for supplying fuel
  • the injection nozzle 18 is part of an injector assembly, generally designated 20, which can be used as a preassembled structural unit in a cylinder block of the internal combustion engine.
  • the injector assembly 20 has a housing assembly 22 with a nozzle housing 24 and a valve housing 26.
  • a guide bore 30 is formed which extends along a housing axis 28 and in which an elongated nozzle needle 32 is guided so as to be axially movable.
  • the nozzle needle 32 has a closing surface 36 with which it can be brought into tight contact with a needle seat 38 formed on the nozzle housing 24.
  • the nozzle needle 32 When the nozzle needle 32 abuts the needle seat 38, i.e. is in the needle closed position, the fuel outlet from a nozzle hole arrangement 40 is blocked at the end of the nozzle housing 24 which projects into the combustion chamber 16. On the other hand, is it lifted off the needle seat 38, i.e. In the needle opening position, fuel can flow from an annular space 42 formed between the nozzle needle 32 and the peripheral jacket of the guide bore 30 past the needle seat 38 to the nozzle hole arrangement 40 and be injected there into the combustion chamber 16.
  • the nozzle needle 32 is biased towards its closed position by a biasing spring 44.
  • the biasing spring 44 is accommodated in a spring chamber 46 formed in the nozzle housing 24.
  • a sleeve 48 which seals the end of the nozzle needle 32 remote from the combustion chamber, but which is axially movable and bites into the valve housing 26 with a biting edge.
  • it is supported on the nozzle needle 32 by means of a spring plate 50 plugged onto the nozzle needle 32.
  • a bore 52 formed in the housing assembly 22 opens into the spring chamber 46, into which fuel which is essentially under high pressure or rail pressure is introduced via the relevant fuel supply line 14. From the spring chamber 46, the fuel passes into the annular space 42 via a channel formed in the nozzle housing 24 or — as here — past a system of flats or incisions 54 machined into the peripheral jacket of the nozzle needle 32.
  • a valve control chamber 58 is delimited between an end face 56 of the nozzle needle 32, the sleeve 48 and the valve housing 26 which is remote from the combustion chamber and into which an inlet duct 60 designed as a throttle opens. Fuel can flow from the spring chamber 46 into the valve control chamber 58 through the inlet throttle 60. Fuel can flow out of the valve control chamber 58 to a relief chamber (not shown in more detail) via an outlet duct 64 containing an outlet throttle 62.
  • a shut-off valve 68 preferably a piezoelectric actuator 66, which can be actuated, allows the fuel outflow to the relief chamber to be shut off.
  • an electromagnetic actuator can of course also be used instead of a piezoelectric actuator.
  • the flow cross-sections of the always open inlet throttle 60 and the outlet throttle 62 are matched to one another in such a way that the inflow through the inlet throttle 60 is less than the outflow through the outlet channel 64 and accordingly a net outflow of fuel results.
  • the following pressure drop in the valve control chamber 58 causes the closing force to drop below the opening force and to lift the nozzle needle 32 inward from the needle seat 38.
  • shut-off valve 68 is brought back into its blocking position. This blocks the fuel outflow through the outlet channel 64. Fuel continues to flow from the spring chamber 46 into the valve control chamber 58 through the inlet throttle 60, and the pressure in the valve control chamber 58 increases again. As soon as the pressure in the valve control chamber 58 reaches a level at which the closing force is greater than the opening force, the nozzle needle 32 goes into it
  • An auxiliary channel 72 is therefore provided, by means of which an additional fuel flow into the valve control chamber 58 is achieved when the shut-off valve 68 is blocked.
  • the auxiliary channel 72 branches off from the bore 52 and, like the inlet throttle 60, is fed with fuel which is essentially under the rail pressure.
  • the additional fuel flow through the auxiliary channel 72 causes the pressure in the valve control chamber 58 to rise to the level required to move the nozzle needle 32 from its opening position into its closing position more quickly than when it is filled by the inlet throttle 60 alone to convince lung.
  • the amount of fuel injected into the combustion chamber 16 can be metered more finely.
  • the shut-off valve 68 not only controls the fuel flow through the drain channel 64, but also the fuel flow through the auxiliary channel 72. It is designed as a 3/2-way valve, three of which Connections of an upstream part 64 ′ of the discharge channel 64, a downstream part 64 ′′ of the discharge channel 64 and the auxiliary channel 72 are occupied, based on the fuel discharge direction.
  • a first switch position which represents a blocking position
  • the shut-off valve 68 blocks the downstream part 64 ′′ of the outlet channel 64, but releases a flow connection between the auxiliary channel 72 and the upstream part 64 ′ of the outlet channel 64.
  • a fuel outflow from the valve control chamber 58 to the relief chamber is impossible, but a fuel inflow into the valve control chamber 58 via the auxiliary duct 72 and the upstream part 64 'of the outlet duct 64 is possible.
  • the shut-off valve 68 In its second switch position, which represents an open position, the shut-off valve 68 allows fuel to flow out of the valve control chamber 58 through the upstream part 64 'of the outlet channel 64 into its downstream part 64' ', but blocks the auxiliary channel 72. A fuel flow through the auxiliary channel 72 thus occurs the second switching position, which is why in this second switching position no leakage has to be accepted beyond the amount of fuel flowing out of the valve control chamber 58.
  • the shut-off valve 68 is designed as a seat valve with a seat element 76 arranged in a valve chamber 74, in the present case a spherical valve closing member.
  • the seat element 76 is adjustable by means of the actuator 66 between two seats 78, 80 opposite one another in the adjusting direction of the actuator 66, one seat 78 of which corresponds to the first switching position and the other seat 80 of which corresponds to the second switching position.
  • the downstream part 64 ′′ of the outlet channel 64 opens into the valve chamber 74, at the seat 80 the auxiliary channel 72.
  • the upstream part 64 ′ of the outlet channel 64 opens laterally between the two seats
  • shut-off point for the drain channel 64 which is formed here by the seat 78, is downstream of the point at which the auxiliary channel 72 is in an imaginary, along the two parts
  • 64 ', 64' 'of the drain channel 64 opens out via the valve chamber 74.
  • the seat element or valve closing member 76 is shown in contact with the seat 78 with a solid line.
  • the second switching position, in which the seat element 76 bears against the seat 80, is indicated by dashed lines. It is understood that the proportions in Figure 2 are not realistic.
  • the adjustment path of the seat element 76 between the two seats 78, 80 can easily be in the range of only a few tens or hundreds of micrometers.
  • the seat element 76 is expediently prestressed against the seat 78 by means of a valve spring 82 which can be seen in FIG. 1 and is accommodated in the valve chamber 74.
  • the auxiliary channel 72 is designed over its entire length without an essential throttling point. Since it is downstream If the outlet throttle 62 opens into the mentioned imaginary outlet path, there is anyway a throttle point, namely the outlet throttle 62, in the flow path that the fuel flow going through the auxiliary channel 72 into the valve control chamber 58 travels when the shut-off valve 68 is blocked.

Abstract

The invention relates to an injection assembly for an accumulator fuel-injection system comprising an injection nozzle (18) which projects into a combustion chamber (16) and which can be supplied with fuel from a high-pressure fuel distributor (12) via a high-pressure fuel supply route and a nozzle needle (32) which opens and closes the injection nozzle depending on the pressure in a valve control chamber (58). The fuel is supplied to the valve control chamber by a supply channel (60) branching off from the fuel supply route and opening into said control chamber. The fuel flows out of the valve control chamber via an outflow route (64) originating from said chamber. In addition, an auxiliary channel (72), which opens into the outflow route, branches off from the fuel supply. The outflow route can be shut off downstream of the mouth of the auxiliary channel to prevent the outflow of fuel, using a shut off device (68). To avoid leakages which cannot be used for control purposes, the shut-off device is configured to shut off the auxiliary channel to the outflow of fuel, in such a way that when the outflow route is shut off, the auxiliary channel is open and vice versa.

