WO2001087548A1 - Dispositif servant a deduire la forme du sol pour robot mobile pourvu de jambes - Google Patents

Dispositif servant a deduire la forme du sol pour robot mobile pourvu de jambes Download PDF

Info

Publication number
WO2001087548A1
WO2001087548A1 PCT/JP2001/004118 JP0104118W WO0187548A1 WO 2001087548 A1 WO2001087548 A1 WO 2001087548A1 JP 0104118 W JP0104118 W JP 0104118W WO 0187548 A1 WO0187548 A1 WO 0187548A1
Authority
WO
WIPO (PCT)
Prior art keywords
foot
floor
reaction force
floor reaction
posture
Prior art date
Application number
PCT/JP2001/004118
Other languages
English (en)
French (fr)
Inventor
Toru Takenaka
Tadaaki Hasegawa
Takashi Matsumoto
Original Assignee
Honda Giken Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Giken Kogyo Kabushiki Kaisha filed Critical Honda Giken Kogyo Kabushiki Kaisha
Priority to US10/276,742 priority Critical patent/US6920374B2/en
Priority to DE60141016T priority patent/DE60141016D1/de
Priority to EP01932116A priority patent/EP1291136B1/en
Publication of WO2001087548A1 publication Critical patent/WO2001087548A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/024Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members specially adapted for moving on inclined or vertical surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the present invention relates to an apparatus for estimating the floor shape of a legged mobile robot, and more specifically, to an apparatus for estimating the shape of a floor on which a legged mobile ⁇ -bottom touches the ground, and the like.
  • the present invention relates to a device capable of controlling a floor reaction force.
  • Examples of the technology for estimating the floor shape include the technology previously proposed by the present applicant in Japanese Patent Application Laid-Open No. Hei 6-316658 and the paper Robot development ”(Journal of the Robotics Society of Japan, Vol. 14, No. 4, May 1996) is known.
  • the foot portion has a three-layer structure of the upper surface portion of the foot, the cushion portion, and the bottom of the sole.
  • Potentiometers are provided at the four corners of the foot, and an inclinometer for detecting the absolute inclination of the upper surface of the foot is provided.
  • Spikes are provided at the four corners of the sole.
  • foot is used to mean a foot.
  • the foot of the free leg lands, the foot attempts to follow the floor by a tracing operation based on information from the potentiometer and the inclinometer.
  • the spikes at the four corners of the sole are in contact with the floor, and the sole is parallel to the floor.
  • the floor is calculated by geometric calculation. Height and inclination are detected.
  • posture stabilization control for manipulating the floor reaction force is performed until the foot moves to the floor by the following operation. I could't do that.
  • soft soles such as rubber were occupied on the soles to increase the grip, estimation errors would increase.
  • an object of the present invention is to estimate the floor shape, which was difficult with the prior art, and more specifically, to simultaneously determine the inclination of the contact surface of each foot and the height difference between both contact surfaces, in other words, complexly, To provide an apparatus for estimating the floor shape of a legged mobile robot, which enables accurate estimation.
  • the present applicant previously disclosed in Japanese Patent Application Laid-Open No. H10-2777969, the posture inclination of a legged mobile robot was detected, and a compensation total floor reaction force model around a target total floor reaction force center point was detected.
  • the position of the foot is determined so as to rotate by a predetermined angle around the target total floor reaction force center point and around the desired foot floor reaction force center point, and We have proposed a technology that enables walking in a stable posture not only on a wide area but also on floors with local inclinations and protrusions.
  • the second object of the present invention is to correct the foot trajectory (pattern) based on the estimation result of the floor shape, so that the actual floor reaction force that cannot be completely removed by the technique proposed earlier.
  • a leg-type transfer designed to eliminate the steady-state error caused by the floor reaction force error due to the floor shape deviation. It is an object of the present invention to provide a floor shape estimation device for a mobile robot.
  • At least the upper body is connected to the upper body via a first joint, and the distal end of the upper body is connected via a second joint.
  • a plurality of legs having feet to be connected are provided, and a compliance mechanism is provided which is deformed in response to a floor reaction force acting from a floor surface contacting the feet, and at least the foot with respect to the upper body.
  • a floor shape estimating device for a legged mobile robot comprising: joint driving means for detecting the actual position and posture and following the target position and posture of the foot, and driving the joint.
  • Inclination detecting means for detecting an inclination of the foot, based on the actual position and orientation of the foot and / or the target position and orientation of the foot and the detected inclination, in a walking environment including a floor surface on which the foot touches the ground.
  • Position and posture of the foot A foot position / posture calculating means for the walking environment to be calculated; a deformation position / posture of the foot in the walking environment to which the compliance mechanism is deformed by a floor reaction force acting from the floor; Foot position / posture calculating means calculated using the mechanical compliance model obtained by the transformation, and the shape (estimation) of each floor surface on which the foot touches the ground based on the calculated deformed position / posture of the foot Floor shape estimated value calculation to calculate floor shape estimated value indicating the nth foot floor inclination (deviation) and their relative positional relationship (estimated inter-leg floor inclination (deviation), or estimated inter-leg floor height difference (deviation)) Means.
  • the model described above includes a first model (foot foot mechanism compliance model) that describes the floor reaction force acting on each foot (each foot) and the resulting change in the position and orientation of the foot. And a second model (two-leg mechanism compliance model) that describes the floor reaction force acting on the desired total floor reaction force center point and the resulting change in the relative position between the feet. .
  • first model foot foot mechanism compliance model
  • second model two-leg mechanism compliance model
  • the floor shape estimated value calculating means is configured to include a filter for removing a high frequency component.
  • the apparatus is configured to include a correction unit that corrects the target position and orientation of the foot based on the calculated floor shape estimated value.
  • a gait generation for generating a gait of the mouth robot including at least a motion pattern including a target position and orientation of the foot of the robot and a target pattern of a total floor reaction force acting on the robot.
  • Means a desired foot floor reaction force for determining a desired foot floor reaction force center point as an action center point on the foot when the generated total floor reaction force of the gait is distributed to each of the feet.
  • a center point determining means an actual floor reaction force detecting means for detecting an actual floor reaction force acting on the foot, and the detected actual floor reaction force being around the calculated target foot floor reaction force center point. Calculating a moment to act, and determining a rotation amount for rotating the foot based on at least the calculated moment.
  • Foot rotation amount correction means for correcting the foot rotation amount
  • foot position / posture correction means for correcting the target position / posture so that the foot position / posture rotates based on the corrected foot rotation amount.
  • a gait generation for generating a gait of the mouth robot including at least a motion pattern including a target position and orientation of the foot of the robot and a target pattern of a total floor reaction force acting on the robot.
  • Means a desired foot floor reaction force for determining a desired foot floor reaction force center point as an action center point on the foot when the generated total floor reaction force of the gait is distributed to each of the feet.
  • Foot rotation amount determination means, and the correction means corrects the foot rotation amount based on the calculated floor shape estimated value.
  • the position and orientation of the foot is rotated around the determined target foot floor reaction force center point or the vicinity thereof based on the corrected foot rotation amount.
  • a foot position / posture correcting means for correcting the target position / posture.
  • the foot position / posture correcting means rotates the foot position / posture around the determined target foot floor reaction force center point or its vicinity based on the determined foot rotation amount.
  • the configuration is such that the target position and orientation are corrected.
  • the floor reaction force moment acting on the foot is subtracted from the total floor reaction moment actually acting on the robot or the total floor reaction moment actually acting on the robot. And calculating at least one of the moments obtained as a result of the calculation, and at least a foot moving amount determining unit that determines a moving amount for moving the foot in accordance with the calculated moment. The position and orientation of the foot are corrected based on the determined foot rotation and the determined movement. This makes it possible to more appropriately control the total floor reaction force, which is particularly important for the posture control, in addition to the effects described above.
  • the foot position / posture correcting means is configured to further correct the target position / posture based on the posture deviation of the robot.
  • the posture of the robot can be controlled more stably.
  • a posture stabilization compensation total floor reaction force moment to be added to the total floor reaction force target pattern is obtained, and the foot rotation amount determining means or the foot movement amount determining means is at least: The amount of rotation and the amount of movement or the amount of movement of the foot are determined based on the detected actual floor reaction force and the determined posture stabilization compensation total floor reaction camoment.
  • the posture stabilization compensation total floor reaction force moment is obtained based on at least the inclination deviation of the robot.
  • the posture stabilizing ability can be further improved.
  • the foot rotation amount determination means and / or the foot movement amount determination means may be configured so that the posture stabilization compensation total floor anti-chamoment is distributed to each of the plurality of legs. It was configured to determine the amount of rotation and / or movement of the foot.
  • the loads on the plurality of legs can be appropriately distributed, and the pressure distribution on the floor surface does not locally act excessively.
  • a gait generating means for generating a gait of the robot, comprising an interlocking pattern including at least a target position and orientation of the foot of the robot, and a target trajectory pattern of a total floor reaction force acting on the robot.
  • a posture stabilizing compensation total floor reaction force calculating means for calculating a total floor reaction force for stabilizing the posture of the robot; a foot actual floor reaction force detecting means for detecting an actual floor reaction force acting on the foot ,
  • floor reaction force distribution means for distributing the total floor reaction force of the desired gait and the compensation total floor reaction force, and the correction means comprises: a floor reaction force of the distributed desired gait and a compensation floor.
  • the target foot position / posture is configured to be corrected based on a reaction force, the detected foot actual floor reaction force, and the calculated floor shape estimated value.
  • the posture stabilization compensation total floor reaction force is determined based on at least the inclination deviation of the robot.
  • FIG. 1 is a schematic diagram showing a legged mobile robot to which a floor shape estimation device according to one embodiment of the present invention is applied, more specifically, a bipedal walking robot as a whole.
  • FIG. 2 is an explanatory side view showing a foot structure of the legged mobile robot shown in FIG.
  • FIG. 3 is a block diagram showing details of a control unit of the legged mobile robot shown in FIG.
  • FIG. 4 shows a control device for a legged mobile robot proposed above and one of the present invention.
  • FIG. 2 is a block diagram functionally showing the configuration and operation of the floor type estimating device for a legged moving robot according to the embodiment.
  • FIG. 5 is an explanatory diagram showing an example of an exercise pattern when the legged mobile robot shown in FIG. 1 walks on level ground.
  • FIG. 6 is an explanatory diagram showing a locus on the floor surface of a locus of a desired total floor reaction force center point (a desired ZMP) corresponding to the motion pattern of FIG.
  • a desired ZMP desired total floor reaction force center point
  • FIG. 7 is a time chart of a locus of a desired total floor reaction force center point (a desired ZMP) corresponding to the motion pattern of FIG.
  • FIG. 8 is a time chart of a desired first foot floor reaction force center point trajectory set so as to satisfy a predetermined condition corresponding to the exercise pattern of FIG.
  • FIG. 9 is a time chart of a desired second foot floor reaction force center point trajectory set so as to satisfy a predetermined condition corresponding to the movement pattern of FIG.
  • FIG. 10 is a flow chart showing the operation of the previously proposed legged mobile robot controller, as in FIG.
  • FIG. 11 is a flow chart of FIG. 10, which is used to calculate the compensating angle of the two legs in the flow chart.
  • FIG. 9 is an explanatory diagram showing a situation in which actual foot floor reaction forces are acting on the first foot and the second foot during the period.
  • FIG. 12 is an explanatory diagram showing the setting of the target total floor reaction force in the situation shown in FIG.
  • FIG. 13 is an explanatory diagram showing distribution of target foot floor reaction forces in the situation shown in FIG.
  • FIG. 14 is an explanatory diagram showing a compensating total floor reaction force moment in the situation shown in FIG.
  • FIG. 15 is an explanatory diagram showing a normal vector V of a plane that includes each foot floor reaction force center point and is perpendicular to the horizontal plane in the situation shown in FIG.
  • FIG. 16 shows the situation when the target foot floor reaction force center point is rotated around the target total floor reaction force center point (target ZMP) by a predetermined angle of 0 dbV in the situation shown in Fig. 11.
  • FIG. FIG. 17 is an explanatory diagram showing a state in which each foot is rotated by a predetermined angle 0 n X, ⁇ ny around the front-rear axis and the left-right axis in the situation shown in FIG. You.
  • FIG. 18 is a block diagram showing the arithmetic processing of the composite compliance operation determining unit of FIG.
  • FIG. 19 is a block diagram showing the arithmetic processing of the compensating total floor reaction force moment distributor shown in FIG.
  • FIG. 20 is a time chart showing an example of setting distribution weight variables for operating the two-leg compensation angle and the like of the compensating total floor reaction force moment distributor shown in FIG.
  • FIG. 21 is an explanatory diagram showing the posture of the robot for explaining the setting of the distribution weight variable of the compensating total floor reaction force moment distributor of FIG. 20.
  • FIG. 22 is an explanatory diagram showing the posture of the robot for explaining the setting of the distribution weight variable of the compensating total floor reaction moment distributor as in FIG. 21.
  • FIG. 23 is an explanatory diagram showing a two-leg compensation moment V-direction component M dm dd b V when distribution weights for operating the two-leg compensation angle are determined under predetermined conditions.
  • FIG. 24 is a block diagram showing the calculation processing of the two-leg compensation angle determination unit shown in FIG.
  • FIG. 25 is a block diagram showing the arithmetic processing of the compensation angle determination unit for each foot shown in FIG.
  • FIG. 26 is an explanatory diagram for describing the arithmetic processing of the corrected target foot position / posture calculation unit with mechanical deformation compensation shown in FIG. 18;
  • FIG. 27 is an explanatory diagram, similar to FIG. 26, for explaining the arithmetic processing of the corrected target foot position / posture calculation unit with mechanical deformation compensation shown in FIG.
  • FIG. 28 is a subroutine flow chart showing the work of determining the two-legged compensation angle in the flow chart of FIG.
  • FIG. 29 is an explanatory diagram similar to FIG. 16 showing a modified example of the previously proposed control device, and is an explanatory diagram showing another example of the operation of correcting the foot position.
  • FIG. 30 is a block diagram similar to FIG. 18, showing the configuration of a floor shape estimation device for a legged mobile robot according to one embodiment of the present invention.
  • FIG. 31 is an explanatory diagram of definitions used when the apparatus shown in FIG. 30 estimates a floor shape.
  • FIG. 32 is an explanatory diagram of definitions similarly used when the apparatus shown in FIG. 30 estimates a floor shape.
  • FIG. 33 is a block diagram functionally showing the processing of the floor shape estimator shown in FIG.
  • FIG. 34 is a block diagram functionally showing the processing of the mechanism compliance model of the floor shape estimator shown in FIG. 33.
  • FIG. 35 is a block diagram functionally showing the processing of the mechanism compliance model of the floor shape estimator shown in FIG. 33 in the same manner.
  • FIG. 36 is an explanatory diagram for explaining the divergence of the foot floor inclination deviation estimated value in one embodiment of the present invention.
  • FIG. 37 is a flowchart showing the processing of the foot floor inclination deviation estimation interruption unit according to one embodiment of the present invention.
  • FIG. 38 is a time chart illustrating the processing of FIG.
  • FIG. 39 is an explanatory diagram for explaining the processing of FIG. 37.
  • FIG. 40 is a flow chart showing the processing of the inter-leg floor inclination deviation estimation interruption unit according to one embodiment of the present invention.
  • FIG. 41 is a time chart for explaining the processing of FIG.
  • FIG. 42 is a block diagram similar to FIG. 30, showing a configuration of a floor shape estimation device of a legged mobile robot according to a second embodiment of the present invention.
  • FIG. 43 is an explanatory diagram of definitions used in the second embodiment shown in FIG.
  • FIG. 44 is a block diagram functionally showing the processing of the floor inclination deviation estimating unit between both legs of the floor shape estimator in the second embodiment.
  • FIG. 45 is a block diagram functionally showing the processing of the foot floor inclination deviation estimating unit of the floor shape estimator in the second embodiment.
  • FIG. 46 is an explanatory diagram showing another example of a sensor used in the floor shape estimation device of the legged mobile robot according to the first and second embodiments.
  • FIG. 47 is an explanatory diagram showing still another example of the sensor used in the floor shape estimation device of the legged mobile robot according to the first and second embodiments.
  • a biped robot is taken as an example of a legged mobile robot.
  • FIG. 1 is a schematic diagram showing a legged mobile robot to which the floor shape estimating apparatus according to this embodiment is applied, more specifically, a bipedal walking robot as a whole.
  • a biped walking robot (hereinafter referred to as “robot”) 1 has six joints on each of the left and right legs (leg links) 2 (each joint is separated for convenience of understanding). Driven by an electric motor). The six joints are, in order from the top, the joints for rotation (rotation) of the legs (rotation) of the crotch (lumbar) 10 R, 10 L (R on the right, L on the left.
  • a foot (foot) 22 R, 22 L is attached, and an upper body (base) 24 is provided at the top.
  • a control unit 26 (described later) composed of a microcomputer is stored inside.
  • the hip joint (or hip joint) is from joints 1 OR (L), 12 R (L), and 14 R (L)
  • the ankle joint (ankle joint) is joints 18 R (L), 20 R ( L).
  • the hip and knee joints are connected by thigh links 28R and 28L, and the knee joint and ankle joint are connected by crus links 30R and 30L.
  • "*" indicates multiplication as an operation on a scalar and outer product as an operation on a vector.
  • the position and speed of the body 24 described later in this specification mean a predetermined position of the body 24, specifically, the position of a representative point such as the center of gravity of the body 24 and the moving speed thereof. I do.
  • a well-known 6-axis force sensor 34 is attached below the ankle joint, and the three-directional components Fx, Fy, Fz of the force and the three-directional components Mx, My of the moment are attached.
  • Mz output signals indicating the presence or absence of landing on the foot and the floor reaction force (ground load).
  • An inclination sensor 36 is installed on the body 24, and outputs a signal corresponding to the inclination with respect to the Z axis (vertical direction (gravity direction)) and its angular velocity.
  • the electric motor of each joint is provided with a low encoder and outputs a signal indicating the amount of rotation.
  • a spring mechanism 38 is provided above the foot 22 R (L), and a sole elastic body 40 made of rubber or the like is affixed to the sole to comp.
  • the license mechanism 42 is configured.
  • the spring mechanism 38 includes a rectangular guide member (not shown) attached to the foot 22 R (L), an ankle joint 18 R (L), and a 6-axis force sensor 3. And a piston-like member (not shown) that is attached to the guide member so as to be finely movable in the guide member via an elastic material.
  • the foot 22 R (L) indicated by a solid line in the figure indicates a state when no floor reaction force is applied.
  • the panel mechanism 38 and the sole elastic body 40 bend in the compliance mechanism 42, and the foot moves to the position and orientation indicated by the dotted line in the figure.
  • This structure is important not only to alleviate landing impact but also to enhance controllability. The details are described in the above-mentioned Japanese Patent Application Laid-Open No. 5-305584, and a detailed description thereof will be omitted.
  • a joystick 44 is provided at an appropriate position of the robot 1 so that the robot 1 which is traveling straight ahead can be turned from outside to the gait, if necessary. It is configured to allow you to enter requests.
  • FIG. 3 is a block diagram showing details of the control unit 26, which is composed of a micro-combination.
  • outputs of the tilt sensor 36 and the like are converted into digital values by an AZD converter 50, and the output is sent to the RAM 54 via the bus 52.
  • the output of an encoder arranged adjacent to each electric motor is input into the RAM 54 via the counter 56.
  • first and second arithmetic units 60 and 62 each including a CPU.
  • the first arithmetic unit 60 is a floor to which the robot 1 is grounded as described later.
  • a joint angle displacement command is calculated based on the gait stored in the ROM 64 and transmitted to the RAM 54 as described later.
  • the second arithmetic unit 62 reads the finger and the detected actual value from the RAM 54, calculates a control value necessary for driving each joint, and obtains a DZA converter 66 and a servo amplifier. Output to the electric motor that drives each joint via.
  • the floor shape estimating device for a legged mobile robot is generally an improvement of the technology described in Japanese Patent Application Laid-Open No. Hei 6-31658 previously proposed by the present applicant. . More specifically, based on the technology described in Japanese Patent Application Laid-Open No. H10-2777969 previously proposed by the present applicant, Japanese Patent Application Laid-Open No. Hei 6-31669 It is adapted while expanding the method of the described technology.
  • ZMP Zero Moment Point
  • the floor shape estimating device of the legged mobile robot at least the control deviation of the total floor reaction force moment (or the control error of each foot floor reaction force around the target foot floor reaction force center point).
  • the floor shape more specifically, the floor inclination deviation between the legs is estimated based on the control deviation of the force moment).
  • the leg compensation angle is corrected based on the estimated value.
  • the floor shape, more specifically, the floor floor inclination deviation is estimated based on at least the control deviation of each foot floor reaction force moment around the target foot floor reaction force center point.
  • each foot compensation angle is modified based on the estimated value as needed. As a result, even when both legs are in support, The difference can be accurately estimated, and each foot compensation angle can be corrected.
  • a mechanism compliance model representing a relationship between a floor reaction force and a deformation of a leg (leg link) 2 by modeling the compliance mechanism 42 described above.
  • the present applicant uses the above-described compliance mechanism 42 in another proposed technique (the technique described in Japanese Patent Application Laid-Open No. 5-305586) and also uses The required restoration moment demand is obtained by detecting the body inclination, and the foot trajectory (pattern) is set so that the actual total floor reaction force moment component around the target total floor reaction force center point (target ZMP) matches. ) Was corrected to raise and lower each foot.
  • control is effective for large-scale (wide-area) slopes and undulations that change slowly over long distances, but cannot adequately cope with local slopes and steps.
  • the present applicant further cancels an unexpected floor reaction force moment by using the compliance mechanism 42 described above in another proposed technology (the technology described in Japanese Patent Application Laid-Open No. 5-305584). Control that drives the ankle joint 18 R (L) and 2 OR (L) in the direction was also proposed.
  • Japanese Patent Laid-Open Publication No. 69 In order to avoid such control interference, Japanese Patent Laid-Open Publication No. 69, the floor reaction force is appropriately controlled when the posture becomes unstable due to unexpected changes in floor shape including local irregularities and inclination.
  • the floor shape estimating apparatus for a legged mobile robot according to the embodiment of the present invention is based on the technology described in the above-mentioned Japanese Patent Application Laid-Open No. H10-2776969, and for convenience of understanding, The technology described in the above-mentioned Japanese Patent Application Laid-Open No. 10-2777969 will be described.
  • the technology described in the publication of Japanese Patent Application Laid-Open No. H10-2776969 will be referred to as “composite compliance control”.
  • FIG. 4 is a block diagram functionally showing the configuration and operation of the composite compliance control device.
  • “Gait” is different from the general definition in robotics and is used to refer to the combination of the target movement pattern and the floor reaction force pattern.
  • partial information such as “ZMP locus only” may be used as the floor anti-birth day. Therefore, the term “gait generator” is not used for devices that output only the target motion pattern and do not output information about the floor reaction force pattern.
  • the floor reaction force acting on the nth leg is called the nth foot floor reaction force (n: 1 or 2; the same applies hereinafter).
  • the sum of the floor reaction forces acting on all legs is called the total floor reaction force. (In robot engineering, it is generally called the floor reaction force. Power ”).
  • the foot floor reaction force is expressed by the point of action and the force and moment applied to it, and there are infinite combinations of expressions for the same foot floor reaction force. Among them, there is a notation in which the moment component excluding the component around the vertical axis is 0 and the action point is on the sole.
  • the point of action in this expression is herein referred to as the foot floor reaction force center point (referred to as the “ground contact pressure center point” in Japanese Patent Application Laid-Open No. Hei 6-79657, which was separately proposed by the applicant).
  • the total floor reaction force is expressed by the point of action, the force applied to it, and the moment of force.
  • the moment component excluding the component around the vertical axis is 0 and the action point is on the floor surface.
  • the point of action in this expression is here called the total floor reaction force center point.
  • the “floor surface” may be a virtual floor surface described in Japanese Patent Application Laid-Open No. 5-318430 proposed by the present applicant.
  • the target value of the total floor reaction force is called the target total floor reaction force.
  • the desired total floor reaction force is generally a total floor reaction force that is dynamically balanced with the desired movement pattern. Therefore, the desired total floor reaction force center point usually coincides with the desired ZMP.
  • target ZMP the target value of ZMP described above is referred to as target ZMP.
  • the target ZMP is uniquely obtained unless the vertical force component of the resultant force is zero.
  • target Z MP the term “target Z MP” is sometimes used to make it easier to understand, but strictly speaking, there are many places that should be called the target total floor reaction force center point.
  • the target value of each foot floor reaction force is referred to as a target foot floor reaction force. However, this is different from the desired total floor reaction force. Even if the desired exercise pattern is determined, the desired foot floor reaction force is not uniquely determined.
  • the total floor reaction force acting on the actual robot is called the actual total floor reaction force.
  • Each foot floor reaction force acting on the actual robot is called an actual foot floor reaction force.
  • the composite compliance control device includes a gait generator 100, and the gait generator 100 generates and outputs a desired gait.
  • the desired gait as defined above, is the desired exercise pattern and the desired floor reaction force pattern, more specifically, the desired body position / posture trajectory, the desired foot position / posture trajectory, and the desired total floor reaction force center point.
  • (Target ZMP) orbit and target total floor reaction force trajectory (or pattern).
  • the target floor reaction force cover includes the target total floor reaction force center point trajectory as described above. (If the mechanism deformation compensation described below is not performed, the target floor reaction force center point is the target total floor reaction force center point. The trajectory alone may be used).
  • the desired total floor reaction force output by the gait generator 100 is a total floor reaction force that dynamically balances with the desired motion pattern. Therefore, the desired total floor reaction force center point coincides with the desired ZMP.
  • FIG. 5 shows an example of a target movement pattern when the robot 1 walks on flat ground.
  • the corresponding trajectory on the floor of the target ZMP trajectory is shown in Fig. 6, and the time chart is shown in Fig. 7.
  • the foot that remains in contact with the floor during this gait is called the “first foot”, and the other foot is called the “second foot”.
  • this device is provided with a desired floor reaction force distributor 102, and the desired floor reaction force distributor 102 includes a desired total floor reaction force center point (a desired ZMP) and a desired foot.
  • the position and orientation are the main inputs, and the desired foot floor reaction force center point is determined and output.
  • the gait generator 100 can control the gait parameters (for example, the time of both legs support and the target landing position of the swing leg foot) and the time and time of the gait (for example, Information such as the time is 0. lsec from the beginning of the two-leg support period).
  • the desired floor reaction force distributor 102 sets the desired foot floor reaction force center point to satisfy the following conditions.
  • the target center point of the first foot floor reaction force is equal to the target center point of the total floor reaction force.
  • Figure 8 shows the time chart of the target 1st floor floor reaction force center point trajectory that satisfies these conditions
  • Figure 9 shows the time chart of the target 2nd floor floor reaction force center point trajectory.
  • the vertical projection point from the ankle (joint 18 R (L), 20 R (L)) to the foot 22 R (L), more specifically, the vertical projection point to the sole is shown.
  • the front direction of the foot is the positive direction of the X axis
  • the left direction of the foot is the positive direction of the Y axis, as shown in Fig. 1.
  • the desired floor reaction force distributor 102 also determines and outputs each desired foot floor reaction force, although it is incidental.
  • the target foot floor reaction force is necessary for the deflection compensation of the compliance mechanism 42.
  • Targets set as above using the following formulas Targets corresponding to each foot floor reaction force center point When each foot floor reaction force is determined, the condition that the resultant force of each target foot floor reaction force must match the target total floor reaction force is satisfied.
  • Target total floor reaction force * (distance between target second foot floor reaction force center point and target ZMP) / (distance between target first foot floor reaction force center point and target second foot floor reaction force center point)
  • Target total floor reaction force * (Distance between target first foot floor reaction force center point and target ZMP)
  • Z (Distance between target first foot floor reaction force center point and target second foot floor reaction force center point)
  • this apparatus is provided with a posture stabilization control calculation unit 104, and the posture stabilization control calculation unit 104 estimates the state of the robot 1 based on the sensor information, and Calculate the floor reaction force.
