EP1287254B1 - Accumulator fuel-injection system for an internal combustion engine - Google Patents

Accumulator fuel-injection system for an internal combustion engine Download PDF

Info

Publication number
EP1287254B1
EP1287254B1 EP01929262A EP01929262A EP1287254B1 EP 1287254 B1 EP1287254 B1 EP 1287254B1 EP 01929262 A EP01929262 A EP 01929262A EP 01929262 A EP01929262 A EP 01929262A EP 1287254 B1 EP1287254 B1 EP 1287254B1
Authority
EP
European Patent Office
Prior art keywords
fuel
valve
chamber
outflow
control chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01929262A
Other languages
German (de)
French (fr)
Other versions
EP1287254A1 (en
Inventor
Wolfgang Stoecklein
Dietmar Schmieder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1287254A1 publication Critical patent/EP1287254A1/en
Application granted granted Critical
Publication of EP1287254B1 publication Critical patent/EP1287254B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2547/00Special features for fuel-injection valves actuated by fluid pressure
    • F02M2547/001Control chambers formed by movable sleeves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators

Definitions

  • the invention relates to an injection arrangement for a fuel storage injection system of an internal combustion engine according to the closer defined in the preamble of claim 1.
  • Fuel rail injection systems, common rail injection systems, for a multi-cylinder internal combustion engine include a high-pressure fuel rail, from which a plurality of high-pressure fuel supply paths lead to each projecting into one of the cylinder combustion chambers of the internal combustion engine injector.
  • the fuel injection into the respective combustion chamber is controlled by means of a nozzle needle, which opens and closes the respective injection nozzle depending on the pressure in a control chamber.
  • a nozzle needle which opens and closes the respective injection nozzle depending on the pressure in a control chamber.
  • an always open inlet channel is provided by the standing under the rail pressure fuel from the respective fuel supply path in the Control chamber can flow.
  • Fuel can be drained out of the control chamber via a separate drainage path and thus a pressure release in the control chamber is brought about.
  • a shut-off valve arranged in the drainage path, the pressure level in the control chamber and thus the position of the nozzle needle can be influenced.
  • the metering accuracy of the injected fuel quantity is essentially determined by the speed with which the injection nozzle can be opened and closed. When closing the nozzle, it may be due to the relatively small passage cross-section of the inlet channel that fuel only inadequate Quantity flows in order to achieve sufficiently fast closing times.
  • the opening of the bypass channel in the drain path can cause disturbances of the flow behavior of the fuel when flowing out of the control chamber.
  • unavoidable flow edges at the point of interchange can lead to turbulences which ultimately prevent the amount of fuel required to open the injection nozzle from flowing out of the control chamber at the desired speed.
  • the delayed opening of the injection nozzle can then adversely affect the dosing accuracy.
  • Nozzle needle be effected.
  • this document merely constitutes a prior art under Art. 54 (3) EPC i.V. Art. 54 (4) EPC.
  • the point of confluence of the bypass channel lies in the drainage path in the region of the valve chamber. It has been found that this localization of the confluence site undesirable Disturbances of the flow behavior of the fuel flowing out of the control chamber can be kept very low. Since increased turbulence of the fuel flow generally has to be expected in the region of the valve chamber anyway, the additional turbulence effect of the flow edges of the point of interchange with respect to these turbulences can take a back seat.
  • bypass channel If the bypass channel is open, fuel - if there is a pressure gradient - flows from the fuel supply path via the bypass channel into the drainage path and increases the pressure there. While this effect is desirable when closing the injector to fill the control chamber more quickly, when opening the injector, the fuel flow through the bypass passage into the drain path may in some cases significantly hinder the outflow of fuel from the control chamber and so cause retarded opening of the injector to lead.
  • the localization of the junction of the bypass channel according to the invention has also proved to be advantageous in this regard.
  • bypass channel In the area of the valve chamber there is sufficient freedom of design to allow the bypass channel to open into the drainage path so that such obstructions of the fuel flow can be kept as low as possible.
  • the bypass channel can therefore always be open without further ado.
  • an outlet throttle In the drain path upstream of the valve chamber usually an outlet throttle will be arranged by means of a desired flow of the running fuel can be adjusted.
  • This outlet throttle preferably has a distance from the valve chamber along the outlet path.
  • the design of the region of the drainage path between the drainage throttle and the valve chamber can be of essential importance for the flow behavior of the outflowing fuel.
  • cavitation in the outlet throttle can be brought about from the control chamber during fuel drainage.
  • Cavitation in the outlet throttle has the advantage that the flow through the outlet throttle is independent of the pressure in the valve chamber and thus independent of any fuel flow via the bypass channel.
  • the bypass channel opens into the valve chamber and lying between the outlet throttle and the valve chamber region of the drain path is thus free of flow edges, resulting from the opening of the bypass channel, this area of the drain path can be designed easier optimized design with regard to a desired flow behavior in the fuel flow be, as it would be the case if the bypass channel between the outlet throttle and the valve chamber would open into the drainage path.
  • a preferred embodiment of the invention provides that the shut-off element as adjustable between two opposite valve seats in the valve chamber Seat element is formed, that open at the two valve seats of the upstream and the downstream portion of the drainage path in the valve chamber and that the point of confluence of the bypass channel in the valve chamber - based on the direction of flow of the fuel - is located between the two valve seats.
  • shut-off valve as a piston valve or as a single-seat valve in the invention is by no means excluded.
  • a pressure source 10 of a storage-injection system representing a common-rail injection system is indicated, the diesel fuel being under a high pressure Pressure of, for example, more than 1500 bar in a manifold or feeds rail 12.
  • a manifold 12 From the manifold 12 go from several fuel supply lines 14, which serve to supply fuel to each one injector 16.
  • the injection nozzle 16 protrudes in a manner not shown in a cylinder combustion chamber of a multi-cylinder internal combustion engine, such as a motor vehicle internal combustion engine. It is part of a generally designated 18 injector, which can be used as a preassembled unit in a cylinder block of the internal combustion engine.
  • the injector assembly 18 has a housing assembly 20 with a nozzle housing 22 and a valve housing 24.
  • a housing assembly 20 with a nozzle housing 22 and a valve housing 24.
  • a nozzle housing 22 In the nozzle housing 22 a along a housing axis 26 extending guide bore 28 is formed, in which an elongated nozzle needle 30 is guided axially movable.
  • the nozzle needle 30 At a needle tip 32, the nozzle needle 30 has a closing surface 34 with which it can be brought into tight contact with a needle seat 36 formed on the nozzle housing 22.
  • the fuel outlet from a nozzle hole arrangement 38 is blocked at the end of the nozzle housing 22 projecting into the combustion chamber. Is it, however, lifted from the needle seat 36, ie in the needle opening position, fuel from a formed between the nozzle needle 30 and the peripheral surface of the guide bore 28 annular space 40 on the needle seat 36 over to the nozzle hole arrangement 38 to flow and there are substantially injected under the high pressure or rail pressure standing in the combustion chamber.
  • the nozzle needle 30 is biased by a biasing spring 42 toward its closed position.
  • the biasing spring 42 is housed in a spring chamber 44 formed in the nozzle housing 22. It relies on the one hand via the combustion chamber remote end of the nozzle needle 30 sealing, but axially movable receiving, biting into the valve housing 24 with a biting edge sleeve 46 on the housing assembly 20 and on the other hand via a plugged onto the nozzle needle 30 spring plate 48 on the nozzle needle 30 from.
  • the spring plate 48 is supported on a retaining ring 50 inserted into a circumferential groove of the nozzle needle 30.
  • the spring chamber 44 opens a formed in the housing assembly 20 bore 52, is introduced into the about the relevant fuel supply line 14 substantially under the rail pressure standing fuel. From the spring chamber 44, the fuel passes through the annular space 40 in the region of the needle seat 36. In axial regions in which the nozzle needle 30 rests on the peripheral surface of the guide bore 28 for guidance purposes, the fuel flows past one or more flats 54 of the nozzle needle circumference.
  • a control chamber 58 is delimited, in which a feed channel 62 designed with an inlet throttle 60 opens. Through the inlet channel 62 can fuel from the spring chamber 44 flow into the control chamber 58. Fuel can flow out of the control chamber 58 to a discharge chamber, not shown, via a discharge channel 66, which has an outlet throttle 64.
  • shut-off valve 70 allows to lock the fuel drain to the discharge chamber.
  • the flow areas of the inlet throttle 60 and the outlet throttle 64 are coordinated so that the inflow through the inlet channel 62 is weaker than the outflow through the drain channel 66 and thus a net outflow of fuel results.
  • the following Pressure drop in the control chamber 58 causes the closing force drops below the opening force and the nozzle needle 30 lifts from the needle seat 36.
  • shut-off valve 70 is returned to a closed position. This blocks the fuel drain through the drainage passage 64. Fuel continues to flow from the spring chamber 44 into the control chamber 58 through the inlet passage 62, the pressure in the control chamber 58 rising again. Once the pressure in the control chamber 58 reaches a level at which the closing force is greater than the opening force, the nozzle needle 30 goes to its closed position, which stops the fuel leakage from the nozzle hole assembly 38.
  • bypass channel 74 is provided, by means of which an additional fuel flow into the control chamber 58 can be achieved.
  • the bypass channel 74 branches off from the bore 52 or the spring chamber 44 and is - as well as the inlet channel 62 - fed with fuel which is substantially below the rail pressure.
  • the additional fuel flow through the bypass channel 74 can increase the pressure in the control chamber 58 faster than when only filling through the inlet channel 62 back to the level that is necessary to transfer the nozzle needle 30 from its opening into its closed position. Ultimately, the amount of fuel injected into the combustion chamber can be dosed finer. This can be clearly seen on the basis of the schematic quantity map of FIG.
  • the time t is plotted on the abscissa, during which an electrical actuation of the actuator 68 takes place in the sense of keeping the valve 70 open.
  • the ordinate represents the injected fuel quantity M again.
  • a solid line L1 shows the relationship between activation time and injection quantity in the presence of the bypass channel 74, while the dashed line L2 illustrates this relationship in the absence of a bypass channel.
  • the characteristic L1 is flatter than the characteristic L2. This means that with the same drive time less fuel from the injector 16 exits when the bypass channel 74 is present. The reason for this is that after removal of the energization of the actuator 68 or after closing the valve 70, the nozzle needle 30 longer need in the absence of bypass channel 74 to return from its open position to its closed position, as is the case when an additional Fuel flow through the bypass channel 74 accelerates the needle closing.
  • the injector 16 After closing the valve 70, the injector 16 is therefore still open for a longer time in the absence of bypass channel 74 as with existing bypass channel 74. Accordingly, the total output of fuel in the absence of bypass channel 74 is greater.
  • the shallower characteristic L1 with existing bypass channel 74 makes it possible to finely dose the injected fuel quantity, thus leading to an overall tolerance-less critical injector.
  • the shut-off valve 70 is executed in the embodiment shown here as a so-called double-switching directional control valve whose shut-76 - here a spherical seat element - by means of the actuator 68 in a valve chamber 78 between two end positions and at least one intermediate position is adjustable.
  • the drain passage 66 In the two end positions or valve closing positions of the drain passage 66 is locked against fuel drain from the control chamber 58. In the at least one intermediate position or valve opening position, on the other hand, it is enabled for fuel discharge from the control chamber 58.
  • This configuration of the valve 70 makes it easy to realize a pilot injection and a main injection phase.
  • the shut-off element 76 is moved from a first of the end positions into the second, for the main injection it becomes out of the second End position moved back to the first.
  • the time during which the shut-off element 76 is in each case between the two end positions determines the amount of fuel injected for pre- or main injection.
  • the shut-off element 76 for pre-injection can be moved quickly, ie without a longer intermediate stay from the first to the second end position, so that only little fuel is injected.
  • the shut-off element 76 can be kept in the intermediate position for a certain time, in order to allow the discharge of a correspondingly larger amount of fuel.
  • the actuator 68 must be designed for this purpose as a positioning, which allows positioning of the shutoff 76 in the at least one intermediate position.
  • the valve chamber 78 forms a flow connection between a - with respect to the direction of flow of the fuel - upstream portion 66 'and a downstream portion 66 "of the drainage channel 66.
  • a first valve seat 80 for as The installation of the shut-off element 76 on the first valve seat 80 defines the first of the two end positions mentioned above, the contact with the second valve seat 82 the second end position.
  • the shut-off 76 can not in closer manner be spring biased in the first end position.
  • the bypass channel 74 also opens into the valve chamber 78.
  • the formation of the valve 70 with two opposite valve seats 80, 82 then results in that in the first end position of the shutoff 76, i. in contact with the first valve seat 80, a fuel flow accelerating the filling of the control chamber 58 can flow through the bypass passage 74 into the upstream portion 66 'of the drain passage 66.
  • the drainage channel 66 is designed so that the fuel flowing out of the control chamber 58 kavitiert fuel in the outlet throttle 64. This has the advantage that the fuel drain is independent of the prevailing pressure in the valve chamber 78 and therefore also by a Pressure increase in the valve chamber 78 is not impaired, which can adjust with open valve 70 due to fuel flow through the bypass channel 74.
  • the confluence angle below which the bypass channel 74 opens into the valve chamber 78, can influence the outflow behavior of the fuel.
  • a pointed confluence angle of the bypass passage 74 with respect to the direction of flow of the fuel can lead to good results.
  • the bypass channel 74 further includes a bypass throttle 86, whose design on the one hand with regard to the largest possible fuel flow to the control chamber 58, on the other hand, with regard to the smallest possible leakage flows, which flow off unused via the downstream part 66 '' of the drain channel 66 when the valve 70 is open or the shut-off 76 abuts the valve seat 82.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