Description

Einspritzanordnung für ein Kraftstoff-Injection arrangement for a fuel
Speichereinspritzsysterα einer VerbrennungsmaschineStorage injection system α of an internal combustion engine
Stand der TechnikState of the art
Die Erfindung geht von einer Einspritzanordnung für ein Kraftstoff-Speichereinspritzsystem einer Verbrennungsmaschine gemäß der in Patentanspruch 1 näher definierten Art aus.The invention is based on an injection arrangement for a fuel storage injection system of an internal combustion engine according to the type defined in more detail in claim 1.
Wie aus der Praxis allgemein bekannt ist, weisen Kraftstoff-Speichereinspritzsysteme, z.B. Common-Rail- Einspritz-systeme, für eine Verbrennungsmaschine mit mehreren Brennräumen einen Hochdruck- KraftstoffVerteiler bzw. Rail auf, von dem mehrere Hochdruck-Kraftstoffversorgungswege zu je einer in einen der Brennräume der Verbrennungsmaschine ragenden Einspritzdüse führen. Die Kraftstoffeinspritzung in den jeweiligen Brennraum wird mittels einer Düsennadel gesteuert, die die jeweilige Einspritzdüse abhängig vom Druck in einer Ventilsteuerkammer öffnet und schließt. Zum Druckaufbau in der Ventilsteuerkammer kann z.B. ein stets offener Zulaufkanal vorgesehen sein, durch den unter dem Rail-Druck stehender Kraftstoff vom jeweili- gen Kraftstoffversorgungsweg in die Ventilsteuerkammer strömen kann. Über einen gesonderten Ablauf eg kann Kraftstoff aus der Ventilsteuerkammer abgelassen und so eine Druckentspannung in der Ventilsteuerkammer herbei- geführt werden. Der Ablaufweg ist an einer Absperrstelle mittels einer Absperreinrichtung sperrbar, so daß durch wahlweises Sperren und Freigeben des Ablaufwegs das Druckniveau in der Ventilsteuerkammer und damit die Position der Düsennadel beeinflußt werden kann.As is generally known in practice, fuel accumulator injection systems, for example common rail injection systems, have a high-pressure fuel distributor or rail for an internal combustion engine with a plurality of combustion chambers, from which a plurality of high-pressure fuel supply paths, each to one of the combustion chambers of the internal combustion engine protruding injection nozzle. The fuel injection into the respective combustion chamber is controlled by means of a nozzle needle, which opens and closes the respective injection nozzle depending on the pressure in a valve control chamber. To build up pressure in the valve control chamber, for example, an always open inlet channel can be provided, through which the fuel under the rail pressure from the respective can flow into the valve control chamber. A separate drain eg allows fuel to be drained from the valve control chamber, thus relieving pressure in the valve control chamber. The drain path can be blocked at a shut-off point by means of a shut-off device, so that the pressure level in the valve control chamber and thus the position of the nozzle needle can be influenced by optionally blocking and releasing the drain path.
Bei einem nach innen öffnenden Ventil wird zum Öffnen des Ventils der Ablaufweg geöffnet, wobei Kraftstoff aus der Ventilsteuerkammer abfließt. Der damit einhergehende Druckabfall in der Ventilsteuerkammer führt zum Abheben der Düsennadel von der Einspritzdüse, und es tritt Kraftstoff aus der Einspritzdüse aus. Wird der Ablaufweg wieder gesperrt, erhöht sich durch den über den Zulaufkanal nachströmenden Kraftstoff der Druck in der Ventilsteuerkammer wieder. Durch diesen Druckan- stieg wird die Düsennadel wieder gegen die Einspritzdüse gedrückt und verschließt sie. Der Ablaufweg und der Zulaufkanal sind dabei üblicherweise so gestaltet, daß bei geöffnetem Ablaufweg die Durchflußrate des über den Ablaufweg abfließenden Kraftstoffs größer als die Durchflußrate des durch den Zulaufkanal nachfließenden Kraftstoffs ist, so daß effektiv das Kraftstoffvolumen in der Ventilsteuerkammer kleiner wird.With an inward opening valve, the drain path is opened to open the valve, fuel flowing out of the valve control chamber. The associated drop in pressure in the valve control chamber leads to the lifting of the nozzle needle from the injection nozzle, and fuel emerges from the injection nozzle. If the drainage path is blocked again, the pressure in the valve control chamber increases again due to the fuel flowing in via the inlet channel. As a result of this pressure increase, the nozzle needle is pressed against the injection nozzle again and closes it. The drain path and the inlet channel are usually designed so that when the drain path is open, the flow rate of the fuel flowing through the drain path is greater than the flow rate of the fuel flowing through the inlet channel, so that the fuel volume in the valve control chamber is effectively smaller.
Um die eingespritzte Kraftstoffmenge genau dosieren zu können, ist es wesentlich, daß die Einspritzdüse rasch geöffnet und geschlossen werden kann. Besonders der Schließvorgang hat sich in der Praxis als kritisch herausgestellt. Aufgrund des vergleichsweise kleinen Durchlaßquerschnitts des Zulaufkanals strömt oftmals Kraftstoff in zu geringer Menge nach, um die gewünschten schnellen Schließzeiten zu erreichen. Dies gilt insbesondere dann, wenn der Druck in dem Steuerraum nach dem Schließen des Ventils noch während des Einspritzvorgangs nicht sehr weit unter den Druck in dem Kraftstoff ersorgungsweg abfällt. Die dann nur vergleichsweise geringe Druckdifferenz zwischen dem Kraftstoffversorgungsweg und der Ventilsteuerkammer führt zu einem entsprechend geringen nachfließenden Kraftstoffström.In order to be able to precisely meter the amount of fuel injected, it is essential that the injector can be opened and closed quickly. The closing process in particular has proven to be critical in practice. Because of the comparatively small Passage cross section of the inlet channel often flows in too little fuel to achieve the desired fast closing times. This is particularly true if the pressure in the control chamber does not drop very far below the pressure in the fuel supply path after the valve has closed, during the injection process. The then only comparatively small pressure difference between the fuel supply path and the valve control chamber leads to a correspondingly low inflowing fuel flow.
Um beim Schließen der Einspritzdüse die zuvor durch Öffnen des Ablaufwegs erlittenen Kraftstoffverluste in der Ventilsteuerkammer hinreichend schnell ersetzen zu können, ist aus der Praxis eine Lösung bekannt, bei der von dem Kraftstoffversorgungsweg ein Bypasskanal abzu- zweigt, der direkt in den Ablaufweg mündet, und zwar stromaufwärts der Absperrstelle des Ablaufwegs, wenn man die Abiaufrichtung des Kraftstoffs längs des Ablaufwegs betrachtet. Ist der stromabwärtige Teil des Ablaufwegs gesperrt, bildet dieser Bypasskanal einen zu dem Zulaufkanal parallel geschalteten Hilfskanal, durch den eine zusätzliche Kraftstoffmenge aus dem Kraft- stoffversorgungsweg über den stromaufwärtigen Teil des Ablaufwegs in die Ventilsteuerkammer fließen kann. Es hat sich gezeigt, daß hierdurch höhere Schließgeschwindigkeiten der Düsennadel erzielbar sind.In order to be able to replace the fuel losses in the valve control chamber that were previously suffered by opening the discharge path when the injection nozzle is closed, a solution is known from practice in which a bypass duct branches off from the fuel supply path and opens directly into the discharge path upstream of the shut-off point of the drainage path, if one considers the fuel's drainage direction along the drainage path. If the downstream part of the outlet path is blocked, this bypass channel forms an auxiliary channel connected in parallel to the inlet channel, through which an additional quantity of fuel can flow from the fuel supply path via the upstream part of the outlet path into the valve control chamber. It has been shown that higher closing speeds of the nozzle needle can be achieved in this way.