  • the posture stabilization control calculation unit 104 estimates the state of the robot 1 based on the sensor information, and Calculate the floor reaction force.
  • the force and moment necessary to restore the robot to the desired position and posture are obtained, and the target total floor reaction force center point (target ZMP) is calculated. It must be additionally generated as an action point. This additional force and moment is called the total floor reaction force.
  • the moment component of the compensating total floor reaction force is called the compensating total floor reaction force moment.
  • the target gait of the legged mobile robot receives a reaction force other than the floor reaction force from the environment, and this is called, for example, a target object reaction force. It may be extended as follows. That is, the resultant of the inertial force, gravity generated by the target motion pattern, and the reaction force of the target object is dynamically obtained, and the moment acting on a certain point on the floor surface is calculated excluding the component around the vertical axis. If it is zero, that point may be set as the target ZMP again.
  • Robot 1 is a completely rigid body and the displacement controller allows the actual joint displacement to completely follow the target joint displacement
  • the robot in the entirety caused by the deflection of the compliance mechanism 42 Perturbative movement of position and orientation can be decomposed into the following six degrees of freedom.
  • Modes 4 and 5 are generated when the compliance mechanism 42 bends under shear forces in the front-rear and left-right directions. Since the compliance mechanism 42 is manufactured so as to have high rigidity in the shear direction, this shaking is extremely small, and there is almost no adverse effect on walking.
  • Mode 3 and Mode 6 have no direct relation to the description here, so the control for Mode 1 and Mode 2 will be described.
  • the control for Mode 1 and Mode 2 is extremely important because without it, the robot will almost always fall over.
  • the manipulated variable for controlling Mode 1 is the moment component about the front-rear axis (X-axis) of the total floor reaction force.
  • the manipulated variable for controlling Mode 2 is the moment component around the left and right axis (Y axis) of the total floor reaction force to be compensated. Therefore, only the front-to-back axial moment component and the left-right axial moment component of the compensating total floor reaction force component need be obtained. Other components are not used in this embodiment (and the second embodiment), and thus may be 0.
  • the moment component of the compensating total floor reaction force is referred to as “compensating total floor reaction force moment Mdmd”. Is called the total floor reaction force moment Mdmd).
  • the forward direction of the robot is set to the X axis
  • the left lateral direction is set to the Y axis
  • the upward direction is set to the Z axis
  • the point on the floor just below the ankle of the first foot is set as the origin.
  • the coordinate system is called the “support leg coordinate system”, and unless otherwise specified, position, force and moment shall be expressed in this coordinate system.
  • the X component of Mdmd is described as Mdmd x
  • the Y component is described as Mdmd y
  • the Z component is described as Mdmd z.
  • the inclination deviation of the body 24 ie, actual body inclination-target body inclination
  • the X component of 0 err is S errx
  • the Y component is S erry
  • the time derivative of these is (d 0 errx / dt), ( ⁇ ⁇ erry / dt).
  • Mdmd x and Mdmd y are determined, for example, by the following control rule.
  • Mdmdx -Kthx ⁇ errx-Kwx (d ⁇ errx I dt)
  • Mdmdy -thy erry erry-Kwy (d0 erry I dt)
  • K th x, K th y, K w x, and K w y are body tilt stabilization control gains.
  • the composite compliance operation determination unit described later works to match the actual total floor reaction force with the resultant force of the target total floor reaction force and the compensation total floor reaction force.
  • this device is provided with actual foot floor reaction force detectors 108, and the actual foot floor reaction force detectors 108 are each actually driven by a six-axis force sensor 34.
  • the reaction force (the resultant force is the actual floor reaction force) is detected.
  • the relative position and orientation of each foot 22 R (L) with respect to the coordinate system fixed to the body 24 is calculated.
  • the detected value of the 6-axis force sensor 34 is subjected to coordinate conversion, the actual floor reaction force of each foot expressed in the coordinate system fixed to the body is calculated, and then converted to the supporting leg coordinate system.
  • This device is equipped with a robot geometry model (inverse kinematics calculation unit) 110.
  • the robot geometry model 110 satisfies the body position and posture and the foot position and posture when they are input. Calculate each joint displacement. When the degree of freedom of the joint per leg is 6 as in the robot 1 in this embodiment, each joint displacement is uniquely obtained.
  • the formula of the inverse kinematics solution is directly obtained, and the body position
  • the joint displacement can be obtained simply by substituting the foot position and posture. That is, the robot geometric model 110 inputs the target body position / posture and the corrected target foot position / posture trajectory (corrected target foot position / posture trajectory with mechanical deformation compensation) corrected by the composite compliance operation determination unit, From them, the joint displacement commands (values) of 12 joints (1 OR (L), etc.) are calculated.
  • This device has a displacement controller 112 (same as the second arithmetic unit 62 described above), and the displacement controller 112 has a robot geometric model (inverse kinematics calculation unit) 110.
  • the calculated joint displacement commands (values) are used as target values to control the displacement of the 12 joints of robot 1.
  • This device includes the above-described composite compliance operation determination section 114, and the composite compliance operation determination section 114 corrects the desired foot position / posture trajectory so as to satisfy the following two requirements.
  • the actual total floor reaction force is calculated as the total force of the compensated total floor reaction force (moment M dmd) output from the posture stabilization control calculation unit 104 and the target total floor reaction force. Let them follow.
  • To control only the robot's posture inclination only the actual total floor reaction force horizontal moment component around the target total floor reaction force center point is made to follow the compensated total floor reaction force moment M d md d.
  • Requirement 2 In order to secure the grounding of each foot, minimize the absolute value of the actual foot floor reaction force moment around the target center point of each foot floor reaction force as much as possible.
  • the device is initialized in S10, the process proceeds to S14 via S12, and waits for a timer interrupt.
  • Timer interrupts occur every 5 Oms, that is, the control cycle is 50 ms.
  • SI6 to judge whether or not the gait is switched, that is, the switching of the supporting leg. If not, proceed to S22.If affirmative, proceed to S18 and proceed to timer t.
  • the gait parameters are composed of exercise parameters and floor reaction force parameters (ZMP orbit parameters).
  • the process proceeds to S22, where the instantaneous value of the desired gait is determined.
  • instantaneous value means a value for each control cycle
  • the instantaneous target gait value is composed of a desired body position / posture, a desired foot position / posture, and a desired ZMP position.
  • posture means “direction” in the X, ⁇ , and Z spaces.
  • a desired foot floor reaction force center point is obtained. This is performed as described in the description of the target floor reaction force distributor. Specifically, as shown in FIG. 8 and FIG. 9, this is performed by obtaining the value of the set desired foot floor reaction force center point locus at the current time t.
  • the composite compliance operation determination unit 114 will be described.
  • actual foot floor reaction forces are acting on the first foot 22R (L) and the second foot 22L (R) during the two-leg support period as shown in Fig. 11.
  • the vector Fn act represents the force component of the n-th foot floor reaction force.
  • the vector Mn act represents the moment component of the n-th foot floor reaction force.
  • the direction of the vector Mn act indicates that a clockwise element acting on the direction is acting from the floor to the foot.
  • the desired total floor reaction force at this moment is as shown in FIG.
  • the desired total floor reaction force moment vector Ms umr ef at the desired total floor reaction force center point (target ZMP) is vertical.
  • the target ZMP is the horizontal component of the desired total floor reaction camoment. Because it is 0).
  • the vector Fn r e f represents the force component of the desired n-th foot floor reaction force.
  • the vector Mn r e f represents the moment component of the desired n-th foot floor reaction force.
  • the expression of the direction of the vector Mnref is the same as that of Mnact.
  • the above-mentioned posture stabilization control calculation unit 104 calculates a compensation total floor reaction force moment Mdmd based on the detected body inclination deviation values 0 errx and ⁇ erry of the robot 1.
  • the vertical axis component of the compensated total floor anti-coordinate Mdmd is zero. Since the swing of the body position is not controlled, the force component (F dmd) of the compensating total floor reaction force is also zero.
  • FIG. 14 shows the compensation total floor reaction force moment Mdmd corresponding to this state.
  • target ZMP target total floor reaction force center point
  • the horizontal component of the desired total floor reaction force moment Ms u mr e f is zero. Therefore, the horizontal component of the actual total floor reaction force moment around the target ZMP should follow the horizontal component of Mdmd in order to restore the front, rear, left and right posture inclinations.
  • the composite compliance operation determination unit 114 corrects the position and orientation of the foot so as to satisfy the following requirements as much as possible.
  • Requirement 1 The horizontal (X, Y axis) component of the actual total floor reaction force moment around the target total floor reaction force center point (target ZMP) is used to stabilize and control the posture inclination of the robot. Compensates the horizontal component of the total floor reaction force moment Mdmd.
  • Requirement 2 In order to ensure that each foot touches the ground, minimize the absolute value of each actual foot floor reaction cam around the target center of each floor floor reaction force as much as possible.
  • the correction of the position and orientation of the foot is performed as follows.
  • V is shown in Figure 15.
  • This rotation angle of 0 db v is called a double leg compensation angle.
  • a vector whose start point is Q 1 and whose end point is Q 1 ′ is a vector Q 1 Q 1 ′.
  • a vector whose start point is Q 2 and whose end point is Q 2 ′ is a vector Q 2 Q 2 ′.
  • Fig. 16 shows Q ⁇ and Q 2 '.
  • the target 1st foot is translated (almost up and down) by the vector Q 1 Q ⁇ without changing the posture.
  • the target second foot is changed to the vector Q 2 Q 2 without changing the posture.
  • the relationship between the amount of compensation operation and the amount of change in the actual floor reaction force generated by the compensation operation has the following favorable characteristics.
  • Property 1 and Property 2 indicate that these operations are independent, and Property 3 indicates that these operations are linear.
  • FIG. 18 is a block diagram showing the arithmetic processing of the composite compliance operation determining unit 114. The processing will be described with reference to FIG.
  • the compensating total floor reaction force moment distributor M 1 m distributes the compensating total floor reaction force moment M d m d.
  • the two-leg compensation angle determination unit 114b and the n-th foot X (Y) compensation angle determination unit 114c are determined at 114 d, 114 e, and 114 f.
  • the corrected target foot position / posture calculation unit 114 g calculates the compensated foot position / posture (this is called the corrected target foot position / posture) by geometric calculation. Ask. Finally, the corrected target foot position / posture calculation unit with mechanism deformation compensation 114h calculates the amount of deformation of the compliance mechanism 42 that is expected to occur due to the desired foot floor reaction force, and corrects the corrected target so as to cancel them.
  • the compensating total floor reaction force moment distributor 1 1 4a converts the compensating total floor reaction force moment Mdm d, the two-leg compensation moment Mdm ddb, and each foot compensation moment Mdmd lx, y, M dmd 2 Distribute to x and y.
  • the two-leg compensation moment M dmddb is the moment target created by the force component of each foot floor reaction force around the desired total floor reaction force center point (target ZMP) by operating the two-leg compensation angle (foot vertical amount) 0 dbv. Value.
  • the component around the V direction of the two-legged compensation piece Mdmd db is described as Mdmd db b.
  • the vector V is the vector defined in the description of the composite compliance operation determination unit 114. Assuming that a vector orthogonal to V and orthogonal to the vertical direction is U, the U-direction component Mdmd dbu of the two-leg compensation moment Mdmd db is set to 0. This is because even if the two-leg compensation angle is 0 dBv, the moment component of the floor reaction force in the U direction cannot be generated.
  • the vertical component Mdmd db of the compensated total floor anti-coupling Mdmd is set to 0, so the vertical component Mdmd d bz of Mdm db is also set to 0.
  • the first foot compensation moment Mdmd 1 is a moment to be generated around the desired first foot floor reaction force center point by operating the first foot compensation angle 0 I ⁇ , ⁇ I y.
  • the X component of the first foot compensation moment Mdmd 1 is described as Mdmd 1 x
  • the Y component is described as M dm d 1 y.
  • the second foot compensation moment Mdmd 2 is a moment to be generated around the desired second foot floor reaction force center point by operating the second foot compensation angle ⁇ 2 ⁇ , ⁇ 2 y.
  • the X component of the second foot compensation unit Mdmd 2 is described as Md md 2 x and the Y component is described as Mdm d 2 y.
  • the distribution is performed, for example, as follows.
  • Wdbx, Wdby, Wlx'Wly, W2x, W2y, and Wint are distribution weight variables.
  • Vx is the value of the X component of vector V
  • Vy is the value of the Y component of vector V.
  • Wint is for canceling the total floor reaction force moment generated by manipulating the two-leg compensation angle by manipulating each foot compensation angle.
  • FIG. 19 shows a block diagram of the compensating total floor reaction force moment distributor 111a performing the arithmetic processing of Equations 3 and 4.
  • Fig. 20 shows an example of setting the distribution weight variables Wdbx, Wdby, Wlx, W1y, W2x, W2y, and Wint during walking. It is desirable that the pattern shown in Fig. 20 be determined in consideration of the following points.
  • the weight variable for distribution is set so that the actual floor reaction force moment generated by manipulating both leg compensation angle and each foot compensation angle is as close as possible to the compensated total floor reaction chamoment Mdmd. To determine.
  • weights should be set so as to satisfy both Equations 5 and 6 as much as possible.
  • Equation 6 By substituting Equations 3 and 4, Equation 5 is transformed into Equation 7 and Equation 6 is transformed into Equation 8. (Wdbx * Mdmdx + Wdby * Mdmdy) * Vx
  • Equation 9 Equation 10 and Equation 11 should be satisfied simultaneously.
  • the weight may be determined so as to satisfy Equation 9, Equation 10 and Equation 11 simultaneously.
  • the amount of actual total floor reaction force moment generated may be less than that of Mdmddbv.
  • the reaction force
  • Fig. 20 which is an example of setting the weighting variable for walking
  • Wint when Wint is set to 0, even if the two-leg compensation angle of 0 dbv is operated as shown in Fig. Even if anti-camo can no longer occur, each foot compensation angle is operated to compensate for the shortage.
  • the total amount of actual anti-chamoment generated by manipulating the two-leg compensation angle and each foot compensation angle may be larger than the compensated total-floor anti-camo Md md.
  • W dbx and W dby are the weight variables for distribution for the two-leg compensation angle.
  • W dbx and W dby are the weight variables for distribution for the two-leg compensation angle.
  • the direction of the actual total floor reaction force moment generated by operating the two-leg compensation angle 0 db V is always in the V direction, and a component orthogonal to the V direction cannot be generated.
  • the direction of the actual floor anti-camo that can be generated by operating each foot compensation angle is limited by the foot contact state.
  • the two-leg compensation angle and each foot compensation angle are operated as efficiently as possible.
  • the distribution weights Wdb X and Wd by for operating the two-leg compensation angle are determined as follows.
  • Equation 3 is the inner product of the vector Wdb and Mdmd. Therefore, Mdmd is decomposed into the vector Wdb direction component and its orthogonal component, and only the vector Wdb direction component is extracted and multiplied by the magnitude of the vector Wdb. It can be said that there is.
  • Figure 23 shows the Mdmd dbv in this case.
  • a feedback control system that controls the Wdb direction component of the actual total floor reaction force moment by manipulating the two leg compensation angles is constructed. If the Wdb direction is orthogonal to the vector V, the Wdb direction component of the actual total floor reaction force moment will be Since this does not occur, this feedback control system only wastefully operates the two-leg compensation angle.
  • the Wdb direction should be matched with the vector V direction or as close as possible. If we want to generate the W db direction component of the compensation total floor anti-coupling M dmd simply by manipulating the two-leg compensation angle without relying on each foot compensation angle, the inner product of Wdb and V is 1 Set to be. If you want a part to depend on each foot compensation angle, set the inner product of Wdb and V to be smaller than 1.
  • W db x is set to be relatively large. With this setting, the Wdb direction does not match the vector V direction, and the fluctuation of the two-leg compensation angle increases, but the stability increases.
  • FIG. 24 is a block diagram of the arithmetic processing of the two-leg compensation angle determination unit 114b, and the two-leg compensation angle S dbv is calculated as shown in the figure. You.
  • the moment Mf 1 f 2 act generated around the center point P of the floor reaction force is obtained by the following equation.
  • Mflf2act PQl * Flact + PQ2 * F2act ' ⁇ Equation 1 2
  • PQ1 is a vector whose start point is P and whose end point is Q1
  • PQ2 is a vector whose start point is P and whose end point is Q2.
  • Equation 1 2a calculates the actual total floor reaction coordinate Ms ⁇ mact acting around the target total floor reaction force center point. It is an expression. In Equation 12, the actual floor reaction force acting around each desired foot floor reaction force center point is subtracted from the actual total floor reaction force moment acting around the target total floor reaction force center point. It has become something.
  • Mflf2actv Mflf2act-V ⁇ Equation 1 3
  • Mf1f2acctv is passed through a mouth-to-passfill 1 1 4i to obtain Mf1f2ac cvfi1t.
  • the two-leg compensation moment V-direction component Mdmd db V is passed through a compensation filter 1 14 j, and it is subtracted from Mi 1 ⁇ 2 act Vf i 1 t to obtain a deviation moment V-direction component Mdifvv.
  • the compensation filter 114j improves the frequency response characteristics of the transfer function from Mdmd dbv to the actual total floor reaction force moment.
  • the target first foot floor reaction force center point Q 1 and the target second foot floor reaction force center were calculated using a mechanism compliance model that represents the relationship between the two-leg compensation moment V-direction component Mdmd dbv and the amount of deformation.
  • the deformation angle of the line connecting the points Q 2 is obtained, and the one obtained by inverting the polarity thereof is set as the two leg mechanism deformation compensation angle 0 ffdbv.
  • the two-leg mechanism deformation compensation angle 0 f f db b V can be approximately obtained by the following equation.
  • ⁇ ffdbv -a * Mdmddbv ⁇ Equation 14 where ⁇ is a predetermined constant.
  • the compensating angle ⁇ d b V is obtained by the following equation.
  • K db is the control gain, which is usually set to a positive value.
  • FIG. 11 is a block diagram illustrating processing, in which a first foot X compensation angle determination unit 114c calculates a first foot X compensation angle 01X as illustrated. Although the description is omitted, the first foot Y compensation angle 01 ⁇ the second foot X compensation angle 02 x and the second foot Y compensation angle 02 y are similarly obtained. Here, only the algorithm for obtaining the first foot X compensation angle 0 1 X will be described.
  • the first foot floor reaction force moment X component M 1 actx is passed through a low-pass filter 114 k to obtain M 1 actfi 1 tx.
  • the first foot compensating moment X component Mdmd 1 X is passed through the compensating filter 114 m, and is reduced by M 1 actfi 1 tx to obtain a deviation moment Mdiff 1 x.
  • the compensating filter 114m improves the frequency response characteristics of the transfer function from Mdmd 1 x to the actual total floor reaction force.
  • the first foot X mechanism deformation compensation angle ⁇ ffix for canceling the influence of the deformation of the compliance mechanism 42 on the first foot compensation moment X component is obtained. This is so-called feed-forward compensation.
  • the deformation angle of the first foot is obtained using a mechanism compliance model that expresses the relationship between the first foot compensation moment X-direction component Mdmd 1 x and the amount of deformation.
  • the first foot X mechanism deformation compensation angle may be 0 ff 1 x.
  • the first foot X mechanism deformation compensation angle S f ⁇ 1 X may be approximately obtained by the following equation: ⁇
  • the first foot X compensation angle S 1 X is obtained by the following equation.
  • K 1 X is the control gain, which is also usually set to a positive value.
  • the corrected target foot position / posture calculation unit 1 14 g calculates the two feet compensation angle 0 dbv, the first foot X compensation angle 0 1 x, the first foot Y compensation angle. 0 1 y, 2nd foot X compensation angle 02 x, 2nd foot Y compensation angle 02 y, correct and correct target foot position / posture according to foot position / posture correction method for composite compliance operation described above. Obtain the target foot position and orientation.
  • the mechanism deformation amount calculator 114n calculates the deformation amount of the compliance mechanism 42 that is expected to be generated by the target foot floor reaction force.
  • the corrected target foot position / posture calculation unit with mechanism deformation compensation 114 The corrected target foot position / posture is further corrected so as to cancel the shape amount, and the corrected target foot position / posture is obtained by entering the mechanism deformation compensation.
  • the corrected target foot position / posture with mechanical deformation compensation is corrected to the position / posture indicated by the solid line in FIG. That is, the position and orientation when the foot 22 R (L) after the mechanism deformation compensation shown in FIG. 27 is deformed by receiving the target foot floor reaction force is the same as that before the mechanism deformation compensation shown in FIG.
  • the corrected target foot position / posture with mechanical deformation compensation is calculated to match the foot position / posture.
  • the mechanism deformation compensation is a control for canceling the deviation of the actual foot position and posture caused by the deformation of the compliance mechanism 42 in a feed-forward manner. In comparison with the case without this control, a walk closer to the target gait is performed. Can be realized.
  • the above-mentioned compensation angle is determined in S34.
  • FIG. 28 is a subroutine 'flow' chart showing the operation.
  • this composite compliance control device has improved the following points over the previously proposed technology. That is, in the ankle convergence control proposed in Japanese Patent Application Laid-Open No. 5-305584, an actual floor reaction force moment at a point fixed to the foot such as a reference point of an ankle or a sole is detected. Although the foot was rotated about the fixed point based on the above, the composite compliance control device calculates actual foot floor reaction force moments at the moving target foot floor reaction force center point, and based on that, Therefore, the foot was changed to rotate around the target foot floor reaction force center point, and the moment around that point was controlled to a desirable value.
  • the floor reaction force acting on the robot more specifically, the actual total floor reaction force moment around the target total floor reaction force center point (target ZMP) and the actual foot reaction force around the target foot flat center point.
  • the flat floor reaction force moment can be easily and appropriately controlled. In other words, there is no control interference and the actual total floor reaction force and the actual foot floor reaction force do not deviate from the desired values or oscillate as compared to the case where the previously proposed technology is used together.
  • the posture stabilization control of the legged mobile robot can be easily realized, the landing impact received by the legged mobile robot can be reduced, the grounding of the legged mobile robot can be improved, and slip during walking can be improved. And spin can be prevented.
  • the load on the actuator of the legged mobile robot can be reduced.
  • FIG. 29 is an explanatory diagram similar to FIG. 16, showing a modified example of the composite compliance control.
  • the same operation and effect are obtained by simplifying the compensation operation. That is, as a method of the foot position correcting operation for operating the force component of the floor reaction force of each foot, instead of the method shown in FIG. 16, only the vertical direction as shown in FIG. 29 is used. I moved it. At this time, the first foot vertical movement amount Z 1 and the second foot vertical movement amount Z 2 are obtained by the following equations.
  • Z1 —length of line segment PQ1 * ⁇ d v
  • Z2 length of line segment PQ2 * 0 dbv
  • Equation 1 8 the value obtained by Equation 15 is substituted for 0 dbv.
  • the configuration of the floor shape estimation device of the legged mobile robot according to this embodiment is the same as the configuration of the composite compliance control shown in FIG. 4, and more specifically, the configuration shown in FIG.
  • the composite compliance operation determination unit shown by the compensating total floor reaction force moment distributor 1 14a differs from the configuration shown in Fig. 18 in that a new floor shape estimation is performed.
  • Unit 13 and an adder 13 2 (13 2 a, 13 2 b) that adds various floor shape estimation values output from the floor shape estimator 130 to the respective compensation angles. did.
  • the floor (or floor) assumed in the target gait is called the "assumed floor”.
  • the actual floor on which the robot is walking is called the “real floor”.
  • the deviation of the actual floor shape from the assumed floor shape is called “floor shape deviation”.
  • the target ⁇ -th foot floor reaction force center point Qn defined in the above-described composite compliance control was a point set on the sole (contact surface with the floor) of the n-th foot. Therefore The desired n-th foot floor reaction force center point Qn moves with the foot 22 R (L).
  • a point on the assumed floor that is assumed to be in contact with the target n-th foot floor reaction force center point Qn is referred to as “assumed n-th floor contact Dn”.
  • the target nth floor floor reaction force center point Qn and the assumed nth floor contact point Dn have the same coordinates when viewed from the supporting leg coordinate system. become.
  • the robot 1 is actually walking, a point corresponding to the desired n-th foot floor reaction force center point Q n on the sole surface of the actual n-th foot contacts the actual floor. The point is called the “actual n-th floor contact D nact”.
  • FIG. Fig. 31 shows the normal direction of the vertical plane passing through the target first foot floor reaction force center point Q1 and the desired second foot floor reaction force center point Q2 (the direction of the vector V in the composite compliance control). I just saw Robot 1 walking from the side.
  • the target posture of Robot 1 (posture at this moment of the desired gait) and the cross section of the assumed floor in the vertical plane are shown by thin lines.
  • the solid foot position and posture of the robot 1 and the cross section of the actual floor on the vertical plane are indicated by thick lines.
  • the actual n-th floor contact point in this situation is a point on the actual floor surface, which is the position shown in FIG.
  • the floor height deviation between both legs, floor inclination deviation between both legs, and foot floor inclination deviation are defined as follows.
  • the difference between the height of the second floor contact and the height of the first floor contact is called the “floor height difference between both legs” and is calculated as follows.
  • floor-to-leg floor height deviation The difference between the actual floor-to-leg floor height difference and the assumed floor-to-leg floor height difference is referred to as “floor-to-leg floor height deviation”.
  • the slope of the line segment with the first point of contact at the first floor and the second point at the end of the floor is called the “floor inclination between both legs” and is calculated as follows.
  • Atan represents the inverse function of the evening function, which is a trigonometric function.
  • the difference between the actual floor-to-foot floor inclination and the assumed floor-to-foot floor inclination is called the floor-to-leg floor inclination deviation. This is shown in Figure 31. In this situation, the floor slope deviation between the legs is positive.
  • the floor inclination at the n-th floor contact point is called the “n-th foot floor inclination”.
  • n-th foot floor inclination deviation The difference between the actual n-th foot floor inclination and the assumed n-th foot floor inclination is called the “n-th foot floor inclination deviation”.
  • FIG. Fig. 32 is a view of robot 1 viewed from behind.
  • the target posture of mouth mouth 1 (posture at this moment of the desired gait) and the cross section of the assumed floor are shown by thin lines.
  • the actual foot position and posture of Robot 1 and the cross section of the actual floor are indicated by thick lines. In this situation, the first foot floor slope deviation is negative.
  • the floor inclination between both legs and the floor inclination deviation between both legs are expressed by the rotation angle around the vector V direction described above.
  • the nth foot floor inclination and the nth foot floor inclination deviation are represented by the rotation angle in the X direction and the rotation angle in the Y direction.
  • the floor inclination deviation between both legs is the target first foot floor reaction force center point Q1 and the desired second foot floor reaction force center point Q1 of robot 1 walking in the desired gait during the two-leg support period.
  • corresponding to the two-leg compensation angle required to make the line connecting 2 parallel to the actual floor from the state parallel to the target floor
  • the ⁇ th foot floor inclination deviation is necessary to make the ⁇ th foot of the robot walking in the target gait from the state parallel to the target floor to the actual floor. ⁇ -th foot compensation angle.
  • the actual total floor reaction force exceeds the expected floor even if there is a deviation between the floor inclinations between the legs. It is the same as when walking.
  • the ⁇ th foot floor inclination deviation is estimated during walking and the estimated value of the ⁇ th foot compensation angle is added to the ⁇ th compensation angle, even if the ⁇ th foot floor inclination deviation is present, the actual ⁇ th foot floor inclination deviation is obtained. The force is the same as when walking on the assumed floor.
  • the estimated value of the inter-leg floor height difference deviation is used. You can use it. Since there is no essential difference, in the following description, only the case where the estimated value of the floor inclination deviation between both legs is used will be described.
  • the input to the floor shape estimator 130 in the configuration shown in FIG. 30 is roughly divided as follows.
  • Target total floor reaction force center point target total floor reaction force center point
  • target nth foot floor reaction force center point target total floor reaction force center point
  • the input to the floor shape estimator 130 can be the highest in estimation accuracy by using the input shown in FIG. 30, but other inputs may be selected. This will be described in a second embodiment.
  • the processing function block diagram of the floor shape estimator 130 is shown in FIG.