The invention relates to an injection assembly for an accumulator fuel-injection system comprising an injection nozzle (16) which projects into a combustion chamber and can be supplied with fuel from a high-pressure fuel distributor (10) via a high-pressure fuel supply route (14, 52, 44, 40) and a nozzle needle (30) which opens and closes the nozzle depending on the pressure in a control chamber (58). The fuel is supplied to the control chamber by a supply channel (62), branching off from the fuel supply route and opening into said chamber and the fuel flows out of the control chamber via an outflow route (66, 78) from said chamber. A downstream section (66') of the outflow route can be shut off in relation to an upstream section (66'), using a shut-off valve (70). The downstream and upstream sections of the outflow route open into a valve chamber (78), in which an adjustable shut-off element is positioned (76). A bypass channel (74) which opens into the outflow route branches off from the fuel supply route, for supplying an additional stream of fuel to the control chamber. In order to minimize the interference to the outflow of the fuel, the mouth of the bypass channel opens into the outflow route in the vicinity of the valve chamber.

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Einspritzanordnung für ein Kraftstoff-Speichereinspritzsystem einer Verbrennungsmaschine nach der im Oberbegriff des Patentanspruchs 1 näher definierten Art.The invention relates to an injection arrangement for a fuel storage injection system of an internal combustion engine according to the closer defined in the preamble of claim 1. Art.

Derartige Einspritzanordnungen sind aus der Praxis hinlänglich bekannt. Kraftstoff-Speichereinspritzsysteme, Common-Rail-Einspritzsysteme, für eine mehrzylindrige Verbrennungsmaschine weisen einen Hochdruck-Kraftstoffverteiler bzw. Rail auf, von dem mehrere Hochdruck-Kraftstoffversor-gungswege zu je einer in einen der Zylinderbrennräume der Verbrennungsmaschine ragenden Einspritzdüse führen.Such injection arrangements are well known in practice. Fuel rail injection systems, common rail injection systems, for a multi-cylinder internal combustion engine include a high-pressure fuel rail, from which a plurality of high-pressure fuel supply paths lead to each projecting into one of the cylinder combustion chambers of the internal combustion engine injector.

Die Kraftstoffeinspritzung in den jeweiligen Brennraum wird mittels einer Düsennadel gesteuert, die die jeweilige Einspritzdüse abhängig vom Druck in einer Steuerkammer öffnet und schließt. Zum Druckaufbau in der Steuerkammer ist ein stets offener Zulaufkanal vorgesehen, durch den unter dem Rail-Druck stehender Kraftstoff vom jeweiligen Kraftstoffversorgungsweg in die Steuerkammer strömen kann. Über einen gesonderten Ablaufweg kann Kraftstoff aus der Steuerkammer abgelassen und so eine Druckentspannung in der Steuerkammer herbeigeführt werden. Durch wahlweises Öffnen und Schließen eines in dem Ablaufweg angeordneten Absperrventils kann das Druckniveau in der Steuerkammer und damit die Position der Düsennadel beeinflußt werden.The fuel injection into the respective combustion chamber is controlled by means of a nozzle needle, which opens and closes the respective injection nozzle depending on the pressure in a control chamber. To build up pressure in the control chamber, an always open inlet channel is provided by the standing under the rail pressure fuel from the respective fuel supply path in the Control chamber can flow. Fuel can be drained out of the control chamber via a separate drainage path and thus a pressure release in the control chamber is brought about. By selectively opening and closing a shut-off valve arranged in the drainage path, the pressure level in the control chamber and thus the position of the nozzle needle can be influenced.