Bei dieser bekannten Lösung fließt bei geöffnetem Ablaufweg jedoch nachteilhafterweise eine gewisse Menge an Kraftstoff aus dem Kraftstoffversorgungsweg ungenutzt durch den Bypasskanal und den stromabwärtigen Teil des Ablaufwegs ab. Um diese zu Steuerungszwecken nicht verfügbare Leckmenge gering zu halten, ist bei der bekannten Lösung eine Drossel in den Bypasskanal eingebaut. Diese bewirkt zwar eine Verringerung der Leckmenge, setzt aber zugleich auch die Durchflußrate des bei gesperrtem Ablaufweg in die Ventilsteuerkammer gelangenden zusätzlichen Kraftstoffs herab. Da die gewünschten schnellen Schließzeiten der Düsennadel so noch nicht erreicht werden, ist bei der bekannten Lö- sung zusätzlich eine Drossel in den Kraftstoffversorgungsweg eingebaut, und zwar nach der Abzweigstelle des Zulaufkanals, wenn man die Strömungsrichtung des Kraftstoffs in dem Kraftstoffversorgungsweg betrachtet. In den stromabwärtigen Teilen des Kraftstof versorgungs- wegs wird aus dem dort herrschenden Kraftstoffdruck eine Gegenkraft auf die Düsennadel abgeleitet, die der durch den Druck in der Ventilsteuerkammer auf die Düsennadel ausgeübten Kraft entgegenwirkt. Die Drossel in dem Kraftstoffversorgungsweg bewirkt nun eine Druckher- absetzung in diesen stromabwärtigen Teilen des Kraftstoffversorgungswegs und damit eine Minderung der Gegenkraft. Es genügt dann ein geringerer Druck in der Ventilsteuerkammer, um die Düsennadel in ihre Schließstellung zu bewegen.In this known solution, however, a certain amount of fuel from the fuel supply path flows unused through the bypass channel and the downstream when the drain path is open Part of the drain path. In order to keep this leakage quantity, which is not available for control purposes, low, a throttle is built into the bypass duct in the known solution. Although this causes a reduction in the amount of leakage, it also reduces the flow rate of the additional fuel entering the valve control chamber when the drain path is blocked. Since the desired fast closing times of the nozzle needle have not yet been achieved in this way, a throttle is additionally installed in the fuel supply path in the known solution, specifically after the branch point of the inlet channel, if one considers the direction of flow of the fuel in the fuel supply path. In the downstream parts of the fuel supply path, a counterforce is derived from the prevailing fuel pressure on the nozzle needle, which counteracts the force exerted on the nozzle needle by the pressure in the valve control chamber. The throttle in the fuel supply path now brings about a pressure drop in these downstream parts of the fuel supply path and thus a reduction in the counterforce. A lower pressure in the valve control chamber is then sufficient to move the nozzle needle into its closed position.
Bei dieser bekannten Lösung bringen die beiden Drosseln in dem Bypasskanal und in dem Kraftstoffversorgungsweg einen erheblichen fertigungstechnischen Mehraufwand mit sich, da es sich bei ihnen um sehr kleine Strukturen handelt, bei denen die Einhaltung der zulässigen Toleranzen fertigungstechnisch sehr schwierig ist. Zudem führt die Drossel in dem Kraftstoffversorgungsweg zu einem reduzierten Einspritzdruck, mit dem der Kraft- stoff in den Brennraum eingespritzt wird. Der Verlust an Einspritzdruck kann sich dabei ohne weiteres auf bis zu 200 bar belaufen.In this known solution, the two throttles in the bypass channel and in the fuel supply path entail considerable additional expenditure in terms of production technology, since they are very small structures in which compliance with the permissible tolerances is very difficult in terms of production technology. In addition, the throttle in the fuel supply path leads to a reduced injection pressure with which the power substance is injected into the combustion chamber. The loss of injection pressure can easily amount to up to 200 bar.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Einspritzanordnung für ein Kraftstoff-Speichereinspritzsystem einer Verbrennungsmaschine mit den Merkmalen des Patentanspruches 1 hat den Vorteil, daß durch schnelles Schließen der Düsennadel eine hochgenaue Dosierung der Kraftstoffeinspritzmenge bei geringer Leckage und fertigungstechnisch einfach realisierbarem Ventil möglich ist. Hierzu weist die Einspritzanordnung eine in einen Brennraum der Verbren- nungsmaschine ragende, aus einem Hochdruck- Kraftstoffverteiler des Speichereinspritzsystems über einen Hochdruck-Kraftstoffversorgungsweg mit Kraftstoff versorgbare Einspritzdüse und eine die Einspritzdüse abhängig vom Druck in einer Ventilsteuerkammer öffnende und schließende Düsennadel auf. Zur Kraftstoffeinlei- tung in die Ventilsteuerkammer mündet ein von dem Kraftstoffversorgungsweg abzweigender Zulaufkanal in die Ventilsteuerkammer, und ein von der Ventilsteuerkammer ausgehender Ablaufweg ermöglicht den Ablauf des Kraftstoffs aus der Ventilsteuerkammer. Ferner zweigt von dem Kraftstoffversorgungsweg ein in den Ablaufweg mündender Hilfskanal ab. Dabei ist eine Absperreinrichtung vorgesehen, mittels welcher der Ablaufweg - bezogen auf eine Kraftstoffablaufric tung - stromabwärts der Einmündungssteile des Hilfskanals in den Ablaufweg gegen Kraftstoffablauf sperrbar ist. Erfindungsgemäß ist es vorgesehen, daß die Absperreinrichtung auch zur Sperrung des Hilfskanals gegen Kraftstoffdurchfluß aus- gebildet ist, und zwar derart, daß bei gesperrtem Ablaufweg der Hilfskanal ungesperrt ist und umgekehrt.The injection arrangement according to the invention for a fuel accumulator injection system of an internal combustion engine with the features of claim 1 has the advantage that, by quickly closing the nozzle needle, a highly precise metering of the fuel injection quantity with little leakage and a valve that is easy to manufacture is possible. For this purpose, the injection arrangement has an injection nozzle which projects into a combustion chamber of the internal combustion engine and can be supplied with fuel from a high-pressure fuel distributor of the accumulator injection system via a high-pressure fuel supply path, and an injection needle which opens and closes the injection nozzle depending on the pressure in a valve control chamber. For the introduction of fuel into the valve control chamber, an inlet channel branching off from the fuel supply path opens into the valve control chamber, and an outlet path starting from the valve control chamber enables the fuel to flow out of the valve control chamber. An auxiliary channel opening into the drain path also branches off from the fuel supply path. In this case, a shut-off device is provided, by means of which the drainage path — based on a fuel drainage device — downstream of the junction parts of the auxiliary channel in the drainage path can be blocked against fuel drainage. According to the invention, the shut-off device is also used to block the auxiliary channel against fuel flow. is formed, in such a way that when the drain path is blocked, the auxiliary channel is unlocked and vice versa.
Bei der erfindungsgemäßen Lösung kann der Hilfskanal gesperrt werden. Wenn der Ablaufweg während eines Einspritzvorgangs geöffnet ist, kann so verhindert werden, daß Kraftstoff aus dem Kraftstoffversorgungsweg über den Hilfskanal ungenutzt abfließt. Bei der Gestaltung des Hilfskanals muß so kein Kompromiß zwischen einer möglichst geringen Leckmenge und einem möglichst großen zusätzlichen Kraftstoffström in die Ventilsteuerkammer eingegangen werden. Statt dessen kann der Hilfskanal im wesentlichen ausschließlich im Hinblick darauf optimiert werden, daß die Ventilsteuerkammer nach Sperrung des Ablaufwegs möglichst rasch wieder befüllt wird und so die Düsennadel möglichst schnell wieder in ihre Schließstellung bewegt wird.In the solution according to the invention, the auxiliary channel can be blocked. If the drain path is open during an injection process, fuel can thus be prevented from flowing unused through the auxiliary channel from the fuel supply path. When designing the auxiliary channel, there is no need to compromise between the smallest possible leakage quantity and the greatest possible additional fuel flow into the valve control chamber. Instead, the auxiliary channel can be optimized essentially only so that the valve control chamber is refilled as quickly as possible after the drain path has been blocked, and the nozzle needle is moved back into its closed position as quickly as possible.
Es hat sich insbesondere gezeigt, daß der Hilfskanal hierzu auf seiner gesamten Länge im wesentlichen unge- drosselt sein kann. Dies vereinfacht die Fertigung der Einspritzanordnung .It has been shown in particular that the auxiliary channel can be substantially unthrottled over its entire length. This simplifies the manufacture of the injection arrangement.