  • the floor shape estimator 130 has a mechanism compliance model 134.
  • the mechanism compliance model 13 4 is the input to the robot geometry model 110 (shown in Fig. 4), that is, when the corrected target foot position and orientation with mechanism deformation compensation is subjected to the actual floor reaction force.
  • the estimated foot position / posture after the mechanism deformation is obtained.
  • the estimated foot position / posture after the mechanism deformation is represented by a relative position / posture with respect to the body 24.
  • the corrected target foot position / posture with mechanical deformation compensation is passed through the mouth-pass filter corresponding to the tracking delay. What is necessary is just to input to the mechanism compliance model 1 3 4.
  • the actual foot position and posture without mechanical deformation from the actual joint displacement via the robot geometric model 13 7 (the same model as 110 in Fig. 4) Then, the obtained value may be input to the mechanism compliance model 13 4 instead of the corrected target foot position / posture including the mechanism deformation compensation.
  • the actual foot position / posture without the mechanism deformation and the mechanism deformation compensation may be obtained and input to the mechanism compliance model 13 4 instead of the corrected target foot position / posture with mechanism deformation compensation.
  • the floor shape estimator 130 is provided with a floor inclination deviation estimating unit 138 between both legs. That is, in the same figure, the estimated floor inclination deviation between both legs is calculated from the estimated foot position / posture after the mechanical deformation, the relative coordinates of the target foot floor reaction force center point with respect to the target foot, the assumed floor contact points and the body inclination deviation.
  • the block up to the estimation is called the “leg-to-leg floor inclination deviation estimator”. The processing of this part will be described below.
  • each desired foot floor reaction force center point Q n "after the mechanical deformation is determined.
  • each desired foot floor reaction force center point Q n "after the mechanical deformation is represented by a relative position with respect to the actual body.
  • the relative position of the desired n-th foot floor reaction force center point Q n with respect to the foot is the vector R n
  • the estimated position after the mechanical deformation is the vector U n
  • the estimated position after the mechanical deformation is the vector Un If the n-th foot posture is represented by a matrix A n, the desired n-th foot floor reaction force center point Q n "after the mechanical deformation is calculated by the following equation.
  • the slope 0 fdb V "of the vector Q 1" Q 2 "with respect to the real body of the vector Q 1" starting point and the Q 2 "end point is calculated.
  • the vector V I is the vector defined in the composite compliance control.
  • the assumed n-th floor contact point Dn is, as defined above, at the same position as the target n-th foot floor reaction force center point Qn when the n-th foot is in contact with the ground.
  • the position of the target II foot floor reaction force center point Q assumed at the next touch-down is assumed to be the assumed n-th floor contact point Dn.
  • the position of the target nth foot floor reaction force center point Qn assumed at the time of leaving the bed is assumed to be the assumed nth floor contact point Dn.
  • the target body of the vector Q 1 "Q 2" having Q 1 "as a start point and Q 2" as an end point is added to the aforementioned 0 fdb V "by adding a V direction component 0 errv of the body inclination deviation.
  • the instantaneous inter-leg floor inclination deviation calculation value 0 f'db err V in the V direction is obtained.
  • the inter-leg floor inclination deviation estimation interrupter 140 determines whether the estimation of the inter-leg floor inclination deviation should be executed or interrupted. to decide
  • the floor-to-leg floor inclination deviation estimating interrupter 140 is an input to the floor-to-leg floor inclination deviation estimating interrupter 140 when it is determined that the estimation of the floor-to-leg floor inclination deviation should be executed (continued). 0 fdberrdiffv Is output as it is, and if it is determined that it should be interrupted, 0 is output. The details of the floor inclination deviation estimation interrupter 140 between both legs will be described later. Next, the output of the floor-to-leg floor inclination deviation estimating interrupter 140 is integrated by an integrator 142 whose integration constant is Kdb e s tm, thereby obtaining an estimated floor-to-leg floor inclination deviation 0 fdbe s tmv.
  • the estimated inter-leg floor inclination deviation S ⁇ dbestmv is an estimated value of the inter-leg floor inclination deviation shown in FIG. 31, and is represented by an angle around V.
  • the above is the processing of the floor inclination deviation estimating unit 138 between both legs.
  • the estimated foot-to-foot floor inclination deviation 0 f db es tmv is added to the two-leg compensation angle 0 db V to obtain the corrected target foot position as the two-leg compensation angle with floor shape estimation 0 db v '.
  • the estimated floor-to-leg floor inclination deviation 0 fdbes tmv converges to the actual floor-to-leg floor inclination deviation.
  • the foot position is corrected according to the estimated floor-to-foot floor inclination deviation 0 fdbes tmv. Absorb the effect of deviation on actual floor reaction force.
  • 0 fdberr V obtained by the above calculation algorithm fluctuates sharply with the actual floor-to-leg floor inclination deviation as the center value. . Therefore, if 0 fdberrv is used as it is as the estimated value of the floor inclination deviation between both legs and this is added to the two leg compensation angle as shown in Fig. 30, the foot 22R (L) of the robot 1 oscillates or Vibrates violently.
  • the transfer function from 0 fdberrv to the estimated inter-leg floor inclination deviation 0 fdbes ⁇ mv becomes Become a one-pass filter with delay. That is, the estimated floor inclination deviation between both legs 0 idb es tmv is obtained by passing ⁇ f db errv through a mouth-to-pass filter. Therefore, even if the estimated floor-to-leg floor inclination deviation 0fdbestmv is added to the two-leg compensation angle as shown in FIG. 30, oscillation and vibration of the foot 22R (L) are less likely to occur.
  • the time constant of the mouth-to-passfill is 1 ZK dbe & tm.
  • the transfer function from 0 i db e r rv to 0 f db e s tmv may be configured so as to be a one-pass filter. Thus, oscillation and vibration of the foot 22R (L) can be prevented.
  • the two-leg compensating angle db V in Fig. 30 is changed to compensate for the final desired foot position / posture mechanical deformation compensation.
  • the actual position of the target foot floor reaction force center point Qn "after the mechanical deformation is the actual n-th floor contact point, as long as both actual feet are in contact with the ground. It does not move in accordance with Dn act, but instead, the compliance mechanism 42 is deformed, and the position and orientation of the upper body 24 are changed. However, the compliance mechanism 42 is deformed or the position and attitude of the upper body 24 are changed so as to cancel out the change in the corrected target foot position and attitude including the mechanism deformation compensation.
  • the floor-to-leg floor inclination deviation estimating unit 138 in this embodiment is configured to calculate the estimated floor-to-leg floor inclination deviation 0 fdbestmv from the corrected target foot position / posture with mechanical deformation compensation, based on the actual floor reaction force. Because the mechanical deformation calculated by the compliance model 13 4 and the actual body posture tilt deviation detected by the tilt sensor 36 are added, even if the corrected target foot position and posture with mechanical deformation compensation fluctuates. The estimated floor inclination deviation between both legs 0 fdbestmv is not affected.
  • the estimated floor-to-leg floor deviation ⁇ fdbestmv is added to the leg-to-leg compensation angle as shown in Fig. 30, even if the floor-to-leg floor inclination deviation exists, its effect can be canceled out.
  • the reaction force is normally the same as when walking on the assumed floor.
  • the estimation of the floor inclination deviation between both legs and the correction of the compensation angle are executed in each control cycle, even if the floor shape changes in the middle, the floor inclination deviation after the change is estimated, and based on the estimated value. Can counteract the effect.
  • the floor-to-floor floor inclination deviation estimating unit 1338 includes a mouth-to-pass filter as described above, when both legs touch the ground or when the floor shape changes in the middle, The reaction force is affected by the floor inclination deviation between the legs. However, thereafter, the effect attenuates with a time constant of 1 ZKdbestm.
  • the floor shape estimator 130 includes a foot floor inclination deviation estimating unit 144. That is, in the same figure, the blocks up to estimating the estimated first foot floor inclination deviation X component from the estimated first foot position / posture after the mechanism deformation, the assumed first foot floor inclination and the body inclination deviation X component are indicated by ⁇ Foot floor inclination deviation estimating unit ”144, more specifically,“ first foot floor inclination deviation X component estimating unit ”. The processing of this part will be described.
  • Fig. 2 shows the Y component.
  • the X-direction component 0 err x of the body inclination deviation is added to the above-mentioned 0 f 1 er r X ”to obtain the instantaneous first foot floor inclination deviation X-component calculation value ⁇ f 1 er r x.
  • 0 f 1 e r r d i ⁇ f x is obtained by subtracting the immediately preceding estimated first foot floor inclination deviation 0 f 1 e s tmx.
  • the foot floor inclination deviation estimation interrupter 146 more specifically, whether the first foot floor inclination deviation X component estimation should be executed or interrupted by the first foot floor inclination deviation X component estimation interrupter Judge.
  • the first foot floor inclination deviation X component estimation interrupter is an input to the first foot floor inclination deviation X component estimation interruption unit when it determines that the estimation of the first foot floor inclination deviation X component should be executed. Output S f 1 errdiffx as it is, and output 0 if it is determined that it should be interrupted. Note that details of the foot floor inclination deviation estimation interrupter 146, more specifically, the first foot floor inclination deviation X component estimation interrupter will be described later.
  • the output of the first foot floor inclination deviation X component estimation interrupter is integrated by an integrator 148 having an integration constant of K 1 estmx to obtain the estimated first foot floor inclination deviation X component 0 f 1 estm X Get.
  • the above is the processing of the first foot floor inclination deviation X component estimating unit.
  • the estimated first foot floor inclination deviation X component 0 f 1 estmx is added to the first foot X compensation angle 0 1 X as shown in FIG. 30 to obtain the first foot X compensation angle 0 with floor shape estimation.
  • the corrected target foot position / posture calculation unit 1 14 g is input as 1 X ′.
  • the estimated first foot floor inclination deviation X component 0 f 1 estmx converges to the actual first foot floor inclination deviation X component.
  • the foot position / posture is corrected according to the estimated first foot floor inclination deviation X component f 1 estmx to absorb the effect of the first foot floor inclination deviation X component on the actual floor reaction force.
  • FIG. 33 only the first foot floor inclination deviation X component estimator 144 is shown.
  • a first foot floor inclination deviation Y component estimator, a second foot floor inclination deviation X component estimator, and a second foot floor inclination deviation Y component estimator are provided. Similar processing is performed for the two-foot floor inclination deviation X component and the second foot floor inclination deviation Y component.
  • the instantaneous first foot floor inclination deviation X component calculated value 0 f 1 err X should match the actual first foot floor inclination deviation X component.
  • 0 f 1 errx is used as it is as the estimated value of the X component of the first foot floor inclination deviation and added to the 1st foot X compensation angle as shown in FIG. 30 to obtain the foot 2 of robot 1.
  • 2 R (L) oscillates or vibrates violently.
  • the first foot floor inclination deviation X component estimation interrupter in FIG. 33 determines that the estimation is always executed (continues), it is possible to calculate from the ⁇ f 1 errx to the estimated first foot floor inclination deviation X component ⁇ f 1 estmx.
  • the transfer function is a first-order delayed mouth-to-pass fill. That is, the estimated first foot floor inclination deviation X component 0 f 1 e s tmx is obtained by passing 0 f 1 e r r x through the low-pass filter.
  • the time constant of the low-pass filter is 1 ZK 1 e s tmx.
  • the transfer function from 0 ⁇ 1 errX to 0 ⁇ 1 eStmx may be configured to be a mouth-to-pass fill. As a result, oscillation and vibration of the foot 22 R (L) can be prevented.
  • the features of the foot floor inclination deviation estimating unit 144 will be described.
  • the following can be said similarly to the estimation of the floor inclination deviation between both legs.
  • the compliance mechanism 42 is deformed, and the position and orientation of the body 24 are changed. That is, similarly to the estimation of the floor inclination deviation between both legs, the compliance mechanism 42 is deformed or the position and posture of the upper body 24 are changed so as to cancel out the change in the corrected target foot position and posture with the mechanism deformation compensation. I do.
  • the first foot floor inclination deviation X component estimator in this embodiment calculates the actual first floor floor inclination deviation X component 0 f 1 estmx from the corrected target foot position / posture including the mechanism deformation compensation. Since the amount of compliance mechanism deformation calculated by the mechanism compliance model 134 based on the reaction force and the actual body posture tilt deviation detected by the tilt sensor 36 are added, the corrected target foot with mechanism deformation compensation is added. Even if the position and orientation fluctuate, the estimated first foot floor inclination deviation X component 0 f 1 estmx is not affected.
  • the estimated first foot floor inclination deviation X component 0 f 1 estmx is added to the first foot compensation angle as shown in Fig. 30, even if the first foot floor inclination deviation exists, its effect will be affected.
  • the actual first foot floor reaction force is normally the same as when walking on the assumed floor.
  • the first foot floor inclination deviation estimator includes the above low-pass filter, when the first foot touches the ground or the floor shape changes in the middle, the first foot floor inclination Affected by the deviation, then the time constant 1 ZK 1 The sound is attenuated.
  • leg compensation operation for canceling the effect of the floor shape deviation on the floor reaction force while simultaneously estimating a plurality of parameters of the floor shape deviation.
  • leg compensation for posture control can be performed at the same time.
  • the gains (Kd bes tm, K les tmx, K 1 estmy, K 2 estmx, K 2 es tmy) of the estimators 1 3 8 The estimated time constant can be shortened as a result. As a result, the responsiveness of the leg compensation operation for canceling the effect of the floor shape deviation on the floor reaction force can be improved, and the floor shape deviation affects the floor reaction force. Transient effects that are lost are eliminated in a short time.
  • the first foot floor inclination deviation estimation Y component interrupter determines whether or not the estimation of the first foot floor inclination deviation Y component can be performed normally. If it is determined that the estimation cannot be performed normally, the estimation is interrupted.
  • first foot floor inclination deviation Y component estimation interrupter does not work and the input to the first foot floor inclination deviation Y component estimation interruption device is continuously output as it is, in some situations, the estimated first foot floor inclination deviation Y component diverges.
  • the body inclination deviation Y component erry erry is added to the estimated first foot posture inclination Y component 0 f 1 erry "after mechanical deformation for the assumed first foot floor inclination Y component shown in Fig. 36.
  • the added f 1 erry becomes a positive value as shown in the figure.
  • First foot floor inclination deviation Y component estimation interrupter is always input ⁇ f 1 errdif When fy is continuously output, as described above, the transfer function from 0 f 1 erry to the estimated inter-leg floor inclination deviation 0 f 1 est my has a first-order delay.
  • 0 fles tmy follows 0 fl elry with a slight delay.
  • 0 f 1 e s tmy is added to the first foot Y compensation angle ⁇ 1 y, and becomes the first foot Y compensation angle 01 y 'with floor shape estimation.
  • 01x ' is shown in Fig. 30, 01y has the same configuration.
  • the first foot Y posture compensation angle ⁇ ⁇ 1 y 'with floor shape estimation is added to the desired first foot position / posture, and the mechanism is calculated from the desired floor reaction force (floor reaction force of the desired gait).
  • the deformation amount is reduced (that is, a mechanism deformation compensation amount for canceling the mechanism deformation amount is added), and the correction target first foot position / posture including the mechanism deformation compensation is calculated.
  • the mechanical deformation amount calculated from the actual floor reaction force is obtained by the mechanical compliance model 134, and added to the corrected target first foot position and posture including the mechanical deformation compensation, and the estimated first foot position and posture after the mechanical deformation. Is required.
  • the value of ⁇ f1erry is updated by subtracting the Y component of the assumed first foot tilt from the slope Y component and adding the body tilt deviation Y component 0erry to the above.
  • the compensation angle of the first foot mechanism deformation due to the desired floor reaction force is a compensation amount for canceling the deformation amount of the compliance mechanism 42 described in the paragraph 0 135 above.
  • Equation 22 is transformed into the following equation.
  • the first foot floor inclination Y component estimation mode is determined according to the timing of the desired gait.
  • the first foot floor inclination Y component estimation mode is reset mode, hold mode It is assumed that there can be three mode states, a mode and a ready mode, and a transition is made as shown in FIG. 38 with respect to the passage of time of the desired gait. However, this is the mode transition pattern for the gait shown in FIG. If the gait is different, the mode transition should be changed accordingly.
  • the process proceeds to S 304, and the estimated first foot floor inclination deviation Y component 0 f 1 estmy is forcibly gradually converged to 0, and S 3 Proceed to 06 and set the output of the 1st foot floor inclination deviation X component estimation interrupter to 0.
  • the reset mode is that even if the 1st foot is moved, the floor reaction force It should be present when the first foot is completely off the floor so that it has no effect.
  • the estimated first foot floor inclination deviation Y component ⁇ f 1 estmy is forced to gradually converge to a value obtained by multiplying the estimated second foot floor inclination deviation at the second floor contact point that has landed one step earlier gradually by a positive constant smaller than 1. Is also good.
  • the convergence target value may be determined using not only the estimated foot floor inclination deviation Y component of one step before but also the estimated foot floor inclination deviation Y component of plural steps before. Also, the convergence target value may be determined by using the estimated floor inclination deviation between both legs one step before or plural steps before.
  • the process proceeds to S308, and the output of the first foot floor inclination deviation Y component estimation interrupter is set to 0. Therefore, the estimated first foot floor inclination deviation Y component 0 f 1 e s t my is maintained at the value immediately before transition to the hold mode.
  • the hold mode is present at a time when the estimated first foot floor inclination deviation Y component 0 f 1 estmy is likely to diverge and at a time when the accuracy is likely to decrease.
  • the third As shown in Fig. 8, the first foot is completely removed from the floor until the heel or toe of the first foot begins to separate from the floor, and then exists for a while.
  • the first foot floor inclination Y component estimation mode is the ready completion mode.
  • the process proceeds to S310, and the actual first foot floor reaction force center point position Q 1 act is calculated from the actual first foot floor reaction force moment M 1 act and the force component F 1 act of the actual first foot floor reaction force.
  • the actual first foot floor reaction force center point position Q 1 act is the point of action on the sole where the component of the actual first foot floor reaction force moment at that point in the direction excluding the vertical direction is 0. It is.
  • the X coordinate of the actual first foot floor reaction force center point Q 1 a ct is defined as Q 1 a ct X.
  • condition 1 it is judged that the floor inclination of the first foot cannot be estimated if the floor reaction force less than that is applied to the first foot.
  • Foot floor reaction force set value that is set, and set to a value smaller than the robot 1's own weight.
  • condition 1 means a situation in which the pressure between the first foot and the floor is too small to accurately estimate the first foot floor inclination Y component.
  • the first foot estimation allowable area maximum value Q lmaxx and the first foot estimation allowable area minimum value Q 1 min X may be coincident with the edge.
  • a detection error occurs, which may cause the estimated value to diverge. Therefore, in order to prevent this, as shown in Fig. 39, the maximum value of the first foot estimation allowable area Q1max and the minimum value of the first foot estimation allowable area Q1minx are set slightly inside the edge.
  • Condition 2 means that the integrator input 0 f 1 e r r d i f f y is positive while the heel is floating, that is, the estimated first foot floor inclination is changing in the direction in which the heel is floating. If the estimation is continued as it is, the first foot Y compensation angle with the floor shape estimation changes in the direction in which the heel floats.
  • Condition 3 means that the integrator input ⁇ f 1 e r r d i f f y is negative while the toe is floating, that is, the estimated first foot floor inclination is changing in the direction in which the toe is floating. If the estimation is continued as it is, the first foot Y-compensation angle with the floor shape estimation changes more and more in the direction in which the mushroom floats.
  • Condition 1 instead of the actual first foot floor reaction force Z component (vertical component) F 1 actz, the component of the actual first foot floor reaction force F 1 act that is perpendicular to the foot (this The component is called “F 1 actz '”).
  • the first foot floor inclination deviation X component estimation interruption unit also includes the first foot floor inclination deviation Y component estimation interruption unit. Performs substantially the same processing as the container.
  • Q1maXy and Q1miny are set on the center of the foot of the inside edge of the foot and the outside edge as shown in FIG.
  • the inequality sign is partially different from the condition 2 and condition 3.
  • the transition timing of the first foot floor inclination deviation X component estimation mode may slightly delay the end time of the ready mode as compared with the case of the first foot floor inclination deviation Y component estimation mode. If the toe edge touches the ground, it is still possible to estimate the first foot floor inclination deviation X component.
  • the processing of the second foot floor inclination deviation estimation interruption unit is the same as the processing of the first foot floor inclination deviation estimation interruption unit.
  • This processing is basically the same as that of the first foot floor inclination deviation Y component estimation interrupter, but differs in details.
  • the inter-leg floor inclination estimation mode is determined according to the timing of the desired gait.
  • the floor-to-leg floor inclination estimation mode is determined as shown in Fig. 41 with respect to the elapse of time of the desired gait. However, this is also a mode pattern for the gait shown in Fig. 5, and if the gait is different, the mode pattern should be changed accordingly.
  • the process proceeds to S402, and the following processing is performed according to the floor-to-foot floor inclination estimation mode. If the floor-to-foot floor inclination estimation mode is the reset mode, the process proceeds to S404, and the estimated floor-to-foot floor inclination The deviation fdbestmv is forcibly and gradually converged to 0, and the flow advances to S406 to set the output of the inter-leg floor inclination deviation estimation interruption unit to 0.
  • the reset mode is provided during the one-leg support period so that even if the two-leg compensation angle with the floor shape estimation is moved, the total floor reaction force is not affected. If there is no correlation between the floor inclination deviation between the legs before one step and the floor inclination deviation between the next step, the estimated floor inclination deviation 0 fdbestmv is forced gradually. It is better to converge to 0.
  • the estimated floor-to-leg floor inclination deviation 0 fdbestmv may be forcibly and gradually converged to a value obtained by multiplying the floor inclination deviation between the legs one step before by a positive constant smaller than 1.
  • the convergence target value may be determined using not only the estimated floor-slope deviation of the two legs before the step but also the estimated floor-slope deviation of the plural legs before the plural steps. Also, the convergence target value may be determined using the estimated foot floor inclination deviation one step before or a plurality of steps before.
  • the process proceeds to S408, and the output of the inter-leg floor inclination deviation estimation interrupter is set to 0. Therefore, the estimated floor-to-leg floor inclination deviation 0 ⁇ dbestmv is held at the value immediately before transition to the hold mode.
  • the hold mode is provided at a time when the estimated floor-to-leg floor inclination deviation ⁇ ⁇ dbestmv is likely to diverge and at a time when the accuracy is likely to decrease. For example, as shown in Fig. 41, it exists in the period from the end of the two-leg support period to some time thereafter.
  • the floor inclination deviation mode between both legs becomes the ready completion mode.
  • the ready mode the following processing is performed.
  • F2actz I (Flactz + F2actz) ⁇ rmin and ⁇ fdberrdiffv> 0Condition 6)
  • Flactz I (Flactz + F2actz)
  • the force F min is a foot floor reaction force setting value at which it is determined that the floor inclination between both legs cannot be estimated when the floor reaction force less than this is applied to the first foot or the second foot, Usually robot 1 Set to a value smaller than the own weight of.
  • condition 4 is the first foot or the first foot
  • the allowable ratio of floor-to-leg floor inclination estimation r min may be 0.
  • detection errors may occur, which may cause the estimates to diverge.
  • set rmin to a positive value that is significantly smaller than 1.
  • Condition 5 means that the integrator input fdberrdifffv is positive while the second foot is floating, that is, the estimated inter-leg floor inclination is changing in the direction in which the second foot floats.
  • the two-leg compensation angle with the floor shape estimation changes more and more in the direction in which the second foot floats.
  • Condition 6 means that the first foot is floating, but the integrator input 0fdberrrdiffv is negative, that is, the estimated inter-leg floor inclination is changing in the direction in which the first foot floats. If the estimation is continued as it is, the two-leg compensation angle with the floor shape estimation changes more and more in the direction in which the first foot floats.
  • Condition 4 if any of Condition 4, Condition 5, or Condition 6 is satisfied, the estimation should be interrupted. If there is no problem even if the output of the deviation estimation interrupter is set to 0, and otherwise the estimation is executed, the process proceeds to S414 to set the output to 0 fdberrdiffv.
  • the expressions of Condition 4, Condition 5, and Condition 6 only need to represent the situation described above. Therefore, instead of the real n-th foot floor reaction force Z component (vertical component) F nactz, a component F nact ′ perpendicular to the foot in the force component F nact of the real n-th foot floor reaction force may be used. .
  • the foot trajectory based on the floor shape estimation result, even if the floor shape is different from the expected shape, the effect is absorbed and the desired floor reaction force is generated. be able to.
  • the steady-state deviation of the actual floor reaction force from the control target value which could not be completely removed by the composite compliance control, is made as close to zero as possible, in other words, the steady-state deviation of the floor reaction force due to the deviation of the floor shape is eliminated. be able to.
  • the estimation value does not become inappropriate in addition to the above-described effects.
  • the floor shape estimating device of the legged mobile robot only needs to estimate the floor shape by the above-described method, and controls the target position and posture by operating the floor reaction force based on the estimated value. It is not mandatory to do so.
  • the second embodiment is a simplification of the first embodiment, and its overall configuration is shown in FIG.
  • the input to the floor shape estimator and the processing in the floor shape estimator are different from those in the first embodiment. Otherwise, it is the same as the first embodiment.
  • the joint angle is displaced so as to satisfy the relative relationship between the corrected target foot position / posture with mechanical deformation compensation and the target body position / posture, and as shown in the middle part of the figure,
  • the upper body 24 of the robot 1 is supported in the air by tilting the body tilt deviation err from the target body posture, and an external force corresponding to the desired foot floor reaction force acts on the foot as shown at the bottom of the figure.
  • the vector is defined as the starting point of the first foot floor reaction force center point Q 1 "'in the foot and the ending point of the desired second foot floor reaction force center point Q 2"' in the foot in such a situation.
  • the inclination around the V direction is referred to as “the inclination between both legs during ideal deformation”.
  • the posture inclination of the n-th foot under this assumption is referred to as “the n-th foot inclination during ideal deformation”.
  • both legs compensation angle, each foot compensation angle, the estimated inter-leg floor inclination deviation, the estimated first foot floor inclination deviation and the estimated second foot floor inclination deviation are all 0,
  • the inclination between both legs during the imaginary deformation matches the assumed floor inclination between both legs, and the n-th foot inclination during the ideal deformation matches the expected n-th floor inclination.
  • estimate inter-leg floor inclination J The sum of the assumed inter-leg floor inclination and the estimated inter-leg floor inclination deviation is referred to as “estimated inter-leg floor inclination J. This is expressed as an angle around the V direction.
  • estimate nth foot floor inclination The sum of the nth foot floor inclination deviation is referred to as “estimated nth foot floor inclination”.
  • estimate interference angle between both legs S d b int v This is also represented by an angle around the V direction.
  • estimated first foot interference angle ⁇ 1 int the difference between the first foot inclination at the time of ideal deformation and the estimated first foot floor inclination.
  • estimate second foot interference angle S 2 int the difference between the second foot inclination at the time of ideal deformation and the estimated second foot floor inclination.
  • the estimated floor-to-foot floor inclination matches the actual floor-to-foot floor inclination, and that the target floor floor reaction force center point of the target foot of the actual robot is in contact with the ground, the estimated floor-to-foot interference angle 0 dbintv is canceled
  • the compliance mechanism 42 of the actual robot should be deformed.
  • V-direction component of the sum of the moments generated by the force components of each foot floor reaction force should be generated around the target total floor reaction force center point in accordance with this mechanism deformation. This component is called "Mdbestmv”.
  • the relationship between the estimated two-leg interference angle ⁇ dbintv and Mdbestmv is checked in advance and stored. This relationship is obtained by extracting only the characteristics related to the two-leg interference angle from among the characteristics of the compliance mechanism 42 of the real robot. Therefore, the “leg-to-leg mechanism compliance model” 1 34 a (Fig. 44) ⁇ ⁇ )
  • the estimated n-th foot interference angle int The compliance mechanism 42 of the actual robot should be deformed so as to cancel.
  • the first foot floor reaction force should be generated around the target first foot floor reaction force center point. This moment is called “M 1 estm”.