Wird das Ventil geöffnet, fließt Kraftstoff aus der Steuerkammer ab. Der damit einhergehende Druckabfall in der Steuerkammer führt dazu, daß die Düsennadel von einem Sitz an der Einspritzdüse abhebt und es tritt Kraftstoff aus der Einspritzdüse aus. Wird das Ventil wieder geschlossen, erhöht sich durch den über den Zulaufkanal nachströmenden Kraftstoff der Druck in der Steuerkammer wieder. Durch diesen Druckanstieg wird die Düsennadel wieder gegen ihren Sitz gedrückt und verschließt die Einspritzdüse. Der Ablaufweg und der Zulaufkanal sind dabei so gestaltet, daß bei offenem Ablaufweg die Durchflußrate des über den Ablaufweg abfließenden Kraftstoffs größer als die Durchflußrate des durch den Zulaufkanal nachfließenden Kraftstoffs ist, so daß effektiv das Kraftstoffvolumen in der Steuerkammer kleiner wird.When the valve is opened, fuel flows out of the control chamber. The concomitant pressure drop in the control chamber causes the nozzle needle lifts from a seat on the injector and it comes out of the fuel injector. When the valve is closed again, the pressure in the control chamber increases again due to the fuel flowing in via the inlet channel. Due to this increase in pressure, the nozzle needle is pressed against its seat again and closes the injection nozzle. The drainage path and the inlet channel are designed such that when the drainage path is open, the flow rate of the fuel flowing out via the drainage path is greater than the flow rate of the fuel flowing through the inlet channel, so that effectively the fuel volume in the control chamber becomes smaller.

Die Dosiergenauigkeit der eingespritzten Kraftstoffmenge wird wesentlich durch die Geschwindigkeit bestimmt, mit der die Einspritzdüse geöffnet und geschlossen werden kann. Beim Schließen der Düse kann es aufgrund des vergleichsweise kleinen Durchlaßquerschnitts des Zulaufkanals sein, daß Kraftstoff nur in ungenügender Menge nachfließt, um ausreichend schnelle Schließzeiten zu erreichen.The metering accuracy of the injected fuel quantity is essentially determined by the speed with which the injection nozzle can be opened and closed. When closing the nozzle, it may be due to the relatively small passage cross-section of the inlet channel that fuel only inadequate Quantity flows in order to achieve sufficiently fast closing times.

Um dennoch die erlittenen Kraftstoffverluste in der Steuerkammer hinreichend schnell ausgleichen zu können, ist es bekannt, von dem Kraftstoffversorgungsweg einen Bypasskanal abzuzweigen, der in den Ablaufweg mündet. Sofern das Absperrventil geschlossen ist, kann durch diesen Bypasskanal ein zusätzlicher Kraftstoffstrom aus dem Kraftstoffversorgungsweg über einen steuerkammernahen Teil des Ablaufwegs in die Steuerkammer fließen. Es hat sich gezeigt, daß hierdurch höhere Schließgeschwindigkeiten der Düsennadel erzielbar sind.Nevertheless, in order to be able to sufficiently compensate for the fuel losses suffered in the control chamber, it is known to branch off from the fuel supply path a bypass channel which opens into the drainage path. If the shut-off valve is closed, an additional fuel flow from the fuel supply path can flow through this bypass channel via a control chamber near part of the drain path in the control chamber. It has been shown that this higher closing speeds of the nozzle needle can be achieved.

Es hat sich allerdings auch gezeigt, daß das Einmünden des Bypasskanals in den Ablaufweg Störungen des Strömungsverhaltens des Kraftstoffs beim Abfließen aus der Steuerkammer hervorrufen kann. Beispielsweise können unvermeidbare Strömungskanten an der Einmündungsstelle zu Verwirbelungen führen, die letztlich verhindern, daß die zum öffnen der Einspritzdüse erforderliche Kraftstoffmenge mit der gewünschten Schnelligkeit aus der Steuerkammer abfließt. Das verzögerte Öffnen der Einspritzdüse kann sich dann nachteilig auf die Dosiergenauigkeit auswirken.However, it has also been shown that the opening of the bypass channel in the drain path can cause disturbances of the flow behavior of the fuel when flowing out of the control chamber. For example, unavoidable flow edges at the point of interchange can lead to turbulences which ultimately prevent the amount of fuel required to open the injection nozzle from flowing out of the control chamber at the desired speed. The delayed opening of the injection nozzle can then adversely affect the dosing accuracy.

Aus der WO 01/73287 A1 ist bereits ein Einspritzventil bekannt, bei dem eine Kraftstoffleitung zu einer im Ablaufweg ausgebildeten ventilkammer vorgesehen ist. Auf diese Weise kann ein schnelleres Schließen derFrom WO 01/73287 A1 an injection valve is already known in which a fuel line to a in Drain path trained valve chamber is provided. In this way, a faster closing of the

Düsennadel bewirkt werden. Dieses Dokument stellt jedoch lediglich einen Stand der Technik nach Art. 54 (3) EPU i.V. mit Art. 54 (4) EPÜ dar.Nozzle needle be effected. However, this document merely constitutes a prior art under Art. 54 (3) EPC i.V. Art. 54 (4) EPC.

Vorteile der ErfindungAdvantages of the invention

Erfindungsgemäß ist es vorgesehen, daß die Einmündungsstelle des Bypasskanals in den Ablaufweg im Bereich der Ventilkammer liegt. Es hat sich gezeigt, daß durch diese Lokalisierung der Einmündungsstelle unerwünschte Störungen des Strömungsverhaltens des aus der Steuerkammer abfließenden Kraftstoffs sehr gering gehalten werden können. Da im Bereich der Ventilkammer in der Regel ohnehin mit verstärkten Turbulenzen des Kraftstoffstroms gerechnet werden muß, kann der zusätzliche Verwirbelungseffekt der Strömungskanten der Einmündungsstelle gegenüber diesen Turbulenzen in den Hintergrund treten.According to the invention, it is provided that the point of confluence of the bypass channel lies in the drainage path in the region of the valve chamber. It has been found that this localization of the confluence site undesirable Disturbances of the flow behavior of the fuel flowing out of the control chamber can be kept very low. Since increased turbulence of the fuel flow generally has to be expected in the region of the valve chamber anyway, the additional turbulence effect of the flow edges of the point of interchange with respect to these turbulences can take a back seat.

Ist der Bypasskanal offen, fließt Kraftstoff - sofern ein Druckgefälle besteht - aus dem Kraftstoffversorgungsweg über den Bypasskanal in den Ablaufweg und erhöht dort den Druck. Während dieser Effekt beim Schließen der Einspritzdüse erwünscht ist, um die Steuerkammer rascher zu befüllen, kann beim Öffnen der Einspritzdüse der über den Bypasskanal in den Ablaufweg einbiegende Kraftstoffstrom das Abfließen des Kraftstoffs aus der Steuerkammer zum Teil erheblich behindern und so zu einem verzögerten Öffnen der Einspritzdüse führen. Die erfindungsgemäße Lokalisierung der Einmündungsstelle des Bypasskanals hat sich auch diesbezüglich als vorteilhaft erwiesen.If the bypass channel is open, fuel - if there is a pressure gradient - flows from the fuel supply path via the bypass channel into the drainage path and increases the pressure there. While this effect is desirable when closing the injector to fill the control chamber more quickly, when opening the injector, the fuel flow through the bypass passage into the drain path may in some cases significantly hinder the outflow of fuel from the control chamber and so cause retarded opening of the injector to lead. The localization of the junction of the bypass channel according to the invention has also proved to be advantageous in this regard.

Im Bereich der Ventilkammer besteht ausreichende konstruktive Gestaltungsfreiheit, um den Bypasskanal so in den Ablaufweg münden zu lassen, daß derartige Behinderungen des Kraftstoffablaufs möglichst gering gehalten werden können. Der Bypasskanal kann deswegen ohne weiteres stets offen sein.In the area of the valve chamber there is sufficient freedom of design to allow the bypass channel to open into the drainage path so that such obstructions of the fuel flow can be kept as low as possible. The bypass channel can therefore always be open without further ado.

Im Ablaufweg wird stromaufwärts der Ventilkammer in der Regel eine Ablaufdrossel angeordnet sein, mittels der ein gewünschter Durchfluß des ablaufenden Kraftstoffs eingestellt werden kann. Diese Ablaufdrossel weist längs des Ablaufwegs bevorzugt Abstand von der Ventilkammer auf.In the drain path upstream of the valve chamber usually an outlet throttle will be arranged by means of a desired flow of the running fuel can be adjusted. This outlet throttle preferably has a distance from the valve chamber along the outlet path.

Es hat sich gezeigt, daß die Gestaltung des zwischen der Ablaufdrossel und der Ventilkammer liegenden Bereichs des Ablaufwegs von wesentlicher Bedeutung für das Strömungsverhalten des abfließenden Kraftstoffs sein kann. Insbesondere kann durch geeignete Gestaltung dieses Bereichs des Ablaufwegs Kavitation in der Ablaufdrossel bei Kraftstoffablauf aus der Steuerkammer herbeigeführt werden. Kavitation in der Ablaufdrossel hat den Vorteil, daß der Durchfluß durch die Ablaufdrossel unabhängig vom Druck in der Ventilkammer und damit unabhängig von einem etwaigen Kraftstoffzufluß über den Bypasskanal ist.It has been found that the design of the region of the drainage path between the drainage throttle and the valve chamber can be of essential importance for the flow behavior of the outflowing fuel. In particular, by suitable design of this region of the drainage path, cavitation in the outlet throttle can be brought about from the control chamber during fuel drainage. Cavitation in the outlet throttle has the advantage that the flow through the outlet throttle is independent of the pressure in the valve chamber and thus independent of any fuel flow via the bypass channel.