Es hat sich ferner gezeigt, daß durch geeignete, insbe- sondere drosselfreie Gestaltung des Hilfskanals bei gesperrtem Ablaufweg ein solcher Gesamt-Kraftstoffström über den Zulauf- und den Hilfskanal in die Ventilsteuerkammer erhalten werden kann, daß auf eine erzwungene Druckabsenkung in den düsennahen Teilen des Kraftstoff- versorgungswegs verzichtet werden kann. Dies erlaubt es, den Kraftstoffversorgungsweg auf seiner von der Abzweigstelle des Zulaufkanals zur Einspritzdüse führenden Länge im wesentlichen ungedrosselt auszubilden. Auch dies führt zu einer Senkung des Fertigungsaufwands .It has also been shown that by suitable, in particular throttle-free design of the auxiliary channel with a blocked drain path, such a total fuel flow can be obtained via the inlet and the auxiliary channel into the valve control chamber that a forced pressure reduction in the parts of the fuel near the nozzle is obtained - supply routes can be dispensed with. This allows the fuel supply path to be designed in an essentially unrestricted manner over its length leading from the branch point of the inlet channel to the injection nozzle. This also leads to a reduction in production costs.
Im Rahmen der vorliegenden Erfindung ist es grundsätz- lieh nicht ausgeschlossen, daß die Absperreinrichtung zwei getrennt betätigbare Absperrkörper für den Hilfskanal und den Ablaufweg aufweist. Dies kann beispielsweise zweckmäßig sein, wenn der Hilfskanal und der Ablaufweg nicht zeitsynchron, sondern zeitversetzt geöff- net bzw. gesperrt werden sollen. Mit geringerem Aufwand realisieren läßt sich jedoch eine Lösung, bei der die Absperreinrichtung zum Sperren des Ablaufwegs und zum Sperren des Hilfskanals an einem gemeinsamen Absperrkörper ausgebildete Absperrflächen aufweist.In the context of the present invention, it is fundamentally not excluded that the shut-off device has two separately operable shut-off bodies for the auxiliary channel and the drainage path. This can be expedient, for example, if the auxiliary channel and the drain path are not to be opened or locked in a time-synchronous manner, but rather with a time delay. However, a solution can be implemented with less effort in which the shut-off device has shut-off surfaces formed on a common shut-off body for locking the drain path and for locking the auxiliary channel.
Konstruktiv besonders einfach ist es, wenn der Absperrkörper als zwischen zwei gegenüberliegenden Ventilsitzen hin- und herbewegbares Sitzelement ausgebildet ist, wobei einer der Ventilsitze eine Absperrstelle für den Ablaufweg bildet und der andere Ventilsitz eine Absperrstelle für den Hilfskanal bildet. Denkbar ist es allerdings auch, daß der Absperrkörper als Schieberelement eines Schieberventils ausgebildet ist.It is structurally particularly simple if the shut-off body is designed as a seat element which can be moved back and forth between two opposite valve seats, one of the valve seats forming a shut-off point for the drainage path and the other valve seat forming a shut-off point for the auxiliary channel. However, it is also conceivable that the shut-off body is designed as a slide element of a slide valve.
Zur Betätigung der Absperreinrichtung kann vorzugsweise eine piezoelektrische Aktuatoranordnung dienen, alternativ kann aber auch eine elektromagnetischen Aktuatoranordnung vorgesehen sein.A piezoelectric actuator arrangement can preferably be used to actuate the shut-off device, but alternatively an electromagnetic actuator arrangement can also be provided.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar. ZeichnungFurther advantages and advantageous configurations of the subject matter of the invention can be gathered from the description, the drawing and the patent claims. drawing
Ein Ausführungsbeispiel der erfindungsgemäßen Einspritzanordnung für ein Kraftstoff- Speichereinspritzsystem ist in der Zeichnung dargestellt und wird in der folgenden Beschreibung näher erläutert. Es zeigenAn embodiment of the injection arrangement according to the invention for a fuel storage injection system is shown in the drawing and is explained in more detail in the following description. Show it
Figur 1 eine schematische, ausschnittsweise Darstellung eines erfindungsgemäßen Speichereinspritzsystems mit einer im Längsschnitt gezeigten Injektorbaugruppe für Brennkraftmaschinen, und1 shows a schematic, partial representation of a storage injection system according to the invention with an injector assembly for internal combustion engines shown in longitudinal section, and
Figur 2 eine vereinfachte, ausschnittsweise Darstellung eines Absperrventils der Injektorbaugruppe nach Figur 1.FIG. 2 shows a simplified, partial illustration of a shut-off valve of the injector assembly according to FIG. 1.
Beschreibung des AusführungsbeispielsDescription of the embodiment
Das in Figur 1 gezeigte Speichereinspritzsystem, welches ein ein sogenanntes Common-Rail-Einspritzsystem darstellt, weist eine symbolisch angedeutete Druckquelle 10 auf, die vorzugsweise Diesel-Kraftstoff unter einem hohen Druck von beispielsweise mehr als 1500 bar in ein Verteilerrohr bzw. Rail 12 einspeist. Von dem Verteilerrohr 12 gehen mehrere Kraftstoffzufuhrleitungen 14 ab, die zur KraftstoffVersorgung je einer in einenThe storage injection system shown in FIG. 1, which represents a so-called common rail injection system, has a symbolically indicated pressure source 10, which preferably feeds diesel fuel into a manifold or rail 12 at a high pressure of, for example, more than 1500 bar. From the manifold 12 go several fuel supply lines 14, each one for supplying fuel
Brennraum 16 einer nicht näher dargestellten mehrzylin- drigen Verbrennungsmaschine, beispielsweise eines Kraftfahrzeug-Verbrennungsmotors, ragenden Einspritzdüse 18 dienen. Die Einspritzdüse 18 ist Teil einer all- gemein mit 20 bezeichneten Injektorbaugruppe, welche als vormontierbare Baueinheit in einen Zylinderblock der Verbrennungsmaschine einsetzbar ist. Die Injektorbaugruppe 20 weist eine Gehäusebaugruppe 22 mit einem Düsengehäuse 24 und einem Ventilgehäuse 26 auf. In dem Düsengehäuse 24 ist eine längs einer Gehäuseachse 28 verlaufende Führungsbohrung 30 ausgebildet, in der eine längliche Düsennadel 32 axial beweglich geführt ist. An einer Nadelspitze 34 weist die Düsennadel 32 eine Schließfläche 36 auf, mit welcher sie in dichte Anlage an einen am Düsengehäuse 24 ausgebildeten Nadelsitz 38 bringbar ist.Combustion chamber 16 of a multi-cylinder internal combustion engine, not shown, such as a motor vehicle internal combustion engine, projecting injection nozzle 18. The injection nozzle 18 is part of an injector assembly, generally designated 20, which can be used as a preassembled structural unit in a cylinder block of the internal combustion engine. The injector assembly 20 has a housing assembly 22 with a nozzle housing 24 and a valve housing 26. In the nozzle housing 24, a guide bore 30 is formed which extends along a housing axis 28 and in which an elongated nozzle needle 32 is guided so as to be axially movable. At a needle tip 34, the nozzle needle 32 has a closing surface 36 with which it can be brought into tight contact with a needle seat 38 formed on the nozzle housing 24.
Wenn die Düsennadel 32 am Nadelsitz 38 anliegt, d.h. sich in Nadelschließstellung befindet, ist der Kraftstoffaustritt aus einer Düsenlochanordnung 40 an dem in den Brennraum 16 ragenden Ende des Düsengehäuses 24 ge- sperrt. Ist sie dagegen vom Nadelsitz 38 abgehoben, d.h. in Nadelöffnungsstellung, kann Kraftstoff aus einem zwischen der Düsennadel 32 und dem Umfangsmantel der Führungsbohrung 30 gebildeten Ringraum 42 an dem Nadelsitz 38 vorbei zu der Düsenlochanordnung 40 strö- men und dort in den Brennraum 16 gespritzt werden.When the nozzle needle 32 abuts the needle seat 38, i.e. is in the needle closed position, the fuel outlet from a nozzle hole arrangement 40 is blocked at the end of the nozzle housing 24 which projects into the combustion chamber 16. On the other hand, is it lifted off the needle seat 38, i.e. In the needle opening position, fuel can flow from an annular space 42 formed between the nozzle needle 32 and the peripheral jacket of the guide bore 30 past the needle seat 38 to the nozzle hole arrangement 40 and be injected there into the combustion chamber 16.