  • the second foot floor reaction force moment is generated around the target second foot floor reaction force center point. Should do it. This moment is called “M2 estm”.
  • the relationship between the X component 0nintX of the estimated nth foot interference angle and the Xcomponent Mnestmx of the moment is checked in advance and stored. This relationship is obtained by extracting only the characteristic related to the foot interference angle from the characteristics of the compliance mechanism 42 of the actual robot, and is therefore called a “foot mechanism compliance model”. 1st Foot The foot component compliance model for the X component is shown at 134b in Figure 45.
  • the floor shape estimator 130a in the second embodiment is a floor inclination deviation estimating unit between both legs.
  • FIG. 44 shows a block diagram of the processing function of the floor inclination deviation estimating unit 1338a between both legs. Foot floor inclination deviation estimator
  • Fig. 45 shows a block diagram of the processing function of 144a.
  • Fig. 45 only the processing function block diagram for the estimated first foot floor inclination deviation X component is shown, but the estimated first foot floor inclination deviation Y component, the estimated second foot floor inclination deviation X component, the estimated second foot The same processing is performed for the flat floor inclination deviation Y component.
  • V direction component ⁇ e r r v when the body inclination deviation 0 err is decomposed into a V direction component and a component in a direction orthogonal to the V direction component is obtained.
  • the slope of the vector is determined.
  • the one with the floor inclination reduced is assumed as the assumed two-leg interference angle of 0 db int cmd v.
  • 0fdbestmv is an estimated floor-to-leg floor inclination deviation, as described in the first embodiment.
  • S db v ′ is a two-leg compensation angle with floor shape estimation. As shown in FIG. 43, the two-leg compensation angle is 0 dBv and the estimated inter-leg floor inclination deviation is 0 fdbestmv. Since the two leg compensation angle with floor shape estimation 0 db V 'and the estimated inter-leg floor inclination deviation ⁇ fdbes tmv are obtained from this time, the stored values immediately before are used in this process.
  • a difference between the Mf1f2acctV and the Mdbestmv is obtained to obtain a two-legged moment estimation deviation Mdberr. If the estimated floor-to-floor floor inclination deviation 0 e dbest mv is equal to the actual floor-to-leg floor inclination deviation, the leg-to-leg moment estimation deviation Mdberr is zero. Conversely, if the two-leg moment estimated deviation Mdbe r r force is 0, the estimated two-leg floor inclination deviation ⁇ fdbestmv is equal to the actual two-legged ulu floor inclination deviation.
  • the inter-leg floor inclination deviation estimation interrupter 140a determines whether the estimation of the inter-leg floor inclination deviation should be executed or interrupted.
  • the floor-to-leg floor inclination deviation estimating interrupter 140a is an input to the floor-to-leg floor inclination deviation estimating interrupter 140a if it is determined that the floor-to-leg floor inclination deviation estimation should be performed.
  • the output of the floor-to-leg floor inclination deviation estimating interrupter 140a is integrated by the integrator 144a having an integration constant of Kdbestm 'to obtain an estimated floor-to-leg floor inclination deviation ⁇ fdbbestmv.
  • the estimated foot-to-foot floor inclination deviation 0 fdbes tmv is added to the two-leg compensation angle ⁇ db V, and the corrected target foot position / posture is obtained as the two-leg compensation angle with floor shape estimation ⁇ db v '.
  • the estimated two-leg floor inclination deviation 0 fdbestmv which is the integrator output, changes so that the two-leg moment estimated deviation Mdberr converges to zero.
  • the estimated inter-leg floor inclination deviation ⁇ fdbestmv matches the actual inter-leg floor inclination deviation. Therefore, after a while, the estimated floor-to-leg floor inclination deviation 0 fdbes tmv matches the actual floor-to-leg floor deviation deviation. That is, by this processing, the floor inclination deviation between both legs is estimated.
  • the closed-loop transfer function from the actual two-leg floor inclination deviation to the estimated two-leg floor inclination deviation of the processing system has a first-order delay.
  • the time constant T is obtained by the following equation, where C is the ratio (absolute value) of the output (the moment Mdb e stmv) to the input (estimated interference angle of the two legs) in the two-leg mechanism compliance model 134a.
  • the integral gain Kdbes ⁇ m 'of the second embodiment is different from the integral gain Kdbestm of the first embodiment.
  • FIG. 45 only the processing function block diagram related to the estimated first foot floor inclination deviation X component is shown, but the estimated first foot floor inclination deviation Y component, the estimated second foot floor inclination deviation X component, Similar processing is performed for the estimated second foot floor inclination deviation Y component.
  • the first foot inclination angle of the desired gait is obtained, and the X component obtained by subtracting the assumed first foot floor inclination angle from this is set as the assumed first foot interference angle X component 0 1 int cmd x.
  • the X component S 1 int x of the above-mentioned estimated first foot interference angle is obtained by the following equation.
  • 0 f 1 e s tmx is an estimated first foot floor inclination deviation X component as described in the first embodiment.
  • 01 ⁇ ' is the first foot X compensation angle with floor shape estimation, and as shown in Fig. 42, the first foot X compensation angle 0 1 X and the estimated first foot floor inclination deviation X The sum of the components 0 f 1 es tmx.
  • the configuration surrounded by the dotted line in the figure) is not necessarily required.
  • the first foot floor reaction force moment estimated deviation X component M lerrx becomes 0 . Conversely, if the first foot floor reaction force moment estimated deviation X component M lerrx is 0, the estimated first foot floor inclination deviation X component S f 1 es "1111 is the actual first foot floor It matches the slope deviation.
  • the first foot floor inclination deviation estimation interrupter determines that the estimation of the first foot floor inclination deviation should be executed, the first foot floor reaction force moment which is the input to the first foot floor inclination deviation estimation interrupter
  • the estimated deviation X component M lerrx is output as it is, and 0 is output if it is determined that the operation should be interrupted.
  • the details of the foot floor inclination deviation estimation interrupter 144a will be described later.
  • the output of the first foot floor inclination deviation estimation interrupter is integrated by an integrator whose integration constant is K 1 e s t m x ′ to obtain an estimated first foot floor inclination deviation X component ⁇ f 1 e s t m x ⁇
  • the above is the processing of the first foot floor inclination deviation X component estimating unit in the second embodiment.
  • the estimated first foot floor inclination deviation X component ⁇ f 1 estmx is added to the first foot X compensation angle 0 1 X, as shown in FIG.
  • the angle ⁇ 1 ⁇ ′ is input to the corrected target foot position / posture calculation unit 114g.
  • the estimated first foot floor inclination deviation X which is an integrator output is set so that the first foot floor reaction force moment estimated deviation X component M lerrx converges to 0. Component 0 f 1 estmx changes.
  • the estimated first foot floor inclination deviation X component 0 f 1 es 1; 111 becomes the actual first foot floor inclination deviation. Matches the X component. Therefore, after a while, the estimated first foot floor inclination deviation X component ⁇ f 1 e s tmx matches the actual first foot floor inclination deviation X component. That is, by this processing, the first foot floor inclination deviation X component is estimated.
  • the closed loop transfer function from the actual first foot floor inclination deviation X component of the processing system to the estimated first foot floor inclination deviation X component is , First order delay.
  • the time constant T is the output (the moment M 1 es) corresponding to the input (estimated first foot interference angle X component 0 1 intx) in the foot mechanism compliance model 13 4 b.
  • the ratio (absolute value) of tmx) is C1
  • the integral gain K l e s t m x ′ of the second embodiment is
  • the body inclination may be expressed by each foot coordinate system.
  • the finally corrected target foot position / posture is used as an input to the floor shape estimator 130, but in the second embodiment, it is necessary to determine it. It can be said that variables generated in the middle are used.
  • the compliance model of the first embodiment is obtained by combining the two-leg mechanism compliance model 1334a, which is a compliance model for the two-leg interference angle, with the compliance for the foot interference angle.
  • the model is approximated to the foot mechanism compliance model 134b, and then the block diagram is equivalently transformed.
  • the mechanism compliance model is simplified, so that the estimation accuracy is slightly lower than in the first embodiment, but since the calculation of the mechanism compliance is simple, the control unit is not used. G 26 can be reduced. Otherwise, the second embodiment is not different from the first embodiment. The effect is the same. It is the same as in the first embodiment that only the floor shape may be estimated. In the above description, the floor inclination between both legs is set before the assumed time of the two-leg supporting period (that is, the assumed landing time of the free leg). When the estimation of the deviation is not started, the following equation in which the term of the assumed two-leg interference angle S dbintcmdv is deleted from Equation 25 may be used. What This is because the assumed both-leg interference angle S db int cmdv is 0 during the two-leg supporting period of the target gait.
  • ⁇ dbintv ⁇ dbv '+ ⁇ errv- ⁇ fdbestmv
  • Equation 28 the assumed first foot interference angle X component 01 int cmdx is deleted from Equation 28. This is because the assumed first foot interference angle X component 01 int cmd x is 0 when the edge of the first foot of the desired gait along the Y axis is in contact with the ground.
  • ⁇ lintx ⁇ lx '+ ⁇ errx- 0 f lestmx
  • the estimation of the Y component of the first foot floor inclination deviation does not start before the edge along the X axis of the first foot of the desired gait (that is, the inner edge or outer edge) touches the ground.
  • the following equation in which the term of the assumed first foot interference angle Y component ⁇ 1 int cmdy may be deleted from the equation may be used. This is because when the edge along the Y axis of the first foot of the target gait (ie, the inner edge or outer edge) is in contact with the ground, the assumed first foot interference angle Y component 0 lint cmdy is 0 Because there is.
  • the estimated floor shape deviation may be stored as floor shape map information, and may be used as a reference when generating a desired gait when walking the same place next time.
  • the processing of the first foot floor inclination deviation Y component estimation interrupter according to the second embodiment is almost the same as that of the first embodiment. Specifically, 0f1 errdiffy in FIG. 1st foot floor anti-camoment estimated deviation Y component M 1 erry
  • the floor-to-leg floor inclination deviation estimation interrupter 140a like the first foot floor inclination deviation estimation interrupter, It is determined whether the estimation of the floor inclination deviation can be performed normally. If it is determined that the estimation cannot be performed normally, the estimation is interrupted.
  • the estimated floor-to-floor floor slope deviation does not diverge when the contact pressure between each foot and the floor is sufficient, but despite the fact that a certain foot is floating, the two feet compensating angle is Occurs in situations where is changing in a floating direction.
  • the mechanism of its occurrence is almost the same as the case where the estimated first foot floor inclination deviation Y component diverges, so further description is omitted.
  • the floor shape estimation value specifically, the contact surface inclination of each foot and the height difference between the two contact surfaces can be simultaneously and accurately estimated.
  • the desired floor shape can be generated, and the steady-state deviation of the floor reaction force due to the deviation of the floor shape can be eliminated.
  • the estimated value may be incorrect in addition to the above-described effects. Absent.
  • the determination that the foot 22 R (L) is likely to float is made based on the actual first foot floor reaction force detected by the six-axis force sensor 34.
  • the distribution pressure sensor 200 is disposed between the sole elastic body 40 and the foot body 22a as shown in FIG. 46, and based on the output signal, It may be determined in which direction the foot 22R (L) is likely to float. Note that the distributed pressure sensor 200 can more precisely estimate the deformation of the foot due to the actual floor reaction force than the 6-axis force sensor 34, so that the accuracy of floor shape estimation can be improved. . Further, as shown in FIG. 47, a plurality of contact sensors 202 are arranged on the foot 22R (L) (for example, arranged at the four corners of the foot), and based on the output signals, the foot 22R (L ) May be determined in which direction is more likely to float.
  • the estimation it is conceivable to suspend the estimation in the direction in which the contact sensors that are not touching the ground float more, or to suspend the estimation when all the contact sensors are floating.
  • the upper body (base) 24 and the first body (hip (lumbar) joints 10, 12, 14 R, L) are attached to the upper body 24.
  • a foot (foot) 22R, L connected at its tip via a second joint (foot (ankle) joint 18, 2, OR, L).
  • a leg mechanism (leg link) 2 and a compliance mechanism 42 which is deformed in response to a floor reaction force acting from a floor contacting the feet 22 R, L, and at least the upper body 24.
  • a floor shape estimating device for a legged mobile robot having a joint driving means (electric motor) for driving, an inclination detection for detecting an inclination of the body 24 with respect to a vertical axis direction.
  • the first model (the foot mechanism) describes the floor reaction force acting on each foot (each foot) 22 R and L, and the change in the position and orientation of each foot due to the floor reaction force.
  • Compliance model 1 3 4 b) the second model describing the floor reaction force acting on the target total floor reaction force center point, and the resulting change in the relative position between the feet (the two-leg mechanism compliance model 1 3 4 a).