Indem erfindungsgemäß der Bypasskanal in die Ventilkammer mündet und der zwischen der Ablaufdrossel und der Ventilkammer liegende Bereich des Ablaufwegs somit frei von Strömungskanten ist, die durch das Einmünden des Bypasskanals entstehen, kann dieser Bereich des Ablaufwegs gestalterisch leichter im Hinblick auf ein gewünschtes Strömungsverhalten beim Kraftstoffablauf optimiert werden, als es der Fall wäre, wenn der Bypasskanal zwischen der Ablaufdrossel und der Ventilkammer in den Ablaufweg münden würde.By according to the invention, the bypass channel opens into the valve chamber and lying between the outlet throttle and the valve chamber region of the drain path is thus free of flow edges, resulting from the opening of the bypass channel, this area of the drain path can be designed easier optimized design with regard to a desired flow behavior in the fuel flow be, as it would be the case if the bypass channel between the outlet throttle and the valve chamber would open into the drainage path.

Eine bevorzugte Weiterbildung der Erfindung sieht vor, daß das Absperrelement als zwischen zwei gegenüberliegenden Ventilsitzen in der Ventilkammer verstellbares Sitzelement ausgebildet ist, daß an den beiden Ventilsitzen der strom-aufwärtige und der stromabwärtige Abschnitt des Ablaufwegs in die Ventilkammer münden und daß die Einmündungsstelle des Bypasskanals in die Ventilkammer - bezogen auf die Ablaufrichtung des Kraftstoffs - zwischen den beiden Ventilsitzen liegt.A preferred embodiment of the invention provides that the shut-off element as adjustable between two opposite valve seats in the valve chamber Seat element is formed, that open at the two valve seats of the upstream and the downstream portion of the drainage path in the valve chamber and that the point of confluence of the bypass channel in the valve chamber - based on the direction of flow of the fuel - is located between the two valve seats.

Es versteht sich jedoch, daß eine Ausführung des Absperrventils als Kolbenschieberventil oder als Einsitz-Ventil im Rahmen der Erfindung keineswegs ausgeschlossen ist.It is understood, however, that an embodiment of the shut-off valve as a piston valve or as a single-seat valve in the invention is by no means excluded.

Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung, der Zeichnung und den Patentansprüchen entnehmbar.Further advantages and advantageous embodiments of the subject matter of the invention are the description, the drawings and the claims removed.

Zeichnungdrawing

Ein Ausführungsbeispiel der Erfindung wird nachstehend anhand der beigefügten Zeichnung näher erläutert. Es stellen dar

  • Figur 1 eine schematische, ausschnittsweise Darstellung einer Injektorbaugruppe eines Speichereinspritzsystems im Längsschnitt, und
  • Figur 2 schematisch ein Mengenkennfeld der Injektorbaugruppe nach Figur 1.
An embodiment of the invention will be explained below with reference to the accompanying drawings. It represents
  • Figure 1 is a schematic, partial view of an injector assembly of a storage injection system in longitudinal section, and
  • FIG. 2 schematically shows a quantity characteristic diagram of the injector assembly according to FIG. 1.

Beschreibung des AusführungsbeispielsDescription of the embodiment

In Figur 1 ist eine Druckquelle 10 eines ein Common-Rail-Einspritzsystem darstellenden Speichereinspritzsystems angedeutet, die Diesel-Kraftstoff unter einem hohen Druck von beispielsweise mehr als 1500 bar in ein Verteilerrohr bzw. Rail 12 einspeist. Von dem Verteilerrohr 12 gehen mehrere Kraftstoffzufuhrleitungen 14 ab, die zur Kraftstoffversorgung je einer Einspritzdüse 16 dienen. Die Einspritzdüse 16 ragt in nicht näher dargestellter Weise in einen Zylinderbrennraum einer mehrzylindrigen Verbrennungsmaschine, beispielsweise eines Kraftfahrzeug-Verbrennungsmotors. Sie ist Teil einer allgemein mit 18 bezeichneten Injektorbaugruppe, welche als vormontierbare Baueinheit in einen Zylinderblock der Verbrennungsmaschine einsetzbar ist.In FIG. 1, a pressure source 10 of a storage-injection system representing a common-rail injection system is indicated, the diesel fuel being under a high pressure Pressure of, for example, more than 1500 bar in a manifold or feeds rail 12. From the manifold 12 go from several fuel supply lines 14, which serve to supply fuel to each one injector 16. The injection nozzle 16 protrudes in a manner not shown in a cylinder combustion chamber of a multi-cylinder internal combustion engine, such as a motor vehicle internal combustion engine. It is part of a generally designated 18 injector, which can be used as a preassembled unit in a cylinder block of the internal combustion engine.

Die Injektorbaugruppe 18 weist eine Gehäusebaugruppe 20 mit einem Düsengehäuse 22 und einem Ventilgehäuse 24 auf. In dem Düsengehäuse 22 ist eine längs einer Gehäuseachse 26 verlaufende Führungsbohrung 28 ausgebildet, in der eine längliche Düsennadel 30 axial beweglich geführt ist. An einer Nadelspitze 32 weist die Düsennadel 30 eine Schließfläche 34 auf, mit welcher sie in dichte Anlage an einen am Düsengehäuse 22 ausgebildeten Nadelsitz 36 bringbar ist.The injector assembly 18 has a housing assembly 20 with a nozzle housing 22 and a valve housing 24. In the nozzle housing 22 a along a housing axis 26 extending guide bore 28 is formed, in which an elongated nozzle needle 30 is guided axially movable. At a needle tip 32, the nozzle needle 30 has a closing surface 34 with which it can be brought into tight contact with a needle seat 36 formed on the nozzle housing 22.

Wenn die Düsennadel 30 am Nadelsitz 36 anliegt, d.h. sich in Nadelschließstellung befindet, ist der Kraftstoffaustritt aus einer Düsenlochanordnung 38 an dem in den Brennraum ragenden Ende des Düsengehäuses 22 gesperrt. Ist sie dagegen vom Nadelsitz 36 abgehoben, d.h. in Nadelöffnungsstellung, kann Kraftstoff aus einem zwischen der Düsennadel 30 und dem Umfangsmantel der Führungsbohrung 28 gebildeten Ringraum 40 an dem Nadelsitz 36 vorbei zu der Düsenlochanordnung 38 strömen und dort im wesentlichen unter dem Hochdruck bzw. Rail-Druck stehend in den Brennraum gespritzt werden.When the nozzle needle 30 abuts the needle seat 36, ie, is in the needle-closing position, the fuel outlet from a nozzle hole arrangement 38 is blocked at the end of the nozzle housing 22 projecting into the combustion chamber. Is it, however, lifted from the needle seat 36, ie in the needle opening position, fuel from a formed between the nozzle needle 30 and the peripheral surface of the guide bore 28 annular space 40 on the needle seat 36 over to the nozzle hole arrangement 38 to flow and there are substantially injected under the high pressure or rail pressure standing in the combustion chamber.

Die Düsennadel 30 ist durch eine Vorspannfeder 42 in Richtung auf ihre Schließstellung vorgespannt. Die Vorspannfeder 42 ist in einem im Düsengehäuse 22 ausgebildeten Federraum 44 untergebracht. Sie stützt sich einerseits über eine das brennraumferne Ende der Düsennadel 30 dichtend, jedoch axial beweglich aufnehmende, mit einer Beißkante in das Ventilgehäuse 24 beißende Hülse 46 an der Gehäusebaugruppe 20 und andererseits über einen auf die Düsennadel 30 aufgesteckten Federteller 48 an der Düsennadel 30 ab. Der Federteller 48 stützt sich dabei an einem in eine Umfangsnut der Düsennadel 30 eingesetzten Haltering 50 ab.The nozzle needle 30 is biased by a biasing spring 42 toward its closed position. The biasing spring 42 is housed in a spring chamber 44 formed in the nozzle housing 22. It relies on the one hand via the combustion chamber remote end of the nozzle needle 30 sealing, but axially movable receiving, biting into the valve housing 24 with a biting edge sleeve 46 on the housing assembly 20 and on the other hand via a plugged onto the nozzle needle 30 spring plate 48 on the nozzle needle 30 from. The spring plate 48 is supported on a retaining ring 50 inserted into a circumferential groove of the nozzle needle 30.

In den Federraum 44 mündet eine in der Gehäusebaugruppe 20 ausgebildete Bohrung 52, in die über die betreffende Kraftstoffzufuhrleitung 14 im wesentlichen unter dem Rail-Druck stehender Kraftstoff eingeleitet wird. Aus dem Federraum 44 gelangt der Kraftstoff über den Ringraum 40 in den Bereich des Nadelsitzes 36. In Axialbereichen, in denen die Düsennadel 30 am Umfangsmantel der Führungsbohrung 28 zu Führungszwecken anliegt, strömt der Kraftstoff dabei an einer oder mehreren Abflachungen 54 des Düsennadelumfangs vorbei.In the spring chamber 44 opens a formed in the housing assembly 20 bore 52, is introduced into the about the relevant fuel supply line 14 substantially under the rail pressure standing fuel. From the spring chamber 44, the fuel passes through the annular space 40 in the region of the needle seat 36. In axial regions in which the nozzle needle 30 rests on the peripheral surface of the guide bore 28 for guidance purposes, the fuel flows past one or more flats 54 of the nozzle needle circumference.