Die Düsennadel 32 ist durch eine Vorspannfeder 44 in Richtung auf ihre Schließstellung vorgespannt. Die Vorspannfeder 44 ist in einem in dem Düsengehäuse 24 aus- gebildeten Federraum 46 untergebracht. Sie stützt sich einerseits über eine das brennraumferne Ende der Düsennadel 32 dichtend, jedoch axial beweglich aufnehmende, mit einer Beißkante in das Ventilgehäuse 26 beißende Hülse 48 an der Gehäusebaugruppe 22 ab. Andererseits stützt sie sich über einen auf die Düsennadel 32 aufgesteckten Federteller 50 an der Düsennadel 32 ab. In den Federraum 46 mündet eine in der Gehäusebaugruppe 22 ausgebildete Bohrung 52, in die über die betreffende Kraftstoffzufuhrleitung 14 im wesentlichen unter Hochdruck bzw. Rail-Druck stehender Kraftstoff eingeleitet wird. Aus dem Federraum 46 gelangt der Kraftstoff über einen in dem Düsengehäuse 24 ausgebildeten Kanal oder - wie hier - an einem System von in den Umfangsmantel der Düsennadel 32 eingearbeiteten Abflachungen oder Einschneidungen 54 vorbei in den Ringraum 42.The nozzle needle 32 is biased towards its closed position by a biasing spring 44. The biasing spring 44 is accommodated in a spring chamber 46 formed in the nozzle housing 24. On the one hand, it is supported on the housing assembly 22 by a sleeve 48 which seals the end of the nozzle needle 32 remote from the combustion chamber, but which is axially movable and bites into the valve housing 26 with a biting edge. On the other hand, it is supported on the nozzle needle 32 by means of a spring plate 50 plugged onto the nozzle needle 32. A bore 52 formed in the housing assembly 22 opens into the spring chamber 46, into which fuel which is essentially under high pressure or rail pressure is introduced via the relevant fuel supply line 14. From the spring chamber 46, the fuel passes into the annular space 42 via a channel formed in the nozzle housing 24 or — as here — past a system of flats or incisions 54 machined into the peripheral jacket of the nozzle needle 32.
Zwischen einer brennraumfernen Stirnfläche 56 der Düsennadel 32, der Hülse 48 und dem Ventilgehäuse 26 ist eine Ventilsteuerkammer 58 begrenzt, in die ein als Drossel ausgebildeter Zulaufkanal 60 mündet. Durch die Zulaufdrossel 60 kann Kraftstoff aus dem Federraum 46 in die Ventilsteuerkammer 58 einströmen. Über einen eine Ablaufdrossel 62 enthaltenden Ablaufkanal 64 kann Kraftstoff aus der Ventilsteuerkammer 58 zu einem nicht näher dargestellten Entlastungsraum abfließen. Ein mit- tels einer nur symbolisch angedeuteten Aktuator-A valve control chamber 58 is delimited between an end face 56 of the nozzle needle 32, the sleeve 48 and the valve housing 26 which is remote from the combustion chamber and into which an inlet duct 60 designed as a throttle opens. Fuel can flow from the spring chamber 46 into the valve control chamber 58 through the inlet throttle 60. Fuel can flow out of the valve control chamber 58 to a relief chamber (not shown in more detail) via an outlet duct 64 containing an outlet throttle 62. By means of an only symbolically indicated actuator
Einheit, vorzugsweise eines piezoelektrischen Aktuators 66, betätigbares Absperrventil 68 erlaubt es, den Kraftstoffabfluß zu dem Entlastungsraum zu sperren. Statt eines piezoelektrischen Aktuators kann gewünsch- tenfalls selbstverständlich auch ein elektromagnetischer Aktuator verwendet werden.A shut-off valve 68, preferably a piezoelectric actuator 66, which can be actuated, allows the fuel outflow to the relief chamber to be shut off. If desired, an electromagnetic actuator can of course also be used instead of a piezoelectric actuator.
Durch die Vorspannfeder 44 und die Einwirkung des in der Ventilsteuerkammer 58 herrschenden Drucks auf die Nadelstirnfläche 56 wird eine axial zum Brennraum 16 hin gerichtete Schließkraft auf die Düsennadel 32 ausgeübt. Dieser Schließkraft wirkt axial eine Öffnungskraft entgegen, die infolge der Einwirkung des in dem Ringraum 42 herrschenden Drucks auf eine an der Düsennadel 32 ausgebildete Stufenfläche 70 auf die Düsennadel 32 ausgeübt wird. Befindet sich das Absperrventil 68 in seiner Sperrstellung und ist der Kraftstoffabfluß durch den Ablaufkanal 64 somit gesperrt, ist im stationären Zustand die Schließkraft größer als die Öffnungskraft, weshalb die Düsennadel 32 dann ihre Schließstellung einnimmt. Wird das Absperrventil 68 daraufhin geöffnet, fließt Kraftstoff aus der Ventilsteuerkammer 58 ab.Due to the prestressing spring 44 and the action of the pressure prevailing in the valve control chamber 58 on the needle end face 56, a closing force directed axially towards the combustion chamber 16 is exerted on the nozzle needle 32. This closing force counteracts an opening force axially, which as a result of the action of the Annulus 42 prevailing pressure is exerted on a step surface 70 formed on the nozzle needle 32 on the nozzle needle 32. If the shut-off valve 68 is in its blocking position and the fuel outflow through the outlet channel 64 is thus blocked, the closing force is greater than the opening force in the stationary state, which is why the nozzle needle 32 then assumes its closed position. If the shut-off valve 68 is then opened, fuel flows out of the valve control chamber 58.
Die Durchflußquerschnitte der stets offenen Zulaufdrossel 60 und der Ablaufdrossel 62 sind dabei so aufeinander abgestimmt, daß der Zufluß durch die Zulaufdrossel 60 geringer als der Abfluß durch den Ablaufkanal 64 ist und demnach ein Nettoabfluß von Kraftstoff resultiert. Der folgende Druckabfall in der Ventilsteuerkammer 58 bewirkt, daß die Schließkraft unter die Öffnungskraft sinkt und die Düsennadel 32 vom Nadelsitz 38 nach innen abhebt.The flow cross-sections of the always open inlet throttle 60 and the outlet throttle 62 are matched to one another in such a way that the inflow through the inlet throttle 60 is less than the outflow through the outlet channel 64 and accordingly a net outflow of fuel results. The following pressure drop in the valve control chamber 58 causes the closing force to drop below the opening force and to lift the nozzle needle 32 inward from the needle seat 38.
Soll die Einspritzung beendet werden, wird das Absperrventil 68 wieder in seine Sperrstellung gebracht. Dies sperrt den Kraftstoffabfluß durch den Ablaufkanal 64. Durch die Zulaufdrossel 60 fließt weiterhin Kraftstoff aus dem Federraum 46 in die Ventilsteuerkammer 58, und der Druck in der Ventilsteuerkammer 58 steigt wieder an. Sobald der Druck in der Ventilsteuerkammer 58 ein Niveau erreicht, bei dem die Schließkraft größer als die Öffnungskraft ist, geht die Düsennadel 32 in ihreIf the injection is to be ended, the shut-off valve 68 is brought back into its blocking position. This blocks the fuel outflow through the outlet channel 64. Fuel continues to flow from the spring chamber 46 into the valve control chamber 58 through the inlet throttle 60, and the pressure in the valve control chamber 58 increases again. As soon as the pressure in the valve control chamber 58 reaches a level at which the closing force is greater than the opening force, the nozzle needle 32 goes into it
Schließstellung, was den Kraftstoffaustritt aus der Düsenlochanordnung 40 stoppt. Um schnelle Nadelschließgeschwindigkeiten zu erreichen, muß für einen raschen Druckanstieg in der Ventilsteuerkammer 58 nach Sperrung des Absperrventils 68 und während der Schließbewegung der Düsennadel 32 für genügend Durchfluß gesorgt werden. Der Durchfluß durch die Zulaufdrossel 60 ist vergleichsweise gering. Eine Vergrößerung des Durchflußquerschnitts der Zulaufdrossel 60 kommt aber nur in sehr engen Grenzen in Betracht, weil ansonsten die Gefahr besteht, daß bei geöffnetem Ab- Sperrventil 68 der Nettoabfluß an Kraftstoff nicht mehr ausreicht, um die Düsennadel 32 zu öffnen.Closed position, which stops fuel leakage from the nozzle hole assembly 40. In order to achieve rapid needle closing speeds, a rapid increase in pressure in the valve control chamber 58 after the shut-off valve 68 has been blocked and during the closing movement of the nozzle needle 32 must be provided for sufficient flow. The flow through the inlet throttle 60 is comparatively low. An increase in the flow cross section of the inlet throttle 60 is only considered within very narrow limits, because otherwise there is the risk that when the shut-off valve 68 is opened, the net outflow of fuel is no longer sufficient to open the nozzle needle 32.