  • the floor shape estimated value calculating means includes a filter for removing high frequency components (a part for calculating ⁇ fdbestmv from 0 fdberrv in the two-leg floor inclination deviation estimating unit 1338, a foot floor inclination deviation estimating unit 14). (The part that calculates ⁇ f 1 estm from ⁇ f 1 err in 4).
  • the target position of the feet 22 R and L is determined. It is configured to include correction means (control unit 26, adder 13 2 (13 2a, 13 2b)) for correcting the posture, and correction target foot position / posture calculation unit 114g.
  • a motion pattern (target body position / posture, target foot position / posture) including a target position / posture of at least the feet 22R and L of the robot 1 and a total floor reaction force acting on the robot 1
  • Gait generating means control unit 26, gait generator
  • Gait generating means for generating the gait of the robot including at least the desired pattern (target total floor reaction force, target total floor reaction force center point (two target ZMP)) 100, 310 to 322), the action center point on the foot 22R, L when the total floor reaction force of the generated gait is distributed to each of the feet 22R, L.
  • Target foot floor reaction force center point determining means (control unit 26, target floor reaction force distributor 102) to determine the target foot floor reaction force center point (target foot floor reaction force center point) S24, S26), an actual floor reaction force detecting means (control unit 2) for detecting the actual floor reaction force acting on the foot (actual foot floor reaction force). 6, 6-axis force sensor 34, actual foot floor reaction force detector 108, S32), and the detected actual floor reaction force is calculated around the calculated target foot floor reaction force center point.
  • the moment acting (actual nth foot floor reaction force moment Mactx, y, z) is calculated, and the amount of rotation for rotating the foot portion based on at least the calculated moment (both leg compensation angle 0 dbv, Foot rotation amount determination means (control unit 26, compound compliance operation determination unit 114, double leg compensation angle determination unit 114b, n foot clearance compensation to determine n foot compensation angle 0 nx, y) Angle determination unit 1 14 c, S 32, S 34, S 100 to S 108), and the correction means, based on the floor shape estimation value calculated as described above, Foot rotation correction means (control unit) that corrects the foot rotation (both legs compensation angle with floor shape estimation 0 dbv ', nth foot compensation angle with floor shape estimation ⁇ ⁇ ⁇ ', y ') G2, adder 132 (132a, 132b)), and corrects the target position / posture such that the position / posture of the foot rotates based on the corrected foot rotation.
  • the foot position / posture correction means (control unit 26, corrected target foot position / posture calculation unit 114g, S38, S40) were provided. Further, a motion pattern (target body position / posture, target foot position / posture) including a target position / posture of at least the feet 22R and L of the robot 1 and a total floor reaction force acting on the robot 1 Gait generating means (control means for generating a gait of the robot including at least the desired pattern (target total floor reaction force, target total floor reaction force center point (target ZMP))) Unit 26, gait generator 100, ⁇ 10 to 322), the foot 22R, when the total floor reaction force of the generated gait is distributed to each of the feet 22R, L, Target foot floor reaction force center point determination means (control unit 26, target floor reaction force distribution) to determine the desired foot floor reaction force center point (target foot floor reaction force center point) as the action center point on L Device 102, S24, S26), actual floor reaction force detecting means (control unit 26, 6-axis force sensor 34) for detecting the actual floor
  • the corrected position of the foot based on the corrected amount of rotation of the foot is determined by the determined desired foot floor reaction force center point (the desired foot floor reaction force center point).
  • a foot position / posture correcting means (control unit 26, corrected target foot position / posture calculation unit 114g, S38, S40) for correcting the target position / posture so as to rotate around the vicinity thereof is provided. It was configured to have.
  • the foot position / posture correction means rotates the foot position / posture based on the determined foot rotation amount around the determined target foot floor reaction force center point or its vicinity.
  • the configuration is such that the target position and orientation are corrected.
  • the total floor reaction moment actually acting on the robot (more precisely, the moment component PQ 1 * F 1 act + PQ 2 * F 2act + Ml act + M2 act), or the robot
  • the floor reaction moment (Mlact +) acting on the foot is obtained from the total floor reaction moment (PQ1 * F1act + PQ2 * F2act + Mlact + M2act) that actually acts.
  • M2 act) to calculate one of the obtained moments (Mf1f2act PQl * Flact + PQ2 * F2act), and calculate at least the moment according to the calculated moment.
  • the foot position / posture correcting means is configured to further correct the target position / posture based on the posture deviation of the robot.
  • a posture stabilization compensation total floor reaction force moment (compensated total floor reaction force Mdmd) to be added to the target pattern of the total floor reaction force is obtained, and the foot rotation amount determining means and / or the foot movement amount are calculated.
  • the determining means determines the rotation amount and Z or the movement amount of the foot based on at least the detected actual floor reaction force (actual foot floor reaction force) and the determined posture stabilization compensation total floor reaction force moment. It was configured to be determined (S34, S100 to S108).
  • the posture stabilization compensation total floor reaction force moment is obtained at least based on the inclination deviation (0 err x, y) of the robot (S 28).
  • the foot rotation amount determination means and Z or the foot movement amount determination means may be configured such that the posture stabilization compensation total floor reaction force moment is distributed to each of the plurality of legs.
  • the rotation amount and / or the movement amount of the foot are determined (S34, S100 to S108).
  • a motion pattern including at least the target position / posture of the feet 22 R, L of the robot 1 and the robot 1
  • a gait generating means control unit 26, control unit 26, which generates a gait of the robot including at least a target pattern of total floor reaction force (target total floor reaction force, target total floor reaction force center point (two target ZMP))).
  • Floor reaction force detection means (6-axis force sensor 34, control unit 26, actual foot floor reaction force detector 108, S32), and the entire floor of the target gait Distributing the force and the compensating total floor reaction force Floor reaction force distribution means (control unit 26, target floor reaction force distributor 102, S34, S100 to S104), and the correction means Correcting the position and orientation of the foot of the target gait based on the floor reaction force of the desired gait, the compensated floor reaction force, the detected actual floor reaction force of the foot, and the calculated estimated floor shape (control Unit 26, Compensation angle determiner 1 14 b, 1 14 c.
  • Adder 13 2 (13 2 a, 13 2 b), Modified foot position / posture calculator 1 14 g, Mechanical deformation
  • the correction target foot position / posture calculation unit with compensation 114 h and the mechanism deformation calculation unit 114 ⁇ ) are configured.
  • the posture stabilization compensation total floor reaction force is obtained based on at least the inclination deviation ( ⁇ er ⁇ X, y) of the robot (S 28).
  • the block diagram may be subjected to equivalent deformation such as changing the order of the arithmetic processing.
  • the present invention has been described with respect to a biped robot, the present invention can be applied not only to a biped robot but also to a multi-leg robot.
  • the present invention it is possible to simultaneously and simultaneously estimate, in other words, the height difference between the grounds of both feet, and in other words, in a complex and accurate manner, which is difficult with the prior art. Can be provided. Furthermore, the configuration is simple.
  • the steady-state deviation of the actual floor reaction force from the control target value which cannot be completely eliminated by the composite compliance control, is made as close to zero as possible.
  • the error of the floor reaction force due to the deviation of the floor shape It is possible to provide a legged mobile robot that can eliminate the steady-state deviation caused by the above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Description

明細書 脚式移動ロボッ 卜の床形状推定装置 技術分野
この発明は脚式移動ロボッ 卜の床形状推定装置、 より具体的には脚式移動 πボ ッ 卜が接地する床の傾斜などの形状を推定する装置に関し、 さらには推定した床 形状に基づいて床反力を制御することを可能とする装置に関する。 背景技術
床形状を推定する技術としては、 本出願人が先に特開平 6 - 3 1 6 5 8号公報 で提案した技術、 および論文 「路面形状に偏差のある環境に対する適応能力を持 つ 2足歩行ロボッ トの開発」 (日本ロボット学会誌、 第 1 4巻第 4号、 1 9 9 6 年 5月号) 記載の技術が知られている。
以下に後者 (ロボッ ト学会論文記載技術) の概要を説明し、 その問題点を指摘 する。
この従来技術では、 足平部が、 足平上面部、 クッション部、 足底の上下 3層構 造となっていて、 足平上面部と足底の間の相対角度と間隔を検出するためにポテ ンショメータを足平の 4隅に備えると共に、 足平上面部の絶対傾斜を検出するた めの傾斜計を備える。 また、 足底の四隅にはスパイクを備える。 尚、 この明細書 において 『足平』 は足部を意味するものとして使用する。
この従来技術にあっては、 遊脚の足平の着地時に、 ポテンショメ一夕と傾斜計 の情報を基に、 ならい動作によって足平を床面にならわせようとする。 その結果 、 足底の四隅のスパイクが床に接地した状態になり、 足底は床面に平行になる。 このとき、 傾斜計により得られる足平上面部の絶対位置姿勢と、 ポテンショメ一 夕から得られる足平上面部と足底の間の相対角度と間隔を基に、 幾何学的演算に より床の高さと傾きが検出される。
しかしながら、 この従来技術には以下のような問題点があった。 即ち、 ならい 動作によって足平が床面にならうまで、 床反力を操作する姿勢安定化制御を行う ことができなかった。 またグリップを増すために足底にゴム等の柔らかい材料を 貝占ると、 推定誤差が増えてしまう不都合があった。
さらに、 足平がベたに着地しない (即ち、 足底が着地の瞬間に床に面接触しな い) 歩行では、 両脚支持期の間に床の高さを正確に推定することができなかった 。 また、 直立時など両足平が床にベたに接地している状態では、 各足平の接地面 傾斜と両足平接地面間の高低差を同時には推定することができなかった。 また、 接地の瞬間しか推定することができなかったので、 着地した後に床が変形したと きに変形後の床形状を推定することができなかった。
他方、 前記した従来技術の前者、 即ち、 特開平 6 - 3 1 6 5 8号公報記載技術 の場合、 床反力を操作する姿勢安定化制御を行いながら、 床の傾斜を推定するこ とは可能であつたが、 両脚支持期では両足平の接地面と交差または接する平面の 傾きだけを推定すると共に、 片脚支持期では支持脚の接地面の傾斜だけを推定す るに止まっていた。 即ち、 これらの傾きを同時に推定することはできなかった。 発明の開示
従って、 この発明の目的は、 従来技術では困難であった床形状の推定、 具体的 には各足平の接地面傾斜と両足平接地面間の高低差を同時に、 換言すれば複合的 に、 精度良く推定できるようにした脚式移動ロボッ トの床形状推定装置を提供す る と あ
さらに、 本出願人は先に特開平 1 0— 2 7 7 9 6 9号公報において、 脚式移動 ロボットの姿勢傾斜を検出し、 目標全床反力中心点まわりの補償全床反力モ一メ ントを決定し、 各足平に分配して目標全床反力中心点まわりと目標各足平床反力 中心点まわりに、 それぞれ所定角度回転させるように足平の位置姿勢を決定し、 よって広域的のみならず局所的な傾斜や突起を有する床でも安定した姿勢で歩行 させることができる技術を提案している。
従って、 この発明の第 2の目的は床形状の推定結果を基に足平の軌道 (パター ン) を修正することにより、 そのような先に提案した技術で除去しきれなかった 実床反力の制御目標値からの定常偏差を可能な限り零に近づける、 換言すれば床 形状のずれによる床反力の誤差に起因する定常偏差を解消するようにした脚式移 動ロボットの床形状推定装置を提供することにある。
上記の目的を達成するために、 請求項 1項にあっては、 少なくとも上体と、 前 記上体に第 1の関節を介して連結されると共に、 その先端に第 2の関節を介して 連結される足部を備えた複数本の脚部を備えると共に、 前記足部に接地する床面 から作用する床反力に応じて変形するコンプライアンス機構を備え、 少なくとも 前記上体に対する前記足部の実位置姿勢を検出し、 前記足部の目標位置姿勢に追 従させるように前記関節を駆動する関節駆動手段を備えた脚式移動ロボッ トの床 形状推定装置において、 前記上体の鉛直軸方向に对する傾斜を検出する傾斜検出 手段、 前記足部の実位置姿勢および/または前記足部の目標位置姿勢と前記検出 された傾斜に基づき、 前記足部が接地する床面を含む歩行環境における前記足部 の位置姿勢を算出する対歩行環境足部位置姿勢算出手段、 前記床面から作用する 床反力による前記コンプライアンス機構の変形が加えられた前記歩行環境におけ る足部の変形位置姿勢を、 前記コンプライアンス機構をモデル化して得た機構コ ンプライアンスモデルを用いて算出する変形足部位置姿勢算出手段、 および前記 算出された足部の変形位置姿勢に基づき、 前記足部が接地するそれぞれの床面の 形状 (推定第 n足平床傾斜 (偏差) ) およびそれらの相対位置関係 (推定両脚間 床傾斜 (偏差) 、 あるいは推定両脚間床高低差 (偏差) ) を示す床形状推定値を 算出する床形状推定値算出手段、 を備える如く構成した。 これにより、 従来技術 では困難であった各足平の接地面傾斜と両足平接地面間の高低差を同時に、 換言 すれば複合的に、 精度良く推定することができる。
更には、 前記モデルが、 それぞれの足部 (各足平) に作用する床反力と、 それ によるそれぞれ足部の位置姿勢の変化を記述する第 1のモデル (足平機構コンプ ライアンスモデル) と、 目標全床反力中心点に作用する床反力と、 それによるそ れぞれ足部間の相対位置の変化を記述する第 2のモデル (両脚間機構コンプライ アンスモデル) からなる如く構成した。 これにより、 より簡易な構成で各足平の 接地面傾斜と両足平接地面間の高低差を同時に、 換言すれば複合的に、 精度良く 推定することができる。
更には、 前記床形状推定値算出手段は、 高周波成分を除去するフィル夕を備え る如く構成した。 これにより、 各足平の接地面傾斜と両足平接地面間の高低差を 同時に、 換言すれば複合的に、 より一層精度良く推定することができると共に、 制御系の発振を防止することができる。
更には、 前記算出された床形状推定値に基づいて前記足部の目標位置姿勢を修 正する修正手段を備える如く構成した。 これにより、 前記した効果に加え、 複合 コンプライアンス制御で除去しきれなかった実床反力の制御目標値からの定常偏 差を可能な限り零に近づける、 換言すれば床形状のずれによる床反力の誤差に起 因する定常偏差を解消することができる。
更には、 前記ロボットの少なくとも前記足部の目標位置姿勢を含む運動パター ンと、 前記ロボッ トに作用する全床反力の目標パターンを少なくとも含む前記口 ボッ トの歩容を生成する歩容生成手段、 前記生成された歩容の全床反力を前記足 部のそれぞれに分配したときの前記足部上の作用中心点たる目標足部床反力中心 点を決定する目標足部床反力中心点決定手段、 前記足部に作用する実床反カを検 出する実床反力検出手段、 および前記検出された実床反力が前記算出された目標 足部床反力中心点まわりに作用するモ一メントを算出し、 少なくとも前記算出さ れたモーメントに基づいて前記足部を回転させる回転量を決定する足部回転量決 定手段、 を備えると共に、 前記修正手段は、 前記算出された床形状推定値に基づ いて前記足部回転量を修正する足部回転量修正手段、 および前記修正された足部 回転量に基づいて前記足部の位置姿勢が回転するように前記目標位置姿勢を修正 する足部位置姿勢修正手段、 を備える如く構成した。 これにより、 前記した効果 に加え、 脚式移動ロボットに作用する床反力を干渉を生じることなく、 容易かつ 適切に制御することができる。
更には、 前記ロボットの少なくとも前記足部の目標位置姿勢を含む運動パター ンと、 前記ロボッ トに作用する全床反力の目標パターンを少なくとも含む前記口 ボッ トの歩容を生成する歩容生成手段、 前記生成された歩容の全床反力を前記足 部のそれぞれに分配したときの前記足部上の作用中心点たる目標足部床反力中心 点を決定する目標足部床反力中心点決定手段、 前記足部に作用する実床反カを検 出する実床反力検出手段、 および少なくとも前記検出された実床反力に基づいて 前記足部を回転させる回転量を決定する足部回転量決定手段、 を備えると共に、 前記修正手段は、 前記算出された床形状推定値に基づいて前記足部回転量を修正 する足部回転量修正手段、 および前記修正された足部回転量に基づいて前記足部 の位置姿勢が、 前記決定された目標足部床反力中心点あるいはその近傍まわりに 回転するように、 前記目標位置姿勢を修正する足部位置姿勢修正手段、 を備える 如く構成した。 これにより、 前記した効果に加え、 脚式移動ロボッ トに作用する 床反力を干渉を生じることなく、 容易かつ適切に制御することができる。
更には、 前記足部位置姿勢修正手段は、 前記決定された足部回転量に基づいて 前記足部の位置姿勢が、 前記決定された目標足部床反力中心点あるいはその近傍 まわりに回転するように、 前記目標位置姿勢を修正する如く構成した。 これによ り、 前記した効果に加え、 脚式移動ロボッ トに作用する床反力を干渉を生じるこ となく、 容易かつより適切に制御することができる。
更には、 前記ロボッ トに実際に作用する全床反力モーメン ト、 または前記ロボ ッ トに実際に作用する全床反カモ一メントから前記足部に作用する床反力モ一メ ントを減算して得たモーメントのいずれかを算出し、 少なくとも前記算出された モーメントに応じて前記足部を移動させる移動量を決定する足部移動量決定手段 、 を備え、 前記足部位置姿勢修正手段は、 前記決定された足部回転量および前記 決定された移動量に基づいて前記足部の位置姿勢を修正する如く構成した。 これ により、 前記した効果に加え、 特に姿勢制御に重要な全床反力を一層適切に制御 することができる。
更には、 前記足部位置姿勢修正手段は、 前記ロボッ トの姿勢偏差に基づいて前 記目標位置姿勢をさらに修正する如く構成した。 これにより、 前記した効果に加 え、 ロボッ トの姿勢をより一層安定に制御することができる。
更には、 前記全床反力の目標パターンに付加する姿勢安定化補償全床反力モ一 メントを求め、 前記足部回転量決定手段おょぴ または前記足部移動量決定手段 は、 少なく とも前記検出された実床反力と前記求めた姿勢安定化補償全床反カモ —メントに基づいて前記足部の回転量およびノまたは移動量を決定する如く構成 した。 これにより、 前記した効果に加え、 床反力を姿勢安定化のために、 より適 切に制御することができる。
更には、 前記姿勢安定化補償全床反力モーメントを、 少なくとも前記ロボッ ト の傾き偏差に基づいて求める如く構成した。 これにより、 前記した効果に加え、 姿勢安定化能力をより一層向上させることができる。
更には、 前記足部回転量決定手段および/または前記足部移動量決定手段は、 前記姿勢安定化補償全床反カモ一メントが前記複数本の脚部のそれぞれに分配さ れるように、 前記足部の回転量および/または移動量を決定する如く構成した。 これにより、 前記した効果に加え、 複数の脚部の負荷を適正に分配することがで き、 床面との圧力分布も局所的に過大に作用することがない。
更には、 前記ロボットの少なくとも前記足部の目標位置姿勢を含む連動パター ンと、 前記ロボッ トに作用する全床反力の目標軌跡パターンからなる前記ロボッ トの歩容を生成する歩容生成手段、 前記ロボットの姿勢安定化のための補償全床 反力を算出する姿勢安定化補償全床反力算出手段、 前記足部に作用する実床反力 を検出する足部実床反力検出手段、 および前記目標歩容の全床反力と前記補償全 床反力を分配する床反力分配手段、 を備えると共に、 前記修正手段は、 前記分配 された目標歩容の床反力と補償床反力と前記検出された足部実床反力および前記 算出された床形状推定値に基づいて前記目標足部位置姿勢を修正する如く構成し た。 これにより、 前記した効果に加え、 足部の修正量を一層適切に分配すること ができるので、 姿勢安定化のためのより大きな復元力とより高い接地性を得るこ とができる。
更には、 前記姿勢安定化補償全床反力を、 少なくとも前記ロボッ トの傾き偏差 に基^'いて求める如く構成した。 これにより、 前記した効果に加え、 姿勢安定化 能力をより一層向上させることができる。 図面の簡単な説明
第 1図は、 この発明の一つの実施の形態に係る床形状推定装置を適用した脚式 移動ロボット、 より具体的には 2足歩行ロボッ トを全体的に示す概略図である。 第 2図は、 第 1図に示す脚式移動ロボッ トの足部の構造を示す説明側面図であ る。
第 3図は、 第 1図に示す脚式移動ロボットの制御ュニッ トの詳細を示すブロッ ク図である。
第 4図は、 先に提案した脚式移動ロボッ トの制御装置およびこの発明の一つの 実施の形態に係る脚式移動 Πボッ トの床形状推定装置の構成および動作を機能的 に示すプロック図である。
第 5図は、 第 1図に示す脚式移動ロボッ トが平地を歩行するときの運動パ夕一 ンの一例を示す説明図である。
第 6図は、 第 5図の運動パターンに対応する目標全床反力中心点 (目標 Z M P ) 軌跡の床面上軌跡を示す説明図である。
第 7図は、 第 5図の運動パターンに対応する目標全床反力中心点 (目標 Z M P ) 軌跡のタイム ·チャートである。
第 8図は、 第 5図の運動パターンに対応する所定の条件を満たすように設定し た目標第 1足平床反力中心点軌跡のタイム ·チャートである。
第 9図は、 第 5図の運動バターンに対応する所定の条件を満たすように設定し た目標第 2足平床反力中心点軌跡のタイム ·チヤートである。