Zwischen einer brennraumfernen Stirnfläche 56 der Düsennadel 30, der Hülse 46 und dem Ventilgehäuse 24 ist eine Steuerkammer 58 begrenzt, in die ein mit einer Zulaufdrossel 60 ausgeführter Zulaufkanal 62 mündet. Durch den Zulaufkanal 62 kann Kraftstoff aus dem Federraum 44 in die Steuerkammer 58 einströmen. Über einen mit einer Ablaufdrossel 64 ausgeführten Ablaufkanal 66 kann Kraftstoff aus der Steuerkammer 58 zu einem nicht näher dargestellten Entlastungsraum abfließen.Between a combustion chamber-remote end face 56 of the nozzle needle 30, the sleeve 46 and the valve housing 24, a control chamber 58 is delimited, in which a feed channel 62 designed with an inlet throttle 60 opens. Through the inlet channel 62 can fuel from the spring chamber 44 flow into the control chamber 58. Fuel can flow out of the control chamber 58 to a discharge chamber, not shown, via a discharge channel 66, which has an outlet throttle 64.

Ein mittels eines nur schematisch angedeuteten elektromagnetischen oder vorzugsweise piezoelektrischen Stellers 68 betätigbares Absperrventil 70 erlaubt es, den Kraftstoffabfluß zu dem Entlastungsraum zu sperren.An actuatable by means of an only schematically indicated electromagnetic or preferably piezoelectric actuator 68 shut-off valve 70 allows to lock the fuel drain to the discharge chamber.

Durch die Vorspannfeder 42 und die Einwirkung des in der Steuerkammer 58 herrschenden Drucks auf die Nadelstirnfläche 56 wird eine axial zum Brennraum hin gerichtete Schließkraft auf die Düsennadel 30 ausgeübt. Dieser Schließkraft wirkt axial eine Öffnungskraft entgegen, die infolge der Einwirkung des in dem Federraum 44 bzw. dem Ringraum 40 herrschenden Drucks auf eine an der Düsennadel 30 ausgebildete Stufenfläche 72 auf die Düsennadel 30 ausgeübt wird. Befindet sich das Absperrventil 70 in einer geschlossenen Stellung und ist der Kraftstoffabfluß durch den Ablaufkanal 66 somit gesperrt, ist im stationären Zustand die Schließkraft größer als die Öffnungskraft, weshalb die Düsennadel 30 dann ihre Schließstellung einnimmt. Wird das Absperrventil 70 daraufhin geöffnet, fließt Kraftstoff aus der Steuerkammer 58 ab.By the biasing spring 42 and the action of the prevailing in the control chamber 58 pressure on the needle end surface 56 an axially directed toward the combustion chamber closing force is exerted on the nozzle needle 30. This closing force counteracts axially an opening force, which is exerted on the nozzle needle 30 as a result of the action of the pressure prevailing in the spring chamber 44 or the annular space 40 on a step surface 72 formed on the nozzle needle 30. If the shut-off valve 70 is in a closed position and the fuel drain through the drainage channel 66 is thus blocked, the closing force in the stationary state is greater than the opening force, which is why the nozzle needle 30 then assumes its closed position. When the shut-off valve 70 is then opened, fuel flows out of the control chamber 58.

Die Durchflußquerschnitte der Zulaufdrossel 60 und der Ablaufdrossel 64 sind dabei so aufeinander abgestimmt, daß der Zufluß durch den Zulaufkanal 62 schwächer als der Abfluß durch den Ablaufkanal 66 ist und demnach ein Nettoabfluß von Kraftstoff resultiert. Der folgende Druckabfall in der Steuerkammer 58 bewirkt, daß die Schließkraft unter die Öffnungskraft sinkt und die Düsennadel 30 vom Nadelsitz 36 abhebt.The flow areas of the inlet throttle 60 and the outlet throttle 64 are coordinated so that the inflow through the inlet channel 62 is weaker than the outflow through the drain channel 66 and thus a net outflow of fuel results. The following Pressure drop in the control chamber 58 causes the closing force drops below the opening force and the nozzle needle 30 lifts from the needle seat 36.

Soll die Einspritzung beendet werden, wird das Absperrventil 70 wieder in eine geschlossene Stellung gebracht. Dies sperrt den Kraftstoffabfluß durch den Ablaufkanal 64. Durch den Zulaufkanal 62 fließt weiterhin Kraftstoff aus dem Federraum 44 in die Steuerkammer 58, wobei der Druck in der Steuerkammer 58 wieder ansteigt. Sobald der Druck in der Steuerkammer 58 ein Niveau erreicht, bei dem die Schließkraft größer als die Öffnungskraft ist, geht die Düsennadel 30 in ihre Schließstellung, was den Kraftstoffaustritt aus der Düsenlochanordnung 38 stoppt.If the injection is to be terminated, the shut-off valve 70 is returned to a closed position. This blocks the fuel drain through the drainage passage 64. Fuel continues to flow from the spring chamber 44 into the control chamber 58 through the inlet passage 62, the pressure in the control chamber 58 rising again. Once the pressure in the control chamber 58 reaches a level at which the closing force is greater than the opening force, the nozzle needle 30 goes to its closed position, which stops the fuel leakage from the nozzle hole assembly 38.

Um schnelle Nadelschließgeschwindigkeiten zu erreichen, muß für einen raschen Druckanstieg in der Steuerkammer 58 nach Schließen des Absperrventils 70 gesorgt werden. Der Durchfluß durch den Zulaufkanal 62 ist vergleichsweise gering. Eine Vergrößerung des Durchflußquerschnitts der Zulaufdrossel 60 kommt aber nur in sehr engen Grenzen in Betracht, weil ansonsten die Gefahr besteht, daß bei geöffnetem Absperrventil 70 der Nettoabfluß an Kraftstoff nicht mehr ausreicht, um die Düsennadel 30 zu öffnen.To achieve fast needle closing speeds, a rapid increase in pressure in the control chamber 58 must be provided after closure of the check valve 70. The flow through the inlet channel 62 is comparatively low. An increase in the flow area of the inlet throttle 60 but comes only within very narrow limits into consideration, because otherwise there is a risk that when the shut-off valve 70 is open, the net outflow of fuel is no longer sufficient to open the nozzle needle 30.

Es ist deshalb ein Bypasskanal 74 vorgesehen, mittels dessen ein zusätzlicher Kraftstoffzufluß in die Steuerkammer 58 erzielbar ist. Der Bypasskanal 74 zweigt von der Bohrung 52 oder vom Federraum 44 ab und wird - genauso wie der Zulaufkanal 62 - mit Kraftstoff gespeist, der im wesentlichen unter dem Rail-Druck steht.It is therefore a bypass channel 74 is provided, by means of which an additional fuel flow into the control chamber 58 can be achieved. The bypass channel 74 branches off from the bore 52 or the spring chamber 44 and is - as well as the inlet channel 62 - fed with fuel which is substantially below the rail pressure.

Der zusätzliche Kraftstoffzufluß durch den Bypasskanal 74 läßt den Druck in der Steuerkammer 58 schneller als bei alleiniger Befüllung durch den Zulaufkanal 62 wieder auf das Niveau ansteigen, das nötig ist, um die Düsennadel 30 aus ihrer Öffnungs- in ihre Schließstellung zu überführen. Letztlich kann so die in den Brennraum eingespritzte Kraftstoffmenge feiner dosiert werden. Dies läßt sich anhand des schematischen Mengenkennfelds der Figur 2 gut erkennen.The additional fuel flow through the bypass channel 74 can increase the pressure in the control chamber 58 faster than when only filling through the inlet channel 62 back to the level that is necessary to transfer the nozzle needle 30 from its opening into its closed position. Ultimately, the amount of fuel injected into the combustion chamber can be dosed finer. This can be clearly seen on the basis of the schematic quantity map of FIG.

In Figur 2 ist an der Abszisse die Zeitdauer t aufgetragen, während der eine elektrische Ansteuerung des Stellers 68 im Sinne eines Offenhaltens des Ventils 70 erfolgt. Die Ordinate gibt die eingespritzte Kraftstoffmenge M wieder. Mit durchgezogener Linie L1 ist der Zusammenhang zwischen Ansteuerzeit und Einspritzmenge bei Vorhandensein des Bypasskanals 74 dargestellt, während die gestrichelte Linie L2 diesen Zusammenhang bei fehlendem Bypasskanal veranschaulicht.In FIG. 2, the time t is plotted on the abscissa, during which an electrical actuation of the actuator 68 takes place in the sense of keeping the valve 70 open. The ordinate represents the injected fuel quantity M again. A solid line L1 shows the relationship between activation time and injection quantity in the presence of the bypass channel 74, while the dashed line L2 illustrates this relationship in the absence of a bypass channel.