Es ist deshalb ein Hilfskanal 72 vorgesehen, mittels dessen bei gesperrtem Absperrventil 68 ein zusätzlicher Kraftstoffzufluß in die Ventilsteuerkammer 58 erzielt wird. Der Hilfskanal 72 zweigt von der Bohrung 52 ab und wird genauso wie die Zulaufdrossel 60 mit Kraftstoff gespeist, der im wesentlichen unter dem Rail- Druck steht. Der zusätzliche Kraftstoffzufluß durch den Hilfskanal 72 läßt nach Sperrung des Absperrventils 68 den Druck in der Ventilsteuerkammer 58 schneller als bei alleiniger Befüllung durch die Zulaufdrossel 60 wieder auf das Niveau ansteigen, das nötig ist, um die Düsennadel 32 aus ihrer Öffnungs- in ihre Schließstel- lung zu überführen. Letztlich kann so die in den Brennraum 16 eingespritzte Kraftstoffmenge feiner dosiert werden.An auxiliary channel 72 is therefore provided, by means of which an additional fuel flow into the valve control chamber 58 is achieved when the shut-off valve 68 is blocked. The auxiliary channel 72 branches off from the bore 52 and, like the inlet throttle 60, is fed with fuel which is essentially under the rail pressure. The additional fuel flow through the auxiliary channel 72, after the shut-off valve 68 has been blocked, causes the pressure in the valve control chamber 58 to rise to the level required to move the nozzle needle 32 from its opening position into its closing position more quickly than when it is filled by the inlet throttle 60 alone to convince lung. Ultimately, the amount of fuel injected into the combustion chamber 16 can be metered more finely.
Es wird nun zusätzlich auf die schematische Skizze der Figur 2 verwiesen. Das Absperrventil 68 steuert nicht nur den Kraftstoffablauf durch den Ablaufkanal 64, sondern auch den Kraftstoffdurchfluß durch den Hilfskanal 72. Es ist als 3/2-Wegeventil ausgeführt, dessen drei Anschlüsse von einem - bezogen auf die Abiaufrichtung des Kraftstoffs - strom-aufwärtigen Teil 64' des Ablaufkanals 64, einem stromabwärtigen Teil 64'' des Ablaufkanals 64 und dem Hilfskanal 72 belegt sind.Reference is now also made to the schematic sketch in FIG. 2. The shut-off valve 68 not only controls the fuel flow through the drain channel 64, but also the fuel flow through the auxiliary channel 72. It is designed as a 3/2-way valve, three of which Connections of an upstream part 64 ′ of the discharge channel 64, a downstream part 64 ″ of the discharge channel 64 and the auxiliary channel 72 are occupied, based on the fuel discharge direction.
In einer ersten, eine Sperrstellung darstellenden Schaltstellung sperrt das Absperrventil 68 den stromabwärtigen Teil 64'' des Ablaufkanals 64, gibt jedoch eine Strömungsverbindung zwischen dem Hilfskanal 72 und dem stromaufwärtigen Teil 64' des Ablaufkanals 64 frei. In dieser ersten Schaltstellung ist somit ein Kraftstoffabfluß aus der Ventilsteuerkammer 58 zu dem Entlastungsraum unmöglich, ein Kraftstoffzufluß über den Hilfskanal 72 und den stromaufwärtigen Teil 64' des Ab- laufkanals 64 in die Ventilsteuerkammer 58 jedoch möglich.In a first switch position, which represents a blocking position, the shut-off valve 68 blocks the downstream part 64 ″ of the outlet channel 64, but releases a flow connection between the auxiliary channel 72 and the upstream part 64 ′ of the outlet channel 64. In this first switching position, a fuel outflow from the valve control chamber 58 to the relief chamber is impossible, but a fuel inflow into the valve control chamber 58 via the auxiliary duct 72 and the upstream part 64 'of the outlet duct 64 is possible.
In seiner zweiten, eine Öffnungsstellung darstellenden Schaltstellung gestattet das Absperrventil 68 den Kraftstoffabfluß aus der Ventilsteuerkammer 58 durch den stromaufwärtigen Teil 64' des Ablaufkanals 64 in dessen stromabwärtigen Teil 64'', sperrt jedoch den Hilfskanal 72. Ein Kraftstoffdurchfluß durch den Hilfskanal 72 tritt somit in der zweiten Schaltstellung nicht auf, weswegen in dieser zweiten Schaltstellung über die aus der Ventilsteuerkammer 58 abfließende Kraftstoffmenge hinaus keine Leckage in Kauf genommen werden muß .In its second switch position, which represents an open position, the shut-off valve 68 allows fuel to flow out of the valve control chamber 58 through the upstream part 64 'of the outlet channel 64 into its downstream part 64' ', but blocks the auxiliary channel 72. A fuel flow through the auxiliary channel 72 thus occurs the second switching position, which is why in this second switching position no leakage has to be accepted beyond the amount of fuel flowing out of the valve control chamber 58.
Das Absperrventil 68 ist bei dem hier gezeigten Ausführungsbeispiel als Sitzventil mit einem in einer Ventilkammer 74 angeordneten Sitzelement 76, vorliegend einem kugeligen Ventilschließglied, ausgebildet. Das Sitzele- ment 76 ist mittels des Aktuators 66 zwischen zwei in Stellrichtung des Aktuators 66 gegenüberliegenden Sitzen 78, 80 verstellbar, deren einer Sitz 78 der ersten Schaltstellung entspricht und deren anderer Sitz 80 der zweiten Schaltstellung entspricht.In the exemplary embodiment shown here, the shut-off valve 68 is designed as a seat valve with a seat element 76 arranged in a valve chamber 74, in the present case a spherical valve closing member. The seat element 76 is adjustable by means of the actuator 66 between two seats 78, 80 opposite one another in the adjusting direction of the actuator 66, one seat 78 of which corresponds to the first switching position and the other seat 80 of which corresponds to the second switching position.
Am Sitz 78 mündet der stromabwärtige Teil 64'' des Ablaufkanals 64 in die Ventilkammer 74, am Sitz 80 der Hilfskanal 72. Der stromaufwärtige Teil 64' des Ablauf- kanals 64 mündet seitlich zwischen den beiden SitzenAt the seat 78, the downstream part 64 ″ of the outlet channel 64 opens into the valve chamber 74, at the seat 80 the auxiliary channel 72. The upstream part 64 ′ of the outlet channel 64 opens laterally between the two seats
78, 80 in die Ventilkammer 74. Auf diese Weise kann die Forderung erfüllt werden, daß die Absperrstelle für den Ablaufkanal 64, die hier von dem Sitz 78 gebildet wird, stromabwärts derjenigen Stelle liegt, an der der Hilfs- kanal 72 in einen gedachten, längs der beiden Teile78, 80 into the valve chamber 74. In this way, the requirement can be met that the shut-off point for the drain channel 64, which is formed here by the seat 78, is downstream of the point at which the auxiliary channel 72 is in an imaginary, along the two parts
64', 64'' des Ablaufkanals 64 über die Ventilkammer 74 verlaufenden Ablaufweg einmündet.64 ', 64' 'of the drain channel 64 opens out via the valve chamber 74.
In Figur 2 ist mit durchgezogener Linie das Sitzelement bzw. Ventilschließglied 76 in Anlage am Sitz 78 gezeigt. Gestrichelt ist die zweite Schaltstellung angedeutet, in der das Sitzelement 76 am Sitz 80 anliegt. Es versteht sich, daß die Proportionen in Figur 2 nicht realitätsgetreu sind. Der Verstellweg des Sitzelements 76 zwischen den beiden Sitzen 78, 80 kann ohne weiteres im Bereich von nur einigen zehn oder hundert Mikrometern liegen. Zweckmäßigerweise wird das Sitzelement 76 mittels einer in Figur 1 erkennbaren, in der Ventilkammer 74 untergebrachten Ventilfeder 82 gegen den Sitz 78 vorgespannt sein.In Figure 2, the seat element or valve closing member 76 is shown in contact with the seat 78 with a solid line. The second switching position, in which the seat element 76 bears against the seat 80, is indicated by dashed lines. It is understood that the proportions in Figure 2 are not realistic. The adjustment path of the seat element 76 between the two seats 78, 80 can easily be in the range of only a few tens or hundreds of micrometers. The seat element 76 is expediently prestressed against the seat 78 by means of a valve spring 82 which can be seen in FIG. 1 and is accommodated in the valve chamber 74.
Der Hilfskanal 72 ist auf seiner gesamten Länge ohne wesentliche Drosselstelle ausgeführt. Da er stromab- wärts der Ablaufdrossel 62 in den angesprochenen gedachten Ablaufweg einmündet, liegt ohnehin eine Drosselstelle, nämlich die Ablaufdrossel 62, in dem Strömungsweg, den bei gesperrtem Absperrventil 68 der über den Hilfskanal 72 in die Ventilsteuerkammer 58 gehende Kraftstoffström zurücklegt.The auxiliary channel 72 is designed over its entire length without an essential throttling point. Since it is downstream If the outlet throttle 62 opens into the mentioned imaginary outlet path, there is anyway a throttle point, namely the outlet throttle 62, in the flow path that the fuel flow going through the auxiliary channel 72 into the valve control chamber 58 travels when the shut-off valve 68 is blocked.
Auch in den in der Injektorbaugruppe 20 ausgebildeten Teilen eines über die Kraftstoffzufuhrleitung 14 zu der Düsenlochanordnung 40 verlaufenden, gedachten Kraftstoffversorgungswegs findet keine wesentliche Drosselung des strömenden Kraftstoffs statt, weswegen der Kraftstoff annähernd mit dem Rail-Druck aus der Düsenlochanordnung 40 ausgestoßen wird. Even in the parts of an imaginary fuel supply path running through the fuel supply line 14 to the nozzle hole arrangement 40, there is no substantial throttling of the flowing fuel, which is why the fuel is ejected from the nozzle hole arrangement 40 at approximately the rail pressure.