第 1 0図は、 第 4図と同様に、 先に提案した脚式移動ロボッ トの制御装置の動 作を示すフロー 'チャートである。
第 1 1図は、 第 1 0図フロー ·チヤ一トの内の両脚補償角などの演算処理を行 う、 第 4図に示す複合コンプライアンス動作決定部の動作を説明するための、 両 脚支持期に第 1足平と第 2足平に実各足平床反力が作用している状況を示す説明 図である。
第 1 2図は、 第 1 1図に示す状況における目標全床反力の設定を示す説明図で ある。
第 1 3図は、 第 1 1図に示す状況における目標各足平床反力の分配を示す説明 図である。
第 1 4図は、 第 1 1図に示す状況における補償全床反力モーメントを示す説明 図である。
第 1 5図は、 第 1 1図に示す状況における、 各足平床反力中心点を含み、 水平 面に垂直な平面の法線べク トル Vを示す説明図である。
第 1 6図は、 第 1 1図に示す状況における、 目標各足平床反力中心点を目標全 床反力中心点 (目標 Z M P ) まわりに、 所定角度 0 d b Vだけ回転させたときの 状態を示す説明図である。 第 1 7図は、 第 1 1図に示す状況における、 各足平を前後方向軸および左右方 向軸まわりに所定角度 0 n X , θ n yだけ回転させたときの状態を示す説明図で める。
第 1 8図は、 第 4図の複合コンプライアンス動作決定部の演算処理を示すプロ ック図である。
第 1 9図は、 第 1 8図に示す補償全床反力モーメン ト分配器、の演算処理を示す ブロック図である。
第 2 0図は、 第 1 8図に示す補償全床反力モーメン ト分配器の、 両脚補償角な どを操作するための分配重み変数の設定例を示すタイム · チャートである。 第 2 1図は、 第 2 0図の補償全床反力モーメント分配器の分配重み変数の設定 を説明するための、 ロボッ トの姿勢を示す説明図である。
第 2 2図は、 第 2 1図と同様に、 補償全床反力モーメン ト分配器の分配重み変 数の設定を説明するための、 ロボッ トの姿勢を示す説明図である。
第 2 3図は、 両脚補償角を操作するための分配重みを所定の条件で決定したと きの両脚補償モーメント V方向成分 M d m d d b Vを示す説明図である。
第 2 4図は、 第 1 8図に示す両脚補償角決定部の演算処理を示すブロック図で ある。
第 2 5図は、 第 1 8図に示す各足平の補償角決定部の演算処理を示すブロック 図である。
第 2 6図は、 第 1 8図に示す機構変形補償入り修正目標足平位置姿勢算出部の 演算処理を説明するための説明図である。
第 2 7図は、 第 2 6図と同様に、 第 1 8図に示す機構変形補償入り修正目標足 平位置姿勢算出部の演算処理を説明するための説明図である。
第 2 8図は、 第 1 0図フロー 'チヤ一トの内の両脚補償角などの決定作業を示 すサブルーチン · フロー 'チヤ一トである。
第 2 9図は、 先に提案した制御装置の変形例を示す第 1 6図と同様の説明図で 、 足平位置の修正動作の別の例を示す説明図である。
第 3 0図は、 この発明の一つの実施の形態に係る脚式移動ロボッ卜の床形状推 定装置の構成を示す、 第 1 8図と同様なブロック図である。 第 3 1図は、 第 3 0図に示す装置が床形状を推定するときに使用する定義の説 明図である。
第 3 2図は、 同様に第 3 0図に示す装置が床形状を推定するときに使用する定 義の説明図である。
第 3 3図は、 第 3 0図に示す床形状推定器の処理を機能的に示すブロック図で ある。
第 3 4図は、 第 3 3図に示す床形状推定器の機構コンプライアンスモデルの処 理を機能的に示すプロック図である。
第 3 5図は、 同様に第 3 3図に示す床形状推定器の機構コンプライアンスモデ ルの処理を機能的に示すプロック図である。
第 3 6図は、 この発明の一つの実施の形態における足平床傾斜偏差推定値の発 散を説明するための説明図である。
第 3 7図は、 この発明の一つの実施の形態における足平床傾斜偏差推定中断器 の処理を示すフロー ·チャートである。
第 3 8図は、 第 3 7図の処理を説明するタイム ·チヤ一トである。
第 3 9図は、 第 3 7図の処理を説明する説明図である。
第 4 0図は、 この発明の一つの実施の形態における両脚間床傾斜偏差推定中断 器の処理を示すフロー■チャートである。
第 4 1図は、 第 4 0図の処理を説明するタイム ·チヤ一トである。
第 4 2図は、 この発明の第 2の実施の形態に係る脚式移動ロボットの床形状推 定装置の構成を示す、 第 3 0図と同様なブロック図である。
第 4 3図は、 第 4 2図に示す第 2の実施の形態で使用する定義の説明図である ο
第 4 4図は、 第 2の実施の形態における床形状推定器の両脚間床傾斜偏差推定 部の処理を機能的に示すプロック図である。
第 4 5図は、 第 2の実施の形態における床形状推定器の足平床傾斜偏差推定部 の処理を機能的に示すプロック図である。
第 4 6図は、 第 1および第 2の実施の形態に係る脚式移動ロボッ トの床形状推 定装置で使用するセンサの別の例を示す説明図である。 第 4 7図は、 第 1および第 2の実施の形態に係る脚式移動ロボッ トの床形状推 定装置で使用するセンサのさらに別の例を示す説明図である。 発明を実施するための最良の形態
以下、 添付図面を参照してこの発明の一つの実施の形態に係る脚式移動ロボッ トの床形状推定装置を説明する。 尚、 脚式移動ロボッ トとしては 2足歩行ロボッ トを例にとる。
第 1図は、 この実施の形態に係る床形状推定装置を適用した脚式移動ロボッ ト 、 より具体的には 2足歩行ロボットを全体的に示す概略図である。
図示の如く、 2足歩行ロボッ ト (以下 「ロボッ ト」 という) 1は左右それぞれ の脚部 (脚部リンク) 2に 6個の関節を備える (理解の便宜のために各関節をそ れを駆動する電動モータで示す) 。 6個の関節は上から順に、 股 (腰部) の脚部 回旋 (回転) 用の関節 1 0 R, 1 0 L (右側を R、 左側を とする。 以下同じ) 、 股 (腰部) のロール方向 (X軸まわり) の関節 1 2R, 1 2 L、 股 (腰部) の ピッチ方向 (Y軸まわり) の関節 1 4R, 1 4 L、 膝部のピッチ方向の関節 1 6 R, 1 6 L、 足首のピッチ方向の関節 1 8 R, 1 8 L、 同ロール方向の関節 2 0 R, 20 Lから構成される。
関節 1 8 R CL) , 2 0 R (L) の下部には足平 (足部) 22 R, 22 Lが取 着されると共に、 最上位には上体 (基体) 24が設けられ、 その内部にマイクロ コンピュータからなる制御ユニット 2 6 (後述) などが格納される。 上記におい て股関節 (あるいは腰関節) は関節 1 O R (L) , 1 2R (L) , 1 4 R (L) から、 足関節 (足首関節) は関節 1 8 R (L), 2 0 R (L) から構成される。 また股関節と膝関節とは大腿リンク 28 R, 2 8 L、 膝関節と足関節とは下腿リ ンク 3 0 R, 3 0 Lで連結される。
上記の構成により、 脚部 2は左右の足についてそれぞれ 6つの自由度を与えら れ、 歩行中にこれらの 6 * 2 = 1 2個の関節を適宜な角度で駆動することで、 足 全体に所望の動きを与えることができ、 任意に 3次元空間を歩行させることがで きる (この明細書で 「*」 はスカラに対する演算としては乗算を、 ベクトルに対 する演算としては外積を示す') 。 尚、 この明細書で後述する上体 2 4の位置およびその速度は、 上体 2 4の所定 位置、 具体的には上体 2 4の重心位置などの代表点の位置およびその移動速度を 意味する。
第 1図に示す如く、 足関節の下方には公知の 6軸力センサ 3 4が取着され、 力 の 3方向成分 F x, F y, F zとモーメントの 3方向成分 M x , M y , M zで足 部の着地の有無および床反力 (接地荷重) などを示す信号を出力する。 また、 上 体 2 4には傾斜センサ 3 6が設置され、 Z軸 (鉛直方向 (重力方向) ) に対する 傾きとその角速度に応じた信号を出力する。 また各関節の電動モータにはロー夕 リエンコーダが設けられ、 その回転量を示す信号を出力する。
第 2図に示すように、 足平 2 2 R ( L ) の上方には、 ばね機構 3 8が装備され ると共に、 足底にはゴムなどからなる足底弾性体 4 0が貼られてコンプライアン ス機構 4 2を構成する。 ばね機構 3 8は具体的には、 足平 2 2 R ( L ) に取り付 けられた方形状のガイド部材 (図示せず) と、 足首関節 1 8 R ( L ) および 6軸 力センサ 3 4側に取り付けられ、 前記ガイ ド部材に弾性材を介して微動自在に収 納されるピストン状部材 (図示せず) とからなる。
図中に実線で表示された足平 2 2 R ( L ) は、 床反力を受けていないときの状 態を示す。 床反力を受けると、 コンプライアンス機構 4 2においてパネ機構 3 8 と足底弾性体 4 0がたわみ、 足平は図中に点線で表示された位置姿勢に移る。 こ の構造は、 着地衝撃を緩和するためだけでなく、 制御性を高めるためにも重要な ものである。 尚、 その詳細は前記した特開平 5— 3 0 5 5 8 4号に記載されてい るので、 詳細な説明は省略する。
さらに、 第 1図では図示を省略するが、 ロボッ ト 1の適宜な位置にはジョイス ティック 4 4が設けられ、 外部から必要に応じて直進歩行しているロボッ ト 1を 旋回させるなど歩容に対する要求を入力できるように構成される。
第 3図は制御ュニッ ト 2 6の詳細を示すプロック図であり、 マイクロ . コンビ ュ一夕から構成される。 そこにおいて傾斜センサ 3 6などの出力は AZD変換器 5 0でデジタル値に変換され、 その出力はバス 5 2を介して R AM 5 4に送られ る。 また各電動モータに隣接して配置されるエンコーダの出力はカウンタ 5 6を 介して R AM 5 4内に入力される。 制御ュニッ ト 2 6の内部には C P Uからなる第 1、 第 2の演算装置 6 0, 6 2 が設けられており、 第 1の演算装置 6 0は後述の如く、 ロボッ ト 1が接地する床 (床面) の形状を推定すると共に、 R O M 6 4に格納されている歩容に基づいて 後述の如く関節角変位指令を算出し、 R AM 5 4に送出する。 また第 2の演算装 置 6 2は R A M 5 4からその指合と検出された実測値とを読み出し、 各関節の駆 動に必要な制御値を算出して D ZA変換器 6 6とサーボアンプを介して各関節を 駆動する電動モータに出力する。
この実施の形態に係る脚式移動ロボッ トの床形状推定装置は、 概説すると、 本 出願人が先に提案した前記の特開平 6 - 3 1 6 5 8号公報記載の技術の改良であ る。 より具体的には、 同様に本出願人が先に提案した前記の特開平 1 0— 2 7 7 9 6 9号公報記載技術を基礎とし、 その上に特開平 6 - 3 1 6 5 8号記載技術の 手法を拡張しながら適応させたものである。
即ち、 その特開平 6— 3 1 6 5 8号記載技術においては、 少なくとも Z M Pま わりの全床反力モーメントの制御偏差を基に、 両脚支持期では両脚間傾斜偏差を 推定して両脚補償角を修正し、 片脚支持期では各足平床傾斜偏差を推定して各足 平補償角を修正していた (特開平 6 - 3 1 6 5 8号公報記載技術では足首角を修 正していたので、 厳密には足平補償角を修正することとは異なるが、 ここではほ ぼ同じと考える) 。
尚、 上記で、 Z M P (Zero Moment Poin t)とは、 運動パターン (軌道) によつ て発生する慣性力と重力の合力の床 (面) 上の作用点まわりのモーメント力 \ 鉛 直軸まわりの成分を除き、 0である点を意味する。
それに対し、 この実施の形態に係る脚式移動ロボッ トの床形状推定装置におい ては、 少なくとも全床反力モーメントの制御偏差 (あるいはそれから目標各足平 床反力中心点まわりの各足平床反力モーメン卜の制御偏差を減じたもの) を基に 床形状、 より具体的には両脚間床傾斜偏差を推定する。 さらには、 必要に応じて 推定値に基づいて両脚補償角を修正する。 また、 少なくとも目標各足平床反力中 心点まわりの各足平床反力モーメントの制御偏差を基に床形状、 より具体的には 各足平床傾斜偏差を推定する。 さらには、 必要に応じて推定値に基づいて各足平 補償角を修正するようにした。 この結果、 両脚支持期であっても各足平床傾斜偏 差を精度良く推定することができ、 各足平補償角を修正することができる。
さらに、 両脚間床傾斜偏差および各足平床傾斜偏差の推定において、 前記した コンプライアンス機構 4 2をモデル化した、 床反力と脚部 (脚部リンク) 2の変 形の関係を表わす機構コンプライアンスモデルを用いることにより、 制御則に単 なる積分を加えて定常制御偏差を低減する従来手法では得られない良好な制御特 性が得られるようにした。 即ち、 制御則に単なる積分を加えると位相が遅れるが 、 この実施の形態に係る装置ではオブザーバを用いた場合と同様に、 制御の遅れ が生じることがない。
ところで、 その先に提案した前記特開平 1 0— 2 7 7 9 6 9号公報記載技術は 、 予期しない凹凸形状の床面に遭遇して姿勢の安定を失ったとき、 床反力を適切 に制御して安定した姿勢を回復させることを意図していた。
即ち、 平坦な床面を想定して生成された歩容に基づいて歩行制御されていた口 ボッ ト 1が予期しない凹凸を踏むと、 過大な床反力が生じてロボッ ト 1は傾く力 、 そのような状況に対処すべく、 本出願人は別の提案技術 (特開平 5— 3 0 5 5 8 6号公報記載技術) において前記したコンプライアンス機構 4 2を用いると共 に、 傾斜センサにより上体傾斜を検出して必要な復元モ一メ ント要求量を求め、 それに目標全床反力中心点 (目標 Z M P ) まわりの実全床反力モーメン ト成分が 一致するように足平軌道 (パターン) を修正して各足平を上下させていた。
しかしながら、 その制御は、 長い距離でゆったりと変化する大域 (広域) 的な 傾斜やうねりには有効であるが、 局所的な傾きや段差には十分対応しきれなかつ た。
本出願人は、 さらに、 別の提案技術 (特開平 5 - 3 0 5 5 8 4号公報記載技術 ) において、 同様に前記したコンプライアンス機構 4 2を用いて予期しなかった 床反力モーメントを打ち消す方向に足関節 1 8 R ( L ), 2 O R ( L ) を駆動す る制御も提案していた。
従って、 予期しない凹凸形状の床面に遭遇して姿勢の安定を失ったときには、 上記した 2種の提案技術を併用することも考えられるが、 そうすると、 制御が干 渉する不都合があった。
そのような制御の干渉を回避すべく、 先に提案した前記特開平 1 0— 2 7 7 9 6 9号公報記載技術では、 局所的な凹凸や傾斜などを含む予期しない床形状の変 化に起因して姿勢の安定を失ったとき、 床反力を適切に制御するようにしている この実施の形態に係る脚式移動ロボッ トの床形状推定装置は、 その先に提案し た前記特開平 1 0— 2 7 7 9 6 9号公報記載技術を前提としているので、 理解の 便宜上、 最初に、 その先に提案した前記特開平 1 0— 2 7 7 9 6 9号公報記載技 術を説明する。 尚、 以下、 その先に提案した前記特開平 1 0— 2 7 7 9 6 9号公 報記載技術を 「複合コンプライアンス制御」 と呼ぶ。
第 4図は、 その複合コンプライアンス制御の装置の構成および動作を機能的に 示すプロック図である。
同図の説明に入る前に、 その複合コンプライアンス制御で使用した定義を説明 する (尚、 定義しない用語に関しては、 本出願人が前記した技術とは別に提案し た出願 (特開平 1 0— 8 6 0 8 1号) で使用した定義に従う) 。
『歩容』 は、 ロボッ ト工学における一般的な定義と異なり、 目標運動パターン と床反力パターンを合わせたものを指称する意味で使用する。 但し、 床反カバ夕 ーンとしては、 例え 『Z M P軌跡だけ』 というように、 部分情報であっても良 い。 そのため、 目標運動パターンだけを出力して床反力パターンに関する情報を 出力しない装置に対して 「歩容生成装置」 と言う言葉を用いない。
各脚には、 通し番号をつける。 第 n脚に作用する床反力を第 n足平床反力とい う (n : 1または 2。 以下同じ) 。 全脚に作用する床反力を合成したものを全床 反力という (ロボッ ト工学では一般的には床反力と呼ばれるが、 足平床反力と区 別するためにここでは 『全床反力』 という) 。
足平床反力は作用点とそこにかかる力と力のモーメントによって表現され、 同 一の足平床反力に対して、 表現の組み合わせは無限通りある。 その中には、 鉛直 軸まわりの成分を除くモーメント成分が 0でかつ作用点が足底上にある表記が存 在する。 この表現における作用点を、 ここでは足平床反力中心点という (本出願 人が別途提案した後述する特開平 6 - 7 9 6 5 7号では 『接地圧重心点』 と称し た) 。
同様に、 全床反力は、 作用点と、 そこにかかる力と力のモーメントによって表 現され、 同一の全床反力に対して表現の組み合わせは無限通りある。 その中には 、 鉛直軸まわりの成分を除くモーメント成分が 0でかつ作用点が床面上にある表 現が存在する。 この表現における作用点を、 ここでは全床反力中心点という。 尚
、 この明細書で 「床面」 は、 本出願人が先に提案した特開平 5 - 3 1 8 3 4 0号 公報に記載される仮想的な床面であっても良い。
全床反力の目標値を目標全床反力という。 目標全床反力は、 通常、 目標運動パ ターンに対して動力学的に平衡する全床反力である。 従って、 通常、 目標全床反 力中心点は、 目標 Z M Pに一致する。
尚、 前記した Z M Pの目標値を目標 Z M Pという。 目標 Z M Pは、 合力の垂直 方向力成分が 0でない限り、 一義的に求められる。 以下の説明では、 理解しやす くするために、 目標 Z M Pという言葉を用いる場合もあるが、 厳密には目標全床 反力中心点と言うべき箇所が多い。
各足平床反力の目標値を目標各足平床反力という。 但し、 目標全床反力とは異 なり、 目標運動パターンが決まっていても目標各足平床反力は一義的には決定さ れない。 実際のロボッ トに作用する全床反力を実全床反力という。 実際のロボッ トに作用する各足平床反力を実各足平床反力という。
上記した定義を前提とし、 以下、 第 4図を参照して複合コンプライアンス制御 装置の全体構成を概説する。
図示の如く、 複合コンプライアンス制御装置は歩容生成器 1 0 0を備え、 歩容 生成器 1 0 0は目標歩容を生成し、 出力する。 目標歩容は、 前述の定義の通り、 目標運動パ夕一ンと目標床反力パターン、 より具体的には目標上体位置姿勢軌道 、 目標足平位置姿勢軌道、 目標全床反力中心点 (目標 Z M P ) 軌道および目標全 床反力軌道 (あるいはパターン) からなる。 目標床反カバ夕一ンは、 このように 、 目標全床反力中心点軌跡を含む (後述する機構変形補償を行わないならば、 目 標床反力パターンとしては目標全床反力中心点軌跡だけでも良い) 。
歩容生成器 1 0 0が出力する目標全床反力は、 目標運動パターンに対して動力 学的に平衡する全床反力である。 従って、 目標全床反力中心点は、 目標 Z M Pに 一致する。
第 5図にロボッ ト 1が平地を歩行するときの目標運動パターンの一例を示す。 これに対応する目標 Z M P軌道の床面上軌跡を第 6図に、 タイム ·チヤ一トを第 7図に示す。 この歩容の期間に床に接触したままの足平を 「第 1足平」 、 もう一 方を 「第 2足平」 と呼ぶ。
第 4図の説明に戻ると、 この装置は目標床反力分配器 1 0 2を備え、 目標床反 力分配器 1 0 2は、 目標全床反力中心点 (目標 Z M P ) と目標足平位置姿勢を主 な入力とし、 目標各足平床反力中心点を決定して出力する。 実際には、 歩容生成 器 1 0 0から歩容のパラメ一夕 (例えば、 両脚支持期の時間や遊脚足平の目標着 地位置など) や、 歩容の時期 ·時刻 (例えば、 現在時刻が両脚支持期の初めから 0. lsecであるなど) などの情報も必要に応じて取り込む。
第 5図に示すような歩容に対して、 目標床反力分配器 1 0 2は、 目標各足平床 反力中心点が以下の条件を満足するように設定する。
条件 1 ) 目標各足平床反力中心点軌跡は連続である。
条件 2 ) 両脚支持期では、 目標第 1足平床反力中心点はかかとに、 目標第 2足平 床反力中心点はつまさきに存在する。
条件 3 ) このとき目標第 1足平床反力中心点と目標第 2足平床反力中心点を結ぶ 線分上に、 目標全床反力中心点が存在する。
条件 4 ) 片脚支持期では、 目標第 1足平床反力中心点は、 目標全床反力中心点に —致する。
条件 5 ) 片脚支持期の間に、 目標第 2足平床反力中心点は、 つまさきからかかと に移動する。
これら条件を満足する目標第 1足平床反力中心点軌跡のタイム ·チャートを第 8図に、 目標第 2足平床反力中心点軌跡のタイム , チャートを第 9図に示す。 尚 、 この図では足首 (関節 1 8 R ( L ), 2 0 R ( L ) ) から足平 2 2 R ( L ) へ の垂直投影点、 より具体的には足底への垂直投影点を原点とし、 第 1図に示すよ うに足平前方向を X軸の正の向き、 足平左方向を Y軸の正の向きにとる。
目標床反力分配器 1 0 2は、 さらに、 付随的ではあるが、 目標各足平床反力も 決定して出力する。 目標各足平床反力は、 コンプライアンス機構 4 2のたわみ補 償のために必要である。
次式を用いて上記のように設定された目標各足平床反力中心点に対応する目標 各足平床反力を決定すれば、 目標各足平床反力の合力は目標全床反力に一致しな ければならないと言う条件を満足する。
目標第 1足平床反力
=目標全床反力 * (目標第 2足平床反力中心点と目標 Z M Pの距離) / (目標 第 1足平床反力中心点と目標第 2足平床反力中心点の距離)
目標第 2足平床反力
=目標全床反力 * (目標第 1足平床反力中心点と目標 Z M Pの距離) Z (目標 第 1足平床反力中心点と目標第 2足平床反力中心点の距離)
• · ·式 1 このように求めた目標各足平床反力は連続的に変化するので、 衝撃の少ない歩 行を実現するために適している。 尚、 上記の詳細は本出願人が別途提案した技術 (特開平 6— 7 9 6 5 7号) に記述されている。
第 4図の説明に戻ると、 この装置は姿勢安定化制御演算部 1 0 4を備え、 姿勢 安定化制御演算部 1 0 4はセンサ情報に基づいてロボット 1の状態を推定し、 補 償全床反力を算出する。 即ち、 実際にロボッ ト 1が歩行あるいは直立していると きなどには後述する変位コントローラによって実関節変位を目標関節変位に完全 に追従させることができたとしても、 ロボッ ト 1の位置姿勢は必ずしも望ましい 位置姿勢にならない。
ロボット 1の姿勢を長期的に安定化させるためには、 ロボッ トを望ましい位置 姿勢に復元させるために必要な力とモ一メントを求め、 これを目標全床反力中心 点 (目標 Z M P ) を作用点として付加的に発生させる必要がある。 この付加的な 力とモーメン トを補償全床反力という。 また、 補償全床反力のモーメン ト成分を 補償全床反力モーメン トという。
尚、 脚式移動ロボッ トの目標歩容が床反力以外の反力を環境から受けるように 想定し、 それを例えば、 目標対象物反力と称し、 先に述べた目標 Z M Pの定義を 次のように拡張しても良い。 即ち、 目標運動パターンによって発生する慣性力と 重力と目標対象物反力の合力を動力学的に求め、 床面上のある点に作用するモ一 メン トが、 鉛直軸まわりの成分を除いて零であるならば、 その点を改めて目標 Z M Pとするようにしても良い。 もし、 ロボッ ト 1が完全剛体であって、 変位コント口一ラによって実関節変位 を目標関節変位に完全に追従させることができたと仮定すると、 コンプライアン ス機構 42のたわみによって生じるロボッ ト全体の位置姿勢の摂動的な運動は、 以下の 6自由度に分解できる。
モ一ド 1 ) 目標全床反力中心点 (目標 ZMP) を中心とした前後軸まわり回転 ( 即ち、 左右傾き)
モード 2) 目標全床反力中心点 (目標 ZMP) を中心とした左右軸まわり回転 ( 即ち、 前後傾き)
モード 3) 目標全床反力中心点 (目標 ZMP) を中心とした鉛直軸まわり回転 ( 即ち、 スピン)
モード 4) 莳後平行移動揺れ
モード 5) 左右平行移動揺れ
モード 6) 上下平行移動揺れ
この内で、 モード 4とモード 5は、 コンプライアンス機構 4 2が前後左右方向 の剪断力を受けてたわむことによって発生するものである。 コンプライアンス機 構 42の剪断方向の剛性が高いように製作するので、 この揺れは極めて少なく、 歩行に及ぼす悪影響はほとんどない。
残り 4自由度の内、 モ一ド 3とモ一ド 6はここでの説明と直接の関連を有しな いので、 モード 1 とモード 2に対する制御を説明する。 モード 1 とモード 2に対 する制御は、 これがないとほとんどの場合ロボッ トが転倒するので、 重要度は極 めて高い。
モード 1を制御するための操作量は、 補償全床反力の前後軸 (X軸) まわりモ —メント成分である。 モード 2を制御するための操作量は、 補償全床反力の左右 軸 (Y軸) まわりモーメント成分である。 従って、 補償全床反力の成分の内、 前 後軸方向モーメント成分と左右軸方向モ一メント成分だけを求めれば良い。 他の 成分は、 この実施の形態 (および第 2の実施の形態) では用いないので 0で良い ο
尚、 以降は次の定義に従う。 即ち、 補償全床反力のモーメント成分を 「補償全 床反力モーメント Mdmd」 (詳しくは目標全床反力中心点 (目標 ZMP) まわ りの補償全床反力モーメント Mdmd) と呼ぶ。 第 5図および第 6図に示す如く 、 ロボットの前方向を X軸、 左横方向を Y軸、 上方向を Z軸にとり、 第 1足平の 足首直下の床面上の点を原点とした座標系を 「支持脚座標系」 と呼び、 断らない 限り、 位置、 力およびモーメントはこの座標系で表現されるものとする。 また、 Mdmdの X成分を Mdmd x、 Y成分を Mdmd y、 Z成分を Mdmd zと記 述する。 上体 2 4の傾斜偏差 (即ち、 実上体傾斜一目標上体傾斜) 0 e r rの X 成分を S e r r x, Y成分を S e r r y、 これらの時間微分値を ( d 0 e r r x /d t ) , (ά θ e r r y/d t) と記述する。
Mdmd xおよび Mdmd yは、 例えば次式の制御則によって決定される。 Mdmdx = - Kthx Θ errx - Kwx (d Θ errx I dt)
Mdmdy = - thy Θ erry - Kwy (d0 erry I dt)
• · ■式 2 ここで、 K t h x, K t h y, K w xおよび K w yは、 上体傾斜安定化制御ゲィ ンである。
後述する複合コンプライアンス動作決定部は、 目標全床反力と補償全床反力の 合力に実全床反力を一致させようと働く。
第 4図の説明に戻ると、 この装置は実各足平床反力検出器 1 0 8を備え、 実各 足平床反力検出器 1 0 8は、 6軸力センサ 3 4によって実各足平床反力 (その合 力が実全床反力) を検出する。 さらに、 関節のエンコーダによって検出される実 変位 (および Zまたは変位指令) に基づき、 上体 2 4に固定された座標系に対す る各足平 2 2 R (L) の相対位置姿勢を算出し、 それによつて 6軸力センサ 3 4 の検出値を座標変換し、 上体に固定された座標系で表現された実各足平床反力を 算出した後、 支持脚座標系に変換する。
この装置はロボッ ト幾何学モデル (逆キネマテイクス演算部) 1 1 0を備え、 ロボッ ト幾何学モデル 1 1 0は、 上体位置姿勢と足平位置姿勢を入力されると、 それらを満足する各関節変位を算出する。 この実施の形態におけるロボッ ト 1の ような 1脚あたりの関節自由度が 6である場合には、 各関節変位は一義的に求ま る。
ここでは逆キネマティタスの解の式を直接的に求めておき、 式に上体位置姿勢 と足平位置姿勢を代入するだけで各関節変位を得るようにした。 即ち、 ロボット 幾何学モデル 1 1 0は、 目標上体位置姿勢と複合コンプライアンス動作決定部で 修正された修正目標足平位置姿勢軌道 (機構変形補償入り修正目標足平位置姿勢 軌道) を入力し、 それらから 1 2個の関節 ( 1 O R ( L ) など) の関節変位指令 (値) を算出する。
この装置は変位コントロ一ラ 1 1 2 (前記した第 2の演算装置 6 2に同じ) を 備え、 変位コントローラ 1 1 2は、 ロボッ ト幾何学モデル (逆キネマティクス演 算部) 1 1 0で算出された関節変位指令 (値) を目標値としてロボッ ト 1の 1 2 個の関節の変位を追従制御する。
この装置は前記した複合コンプライアンス動作決定部 1 1 4を備え、 複合コン プライアンス動作決定部 1 1 4は以下の 2つの要求を満足させようと、 目標足平 位置姿勢軌道を修正する。
要求 1 ) ロボットの位置姿勢制御のために、 実全床反力を姿勢安定化制御演算 部 1 0 4が出力する補償全床反力 (モーメン ト M d m d ) と目標全床反力の合力 に追従させる。 ロボッ トの姿勢傾きだけを制御したい場合には、 目標全床反力中 心点まわりの実全床反力水平方向モーメント成分だけを補償全床反力モーメント M d m dに追従させる。
要求 2 ) 各足平の接地性を確保するために、 できるかぎり目標各足平床反力中 心点まわりの実各足平床反力モーメントの絶対値を小さくする。
尚、 通常は実全床反力を補償全床反力と目標全床反力の合力に一致させながら 目標各足平床反力中心点まわりの実各足平床反力モーメントを 0にすることが、 物理的に不可能な場合が多い。 従って、 要求 1 ) と要求 2 ) は完全に両立させる ことはできず、 ある点で妥協しなくてはならない。
上記を前提として第 1 0図フロー ' チャート (構造化フロー, チャート) を参 照してこの装置の動作を説明する。 尚、 図の左端に該当する処理を行う第 4図に 示す装置の構成要素を示す。
先ず S 1 0において装置を初期化し、 S 1 2を経て S 1 4に進み、 タイマ割り 込みを待機する。 タイマ割り込みは 5 O m sごとになされ、 即ち、 制御周期は 5 0 m sである 続いて S I 6に進んで歩容の切り替わり目、 即ち、 支持脚の切り替わり目か否 か判断し、 否定されるときは S 22に進むと共に、 肯定されるときは S 1 8に進 んでタイマ tをイニシャライズし、 S 2 0に進んで目標歩容パラメ一夕を設定す る。 前記の如く、 歩容パラメ一夕は、 運動パラメ一夕と床反力パラメ一夕 (ZM P軌道パラメ一夕) から構成される。
続いて S 22に進み、 目標歩容の瞬時値を決定する。 ここで 『瞬時値』 は制御 周期ごとの値を意味し、 目標歩容瞬時値は、 目標上体位置姿勢、 目標各足平位置 姿勢、 および目標 ZMP位置から構成される。 尚、 ここで 『姿勢』 は X, Υ, Z 空間における 『向き』 を意味する。
続いて S 24に進んで目標各足平床反力中心点を求める。 これは目標床反力分 配器の説明で述べたように行う。 具体的には、 第 8図および第 9図に示すように 、 設定した目標各足平床反力中心点軌跡の現在時刻 tにおける値を求めることで 行う。
続いて S 2 6に進んで目標各足平床反力を求める。 これは目標床反力分配器の 説明で述べた式 1を用いて目標各足平床反力を演算することで行う。
続いて S 2 8に進み、 前記した傾斜センサ 3 6などの出力から上体 2 4の傾斜 などロボット 1の状態を検出する。
続いて S 3 0に進み、 ロボッ ト 1の状態などから姿勢を安定化するための (目 標全床反力中心点 (目標 ZMP) まわりの) 補償全床反力モーメント Mdmd X , Mdmd yを求める。 具体的には、 前記した式 2に従って補償全床反力モーメ ント Mdmd x, Mdmd yを演算する。,
続いて S 3 2に進んで実各足平床反力を検出する。 これは前記の如く、 6軸力 センサ 3 4の出力から検出する。
続いて S 34に進み、 両脚補償角 0 d b vおよび各足平補償角 0n x (y) を 決定する。 これは、 前記した複合コンプライアンス動作決定部 1 1 4が行う作業 C'あ 。
その複合コンプライアンス動作決定部 1 1 4の作業について説明する。 説明の 便宜のため、 両脚支持期において第 1 1図に示すように第 1足平 22 R (L) と 第 2足平 22 L (R) に実各足平床反力が作用している状況と仮定する。 ここでベクトル Fn a c tは第 n足平床反力の力成分を表す。 ベクトル Mn a c tは第 n足平床反力のモ一メント成分を表す。 べク トル Mn a c tの向きは、 向きに対して時計回りの乇一メントが床から足平に作用していることを表す。 この瞬間の目標全床反力は、 第 1 2図に示すようになっていると仮定する。 ち なみに、 目標全床反力中心点 (目標 ZMP) における目標全床反力モーメントべ クトル Ms umr e f は垂直である (定義により、 目標 ZMPは目標全床反カモ 一メントの水平方向成分が 0である点であるから) 。
これを式 1に従って目標各足平床反力に分配すると、 第 1 3図に示すようにな る。 同図において、 ベクトル Fn r e f は目標第 n足平床反力の力成分を表す。 べク トル Mn r e f は目標第 n足平床反力のモーメント成分を表す。 べク トル M n r e f の向きの表現は、 Mn a c tと同様である。
説明のため、 上体姿勢が左後ろに倒れそうな状態を想定する。
前述の姿勢安定化制御演算部 1 0 4では、 ロボット 1の上体傾斜偏差検出値 0 e r r x, Θ e r r yに基づいて補償全床反力モーメント Mdmdを算出する。 この実施の形態では鉛直軸 (Z軸) まわりのスピンを制御しないので、 補償全床 反カ乇一メント Mdmdの鉛直軸成分は 0である。 上体位置の揺れも制御しない ので、 補償全床反力の力成分 (F dmd) も 0である。 この状態に対応する補償 全床反力モーメント Mdmdを第 1 4図に示す。
姿勢を復元させるためには、 目標全床反力中心点 (目標 ZMP) まわりの実全 床反カ乇一メントの水平成分を、 目標全床反力モーメント Ms umr e ίと補償 全床反力モーメント Mdmdの和の水平成分に追従させれば良い。