Man erkennt, daß die Kennlinie L1 flacher als die Kennlinie L2 ist. Dies bedeutet, daß bei gleicher Ansteuerzeit weniger Kraftstoff aus der Einspritzdüse 16 austritt, wenn der Bypasskanal 74 vorhanden ist. Der Grund hierfür ist, daß nach Wegnahme der Bestromung des Stellers 68 bzw. nach Schließen des Ventils 70 die Düsennadel 30 bei fehlendem Bypasskanal 74 länger braucht, um aus ihrer Öffnungsstellung in ihre Schließstellung zurückzukehren, als es der Fall ist, wenn ein zusätzlicher Kraftstoffstrom durch den Bypasskanal 74 das Nadelschließen beschleunigt.It can be seen that the characteristic L1 is flatter than the characteristic L2. This means that with the same drive time less fuel from the injector 16 exits when the bypass channel 74 is present. The reason for this is that after removal of the energization of the actuator 68 or after closing the valve 70, the nozzle needle 30 longer need in the absence of bypass channel 74 to return from its open position to its closed position, as is the case when an additional Fuel flow through the bypass channel 74 accelerates the needle closing.

Nach Schließen des Ventils 70 ist die Einspritzdüse 16 bei fehlendem Bypasskanal 74 somit noch für eine längere Zeit offen als bei vorhandenem Bypasskanal 74. Dementsprechend ist auch der Gesamtausstoß an Kraftstoff bei fehlendem Bypasskanal 74 größer. Die flachere Kennlinie L1 bei vorhandenem Bypasskanal 74 erlaubt es, die eingespritzte Kraftstoffmenge feiner zu dosieren, und führt so zu einem insgesamt toleranzunkritischeren Injektor.After closing the valve 70, the injector 16 is therefore still open for a longer time in the absence of bypass channel 74 as with existing bypass channel 74. Accordingly, the total output of fuel in the absence of bypass channel 74 is greater. The shallower characteristic L1 with existing bypass channel 74 makes it possible to finely dose the injected fuel quantity, thus leading to an overall tolerance-less critical injector.

Das Absperrventil 70 ist bei dem hier gezeigten Ausführungsbeispiel als sogenanntes doppeltschaltendes Wegeventil ausgeführt, dessen Absperrelement 76 - hier ein kugelförmiges Sitzelement - mittels des Stellers 68 in einer Ventilkammer 78 zwischen zwei Endstellungen und mindestens einer Zwischenstellung verstellbar ist.The shut-off valve 70 is executed in the embodiment shown here as a so-called double-switching directional control valve whose shut-76 - here a spherical seat element - by means of the actuator 68 in a valve chamber 78 between two end positions and at least one intermediate position is adjustable.

In den beiden Endstellungen bzw. Ventilschließstellungen ist der Ablaufkanal 66 gegen Kraftstoffabfluß aus der Steuerkammer 58 gesperrt. In der mindestens einen Zwischenstellung bzw. Ventilöffnungsstellung ist er dagegen für Kraftstoffabfluß aus der Steuerkammer 58 freigegeben.In the two end positions or valve closing positions of the drain passage 66 is locked against fuel drain from the control chamber 58. In the at least one intermediate position or valve opening position, on the other hand, it is enabled for fuel discharge from the control chamber 58.

Diese Ausbildung des Ventils 70 macht es leicht, eine Voreinspritzungs- und eine Haupteinspritzungsphase zu realisieren. Zur Voreinspritzung wird das Absperrelement 76 aus einer ersten der Endstellungen in die zweite bewegt, zur Haupteinspritzung wird es aus der zweiten Endstellung in die erste zurückbewegt. Die Zeit, während der sich das Absperrelement 76 dabei jeweils zwischen den beiden Endstellungen aufhält, bestimmt die zur Vor- bzw. Haupteinspritzung eingespritzte Kraftstoffmenge. Insbesondere kann das Absperrelement 76 zur Voreinspritzung zügig, also ohne längeren Zwischenaufenthalt aus der ersten in die zweite Endstellung bewegt werden, so daß nur wenig Kraftstoff ausgespritzt wird. Zur Haupteinspritzung kann das Absperrelement 76 eine gewisse Zeit in der Zwischenstellung gehalten werden, um den Austritt einer entsprechend größeren Kraftstoffmenge zu ermöglichen.This configuration of the valve 70 makes it easy to realize a pilot injection and a main injection phase. For pre-injection, the shut-off element 76 is moved from a first of the end positions into the second, for the main injection it becomes out of the second End position moved back to the first. The time during which the shut-off element 76 is in each case between the two end positions, determines the amount of fuel injected for pre- or main injection. In particular, the shut-off element 76 for pre-injection can be moved quickly, ie without a longer intermediate stay from the first to the second end position, so that only little fuel is injected. For main injection, the shut-off element 76 can be kept in the intermediate position for a certain time, in order to allow the discharge of a correspondingly larger amount of fuel.

Es versteht sich, daß der Steller 68 hierzu als Positioniersteller ausgelegt sein muß, der eine Positionierung des Absperrelements 76 auch in die mindestens eine Zwischenstellung ermöglicht.It is understood that the actuator 68 must be designed for this purpose as a positioning, which allows positioning of the shutoff 76 in the at least one intermediate position.

Die Ventilkammer 78 bildet eine Strömungsverbindung zwischen einem - bezogen auf die Ablaufrichtung des Kraftstoffs - stromaufwärtigen Teil 66' und einem stromabwärtigen Teil 66" des Ablaufkanals 66. An der Einmündungsstelle des stromabwärtigen Teils 66" in die Ventilkammer 78 ist ein erster Ventilsitz 80 für das als Kugel- oder Flachsitzelement ausgebildete Absperrelement 76 gebildet, an der Einmündungsstelle des stromaufwärtigen Teils 66' ein zweiter Ventilsitz 82. Die Anlage des Absperrelements 76 am ersten Ventilsitz 80 definiert die erste der beiden oben angesprochenen Endstellungen, die Anlage am zweiten Ventilsitz 82 die zweite Endstellung. Das Absperrelement 76 kann in nicht näher dargestellter Weise in die erste Endstellung federvorgespannt sein.The valve chamber 78 forms a flow connection between a - with respect to the direction of flow of the fuel - upstream portion 66 'and a downstream portion 66 "of the drainage channel 66. At the point of confluence of the downstream portion 66" in the valve chamber 78 is a first valve seat 80 for as The installation of the shut-off element 76 on the first valve seat 80 defines the first of the two end positions mentioned above, the contact with the second valve seat 82 the second end position. The shut-off 76 can not in closer manner be spring biased in the first end position.

Der Bypasskanal 74 mündet ebenfalls in die Ventilkammer 78. Die Ausbildung des Ventils 70 mit zwei gegenüberliegenden Ventilsitzen 80, 82 hat dann zur Folge, daß in der ersten Endstellung des Absperrelements 76, d.h. in Anlage am ersten Ventilsitz 80, ein die Befüllung der Steuerkammer 58 beschleunigender Kraftstoffstrom durch den Bypasskanal 74 in den stromaufwärtigen Teil 66' des Ablaufkanals 66 fließen kann.The bypass channel 74 also opens into the valve chamber 78. The formation of the valve 70 with two opposite valve seats 80, 82 then results in that in the first end position of the shutoff 76, i. in contact with the first valve seat 80, a fuel flow accelerating the filling of the control chamber 58 can flow through the bypass passage 74 into the upstream portion 66 'of the drain passage 66.

In der zweiten Endstellung kann ein solcher Kraftstoffstrom jedoch nicht fließen. Der Zugang zum stromaufwärtigen Teil 66' des Ablaufkanals 66 wird durch die Anlage des Absperrelements 76 am zweiten Ventilsitz 82 versperrt. Dies muß allerdings nicht problematisch sein, denn wenn das Absperrelement 76 die zweite Endstellung nur nach Voreinspritzungen einnimmt, kann der Kraftstoffzufluß allein durch den Zulaufkanal 62 genügen, um die Kraftstoffverluste der Steuerkammer 58 hinreichend rasch auszugleichen. Während einer Voreinspritzung werden nämlich in der Regel nur geringe Kraftstoffmengen aus der Steuerkammer abfließen. Diese können auch ohne Unterstützung durch den Bypasskanal 74 rasch ersetzt werden.In the second end position, however, such a fuel flow can not flow. The access to the upstream part 66 'of the drainage channel 66 is blocked by the abutment of the shut-off element 76 on the second valve seat 82. However, this need not be problematic, because if the shut-off element 76 occupies the second end position only after pre-injections, the fuel flow alone through the inlet channel 62 can be sufficient to compensate for the fuel losses of the control chamber 58 sufficiently quickly. During a pre-injection, only small amounts of fuel will usually flow out of the control chamber. These can be quickly replaced even without assistance by the bypass channel 74.