Claims

Ansprüche Expectations
1. Einspritzanordnung für ein Kraftstoff- Speichereinspritz-system einer Verbrennungsmaschine, mit einer in einen Brennraum (16) der Verbrennungsma- schine ragenden, aus einem Hochdruck- Kraftstoffverteiler (12) des Speichereinspritzsystems über einen Hochdruck-Kraftstoffversorgungsweg (14, 52, 46, 54, 42) mit Kraftstoff versorgbaren Einspritzdüse (18) und einer die Einspritzdüse (18) abhängig vom Druck in einer Ventilsteuerkammer (58) öffnenden und schließenden Düsennadel (32), wobei zur Kraftstoffein- leitung in die Ventilsteuerkammer (58) ein von dem Kraftstoffversorgungsweg (14, 52, 46, 54, 42) abzweigender Zulauf anal ( 60 ) in die Ventilsteuerkammer (58) mündet und ein von der Ventilsteuerkammer (58) ausgehender Ablaufweg (64', 64", 74) den Ablauf des Kraftstoffs aus der Ventilsteuerkammer (58) ermöglicht, wobei ferner von dem Kraftstoffversorgungsweg (14, 52, 46, 54, 42) ein in den Ablaufweg (64', 64'', 74) mün- dender Hilfskanal (72) abzweigt und wobei eine Absperreinrichtung (68) vorgesehen ist, mittels welcher der Ablaufweg (64', 64'', 74) bezogen auf eine Kraftstoffablaufrichtung stromabwärts der Einmündungssteile des Hilfskanals (72) in den Ablaufweg (64', 64", 74) gegen Kraftstoffablauf sperrbar ist, dadurch gekennzeichnet, daß die Absperreinrichtung (68) auch zur Sperrung des Hilfskanals (72) gegen Kraftstoffdurchfluß derart ausgebildet ist, daß bei gesperrtem Ablaufweg1. Injection arrangement for a fuel accumulator injection system of an internal combustion engine, with a protruding into a combustion chamber (16) of the internal combustion engine, from a high pressure fuel distributor (12) of the accumulator injection system via a high pressure fuel supply path (14, 52, 46, 54) , 42) with an injection nozzle (18) which can be supplied with fuel and a nozzle needle (32) which opens and closes the injection nozzle (18) depending on the pressure in a valve control chamber (58), one of the fuel supply path (58) being used to introduce fuel into the valve control chamber (58). 14, 52, 46, 54, 42) branching inlet anal (60) opens into the valve control chamber (58) and an outlet path (64 ', 64 ", 74) emanating from the valve control chamber (58) leads the fuel to the outlet from the valve control chamber ( 58), an auxiliary channel (72) opening into the drain path (64 ', 64'', 74) branching off from the fuel supply path (14, 52, 46, 54, 42) and a shut-off valve device (68) is provided, by means of which the drainage path (64 ', 64'', 74) relates to a fuel drainage direction downstream of the junction parts of the auxiliary channel (72) in the discharge path (64 ', 64 ", 74) can be blocked against fuel discharge, characterized in that the shut-off device (68) is also designed to block the auxiliary duct (72) against fuel flow in such a way that when the discharge path is blocked
(64', 64'', 74) der Hilfskanal (72) ungesperrt ist und umgekehrt.(64 ', 64' ', 74) the auxiliary channel (72) is unlocked and vice versa.
2. Einspritzanordnung nach Anspruch 1, dadurch gekenn- zeichnet, daß der Hilfskanal (72) auf seiner gesamten2. Injection arrangement according to claim 1, characterized in that the auxiliary channel (72) on its entire
Länge im wesentlichen ungedrosselt ist.Length is essentially unthrottled.
3. Einspritzanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Kraftstoffversorgungsweg (14, 52, 46, 54, 42) auf seiner von der Abzweigstelle des3. Injection arrangement according to claim 1 or 2, characterized in that the fuel supply path (14, 52, 46, 54, 42) on its from the branch point of the
Zulaufkanals (60) zur Einspritzdüse (18) führenden Länge im wesentlichen ungedrosselt ist.Inlet channel (60) leading to the injection nozzle (18) is essentially unthrottled.
4. Einspritzanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Absperreinrichtung (68) zum Sperren des Ablaufwegs (64', 64", 74) und zum Sperren des Hilfskanals (72) an einem gemeinsamen Absperrkörper (76) ausgebildete Absperrflächen aufweist.4. Injection arrangement according to one of claims 1 to 3, characterized in that the shut-off device (68) for locking the drainage path (64 ', 64 ", 74) and for locking the auxiliary channel (72) on a common shut-off body (76) formed shut-off surfaces having.
5. Einspritzanordnung nach Anspruch 4, dadurch gekennzeichnet, daß der Absperrkörper (76) als zwischen zwei gegenüberliegenden Ventilsitzen (78, 80) hin- und herbewegbares Sitzelement ausgebildet ist, wobei einer (78) der Ventilsitze (78, 80) eine Absperrstelle für den Ablaufweg (64', 64", 74) bildet und der andere5. Injection arrangement according to claim 4, characterized in that the shut-off body (76) is designed as a reciprocating seat element between two opposite valve seats (78, 80), one (78) of the valve seats (78, 80) being a shut-off point for the Drain path (64 ', 64 ", 74) forms and the other
Ventilsitz (80) eine Absperrstelle für den Hilfskanal (72) bildet. Valve seat (80) forms a shut-off point for the auxiliary channel (72).
6. Einspritzanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Absperreinrichtung (68) mittels einer piezoelektrischen Aktuatoranordnung (66) betätigbar ist.6. Injection arrangement according to one of claims 1 to 5, characterized in that the shut-off device (68) can be actuated by means of a piezoelectric actuator arrangement (66).
7. Einspritzanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Absperreinrichtung (68) mittels einer elektromagnetischen Aktuatoranordnung betätigbar ist. 7. Injection arrangement according to one of claims 1 to 5, characterized in that the shut-off device (68) can be actuated by means of an electromagnetic actuator arrangement.
PCT/DE2001/001123 2000-05-18 2001-03-23 Injection assembly for an accumulator fuel-injection system of an internal combustion engine WO2001088365A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AT01929256T ATE306613T1 (en) 2000-05-18 2001-03-23 INJECTION ARRANGEMENT FOR A FUEL STORAGE INJECTION SYSTEM OF AN COMBUSTION ENGINE
JP2001584731A JP2003533635A (en) 2000-05-18 2001-03-23 Injection device used for fuel pressure injection system of internal combustion engine
EP01929256A EP1287253B1 (en) 2000-05-18 2001-03-23 Injection assembly for an accumulator fuel-injection system of an internal combustion engine
KR1020027000679A KR20020019538A (en) 2000-05-18 2001-03-23 Injection Assembly for an Accumulator Fuel-Injection System of an Internal Combustion Engine
DE50107694T DE50107694D1 (en) 2000-05-18 2001-03-23 INJECTION ASSEMBLY FOR A FUEL MEMORY INJECTION SYSTEM OF A COMBUSTION ENGINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10024703A DE10024703A1 (en) 2000-05-18 2000-05-18 Injection arrangement for fuel storage injection system has valve unit blocking auxiliary channel and outlet path in alternation
DE10024703.2 2000-05-18

Publications (1)

Publication Number Publication Date
WO2001088365A1 true WO2001088365A1 (en) 2001-11-22