一方、 目標全床反力中心点 (目標 ZMP).では目標全床反力モーメント Ms u mr e f の水平方向成分は 0である。 従って、 前後左右の姿勢傾きを復元させる ためには、 目標 ZMPまわりの実全床反力モーメントの水平成分を、 Mdmdの 水平成分に追従させれば良い。
複合コンプライアンス動作決定部 1 1 4は、 前記した以下の要求をできる限り 満足するように足平の位置姿勢を修正する。
要求 1 ) ロボッ トの姿勢傾斜を安定化制御するために、 目標全床反力中心点 (目 標 ZMP) まわりの実全床反力モーメントの水平方向 (X, Y軸方向) 成分を、 補償全床反力モーメント Mdmdの水平方向成分に追従させる。
要求 2) 各足平の接地性を確保するために、 できるかぎり目標各足平床反力中心 点まわりの実各足平床反カモ一メントの絶対値を小さくする。
但し、 前述の通り、 要求 1 ) と要求 2) は、 完全に両立させることはできず、 ある点で妥協しなくてはならない。
足平の位置姿勢の修正は次のように行う。
1 ) 目標第 1足平床反力中心点 Q 1 と目標第 2足平床反力中心点 Q 2を含み、 か つ水平面と垂直な平面の法線べクトル Vを求める。 Vの大きさは 1とする。 Vを 第 1 5図に示す。
2) 目標第 1足平床反力中心点 Q 1の座標を、 目標全床反力中心点 (目標 ZM P) を回転中心に法線ベクトル Vまわりに、 ある回転角 S d b Vだけ回転移動す る。 移動した後の点を Q 1 ' とする。 同様に、 目標第 2足平床反力中心点 Q 2の 座標を、 目標全床反力中心点 (目標 ZMP) を回転中心に法線ベクトル Vまわり に回転角 0 d b Vだけ回転移動する。 移動した後の点を Q 2' とする。
この回転角 0 db vを両脚補償角という。 始点が Q 1、 終点が Q 1 ' のべク ト ルをベクトル Q 1 Q 1 ' とする。 同様に、 始点が Q 2、 終点が Q 2' のベク トル をベクトル Q 2 Q 2' とする。 第 1 6図に Q Γ と Q 2' を示す。
3) 目標第 1足平を、 姿勢は変えずにべク トル Q 1 Q Γ だけ平行移動 (ほぼ 上下移動) させる。 同様に、 目標第 2足平を、 姿勢は変えずにベクトル Q 2 Q 2
' だけ平行移動させる。 移動後の目標各足平を第 1 6図に太線で示す。
4) 次に、 目標第 1足平を Q 1 ' を中心に、 前後方向軸 (X軸) まわりに回転 角 0 1 X、 左右方向軸 (Y軸) まわりに回転角 Θ 1 yだけ回転させる。 同様に、 目標第 2足平を Q 2' を中心に前後方向軸 (X軸) まわりに回転角 02 X、 左右 方向軸 (Y軸) まわりに回転角 02 yだけ回転させる。 回転角 0 nx, 0 n yを それぞれ第 n足平 X補償角、 第 n足平 Y補償角という。 回転後の目標各足平を第
1 7図に太線で示す。
以上の補償動作量が過大でなければ、 接地圧力分布は変わっても、 接地領域 ( 足底面の! £力が正の領域) は変わらない。 このような場合には、 補償動作量に比 例して各足平に装着されたコンプライアンス機構 4 2が変形し、 変形量に応じた 実各足平床反力が発生する。 この結果、 補償動作量と補償動作によって発生する 実床反力の変化量との間の関係は、 以下に示す良好な特性を持つ。
特性 1 ) 両脚補償角 Θ d b vだけを操作して目標各足平位置を移動させると、 下がつた足平の実足平床反力の力成分が増加し、 上がつた足平の実足平床反力の 力成分が減少する。 このとき、 修正目標各足平床反力中心点まわりの実各足平床 反力モーメントは、 ほとんど変化しない。
特性 2 ) 第 n足平 X補償角だけを操作して目標第 n足平姿勢を回転させると、 目標第 n足平床反力中心点に作用する実第 n足平床反力のモーメン卜の X成分だ けが変化し、 その他の床反力成分は少ししか変化しない。 同様に、 第 n足平 Y補 償角だけを操作して目標第 n足平姿勢を回転させると、 実第 n足平床反力のモー メントの Y成分だけが変化し、 その他の床反力成分は少ししか変化しない。
特性 3 ) 両脚補償角 0 d b v、 各足平 X補償角および各足平 Y補償角を同時に 操作すると、 実各足平床反力の変化量は、 それぞれを単独に操作したときの変化 量の和になる。
特性 1および特性 2は、 これらの操作に独立性があることを示し、 特性 3はこ れらの操作に線形性があることを示していると言える。
第 1 8図は複合コンプライアンス動作決定部 1 1 4の演算処理を示すブロック 図であり、 同図を参照してその処理を説明する。
概説すると、 補償全床反力モーメント分配器 1 1 4 aにおいては補償全床反力 モーメント M d m dの分配を行う。 次に、 実各足平床反力と分配された補償全床 反力モーメントなどから、 両脚補償角決定部 1 1 4 bおよび第 n足平 X ( Y) 補 償角決定部 1 1 4 c, 1 1 4 d , 1 1 4 e , 1 1 4 f において前述の補償角 0 d b vおよび 0 n x ( y ) を決定する。
次に、 決定された各種補償角に基づいて修正目標足平位置姿勢算出部 1 1 4 g は、 補償された足平位置姿勢 (これを修正目標足平位置姿勢という) を幾何学演 算によって求める。 最後に、 機構変形補償入り修正目標足平位置姿勢算出部 1 1 4 hは、 目標各足平床反力によって発生が予想されるコンプライアンス機構 4 2 の変形量を求め、 それらを打ち消すように修正目標足平位置姿勢をさらに修正す ο 以下詳説すると、 補償全床反力モーメント分配器 1 1 4 aは、 補償全床反カモ 一メント Mdm dを、 両脚補償モーメント Mdm d d b、 各足平補償モ一メ ン ト Mdmd l x, y, M d m d 2 x , yに分配する。 両脚補償モーメント M d m d d bは、 両脚補償角 (足平上下量) 0 d b vを操作することによって目標全床反 力中心点 (目標 ZMP) まわりに各足平床反力の力成分が作るモーメン トの目標 値である。
両脚補償乇一メント Mdmd d bの V方向まわりの成分を Mdmd d b vと記 述する。 尚、 べク トル Vは複合コンプライアンス動作決定部 1 1 4の説明で定義 したベク トルである。 Vに直交し、 鉛直方向にも直交するベク トルを Uとすると 、 両脚補償モ一メント Mdmd dbの U方向成分 Mdmd d b uは 0に設定され る。 両脚補償角 0 d b vを操作しても、 床反力の U方向モーメント成分を発生す ることはできないからである。
ここでは補償全床反カ乇一メント Mdmdの鉛直方向成分が 0なので、 Mdm d d bの鉛直方向成分 Mdmd d b zも 0に設定される。
第 1足平補償モーメン ト Mdmd 1は、 第 1足平補償角 0 I χ, Θ I yを操作 することによって目標第 1足平床反力中心点まわりに発生させたいモーメン卜で ある。 第 1足平補償モ一メント Mdmd 1の X成分を Mdmd 1 x、 Y成分を M d m d 1 yと記述する。 第 2足平補償モ一メント Mdmd 2は、 第 2足平補償角 Θ 2 χ, Θ 2 yを操作することによって目標第 2足平床反力中心点まわりに発生 させたいモーメントである。 第 2足平補償乇一メント Mdmd 2の X成分を Md md 2 x、 Y成分を Mdm d 2 yと記述する。
分配は、 例えば次のように行う。
Mdmddbv = Wdbx* Mdmdx + Wdby * Mdmdy
式 3
Mdmdlx = Wlx * (Mdmdx - Wint* Vx * Mdmddbv)
Mdmdly = Wly * (Mdmdy 一 Wint* Vy * Mdmddbv)
Mdmd2x 二 W2x * (Mdmdx - Wint* Vx * Mdmddbv)
Mdrad2y 二 W2y * (Mdmdy - Wint* Vy * Mdmddbv)
式 4 ここで、 Wd bx, Wdby, Wl x' Wl y, W2 x, W2yおよび Wi n tは分配用重み変数である。 Vxはベクトル Vの X成分の値、 Vyはベクトル V の Y成分の値である。 この中で、 Wi n tは、 両脚補償角を操作することによつ て発生した全床反力モーメントを各足平補償角を操作することによって打ち消す ためのものである。
式 3と式 4の演算処理を行う補償全床反力モーメント分配器 1 1 4 aのプロッ ク図を第 1 9図に示す。
歩行時の分配用重み変数 Wdbx, Wdby, Wl x, W 1 y, W2 x, W2 yおよび Wi n tの設定例を第 20図に示す。 第 20図のパターンは、 以下の注 意点を考慮して決定することが望ましい。
注意点 1) 両脚補償角と各足平補償角が不連続的に変化すると、 関節に過大な トルクが発生する。 そこで、 両脚補償角と各足平補償角を連続的に変化させるた めに、 分配用重み変数は連続的に変化させる。
注意点 2 ) 両脚補償角および各足平補償角を操作することによつて発生する実 床反力モーメントが、 なるべく補償全床反カモ一メント Mdmdに近い値になる ように、 分配用重み変数を決定する。
この際、 直立時や歩行時など状況に応じて以下に示すように設定方針を変えた 方が良い。 直立時などのように、 両脚補償モーメントの V方向成分 Mdmd d b v、 各足平補償モーメント Mdmd 1, Mdmd 2を忠実に実各足平床反力に発 生させることができる状況では以下のように設定する。
この状況では目標全床反力中心点 (目標 ZMP) まわりの実全床反カモ一メン トの水平方向成分を、 補償全床反カモ一メント Mdmdの水平方向成分に一致さ せるため (即ち、 前述の複合コンプライアンス動作決定部に対する要求 1を満足 するため) に、 式 5と式 6の両方をなるベく満足するように重みを設定すべきで ある。
Mdmddbv * Vx + Mdmdlx + Mdmd2x = Mdmdx
• ■ ·式 5
Mdmddbv * Vy + Mdradly十 Mdmd2y = Mdmdy
- · ■式 6 これに式 3、 式 4を代入すると、 式 5は式 7に、 式 6は式 8に変換される。 (Wdbx * Mdmdx + Wdby* Mdmdy) *Vx
+ Wlx* (Mdmdx - Wint *Vx* (Wdbx* Mdmdx + Wdby 氺 Mdmdy))
+ W2x* (Mdmdx一 Wint *Vx* (Wdbx * Mdmdx + Wdby * Mdmdy))
= dmdx
• · ·式 7
(Wdbx 氺 Mdmdx + Wdby* Mdmdy) *Vy
+ Wly* (Mdmdy - Wint *Vy* (Wdbx * Mdmdx + Wdby * Mdmdy))
4- W2y* (Mdmdy - Wint *Vy* (Wdbx * Mdmdx + Wdby * Mdmdy))
= Mdmdy
• - ,式 8
Mdmd と M dm d yが任意の値を取っても、 式 7と式 8が恒等的に成立す るためには、 式 9、 式 1 0、 および式 1 1を同時に満足すれば良い。
Wint = 1 · ■ ·式 9
Wlx + W2x =1 · · ·式 1 0
Wly + W2y =1 · ■ ·式 1 1 即ち、 以上の状況では式 9、 式 1 0および式 1 1を同時に満足するように、 重 みを決定すれば良い。
歩行時では M dm d d b vを目標にして両脚補償角 d b vを操作して足平の 位置を修正しても、 実全床反力モーメントの発生量が Mdmd d b vに較べて不 足する場合がある。 例えば第 2 1図のように両脚支持期の初期にロボッ トが後傾 して第 1足平が未だ着地していない状況では、 Θ d b vによって第 1足平の位置 を下げても、 実床反力は変化しない。
同様に、 Mdmd 2を目標にして第 2足平補償角 02を操作して第 2足平の角 度を修正しても、 実床反力モーメントの増加量が Mdmd 2に較べて不足する場 合がある。 例えば、 第 2 2図のように両脚支持期の後半にロボッ トが後傾してい る状況では、 02によって第 2足平のかかとを下げても実床反力は変化しない。 従って、 式 5、 式 6を満足するように各重みを設定しても、 複合コンプライア ンス制御によって発生する実全床反力の増加量が補償全床反力モーメント Mdm dに届かない場合がある。 このようなことが生じる可能性が高い状況では、 式 5 、 式 6の左辺の値を右辺の値で割った値が 1 より大きくなるようにすべきである ο
歩行時の分配用重み変数設定例である第 2 0図では、 W i n tを 0に設定する ことによって、 第 2 1図の状況のように、 両脚補償角 0 dbv を操作しても実全床 反カモ一メントが発生できなくなっても、 各足平補償角を操作して不足分を補う ようにした。
好都合なことに、 第 2 1図のように後傾すると第 2足平のかかとが結果的に下 がつて床に接地しやすくなるので、 第 2足平補償角を操作することによって実全 床反力モ一メントを発生させることができるようになる。
また、 後傾していないときには両脚補償角 d b vを操作することによる実全 床反力モーメントが発生するが、 第 2足平のかかとが床に接地しないので、 第 2 足平補償角を操作しても実全床反力モーメントは発生しない。
つまり、 両脚補償角 0 d b vが有効に働く ときには各足平補償角が有効に働か ず、 各足平補償角が有効に働く ときには両脚補償角 0 d b vが有効に働かないの で、 結果的に両脚補償角および各足平補償角を操作することによって発生する実 床反力モーメントの総量は、 ほぼ補償全床反力モーメント M d m dに等しくなる o
状況によっては、 両脚補償角および各足平補償角を操作することによって発生 する実床反カモ一メン卜の総量が補償全床反カモ一メント M d m dよりも大きく なってしまう場合がある。
しかし、 この場合でも、 M d m dが姿勢安定化のためのフィ一ドバック操作量 であるならば、 あまり問題にならない。 何故ならば、 M d m dの大きさが多少違 つていても、 一般的に制御系に言えることであるが、 制御系のオープンループゲ インが多少変化するだけで、 クローズドループ特性はほとんど変わらないからで ある。
注意点 3 ) 片脚支持期では、 両脚補償角用の分配用重み変数である W d b x, W d b yの絶対値を小さくする。 片脚支持期では両脚補償角を変化させても、 接 地していない足平が無駄に上下するだけで、 実各足平床反力は変化しないからで ある。
注意点 4) 足平の接地性を確保するために、 目標足平床反力の力成分が小さい ときには、 その足平の足平補償角のための分配用重み変数の絶対値を小さくする 。 特に、 足平が床から遠く離れているときには、 その足平の足平補償角を動かし ても、 その足平の実足平床反力は変化しないので、 不要な動きをさせないために も、 その足平の足平補償角のための分配用重み変数の絶対値を小さくすべきであ る。
注意点 5 ) 両脚補償角を操作することによつて制御できる実全床反力モ一メン トの方向と、 各足平補償角を操作することによって制御できる実全床反力モーメ ントの方向は通常異なる。
例えば、 両脚補償角 0 d b Vを操作することによって発生する実全床反力モ一 メントの向きは必ず V方向であり、 V方向に直交する成分を発生させることはで きない。 一方、 各足平補償角を操作することによって発生できる実全床反カモ一 メン卜の向きは、 足平の接地状況によって制約を受ける。
例えば、 足平 22R (L) のつまさきのエッジだけ、 またはかかとのエッジだ けが接地している場合には、 エツジ線方向にモーメントを発生することはできな レ、。 両脚支持期では、 この特性を考慮して、 なるべく無駄なく両脚補償角および 各足平補償角を操作する。
例えば、 両脚補償角を操作するための分配重み Wdb X, Wd byは次のよう に決定する。
X成分が Wdb x、 Y成分が Wdby、 Z成分が 0のベクトルを Wd bとする と、 式 3はベクトル Wd bと Mdmdの内積になっている。 従って、 Mdmdを べク トル Wd b方向成分とその直交成分に分解し、 べクトル Wdb方向成分だけ を抽出して、 べクトル Wdbの大きさを乗じたものが、 式 3によって求められる dm d d b vであると言える。
この場合の Mdmd d b vを第 23図に示す。 これは、 両脚補償角を操作する ことによって実全床反力モーメントの Wd b方向成分を制御するフィ一ドバック 制御系を構成することを意味する。 もし、 Wdb方向がベクトル Vと直交してい たら、 両脚補償角をいくら操作しても実全床反力モーメントの Wd b方向成分は 発生しないから、 このフィードバック制御系はただ無駄に両脚補償角を操作する だけになる。
従って、 無駄な動きを減らしたい場合には、 Wdb方向をベクトル V方向に一 致させるか、 またはなるべく近づけるべきである。 また、 補償全床反カ乇一メン ト M d m dの W d b方向成分を、 各足平補償角に頼らずに両脚補償角を操作する だけで発生させたいならば、 Wdbと Vの内積が 1になるように設定する。 一部 を各足平補償角に頼らせたいならば、 Wd bと Vの内積が 1より小さくなるよう に設定する。
ところで、 足平の横幅が狭い場合には、 各足平補償角を操作することによって 発生し得る実各足平床反力モーメントの X成分は小さくなる。 この場合には、 W d b Xを大きめに設定する。 このように設定すると、 Wd b方向とべク トル V方 向は一致しなくなり、 両脚補償角の変動が増加するが、 安定性が増す。
両脚補償角決定部 1 1 4 bの処理についてさらに詳説すると、 第 24図は両脚 補償角決定部 1 1 4 bの演算処理のブロック図であり、 両脚補償角 S d b vは図 示の如く演算される。
第 24図を参照して説明すると、 目標第 1足平床反力中心点 Q 1に作用する F 1 a c tと目標第 2足平床反力中心点 Q 2に作用する F 2 a c "t力 目標全床反 力中心点 Pのまわりに発生させるモ一メント Mf 1 f 2 a c tを、 次式により求 める。
Mflf2act = PQl*Flact + PQ2*F2act ' · ·式 1 2 ここで、 PQ 1は始点が P、 終点が Q 1のベクトル、 PQ 2は始点が P、 終点が Q 2のべクトルである。
また、 式 1 2の代わりに、 次式を用いても実際上はほとんど問題がない。
Mflf2act = PQl^Flact + PQ2*F2act+ Mlac M2act · . .式 1 2 a 式 1 2 aは、 目標全床反力中心点まわりに作用する実全床反カ乇一メント Ms υ ma c tを算出する式になっている。 尚、 式 1 2は、 目標全床反力中心点まわり に作用する実全床反力モーメントから、 目標各足平床反力中心点まわりに作用す る実各足平床反カモ一メントを減じたものになっている。
次に、 Mf 1 f 2 a c tのべク トル V方向成分 Mf 1 f 2 a c t vを抽出する 。 これは、 ベクトルの内積演算を用いた次式によって得られる。 尚、 ベク トル V は前述の動作説明において第 1 5図に示した Vである。
Mflf2actv = Mflf2act - V · ■ ·式 1 3 次に、 M f 1 f 2 a c t vを口一パスフィル夕 1 1 4 iに通し、 M f 1 f 2 a c ΐ v f i 1 tを得る。
次に、 両脚補償モーメント V方向成分 Mdmd db Vを補償フィルタ 1 1 4 j に通し、 それを、 Mi 1 ί 2 a c t V f i 1 tから減じ、 偏差モ一メント V方向 成分 Md i f f vを得る。
尚、 補償フィルタ 1 1 4 jは、 Mdmd d b vから実全床反力モーメントまで の伝達関数の周波数応答特性を改善するものである。
次に、 コンプライアンス機構 4 2の変形による両脚補償モーメント V方向成分 への影響を打ち消すための両脚機構変形補償角 f f d b vを求める。 これは、 いわゆるフィ一ドフォヮ一ド補償である。
具体的には、 両脚補償モ一メント V方向成分 Mdmd d b vと変形量との関係 を表す機構コンプライアンスモデルを用い、 目標第 1足平床反力中心点 Q 1 と目 標第 2足平床反力中心点 Q 2を結ぶ線分の変形角度を求め、 それの極性を反転し たものを両脚機構変形補償角 0 f f d b vとすれば良い。
両脚機構変形補償角 0 f f d b Vは、 近似的には次式により求めれば良い。
^ffdbv =- a *Mdmddbv · · ·式 1 4 ここで αは所定の定数である。
最後に次式によって両脚補償角 Θ d b Vを得る。 ここで K d bは制御ゲインで あり、 通常、 これは正の値に設定する。
^dbv = Kdb *Mdiffv+ ^ffdbv · · ·式 1 5 第 n足平補償角決定部について説明すると、 第 2 5図はその中の第 1足平 X補 償角決定部 1 1 4 cの演算処理を示すブロック図であり、 第 1足平 X補償角決定 部 1 1 4 cは第 1足平 X補償角 0 1 Xを図示の如く演算する。 説明は省略するが 、 第 1足平 Y補償角 01 Ύ 第 2足平 X補償角 02 x、 第 2足平 Y補償角 02 y も同様に求める。 ここでは第 1足平 X補償角 0 1 Xを求めるアルゴリズムだけを 説明する。 第 1足平床反力モーメント X成分 M 1 a c t xをローパスフィル夕 1 1 4 kに 通して M 1 a c t f i 1 t xを得る。 第 1足平補償モーメント X成分 Mdmd 1 Xを補償フィル夕 1 1 4 mに通し、 それを、 M 1 a c t f i 1 t xカヽら減じ、 偏 差モーメント Md i f f 1 xを得る。 両脚補償角決定と同様、 補償フィルタ 1 1 4mは、 Mdmd 1 xから実全床反力までの伝達関数の周波数応答特性を改善す るものである。
次に、 両脚補償角決定と同様、 コンプライアンス機構 4 2の変形による第 1足 平補償モーメント X成分への影響を打ち消すための第 1足平 X機構変形補償角 Θ f f i xを求める。 これは、 いわゆるフィードフォワード補償である。
具体的には、 第 1足平補償モーメント X方向成分 Mdmd 1 xと変形量との関 係を表す機構コンプライアンスモデルを用い、 第 1足平の変形角度を求め、 それ の極性を反転したものを第 1足平 X機構変形補償角 0 f f 1 xとすれば良い。 第 1足平 X機構変形補償角 S f ί 1 Xは、 近似的には次式により求めれば良い ο
0fflx=- alx*Mdmdlx · · ·式 1 6 ここで 1 Xは所定の定数である。
最後に次式によって第 1足平 X補償角 S 1 Xを得る。 ここで K 1 Xは制御ゲイ ンであり、 通常、 これも正の値に設定する。
θΐχ = Klx* Mdifflx+ 0fflx · · ·式 1 7 . 尚、 図示のブロック線図は、 演算処理順序を変えるなどの等価変形をしても良 い。 、
第 1 8図に戻って説明を続けると、 修正目標足平位置姿勢算出部 1 1 4 gは、 両脚補償角 0 d b v、 第 1足平 X補償角 0 1 x、 第 1足平 Y補償角 0 1 y、 第 2 足平 X補償角 02 x、 第 2足平 Y補償角 02 yに基づき、 前述の複合コンプライ アンス動作の足平位置姿勢修正手法に従って目標足平位置姿勢を修正し、 修正目 標足平位置姿勢を得る。
機構変形量算出部 1 1 4 nは、 目標各足平床反力によって発生が予想されるコ ンプライアンス機構 4 2の変形量を求める。
機構変形補償入り修正目標足平位置姿勢算出部 1 1 4 hは、 算出された機構変 形量を打ち消すように、 修正目標足平位置姿勢をさらに修正し、 機構変形補償入 り修正目標足平位置姿勢を得る。
例えば、 第 2 6図に示すような機構変形量が予想されるときには、 機構変形補 償入り修正目標足平位置姿勢は、 第 2 7図に実線で示す位置姿勢に修正される。 即ち、 第 2 7図に示す機構変形補償後の足平 2 2 R (L) が目標足平床反カを受 けて変形したときの位置姿勢が、 第 2 6図に示す機構変形補償前の足平位置姿勢 に一致するように、 機構変形補償入り修正目標足平位置姿勢を算出する。
機構変形補償は、 コンプライアンス機構 4 2の変形によって生じる実足平位置 姿勢のずれをフィ—ドフォヮード的に打ち消す制御であり、 この制御がない場合 に比較し、 より一層、 目標歩容に近い歩行を実現することができる。
上記を前提として第 1 0図フロー ·チヤ一トの説明に戻ると、 前記の如く、 S 3 4において上記した補償角を決定する。
第 2 8図はその作業を示すサブルーチン 'フロー 'チャートである。
同図を参照して説明すると、 先ず S 1 0 0において前記したべクトル Vを求め 、 S 1 0 2に進んで分配用重み変数を第 2 0図に示すように設定し、 現在時刻 t でのこれらの値を求める。 続いて S 1 0 4に進み、 式 3および式 4によって補償 全床反力モ一メント M dm dを両脚補償モ一メント Mdmd d b vと各足平補償 モーメント Mdmd n x (y) に分配し、 S 1 0 6に進んで既述の如く両脚補償 角 0 d b Vを求め、 S 1 0 8に進んで各足平補償角 0 n X (y) を求める。 次いで第 1 0図フロー ·チャートの S 3 6に進み、 目標各足平床反力に基づい て機構変形補償量を算出し、 S 3 8に進んで目標足平位置姿勢を補償角 Θ d b V , θ η χ (y) に応じて修正し、 さらにこれを機構変形補償量に応じて修正し、 機構変形補償入り修正目標足平位置姿勢を得る。
次いで S 4 0に進み、 上体位置姿勢と機構変形補償入り修正足平位置姿勢から 関節変位指令 (値) を算出し、 S 4 2に進んで実関節変位を算出された関節変位 指令 (値) に追従させるようサーボ制御し、 S 4 4に進んで時刻を△ t更新し、 S 1 4に戻って上記の処理を繰り返す。
上記の如く構成したので、 これによつて、 概括すれば、 実全床反力の制御と実 各足平床反力の制御が殆ど干渉しないようになり、 それらを容易に制御すること ができる。
即ち、 この複合コンプライアンス制御装置は、 先に提案した技術に対して以下 の点を改良した。 即ち、 特開平 5— 3 0 5 5 8 4号公報で提案した足首コンブラ ィアンス制御では、 足首または足底の基準点などの足平に固定された点における 実床反力モーメントを検出し、 それに基づいて前記固定された点を中心に足平を 回転させていたが、 この複合コンプライアンス制御装置では、 移動する目標足平 床反力中心点における実各足平床反力モーメントを算出し、 それに基づいて目標 足平床反力中心点を中心に足平を回転させるように変更し、 その点まわりのモ一 メントを望ましい値に制御するようにした。
この結果、 実全床反力と実各足平床反力がほとんど干渉することなく、 容易に 制御することが可能となった。 より干渉を少なくするために、 各瞬間における想 定していた足底接地領域内にもっと適切な点を選定しても良い。
さらには、 ロボッ トに作用する床反力、 より具体的には目標全床反力中心点 ( 目標 Z M P ) まわりの実全床反力モ一メントと目標各足平中心点まわりの実各足 平床反力モーメントを容易かつ適切に制御することができる。 換言すれば、 先に 提案した技術を併用する場合に比較し、 制御の干渉がなく、 実全床反力と実各足 平床反力が望ましい値からずれたり発振することがない。
従って、 大域的なうねりや傾斜だけでなく、 局所的な凹凸や傾斜なども含む予 期しない床形状変化があっても、 その影響をあまり受けずに脚式移動ロボッ トに 作用する床反力を適切に制御することができる。
また、 脚式移動ロボットの姿勢安定化制御を容易に実現できると共に、 脚式移 動ロボッ 卜が受ける着地衝撃を低減することができ、 脚式移動ロボッ 卜の接地性 を高め、 歩行時のスリップやスピンを防止することができる。 さらに、 脚式移動 ロボッ トのァクチユエ一夕の負荷を低減することができる。
また、 特開平 5 - 3 0 5 5 8 6号公報で提案した技術では実全床反力 (各足平 床反力の合力) の目標全床反力中心点 (目標 Z M P ) まわりのモーメント成分を 検出し、 その値が望ましい値になるように制御していたが、 この複合コンプライ ァンス制御装置においては、 目標各足平床反力中心点に作用する足平床反力の内 のモーメント成分を除いた並進力成分の合成が目標全床反力中心点 (目標 Z M P ) まわりに作用するモーメントを検出し、 その値を望ましい値になるように制御 するように変更した (尚、 この点は先に提案した制御手法であっても良い) 。 第 2 9図は複合コンプライアンス制御の変形例を示す、 第 1 6図と同様な説明 図である。
変形例にあっては補償動作を簡易化して同様の作用効果を得るようにした。 即 ち、 各足平の床反力の力成分を操作する足平位置修正動作の手法としては、 第 1 6図に示した手法に代え、 第 2 9図に示すように、 鉛直方向にだけ移動させるよ うにした。 このとき、 第 1足平鉛直方向移動量 Z 1 と第 2足平鉛直方向移動量 Z 2は、 次式によって求める。
Z1 =—線分 PQ1 の長さ * ^ d v
Z2 = 線分 PQ2 の長さ * 0 dbv
. . ·式 1 8 但し、 ここで、 0 d b vには式 1 5で求められる値を代入する。
以上を前提としてこの発明の一つの実施の形態に係る脚式移動口ボッ トの床形 状推定装置を説明する。
この実施の形態に係る脚式移動ロボッ トの床形状推定装置の構成は、 第 4図に 示した複合コンプライアンス制御の構成、 より具体的には第 1 8図に示した構成 と同様である。 ただし、 第 3 0図に示す如く、 補償全床反力モーメント分配器 1 1 4 aなどで示される複合コンプライアンス動作決定部は、 第 1 8図に示した構 成と異なり、 新たに床形状推定器 1 3 0と、 床形状推定器 1 3 0が出力する各種 の床形状推定値をそれぞれの補償角に加算する加算器 1 3 2 ( 1 3 2 a , 1 3 2 b ) を備えるようにした。
同図の説明に入る前に、 床形状推定装置 1 3 0が推定する上で使用する概念と 用語を以下のように定義する。
第 3 1図に示すように、 目標歩容において想定された床 (あるいは床面) を 「 想定床」 と呼ぶ。 ロボッ トが歩行している実際の床を 「実床」 と呼ぶ。 また想定 床形状に対する実床形状のずれを 「床形状偏差」 と呼ぶ。
前記した複合コンプライ了ンス制御において定義された目標第 η足平床反力中 心点 Q nは、 第 n足平の足底 (床との接触面) に設定された点であった。 従って 、 目標第 n足平床反力中心点 Q nは、 足平 2 2 R ( L ) と共に移動する。 これに 対応して、 目標第 n足平床反力中心点 Q nと接することが想定された想定床面上 の点を 「想定第 n床接点 D n」 と呼ぶ。
この定義から明らかなように、 第 n足平が接地している時期では、 目標第 n足 平床反力中心点 Q nと想定第 n床接点 D nは、 支持脚座標系から見て同一座標に なる。 これに対し、 実際にロボッ ト 1が歩行しているときに、 実第 n足平の足底 面上における目標第 n足平床反力中心点 Q nに相当する点が、 実床に接触する点 を 「実第 n床接点 D n a c t」 と呼ぶ。
これらの点の関係を表す一例を第 3 1図に示す。 第 3 1図は、 目標第 1足平床 反力中心点 Q 1 と目標第 2足平床反力中心点 Q 2を通る垂直面の法線方向 (複合 コンプライアンス制御におけるべクトル Vの方向) に向いて側方から歩行してい るロボッ ト 1を見たところである。
ロボッ ト 1の目標姿勢 (目標歩容のこの瞬間における姿勢) および前記垂直面 における想定床の断面を細線で示す。 ロボッ ト 1の実足平位置姿勢と前記垂直面 における実床の断面を太線で示す。 この状況における実第 n床接点は、 実床面上 の点であり、 第 3 1に示す位置になる。
さらに、 床形状偏差を定量的に表現する指標として、 両脚間床高低差偏差、 両 脚間床傾斜偏差、 足平床傾斜偏差を以下のように定義する。
第 2床接点の高さと第 1床接点の高さの差を 「両脚間床高低差」 と呼び、 以下 のように算出する。
両脚間床高低差二第 2床接点の高さ-第 1床接点の高さ
• · ·式 1 9
実両脚間床高低差と想定両脚間床高低差との差を 「両脚間床高低差偏差」 と呼 ぶ。 始点を第 1床接点、 終点を第 2床接点とする線分の傾斜を 「両脚間床傾斜」 と呼び、 以下のように算出する。
両脚間床傾斜二 atan ( (第 2床接点の高さ一第 1床接点の高さ)
/ (第 2床接点と第 1床接点の間の水平距離) )
. · · · 式 2 0
ここで atanは、 三角関数である夕ンジヱントの逆関数を表す。 実両脚間床傾斜と想定両脚間床傾斜との差を 「両脚間床傾斜偏差」 と呼ぶ。 そ れを第 3 1図に示す。 この状況において、 両脚間床傾斜偏差は正である。 第 n床 接点における床面の傾斜を 「第 n足平床傾斜」 と呼ぶ。
実第 n足平床傾斜と想定第 n足平床傾斜との差を 「第 n足平床傾斜偏差」 と呼 ぶ。 これを第 3 2図に示す。 第 3 2図はロボッ ト 1を後ろから見た図である。 口 ボッ ト 1の目標姿勢 (目標歩容のこの瞬間における姿勢) および想定床の断面を 細線で示す。 ロボッ ト 1の実足平位置姿勢と実床の断面を太線で示す。 この状況 において、 第 1足平床傾斜偏差は負である。
尚、 両脚間床傾斜および両脚間床傾斜偏差は、 前述のベク トル V方向まわりの 回転角で表される。 第 n足平床傾斜および第 n足平床傾斜偏差は、 X方向の回転 角と Y方向の回転角で表される。
また、 両脚間床傾斜偏差および第 n足平床傾斜偏差と複合コンプライアンス制 御の各種補償角との間には、 以下の関係がある。 即ち、 両脚間床傾斜偏差は、 両 脚支持期において、 目標歩容通りに歩行しているロボッ ト 1の目標第 1足平床反 力中心点 Q 1 と目標第 2足平床反力中心点 Q 2を結ぶ線分を、 目標床面に平行に なっている状態から、 実床面に平行にさせるために必要な両脚補償角に相当する σ
また、 第 η足平床傾斜偏差は、 目標歩容通りに歩行しているロボッ トの第 η足 平を、 目標床面に平行になっている状態から、 実床面に平行にさせるために必要 な第 η足平補償角に相当する。
従って、 歩行中に両脚間床傾斜偏差を推定し、 両脚間床傾斜偏差の推定値を両 脚補償角に加えれば、 両脚間床傾斜偏差があっても、 実全床反力は想定床を歩行 しているときと同一になる。 また、 歩行中に第 η足平床傾斜偏差を推定し、 第 η 足平補償角の推定値を第 η補償角に加えれば、 第 η足平床傾斜偏差があつても、 実第 η足平床反力は想定床を歩行しているときと同一になる。