Der Ablaufkanal 66 ist so gestaltet, daß der aus der Steuerkammer 58 abfließende Kraftstoff in der Ablaufdrossel 64 kavitiert. Dies hat den Vorteil, daß der Kraftstoffabfluß unabhängig von dem in der Ventilkammer 78 herrschenden Druck ist und deshalb auch durch eine Druckerhöhung in der Ventilkammer 78 nicht beeinträchtigt wird, die sich bei offenem Ventil 70 bedingt durch Kraftstoffzufluß über den Bypasskanal 74 einstellen kann.The drainage channel 66 is designed so that the fuel flowing out of the control chamber 58 kavitiert fuel in the outlet throttle 64. This has the advantage that the fuel drain is independent of the prevailing pressure in the valve chamber 78 and therefore also by a Pressure increase in the valve chamber 78 is not impaired, which can adjust with open valve 70 due to fuel flow through the bypass channel 74.

Für das Auftreten von Kavitation ist nicht nur die Gestaltung der Ablaufdrossel 64 selbst verantwortlich. Wesentlichen Einfluß hat auch der stromabwärts an die Ablaufdrossel 64 unmittelbar anschließende Kanalabschnitt. Deshalb ist die Ablaufdrossel 64 hier nicht unmittelbar vor der Ventilkammer 78 angeordnet, sondern im Abstand von dieser. Zwischen der Ablaufdrossel 64 und der Ventilkammer 78 ist ein sogenannter Diffusor 84 ausgebildet, der die Kavitationsentstehung in der Ablaufdrossel 64 fördert. Würde der Bypasskanal 74 in den Diffusor 84 münden, würden Strömungskanten an der Einmündungsstelle die Kavitationsentstehung stören, wenn nicht sogar verhindern. Weil aber der Bypasskanal 74 im Abstand von dem Diffusor 84 in die Ventilkammer 78 mündet, können solche Störungen des Kavitationsverhaltens vermieden werden.For the occurrence of cavitation, not only the design of the outlet throttle 64 is responsible. Substantial influence also has the downstream of the outlet throttle 64 immediately adjacent channel section. Therefore, the outlet throttle 64 is not arranged directly in front of the valve chamber 78, but at a distance from this. Between the outlet throttle 64 and the valve chamber 78, a so-called diffuser 84 is formed, which promotes the formation of cavitation in the outlet throttle 64. If the bypass channel 74 opened into the diffuser 84, flow edges at the point of confluence would disturb, if not prevent, the formation of cavitation. However, because the bypass channel 74 opens at a distance from the diffuser 84 in the valve chamber 78, such disturbances of cavitation behavior can be avoided.

Auch der Einmündungswinkel, unter dem der Bypasskanal 74 in die Ventilkammer 78 einmündet, kann das Abflußverhalten des Kraftstoffs beeinflussen. Insbesondere ein spitzer Einmündungswinkel des Bypasskanals 74 bezüglich der Ablaufrichtung des Kraftstoffs kann zu guten Ergebnissen führen.Also, the confluence angle, below which the bypass channel 74 opens into the valve chamber 78, can influence the outflow behavior of the fuel. In particular, a pointed confluence angle of the bypass passage 74 with respect to the direction of flow of the fuel can lead to good results.

Der Bypasskanal 74 enthält ferner eine Bypassdrossel 86, deren Gestaltung einerseits im Hinblick auf einen möglichst großen Kraftstoffzufluß zur Steuerkammer 58, andererseits im Hinblick auf möglichst geringe Leckströme ausgelegt ist, die über den stromabwärtigen Teil 66'' des Ablaufkanals 66 ungenutzt abfließen, wenn das Ventil 70 offen ist oder das Absperrelement 76 am Ventilsitz 82 anliegt.The bypass channel 74 further includes a bypass throttle 86, whose design on the one hand with regard to the largest possible fuel flow to the control chamber 58, on the other hand, with regard to the smallest possible leakage flows, which flow off unused via the downstream part 66 '' of the drain channel 66 when the valve 70 is open or the shut-off 76 abuts the valve seat 82.

Claims (7)

  1. Injection arrangement for a fuel-accumulator injection system of an internal combustion engine, with an injection nozzle (16) which projects into a combustion space of the internal combustion engine and can be supplied with fuel from a high-pressure fuel distributor (10) of the accumulator injection system via a high-pressure fuel supply path (14, 52, 44, 40), and with a nozzle needle (30) opening and closing the injection nozzle (16) as a function of the pressure in a control chamber (58), an inflow duct (62), which branches off from the fuel supply path (14, 52, 44, 40), issuing into the control chamber (58) for the introduction of fuel into the control chamber (58), and an outflow path (66, 78), which emanates from the control chamber (58), allowing the fuel to flow out of the control chamber (58), a shut-off valve (70) further being provided, by means of which a portion (66") of the outflow path (66, 78) which is downstream in relation to the outflow direction of the fuel can be shut-off with respect to an upstream portion (66') of the outflow path (66, 78), further the downstream and the upstream portion (66', 66") of the outflow path (66, 78) issuing into a valve chamber (78), in which a shut-off element (76) of the shut-off valve (70) is arranged adjustably, and a bypass duct (74), which issues into the outflow path (66, 78), being branched off from the fuel supply path (14, 52, 44, 40) for the introduction of an additional fuel stream into the control chamber (58), characterized in that the point of issue of the bypass duct (74) into the outflow path (66, 78) lies in the region of the valve chamber (78), the shut-off element (76) being designed as a seat element adjustable between two opposite valve seats (80, 82) in the valve chamber (78), in that the upstream and the downstream portion (66', 66' ') of the outflow path (66, 78) issue into the valve chamber (78) at the two valve seats (80, 82), and in that the point of issue of the bypass duct (74) into the valve chamber (78) lies between the two valve seats (80, 82) in relation to the outflow direction of the fuel.
  2. Injection arrangement according to Claim 1, characterized in that an outflow throttle (64), arranged upstream of the valve chamber (78) in the outflow path (66, 78), is arranged at a distance from the valve chamber (78) along the outflow path (66, 78).
  3. Injection arrangement according to Claim 2, characterized in that the outflow path (66, 78) is designed, particularly in its region (84) lying between the outflow throttle (64) and the valve chamber (78), in such a way that cavitation occurs in the outflow throttle (64) when fuel flows out of the control chamber (58).
  4. Injection arrangement according to one of Claims 1 to 3, characterized in that the bypass duct (74) is constantly open.
  5. Injection arrangement according to one of Claims 1 to 4, characterized in that the shut-off valve (70) is actuated piezoelectrically.
  6. Injection arrangement according to one of Claims 1 to 5, characterized by its use as a component of a common-rail injector.
EP01929262A 2000-05-18 2001-03-24 Accumulator fuel-injection system for an internal combustion engine Expired - Lifetime EP1287254B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10024702 2000-05-18
DE10024702A DE10024702A1 (en) 2000-05-18 2000-05-18 Fuel injector for storage injection system includes bypass channel injecting into outlet path at valve chamber
PCT/DE2001/001159 WO2001088366A1 (en) 2000-05-18 2001-03-24 Accumulator fuel-injection system for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1287254A1 EP1287254A1 (en) 2003-03-05
EP1287254B1 true EP1287254B1 (en) 2006-05-24

Family

ID=7642737

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01929262A Expired - Lifetime EP1287254B1 (en) 2000-05-18 2001-03-24 Accumulator fuel-injection system for an internal combustion engine

Country Status (8)