Family

ID=7642738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001123 WO2001088365A1 (en) 2000-05-18 2001-03-23 Injection assembly for an accumulator fuel-injection system of an internal combustion engine

Country Status (6)

Country Link
EP (1) EP1287253B1 (en)
JP (1) JP2003533635A (en)
KR (1) KR20020019538A (en)
AT (1) ATE306613T1 (en)
DE (2) DE10024703A1 (en)
WO (1) WO2001088365A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382837A2 (en) * 2002-07-15 2004-01-21 Caterpillar Inc. Fuel injector with directly controlled highly efficient nozzle assembly and fuel system using same

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10123775B4 (en) * 2001-05-16 2005-01-20 Robert Bosch Gmbh Fuel injection device for internal combustion engines, in particular common rail injector, and fuel system and internal combustion engine
DE10213382A1 (en) 2002-03-26 2003-10-16 Bosch Gmbh Robert Fuel injection valve
DE10260724A1 (en) * 2002-12-23 2004-07-01 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE10346075B4 (en) * 2003-10-04 2014-05-08 Robert Bosch Gmbh Method for producing a fuel injection valve and fuel injection valve produced by this method
DE102005038444A1 (en) 2005-05-02 2006-11-09 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102005025522A1 (en) 2005-06-03 2006-12-07 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102006012078A1 (en) 2005-11-15 2007-05-16 Bosch Gmbh Robert Fuel injection device for an internal combustion engine with direct fuel injection
JP4428357B2 (en) 2006-04-03 2010-03-10 株式会社デンソー Fuel injection valve
DE102007001363A1 (en) 2007-01-09 2008-07-10 Robert Bosch Gmbh Injector for injecting fuel into combustion chambers of internal combustion engines
DE102007017126A1 (en) * 2007-04-11 2008-10-16 Robert Bosch Gmbh Injection Module
DE102007032741A1 (en) 2007-07-13 2009-01-15 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102007059537A1 (en) 2007-12-11 2009-06-18 Robert Bosch Gmbh Fuel injection valve for IC engines is at least partly made of magnetostrictive material, allowing size and shape of jets to be altered by applying magnetic field
DE102007062792A1 (en) 2007-12-27 2009-07-02 Robert Bosch Gmbh Fuel injection valve for high-speed internal-combustion engine, has valve needle guided into guide sleeve at needle end turned away from valve seat and having outer side, with which sleeve is guided into inner side of pressure chamber
DE102008001819A1 (en) 2008-05-16 2009-11-19 Robert Bosch Gmbh Fuel injector i.e. common rail injector, for injecting fuel into combustion chamber of internal combustion engine, has injecting valve comprising hydraulic force reduction surface, which is aligned such that opening force is decreased
DE102008054830A1 (en) 2008-12-17 2010-07-01 Robert Bosch Gmbh Fuel injection valve for internal combustion engine, has valve body, in which pressure chamber is formed, where sharp-edged orifice is fastened on valve needle with outer area
DE102009001933A1 (en) 2009-03-27 2010-09-30 Robert Bosch Gmbh Method for processing a nozzle body
DE102011078429A1 (en) 2011-06-30 2013-01-03 Robert Bosch Gmbh Fuel injector
DE102013226189A1 (en) 2013-12-17 2015-06-18 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102013226908A1 (en) 2013-12-20 2015-06-25 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102014207587A1 (en) 2014-04-22 2015-10-22 Robert Bosch Gmbh Fuel injection valve for internal combustion engines and a method for operating the same
DE102014212337A1 (en) 2014-06-26 2015-12-31 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102014220345A1 (en) 2014-10-08 2016-04-14 Robert Bosch Gmbh Fuel injection valve
DE102015219646A1 (en) 2015-10-09 2017-04-13 Continental Automotive Gmbh Fluid injection device for internal combustion engines
DE102016210228A1 (en) * 2016-06-09 2017-12-14 Robert Bosch Gmbh injection
CN107035586B (en) * 2017-01-18 2023-01-03 哈尔滨工程大学 Micro-dynamic oil return resonant type electric control oil injector with hydraulic feedback

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0615064A1 (en) * 1993-03-08 1994-09-14 Ganser-Hydromag Injection valve control system for internal combustion engines
US5819710A (en) * 1995-10-27 1998-10-13 Daimler Benz Ag Servo valve for an injection nozzle
DE19844996A1 (en) * 1998-09-30 2000-04-13 Siemens Ag Fluid dosage dispenser for common-rail fuel injection
DE19958872A1 (en) * 1998-12-09 2000-06-15 Denso Corp Valve structure for internal combustion engine fuel injection valve has valve element that closes the first or second channel when seated on first or second valve seat respectively

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59906995D1 (en) * 1998-07-31 2003-10-23 Siemens Ag Injector with a servo valve
DE10015268A1 (en) * 2000-03-28 2001-10-04 Siemens Ag Injector with bypass throttle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0615064A1 (en) * 1993-03-08 1994-09-14 Ganser-Hydromag Injection valve control system for internal combustion engines
US5819710A (en) * 1995-10-27 1998-10-13 Daimler Benz Ag Servo valve for an injection nozzle
DE19844996A1 (en) * 1998-09-30 2000-04-13 Siemens Ag Fluid dosage dispenser for common-rail fuel injection
DE19958872A1 (en) * 1998-12-09 2000-06-15 Denso Corp Valve structure for internal combustion engine fuel injection valve has valve element that closes the first or second channel when seated on first or second valve seat respectively

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1382837A2 (en) * 2002-07-15 2004-01-21 Caterpillar Inc. Fuel injector with directly controlled highly efficient nozzle assembly and fuel system using same
EP1382837A3 (en) * 2002-07-15 2008-04-02 Caterpillar Inc. Fuel injector with directly controlled highly efficient nozzle assembly and fuel system using same

Also Published As

Publication number Publication date
DE50107694D1 (en) 2006-02-23
EP1287253A1 (en) 2003-03-05
KR20020019538A (en) 2002-03-12
EP1287253B1 (en) 2005-10-12
DE10024703A1 (en) 2001-11-22
JP2003533635A (en) 2003-11-11
ATE306613T1 (en) 2005-10-15

Similar Documents

Publication Publication Date Title
EP1287253B1 (en) Injection assembly for an accumulator fuel-injection system of an internal combustion engine
EP0898650B1 (en) Fuel injection device for internal combustion engines
EP1287254B1 (en) Accumulator fuel-injection system for an internal combustion engine
EP0657642B1 (en) Fuel injection device for internal combustion engines
EP0657643B1 (en) Fuel injection device for internal combustion engines
DE10001828A1 (en) Direct-control fuel injection device for combustion engine has valve body with actuator to move it in opening direction to let fuel flow from high pressure channel to connecting channel
WO2002084106A1 (en) Valve for controlling liquids
DE102009039647A1 (en) Fuel injector, particularly common rail fuel injector, for injecting fuel into combustion chamber of internal combustion engine, has servo valve that is controlled by piezoelectric actuator
DE102009000181A1 (en) Fuel injector
DE102006054063A1 (en) fuel injector
EP1346143A1 (en) Fuel injection valve for internal combustion engines
DE10007175A1 (en) Injection valve for injecting fuel into an internal combustion engine
DE10131640A1 (en) Fuel injector with injection course shaping through switchable throttle elements
DE102015226070A1 (en) fuel injector
DE102007005382A1 (en) Injector i.e. common rail injector, for injecting fuel e.g. diesel, into combustion chamber of internal-combustion engine, has control valve for varying control pressure, and fuel tank connected with nozzle chamber via throttle channel
DE10132248C2 (en) Fuel injector with 2-way valve control
DE10131642A1 (en) Fuel injector with variable control room pressurization
EP1541859A1 (en) Injection valve
DE19963370C2 (en) Pump injector unit with pre-injection
DE10015740C2 (en) Injection valve for injecting fuel into an internal combustion engine
EP2798192A1 (en) Fuel injection valve for internal combustion engines
DE102010043110A1 (en) Fuel injection valve for internal combustion engines
EP2019198A2 (en) Injector
DE19925308A1 (en) Internal combustion engine fuel injector uses control and additional valves in reciprocal alternation to control feed and drain channel states.
EP1210513A1 (en) Fuel injection device for fuel internal combustion engines

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001929256

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV2002-81

Country of ref document: CZ

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020027000679

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027000679

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001929256

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV2002-81

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 2001929256

Country of ref document: EP