Country Link
US (1) US6814302B2 (en)
EP (1) EP1287254B1 (en)
JP (1) JP4625228B2 (en)
KR (1) KR20020019539A (en)
CZ (1) CZ298185B6 (en)
DE (2) DE10024702A1 (en)
ES (1) ES2261403T3 (en)
WO (1) WO2001088366A1 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10131640A1 (en) * 2001-06-29 2003-01-16 Bosch Gmbh Robert Fuel injector with injection course shaping through switchable throttle elements
DE10131618A1 (en) * 2001-06-29 2003-01-23 Bosch Gmbh Robert Fuel injector with switchable control room inlet
US20050087624A1 (en) * 2002-05-10 2005-04-28 Siemens Aktiengesellschaft Injector for fuel injection
US7278593B2 (en) * 2002-09-25 2007-10-09 Caterpillar Inc. Common rail fuel injector
US7331329B2 (en) * 2002-07-15 2008-02-19 Caterpillar Inc. Fuel injector with directly controlled highly efficient nozzle assembly and fuel system using same
ITBO20020497A1 (en) * 2002-07-30 2004-01-30 Magneti Marelli Powertrain Spa FUEL INJECTOR FOR AN INTERNAL COMBUSTION ENGINE WITH HYDRAULIC PIN ACTUATION
DE10254749A1 (en) * 2002-11-23 2004-06-17 Robert Bosch Gmbh Fuel injection device with a 3/3-way control valve for injection course shaping
DE102004053421A1 (en) * 2004-11-05 2006-05-11 Robert Bosch Gmbh Fuel injector
DE102005036780A1 (en) * 2005-08-02 2007-02-08 L'orange Gmbh Fuel injection system for an internal combustion engine
DE102006012078A1 (en) 2005-11-15 2007-05-16 Bosch Gmbh Robert Fuel injection device for an internal combustion engine with direct fuel injection
DE102005060274A1 (en) * 2005-12-16 2007-06-21 Robert Bosch Gmbh Fuel injector
DE102006049883A1 (en) * 2006-10-23 2008-04-24 Robert Bosch Gmbh Fuel injecting valve for internal-combustion engine, has housing with inlet connected with side of draining throttle over inlet throttle, where side is turned away from chamber that is connected with inlet over another inlet throttle
JP4618257B2 (en) * 2007-01-17 2011-01-26 株式会社デンソー Fuel injection valve
US9163597B2 (en) * 2008-10-01 2015-10-20 Caterpillar Inc. High-pressure containment sleeve for nozzle assembly and fuel injector using same
EP2290219B1 (en) * 2009-08-26 2013-01-23 Delphi Technologies Holding S.à.r.l. Three-way control valve
EP2295784B1 (en) * 2009-08-26 2012-02-22 Delphi Technologies Holding S.à.r.l. Fuel injector
US20110048379A1 (en) * 2009-09-02 2011-03-03 Caterpillar Inc. Fluid injector with rate shaping capability
DE102009045560A1 (en) 2009-10-12 2011-04-14 Robert Bosch Gmbh Fuel injector, particularly common-rail-fuel injector, has actuator module which is arranged in holding body that is clamped with nozzle body by insertion of throttle plate, where nozzle needle is longitudinally guided to nozzle body
JP5240181B2 (en) * 2009-12-24 2013-07-17 株式会社デンソー Fuel injection device
US8505514B2 (en) * 2010-03-09 2013-08-13 Caterpillar Inc. Fluid injector with auxiliary filling orifice
US8448878B2 (en) 2010-11-08 2013-05-28 Caterpillar Inc. Fuel injector with needle control system that includes F, A, Z and E orifices
DE102011077464A1 (en) * 2011-06-14 2012-12-20 Robert Bosch Gmbh Fuel injector for an internal combustion engine
DE102011082666A1 (en) 2011-09-14 2013-03-14 Robert Bosch Gmbh Fuel injector, particularly for common-rail-injection system, has nozzle needle, which closes nozzle hole assembly in nozzle body in closed position, where nozzle needle is arranged in high-pressure chamber in nozzle body
US8690075B2 (en) 2011-11-07 2014-04-08 Caterpillar Inc. Fuel injector with needle control system that includes F, A, Z and E orifices
DE102011090060A1 (en) 2011-12-28 2013-07-04 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102012220025A1 (en) 2012-06-29 2014-01-02 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102012221624A1 (en) 2012-11-27 2014-05-28 Robert Bosch Gmbh Fuel injection valve for internal combustion engines
DE102012223199A1 (en) 2012-12-14 2014-06-18 Robert Bosch Gmbh Fuel injection valve for internal combustion engine, has control chamber that is connected to pressure chamber via opening formed in inlet throttle which is closed by longitudinal movement of shift sleeve
DE102012224398A1 (en) 2012-12-27 2014-07-03 Robert Bosch Gmbh Fuel injection valve for injecting fuel into combustion chambers of high-speed self-ignition engine of vehicle, has switching case cooperating with sealing seat placed at inner side of valve piece to open and close inlet throttle
JP6376988B2 (en) * 2014-09-02 2018-08-22 株式会社デンソー Fuel injection valve

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073287A1 (en) * 2000-03-28 2001-10-04 Siemens Aktiengesellschaft Injection valve with bypass throttle
WO2001088635A2 (en) * 2000-05-16 2001-11-22 Ericsson Inc Methods, systems, wireless terminals, and computer program products for calibrating an electronic clock using a base reference signal and a non-continuous calibration reference signal having greater accuracy than the base reference signal

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4605166A (en) * 1985-02-21 1986-08-12 Stanadyne, Inc. Accumulator injector
AU666331B2 (en) * 1991-08-26 1996-02-08 Interlocking Buildings Pty Ltd Injecting apparatus
DE4406901C2 (en) * 1994-03-03 1998-03-19 Daimler Benz Ag Solenoid valve controlled injector for an internal combustion engine
GB9606803D0 (en) * 1996-03-30 1996-06-05 Lucas Ind Plc Injection nozzle
JPH11173234A (en) * 1997-12-12 1999-06-29 Denso Corp Fuel injection valve
GB9805854D0 (en) * 1998-03-20 1998-05-13 Lucas France Fuel injector
DE19813983A1 (en) * 1998-03-28 1999-09-30 Bosch Gmbh Robert Valve for controlling liquids
GB2336627A (en) 1998-04-24 1999-10-27 Lucas Ind Plc Fuel injector with biassing spring in blind bore in valve needle
DE19827267A1 (en) * 1998-06-18 1999-12-23 Bosch Gmbh Robert Fuel injection valve for high pressure injection with improved control of the fuel supply
JP2000018119A (en) * 1998-06-30 2000-01-18 Isuzu Motors Ltd Fuel injection system
EP0976924B1 (en) * 1998-07-31 2003-09-17 Siemens Aktiengesellschaft Injector with a servo valve
GB2340610A (en) * 1998-08-18 2000-02-23 Lucas Ind Plc Needle lift sensor
DE19837890B4 (en) 1998-08-20 2004-06-03 Siemens Ag Fuel injection valve for internal combustion engines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073287A1 (en) * 2000-03-28 2001-10-04 Siemens Aktiengesellschaft Injection valve with bypass throttle
WO2001088635A2 (en) * 2000-05-16 2001-11-22 Ericsson Inc Methods, systems, wireless terminals, and computer program products for calibrating an electronic clock using a base reference signal and a non-continuous calibration reference signal having greater accuracy than the base reference signal

Also Published As

Publication number Publication date
EP1287254A1 (en) 2003-03-05
WO2001088366A1 (en) 2001-11-22
ES2261403T3 (en) 2006-11-16
DE50109882D1 (en) 2006-06-29
US6814302B2 (en) 2004-11-09
US20020134853A1 (en) 2002-09-26
CZ200282A3 (en) 2003-06-18
JP2003533636A (en) 2003-11-11
CZ298185B6 (en) 2007-07-18
JP4625228B2 (en) 2011-02-02
DE10024702A1 (en) 2001-11-22
KR20020019539A (en) 2002-03-12

Similar Documents

Publication Publication Date Title
EP1287254B1 (en) Accumulator fuel-injection system for an internal combustion engine
EP1287253B1 (en) Injection assembly for an accumulator fuel-injection system of an internal combustion engine
EP0657643B1 (en) Fuel injection device for internal combustion engines
DE19910589C2 (en) Injection valve for an internal combustion engine
DE19823937B4 (en) Servo valve for fuel injection valve
EP2206912B1 (en) Fuel injector
DE10007175C2 (en) Injection valve for injecting fuel into an internal combustion engine
DE102009055267A1 (en) Pressure compensated fuel injector with bypass and minimized valve volume
DE2833431A1 (en) FUEL INJECTION NOZZLE
EP1923564A2 (en) Fuel injector
DE19946766C2 (en) Injector for an internal combustion engine with direct injection
DE10059124A1 (en) Common-rail fuel-injection system, for automotive vehicle internal combustion engine, has first and second distributor slide valves controlling opening of injectors
DE102015226070A1 (en) fuel injector
EP1541859B1 (en) Injection valve
EP2022975B1 (en) Injector
DE102007005382A1 (en) Injector i.e. common rail injector, for injecting fuel e.g. diesel, into combustion chamber of internal-combustion engine, has control valve for varying control pressure, and fuel tank connected with nozzle chamber via throttle channel
DE10131642A1 (en) Fuel injector with variable control room pressurization
EP2019198B1 (en) Injector
DE10015740C2 (en) Injection valve for injecting fuel into an internal combustion engine
EP1709321B1 (en) Fuel injection valve for internal combustion engines
DE29814934U1 (en) Fuel injection valve for internal combustion engines
DE102009027187A1 (en) fuel injector
EP1404964B1 (en) Fuel injector with a switchable control chamber feed
DE102007001365A1 (en) Common rail injector, for injecting e.g. petrol, into combustion chamber of internal combustion engine, has switching chamber connected with low pressure area by connecting channel that is closed and opened by control valve
DE10042231B4 (en) Injection valve for injecting fuel into an internal combustion engine and method for controlling the opening and closing process of a nozzle needle of an injection valve

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021218

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: STOECKLEIN, WOLFGANG

Inventor name: SCHMIEDER, DIETMAR

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI

17Q First examination report despatched

Effective date: 20050125

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060524

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

REF Corresponds to:

Ref document number: 50109882

Country of ref document: DE

Date of ref document: 20060629

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060920

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2261403

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070323

Year of fee payment: 7

Ref country code: GB

Payment date: 20070323

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20070329

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070606

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080324

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080324

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170529

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180326

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109882

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331