尚、 複合コンプライアンス制御の両脚補償動作として変形例で示した鉛直方向 にのみ移動させる手法を用いる場合には、 両脚間床傾斜偏差の推定値の代わりに 、 両脚間床高低差偏差の推定値を用いれば良い。 本質的な違いはないので、 以降 の説明では両脚間床傾斜偏差の推定値を用いる場合のみを説明する。 第 3 0図に示す構成における床形状推定器 1 3 0への入力は、 大きく分けて以 下のようになる。
1 ) 各種目標床反力中心点 (目標全床反力中心点、 目標第 n足平床反力中心点)
2 ) 想定床面形状 (想定第 n床接点の座標、 想定第 n足平床傾斜) 、
3 ) 最終的に実ロボッ トが追従すべき目標姿勢 (機構変形入り修正目標足平位置 姿勢) または実関節変位またはこれらの周波数重み付き平均、
4 ) 上体傾斜偏差、
5 ) 実床反力 (実第 n足平床反力の力成分とモーメント成分)
尚、 床形状推定器 1 3 0への入力は、 第 3 0図に示すものを用いると、 最も推 定精度を高くすることができるが、 それ以外のものを選んでも良い。 それに関し ては第 2の実施の形態で述べる。
床形状推定器 1 3 0の処理機能プロック図を第 3 3図に示す。
第 3 3図に示す床形状推定器 1 3 0を構成する各機能要素について説明すると 、 床形状推定器 1 3 0は機構コンプライアンスモデル 1 3 4を備える。
機構コンプライアンスモデル 1 3 4は、 ロボッ ト幾何学モデル 1 1 0 (第 4図 に示す) への入力、 即ち、 機構変形補償入り修正目標足平位置姿勢が、 実床反力 を受けたときのコンプライアンス機構 4 2の変形量を求め、 求めた変形量を機構 変形補償入り修正目標足平位置姿勢に加えることにより、 機構変形後の推定各足 平位置姿勢を求める。 ここで、 機構変形後の推定各足平位置姿勢は、 上体 2 4に 対する相対位置姿勢で表現される。
ロボッ トの関節変位制御の追従遅れが無視できない場合、 第 3 4図に示すよう に、 機構変形補償入り修正目標足平位置姿勢に、 追従遅れに相当する口—パスフ ィル夕 1 3 6を通して機構コンプライアンスモデル 1 3 4に入力すれば良い。 あるいは、 第 3 5図に示すように、 実関節変位からロボッ ト幾何学モデル 1 3 7 (第 4図に 1 1 0と示すのと同様のモデル) を介して機構変形なし実足平位置 姿勢を求め、 求めた値を機構変形補償入り修正目標足平位置姿勢の代わりに機構 コンプライアンスモデル 1 3 4に入力すれば良い。
あるいは、 周波数重みを用い、 前記機構変形なし実足平位置姿勢と機構変形補 償入り修正目標足平位置姿勢の重みつき平均を求め、 それを機構変形補償入り修 正目標足平位置姿勢の代わりに機構コンプライアンスモデル 1 3 4に入力すれば 良い。
厳密には、 前記した機構変形なし実足平位置姿勢を用いるべきであるが、 関節 変位制御の能力が高ければ、 上記のいずれでも大差はない。
また、 第 4図においてロボッ ト幾何学モデル 1 1 0への入力に機構変形補償が 含まれなレ、場合、 機構変形補償のない修正目標足平位置姿勢を機構コンプライア ンス乇デル 1 3 4に入力すれば良い。
第 3 3図の説明に戻ると、 床形状推定器 1 3 0は両脚間床傾斜偏差推定部 1 3 8を備える。 即ち、 同図において、 機構変形後の推定各足平位置姿勢、 目標各足 平床反力中心点の目標足平に対する相対座標、 想定各床接点および上体傾斜偏差 から推定両脚間床傾斜偏差を推定するまでのブロックを 「両脚間床傾斜偏差推定 部」 と呼ぶ。 以下にこの部分の処理を説明する。
先ず、 機構変形後の推定各足平位置姿勢と目標各足平床反力中心点 Q nの目標 足平に対する相対座標とから、 機構変形後の目標各足平床反力中心点 Q n " の座 標を算出する。 ここで、 機構変形後の目標各足平床反力中心点 Q n " は、 実上体 に対する相対位置で表わされる。
より具体的には、 目標第 n足平床反力中心点 Q nの足平に対する相対位置をべ クトル R n、 機構変形後の推定第 n足平位置をべクトル U n、 機構変形後の推定 第 n足平姿勢をマトリックス A nで表わすと、 機構変形後の目標第 n足平床反力 中心点 Q n " は次式によって計算される。
Qn" = AnRn+ Un
• · ·式 2 1
次に、 Q 1 " を始点、 Q 2 " を終点とするべクトル Q 1 " Q 2 " の実上体に対 するべクトル Vまわりの傾き 0 f d b V " を算出する。 ここでべクトル Vは、 複 合コンプライアンス制御で定義されたべクトルである。
—方、 想定第 n床接点 Dnの目標上体に対する相対座標から、 D 1を始点、 D 2 を終点とするべクトル D 1 D 2の目標上体に対するべク トル Vまわりの傾き Θ f d b vを算出する。 ここで、 想定第 n床接点 Dnは、 先に定義したように、 第 n足平が接地してい る時期においては、 目標第 n足平床反力中心点 Qnと同一位置とする。 目標歩容 において第 n足平が接地する直前の時期では、 次に接地する時に想定されている 目標第 II足平床反力中心点 Q の位置を想定第 n床接点 D nとする。 目標歩容に おいて第 n足平が離床した直後の時期では、 離床時に想定されていた目標第 n足 平床反力中心点 Q nの位置を想定第 n床接点 D nとする。
次に、 前記の 0 f d b V " に、 上体傾斜偏差の V方向成分 0 e r r vを加える ことにより、 Q 1 " を始点、 Q 2 " を終点とするベクトル Q 1 " Q 2 " の目標上 体に対するべク トル Vまわりの傾きを求め、 それから前記の 0 f d b Vを減じる ことにより、 V方向瞬間両脚間床傾斜偏差計算値 0 f'db e r r Vを得る。 次に、 それから直前の推定両脚間床傾斜偏差 0 f db e s tmvを減じること により、 0 f db e r r d i f f vを得る。 次に、 両脚間床傾斜偏差推定中断器 1 40において、 両脚間床傾斜偏差の推定を実行すべきか中断すべきかを判断す る
両脚間床傾斜偏差推定中断器 1 40は、 両脚間床傾斜偏差の推定を実行 (続行 ) すべきと判断したならば、 両脚間床傾斜偏差推定中断器 1 40への入力である 前記 0 f d b e r r d i f f vをそのまま出力し、 中断すべきと判断したならば 、 0を出力する。 両脚間床傾斜偏差推定中断器 1 40に関する詳細は後述する。 次に、 両脚間床傾斜偏差推定中断器 1 40の出力を積分定数が Kdb e s tm である積分器 1 42で積分することにより、 推定両脚間床傾斜偏差 0 f d b e s tmvを得る。 推定両脚間床傾斜偏差 S ί d b e s tmvは、 第 31図に示す両 脚間床傾斜偏差の推定値であり、 Vまわりの角度で表わされる。 以上が、 両脚間 床傾斜偏差推定部 1 38の処理である。
さらに、 推定両脚間床傾斜偏差 0 f db e s tmvは、 第 30図に示すように 、 両脚補償角 0 d b Vに加算され、 床形状推定入り両脚補償角 0 db v' として 修正目標足平位置姿勢算出部 1 1 4 gへ入力される。
以上の処理を毎制御周期に繰り返し実行することにより、 推定両脚間床傾斜偏 差 0 f db e s tmvが実際の両脚間床傾斜偏差に収束する。 また、 足平位置姿 勢は推定両脚間床傾斜偏差 0 f d b e s tmvに従って修正され、 両脚間床傾斜 偏差が実床反力に及ぼす影響を吸収する。
尚、 両実足平が接地しているならば、 前記した Qn" は第 3 1図の実第 n床接 点 Dn a c tに一致するはずである。 従って、 前記べクトル Q 1 " Q 2" と前記 べクトル D 1 D 2の傾きの差 0 f d b e r r vは、 第 30図における両脚間床傾 斜偏差に一致するはずである。
しかし、 実際にはロボッ ト 1の機械系や制御系の振動および電気的なノイズに より、 上記計算アルゴリズムによって得られた 0 f d b e r r Vは、 実際の両脚 間床傾斜偏差を中心値として激しく変動する。 従って、 0 f d b e r r vをその まま両脚間床傾斜偏差の推定値として用いて、 これを第 30図に示すように両脚 補償角に加算すると、 ロボット 1の足平 22 R (L) は発振するかあるいは激し く振動する。
ところで、 第 33図の両脚間床傾斜偏差推定中断器 1 40が常に推定実行 (続 行) と判断すれば、 0 f d b e r r vから推定両脚間床傾斜偏差 0 f d b e s ΐ mvまでの伝達関数は、 1次遅れの口一パスフィルタになる。 即ち、 推定両脚間 床傾斜偏差 0 i db e s tmvは ^ f db e r r vに口一パスフィルタを通した ものとなる。 従って、 推定両脚間床傾斜偏差 0 f d b e s tmvを第 30図に示 すように両脚補償角に加算しても、 足平 22R (L) の発振や振動を生じ難くな る。
ちなみに、 この例では、 口一パスフィル夕の時定数は 1 ZK d b e & t mであ る。 第 33図に示す例以外にも、 0 i db e r r vから 0 f db e s tmvまで の伝達関数が口一パスフィル夕になるように構成すれば良い。 これにより、 足平 22R (L) の発振や振動を防止することができる。
次いで、 両脚間床傾斜偏差推定部 1 38の特徴を説明する。
姿勢安定化制御のために必要な両脚補償モーメント V方向成分 Mdmd d b V を発生させようと、 第 30図における両脚補償角 d b Vを変化させ、 最終的な 目標足平位置姿勢である機構変形補償入り修正自標足平位置姿勢を変更させても 、 両実足平が接地している限り、 機構変形後の目標各足平床反力中心点 Qn" の 実際の位置は、 実第 n床接点 Dn a c tに一致したまま動かず、 その代わりに、 コンプライアンス機構 42が変形したり、 上体 24の位置姿勢が変化する。 即ち 、 機構変形補償入り修正目標足平位置姿勢を変更させた分を打ち消すように、 コ ンプライアンス機構 4 2が変形したり、 上体 2 4の位置姿勢が変化する。
この実施の形態における両脚間床傾斜偏差推定部 1 3 8は、 機構変形補償入り 修正目標足平位置姿勢から推定両脚間床傾斜偏差 0 f d b e s t m vを算出する までに、 実床反力を基に機構コンプライアンスモデル 1 3 4によって算出された 機構部変形量と、 傾斜センサ 3 6によって検出された実上体姿勢傾斜偏差を加え ているので、 機構変形補償入り修正目標足平位置姿勢が変動しても、 推定両脚間 床傾斜偏差 0 f d b e s t m vはその影響を受けない。
これは、 姿勢制御と両脚間床傾斜偏差推定が非干渉化されていることを意味す る。 従って、 推定両脚間床傾斜偏差 0 f d b e s t m vを第 3 0図に示すように 両脚補償角に加算しても、 制御系の安定余裕 (発振のし難さ) はほとんど低下し ない。 この点は、 前記したロボッ ト学会論文に示す従来技術では得られない利点 でめ 。
また、 推定両脚間床傾斜偏差 Θ f d b e s t m vを第 3 0図に示すように両脚 補償角に加算すると、 両脚間床傾斜偏差が存在していても、 その影響を打ち消す ことができるので、 実全床反力は、 定常的には想定床を歩行している場合と同一 になる。 しかも、 両脚間床傾斜偏差の推定と補償角の修正は毎制御周期に実行さ れるので、 床形状が途中で変化しても、 変化後の両脚間床傾斜偏差を推定し、 推 定値に基づいてその影響を打ち消すことができる。
ただし、 両脚間床傾斜偏差推定部 1 3 8には前述したように口一パスフィルタ が含まれるので、 両脚が接地したときや床形状が途中で変化したときには、 過渡 的には、 実全床反力は、 両脚間床傾斜偏差の影響を受ける。 しかし、 その後、 時 定数 1 ZK d b e s t mでその影響が減衰する。
さらに、 第 3 3図に示すように、 床形状推定器 1 3 0は足平床傾斜偏差推定部 1 4 4を備える。 即ち、 同図において、 機構変形後の推定第 1足平位置姿勢、 想 定第 1足平床傾斜および上体傾斜偏差 X成分から推定第 1足平床傾斜偏差 X成分 を推定するまでのブロックを 「足平床傾斜偏差推定部」 1 4 4、 より具体的には 「第 1足平床傾斜偏差 X成分推定部」 と呼ぶ。 この部分の処理を説明する。 先ず、 機構変形後の推定第 1足平位置姿勢と想定第 1足平床傾斜から、 想定第 1足平床傾斜に対する機構変形後の推定第 1足平位置姿勢の傾斜の X成分 0 f 1 e r r X " を算出する。
これは、 目標第 1足平姿勢傾斜と想定第 1足平床傾斜との差にコンプライアン ス機構 4 2のたわみ角 (第 2図) を実床反力から推定した値を加算した値に相当 する。 ただし、 第 2図では Y成分を示す。
次に、 前記の 0 f 1 e r r X " に、 上体傾斜偏差の X方向成分 0 e r r xを加 えて瞬間第 1足平床傾斜偏差 X成分計算値 Θ f 1 e r r xを得る。
次に、 それから直前の推定第 1足平床傾斜偏差 0 f 1 e s t m xを減じること により、 0 f 1 e r r d i ί f xを得る。
次に、 足平床傾斜偏差推定中断器 1 4 6、 より具体的には第 1足平床傾斜偏差 X成分推定中断器において、 第 1足平床傾斜偏差 X成分の推定を実行すべきか中 断すべきかを判断する。
第 1足平床傾斜偏差 X成分推定中断器は、 第 1足平床傾斜偏差 X成分の推定を 実行すべきと判断したならば、 第 1足平床傾斜偏差 X成分推定中断器への入力で ある前記 S f 1 e r r d i f f xをそのまま出力し、 中断すべきと判断したなら ば、 0を出力する。 尚、 足平床傾斜偏差推定中断器 1 4 6、 より具体的には第 1 足平床傾斜偏差 X成分推定中断器に関する詳細は後述する。
次に、 第 1足平床傾斜偏差 X成分推定中断器の出力を積分定数が K 1 e s t m xである積分器 1 4 8で積分することにより、 推定第 1足平床傾斜偏差 X成分 0 f 1 e s t m Xを得る。
以上が、 第 1足平床傾斜偏差 X成分推定部の処理である。
推定第 1足平床傾斜偏差 X成分 0 f 1 e s t m xは、 第 3 0図に示すように、 第 1足平 X補償角 0 1 Xに加算され、 床形状推定入り第 1足平 X補償角 0 1 X ' として修正目標足平位置姿勢算出部 1 1 4 gへ入力される。
以上の処理を毎制御周期に繰り返し実行することにより、 推定第 1足平床傾斜 偏差 X成分 0 f 1 e s t m xが実際の第 1足平床傾斜偏差 X成分に収束する。 ま た、 足平位置姿勢は、 推定第 1足平床傾斜偏差 X成分 f 1 e s t m xに従って 修正され、 第 1足平床傾斜偏差 X成分が実床反力に及ぼす影響を吸収する。 尚、 第 3 3図では第 1足平床傾斜偏差 X成分推定部 1 4 4のみ図示したが、 そ れ以外にも第 1足平床傾斜偏差 Y成分推定部、 第 2足平床傾斜偏差 X成分推定部 、 第 2足平床傾斜偏差 Y成分推定部が設けられ、 第 1足平床傾斜偏差 Y成分、 第 2足平床傾斜偏差 X成分および第 2足平床傾斜偏差 Y成分に関しても同様の処理 が行われる。
足平床傾斜偏差推定に関しても、 両脚間床傾斜偏差推定と同様に以下のことが 口 'える。
実第 1足平がベたに接地しているならば (より厳密には、 実第 1足平と実床が 面接触しているか、 あるいはつまさきエツジゃかかとエツジで接触しているよう に Y方向に線接触しているならば) 、 瞬間第 1足平床傾斜偏差 X成分計算値 0 f 1 e r r Xは、 実際の第 1足平床傾斜偏差 X成分に一致するはずである。
しかし、 実際には、 ロボット 1'の機械系や制御系の振動および電気的なノイズ により、 上記計算アルゴリズムによって得られた 0 f 1 e r r xは、 実際の第 1 足平床傾斜偏差 X成分を中心値として激しく変動する。
従って、 0 f 1 e r r xをそのまま第 1足平床傾斜偏差 X成分の推定値として 用い、 それを第 3 0図に示すように第 1足平 X補償角に加算すると、 ロボッ ト 1 の足平 2 2 R ( L ) は、 発振するかあるいは激しく振動する。
ところで、 第 3 3図の第 1足平床傾斜偏差 X成分推定中断器が常に推定実行 ( 続行) と判断すれば、 Θ f 1 e r r xから推定第 1足平床傾斜偏差 X成分 Θ f 1 e s t m xまでの伝達関数は、 1次遅れの口一パスフィル夕になる。 即ち、 推定 第 1足平床傾斜偏差 X成分 0 f 1 e s t m xは 0 f 1 e r r xにローパスフィル 夕を通したものとなる。
従って、 推定第 1足平床傾斜偏差 X成分 Θ f 1 e s t m xを第 3 0図に示すよ うに第 1足平補償角に加算しても、 足平の発振や振動を生じ難くなる。 ちなみに 、 この例では、 ローパスフィル夕の時定数は 1 ZK 1 e s t m xである。
第 3 3図に示す例以外にも、 両脚間床傾斜偏差推定と同様に、 0 ί 1 e r r X から 0 ί 1 e s t m xまでの伝達関数が口一パスフィル夕になるように構成すれ ば良い。 これにより、 足平 2 2 R ( L ) の発振や振動を防止することができる。 次いで、 足平床傾斜偏差推定部 1 4 4の特徴を説明する。
両脚間床傾斜偏差推定と同様に以下のことが言える。 姿勢安定化制御のために必要な第 1足平補償モーメント X成分 M d m d 1 xを 発生させようと、 第 3 0図における第 1足平補償角 Θ 1 Xを変化させて、 最終的 な目標足平位置姿勢である機構変形補償入り修正目標足平位置姿勢を変更させて も、 実第 1足平がベたに接地している限り、 実足底面の姿勢は変わらず、 その代 わりに、 コンプライアンス機構 4 2が変形したり、 上体 2 4の位置姿勢が変化す る。 即ち、 両脚間床傾斜偏差推定と同様に、 機構変形補償入り修正目標足平位置 姿勢を変更させた分を打ち消すように、 コンプライアンス機構 4 2が変形したり 、 上体 2 4の位置姿勢が変化する。
この実施の形態における第 1足平床傾斜偏差 X成分推定部は、 機構変形補償入 り修正目標足平位置姿勢から推定第 1足平床傾斜偏差 X成分 0 f 1 e s t m xを 算出するまでに、 実床反力を基に機構コンプライアンスモデル 1 3 4によって算 出されたコンプライアンス機構変形量と、 傾斜センサ 3 6によって検出された実 上体姿勢傾斜偏差を加えているので、 機構変形補償入り修正目標足平位置姿勢が 変動しても、 推定第 1足平床傾斜偏差 X成分 0 f 1 e s t m xはその影響を受け なレ、。
これは、 姿勢制御と第 1足平床傾斜偏差推定が非干渉化されていることを意味 する。 従って、 推定第 1足平床傾斜偏差 X成分 Θ f 1 e s t m xを第 3 0図に示 すように第 1足平補償角に加算しても、 両脚間床傾斜偏差推定と同様に、 制御系 の安定余裕はほとんど低下しなレ、。
また、 推定第 1足平床傾斜偏差 X成分 0 f 1 e s t m xを第 3 0図に示すよう に第 1足平補償角に加算すると、 第 1足平床傾斜偏差が存在していても、 その影 響を打ち消すことができるので、 実第 1足平床反力は、 定常的には想定床を歩行 している場合と同一になる。
しかも、 第 1足平床傾斜偏差の推定と補償角の修正は毎制御周期に実行される ので、 床形状が途中で変化しても、 変化後の第 1足平床傾斜偏差を推定し、 その 影響を打ち消すことができる。
ただし、 第 1足平床傾斜偏差推定器には前記のローパスフィルタが含まれるの で、 第 1足平が接地したときや床形状が途中で変化したときには、 過渡的には、 第 1足平床傾斜偏差の影響を受け、 その後、 時定数 1 ZK 1 e s t m xでその影 響が減衰する。
上記したこの実施の形態における床形状推定の特徴を総合的に説明する。
この実施の形態における床形状推定が前提とする複合コンプライアンス制御に おいては、 各補償角を操作して実全床反力および各足平床反力を制御しても、 そ の特徵として、 それぞれの制御は非干渉化されている。
従って、 推定両脚間床傾斜偏差 S f d e s tmvを求めることと、 それを両脚 補償角 S d b Vに加算することと、 推定各足平床傾斜偏差 f 1 e s tmx, θ f 1 e s t my, Θ f 2 e s t mx, 0 f 2 e s t m yを求めることと、 それら をそれぞれ各足平補償角 0 1 χ, Θ 1 y, θ 2 χ, Θ 2 yに加算することを同時 に行っても、 干渉し合って発振することはほとんどない。
その特徴と前述した両脚間床傾斜偏差推定部 1 3 8と足平床傾斜偏差推定部 1 4 4の各特徴により結果的に以下の利点が得られる。 .
1 ) 姿勢復元力制御のために両脚補償角 0 d b Vと各足平補償角 0 1 X, Θ 1 y , θ 2 x, 02 yを操作して実床反力を制御することと、 両脚間床傾斜偏差を推 定することと、 これを両脚補償角 0 db vに加算することと、 各足平床傾斜偏差 を推定することと、 それらを各足平補償角に加算することを同時に行うことがで きる。
簡単に言えば、 床形状偏差の複数のパラメ一夕を同時に推定しながら、 床形状 偏差が床反力に及ぼす影響を打ち消すための脚の補償動作も同時に実行すること ができる。 さらには、 姿勢制御のための脚の補償動作も同時に実行することがで さる。
2) 床形状偏差が大きくても制御が破綻し難い (複合コンプライアンス制御は微 小角に限定した近似を行っていないから) 。
3) 床形状偏差の推定精度が高い。
4) 姿勢安定化制御との干渉による発振が生じにくいので、 推定部 1 3 8, 1 4 4のゲイン (Kd b e s tm, K l e s tmx, K 1 e s t m y , K 2 e s t m x, K 2 e s tmy) を大きくすることができ、 その結果、 推定時定数を短くす ることができる。 それによつて、 床形状偏差が床反力に及ぼす影響を打ち消すた めの脚の補償動作の応答性を高めることができるので、 床形状偏差が床反力に及 ぼす過渡的な影響が短時間で解消される。
5 ) 床形状偏差推定と床形状偏差が床反力に及ぼす影響を打ち消すための脚の補 償動作が常時実行されるので、 途中で床形状が変化しても、 過渡的にはその影響 を受けるが、 その後、 推定の時定数でその影響が減衰する。
次いで、 この実施の形態における前記した推定中断器 1 4 0 , 1 4 6について 説明する。
先ず、 第 1足平床傾斜偏差 Y成分推定中断器の役割について説明する。
第 1足平床傾斜偏差推定 Y成分中断器は、 第 1足平床傾斜偏差 Y成分の推定が 正常に実行できるか否かを判断し、 正常に実行できないと判断したときには推定 を中断する。
より具体的には、 原則的に、 推定第 1足平床傾斜偏差 Y成分の精度が低下しそ うな状況、 および推定第 1足平床傾斜偏差 Y成分が発散しそうな状況では、 推定 を中断するために、 0を出力し (即ち、 積分入力に 0を入れて積分値をホールド する) 、 それ以外の状況では、 推定を実行するために、 第 1足平床傾斜偏差 Y成 分推定中断器への入力をそのまま出力する。
もし、 第 1足平床傾斜偏差 Y成分推定中断器が動作せず、 常に第 1足平床傾斜 偏差 Y成分推定中断器への入力をそのまま出力し続けると、 ある状況では推定第 1足平床傾斜偏差 Y成分が発散する。
以下にこの実施の形態において推定第 1足平床傾斜偏差 γ成分が発散する状況 を説明する。
例として、 第 3 6図に示すように、 ロボット 1が片脚支持期に前傾したために 、 姿勢安定化制御によって第 1足平 Y補償角を操作して大きな姿勢復元力を得よ うと試みた結果、 本来べたに接地すべき実第 1足平のかかとが床から浮いてしま つた状況を仮定する。 また、 このとき実床形状は想定床形状と一致していると仮 疋^る。
この状況では、 第 3 6図に示される想定第 1足平床傾斜 Y成分に対する機構変 形後の推定第 1足平姿勢の傾斜 Y成分 0 f 1 e r r y " に上体傾斜偏差 Y成分 Θ e r r yを加えた f 1 e r r yは、 同図に示すように、 正の値になる。
第 1足平床傾斜偏差 Y成分推定中断器が、 常に入力である Θ f 1 e r r d i f f yをそのまま出力し続ける場合には、 前述したように、 0 f 1 e r r yから推 定両脚間床傾斜偏差 0 f 1 e s t myまでの伝達関数は、 1次遅れになる。
即ち、 0 f l e s tmyは、 0 f l e r r yにやや遅れて追従する。 0 f 1 e s tmyは、 第 1足平 Y補償角 Θ 1 yに加算され、 床形状推定入り第 1足平 Y補 償角 01 y' になる。 第 30図では 01 x' のみ図示しているが、 01 yも同様 な構成になる。
次に、 目標第 1足平位置姿勢に床形状推定入り第 1足平 Y補償角 Θ 1 y' が加 えられ、 さらに目標床反力 (目標歩容の床反力) から算出される機構変形量が減 じられ (即ち、 機構変形量を打ち消す機構変形補償量が加えられ) 、 機構変形補 償入り修正目標第 1足平位置姿勢が算出される。
さらに機構コンプライアンスモデル 1 34によって、 実床反力から計算される 機構変形量が求められ、 機構変形補償入り修正目標第 1足平位置姿勢に加えられ て機構変形後の推定第 1足平位置姿勢が求められる。 この傾き Y成分から想定第 1足平傾斜の Y成分が減じられ、 さらに上体傾斜偏差 Y成分 0 e r r yが加えら れることにより、 前記 Θ f 1 e r r yの値が更新される。
以上の関係から、 Θ f 1 e r r yとこれに 1次遅れで追従する 0 f 1 e s t m yの関係は以下のようになる。 尚、 目標床反力による第 1足平機構変形の補償角 は、 先に段落 0 1 35で述べたコンプライアンス機構 42の変形量を打ち消す補 償量である。
Θ f lerry= 0 f lestmy
+ Θ ly+目標床反力による第 1足平機構変形の補償角 Y成分 + 0erry +実床反力から計算される第 1足平機構変形角 Y成分
+目標第 1足平姿勢傾斜 Y成分 -想定第 1足平傾斜 Y成分
■ . ·式 22
目標歩容の片足支持期においては、 (目標第 1足平姿勢傾斜 Y成分 -想定第 1 足平傾斜の Y成分) は 0である。 従って、 式 22は次式に変形される。
Θ flerry= ^flestmy
+ 0 ly +目標床反力による第 1足平機構変形の補償角 Y成分 + Θ erry +実床反力から計算される第 1足平機構変形角 Y成分 ■ · ■式 2 3 第 1足平が床にベたに接地しているならば、 (S f l e s tmy + 0 1 y +目 標床反力による第 1足平機構変形の補償角 Y成分 + Θ e r r y) がいかなる値で あっても、 実床反力から計算される機構変形角 Y成分はそれを打ち消すので、 式 2 3の右辺は 0になる。 従って、 0 f 1 e r r yは常に 0となり、 また、 Θ f 1 e s tmyは、 0 ί 1 e r r yに 1次遅れで追従するので、 0に徐々に収束する 。 これは、 実床形状が想定床形状と一致している状況を推定器が正確に推定して いることを意味する。
ところ力、 第 3 6図の状況では (0 f l e s t my + 0 1 y +目標床反力によ る第 1足平機構変形の補償角 Y成分 +0 e r r y) は大きな正の値となるが、 か かとが浮いてしまったために実床反力が十分に大きくなれず、 実床反力から計算 される機構変形角 Y成分は、 前記の値を打ち消すだけの十分な大きさの負の値を 持つことができない。 即ち、 式 2 3の右辺は 0にならない。 このような状況では 、 θ ϊ I e r r yは 0になれず、 0 f 1 e s t myは 0に収束しない。 これは、 推定値が間違つていることを意味する。
このような状況の中でも、 特に次の式 2 4を満足している状況が続く場合には 、 0 f 1 e r r yに近づこうとして 0 f 1 e s t myが増大しても、 0 f 1 e r r yは、 式 2 3と次の式 2 4から導かれるように、 0 f l e r r y> 0 f l e s t myの関係を保つので、 0 f 1 e s t myから離れてしまう。
これを繰り返すうちに、 0 f 1 e s t myは正の方向にますます発散する。 こ れは、 推定値が発散しつつあることを意味する。
0 ly +目標床反力による第 1足平機構変形の補償角 Y成分 + Θ erry
+実床反力から計算される第 1足平機構変形角 Y成分 > 0
• . '式 2 4
次いで、 第 3 7図を参照して第 1の実施の形態における第 1足平床傾斜偏差 Y 成分推定中断器の処理を説明する。 この処理は毎制御周期に実行される。
以下に説明すると、 先ず S 3 0 0において目標歩容の時期に応じて第 1足平床 傾斜 Y成分推定モードを決定する。
具体的には、 第 1足平床傾斜 Y成分推定モードは、 リセッ トモード、 ホールド モードおよび準備完了モードの 3つのモード状態を取りうるものとし、 目標歩容 の時間経過に対して、 第 3 8図に示す如く遷移するように決定する。 ただし、 こ れは第 5図に示す歩容に対するモード遷移パターンである。 歩容が異なれば、 そ れに応じてモ一ド遷移パ夕一ンも変えるべきである。
従って S 3 0 2に進み、 第 1足平床傾斜 Y成分推定モードに応じて以下の処理 を行う。
第 1足平床傾斜 Y成分推定モードがリセッ トモードである場合は S 3 0 4に進 み、 推定第 1足平床傾斜偏差 Y成分 0 f 1 e s t m yを強制的に徐々に 0に収束 させ、 S 3 0 6に進み、 第 1足平床傾斜偏差 X成分推定中断器の出力を 0にする 尚、 リセッ トモ一ドは、 第 3 8図に示す如く、 第 1足平を動かしても床反力に 影響がないように、 第 1足平が床から完全に離れている期間に存在させる。 1歩 前に着地していた第 2床接点の足平床傾斜偏差と次に着地する第 1床接点の足平 床傾斜偏差との関係に相関がない場合には、 上記のように推定第 1足平床傾斜偏 差 Y成分 0 f 1 e s t m yを強制的に徐々に 0に収束させるのが良い。
しかし、 例えば、 想定床に考慮されていない実床面のうねりがゆったりとして いることがわかっているならば、 前記関係にある程度の相関があると考えられる ので、 推定第 1足平床傾斜偏差 Y成分 Θ f 1 e s t m yを、 強制的に徐々に 1歩 前に着地していた第 2床接点での推定第 2足平床傾斜偏差に 1より小さい正の定 数を乗じた値に収束させるようにしても良い。
さらに、 1歩前の推定足平床傾斜偏差 Y成分だけでなく、 複数歩前の推定足平 床傾斜偏差 Y成分も用いて収束目標値を決定しても良い。 また、 1歩前や複数歩 前の推定両脚間床傾斜偏差も用いて収束目標値を決定しても良い。
第 1足平床傾斜 Y成分推定モ一ドがホールドモ—ドである場合は S 3 0 8に進 み、 第 1足平床傾斜偏差 Y成分推定中断器の出力を 0にする。 従って、 推定第 1 足平床傾斜偏差 Y成分 0 f 1 e s t m yはホールドモードに遷移する直前の値に 保持される。
尚、 ホールドモードは、 推定第 1足平床傾斜偏差 Y成分 0 f 1 e s t m yが発 散しそうな時期およびその精度が低下しそうな時期に存在させる。 例えば、 第 3 8図に示すように、 第 1足平のかかとまたはつまさきが床から離れ始める時期か ら第 1足平が床から完全に離れてしばらく後までの期間に存在させる。
上記以外の時期、 即ち、 第 1足平床傾斜偏差 Y成分の推定が正常に実行できる 時期では、 第 1足平床傾斜 Y成分推定モードは準備完了モードになる。
準備完了モードでは、 以下の処理を行う。
即ち、 S 3 1 0に進み、 実第 1足平床反力モーメント M 1 a c tと実第 1足平 床反力の力成分 F 1 a c tから実第 1足平床反力中心点位置 Q 1 a c tを求める 。 ここで、 実第 1足平床反力中心点位置 Q 1 a c tは、 その点における実第 1足 平床反力モーメン卜の内の鉛直方向を除く方向の成分が 0となる足底上の作用点 である。 実第 1足平床反力中心点 Q 1 a c tの X座標を Q 1 a c t Xとする。 次いで S 3 1 2に進み、 あらかじめ設定しておいた第 1足平推定許容最小床反 力 F l m i n、 第 1足平推定許容領域最大値 Q 1 m a x xおよび第 1足平推定許 容領域最小値 Q 1 m i n xに対し、 実第 1足平床反力 Z成分 (鉛直成分) F 1 a c t zと前記 Q 1 a c t xが以下の条件を満たすか否かを調べる。
条件 1 ) Flactz く Flmin
条件 2 ) Qlactx > Qlmaxx かつ 0 f lerrdiify > 0
条件 3 ) Qlactx く Qlminx かつ S f lerrdif fy く 0
条件 1に関して補足すると、 第 1足平推定許容最小床反力 F l m i nは、 第 1 足平にそれ以下の床反力しか作用していない場合には第 1足平床傾斜が推定でき ないと判断される足平床反力設定値であり、 ロボット 1の自重より小さな値に設 定しておく。 換言すれば、 条件 1は、 第 1足平と床との間の圧力が小さ過ぎて第 1足平床傾斜 Y成分が精度良く推定できない状況を意味する。
一方、 条件 2および条件 3に関しては、 足平の座標系から見て、 つまさきの X 座標を X t o e , かかとの X座標を X h e e 1 とすると、 あらかじめ、 第 1足平 推定許容領域最大値 Q 1 m a X Xの値を、 x t o eよりもやや小さめに設定して おき、 第 1足平推定許容領域最小値 Q 1 m i n xの値を、 x t o eよりもやゃ大 きめに設定しておく。 これらの関係を第 3 9図に示す。
推定が理想的に実行されるならば、 第 1足平推定許容領域最大値 Q l m a x x と第 1足平推定許容領域最小値 Q 1 m i n Xは、 エッジに一致させても良い。 し かし実際には検出誤差が生じ、 これにより推定値が発散する場合がある。 そこで これを防ぐために、 第 3 9図のようにエッジからやや内側に第 1足平推定許容領 域最大値 Q 1 m a X Xと第 1足平推定許容領域最小値 Q 1 m i n xを設定してお
< o
条件 2は、 かかとが浮きかかっているのに、 積分器入力 0 f 1 e r r d i f f yが正、 即ち、 推定第 1足平床傾斜がかかとが浮く方向に変化しつつある状況を 意味する。 このまま推定を続行すると、 床形状推定入り第 1足平 Y補償角が、 ま すますかかとが浮く方向に変化する。
条件 3は、 つまさきが浮きかかっているのに、 積分器入力 Θ f 1 e r r d i f f yが負、 即ち、 推定第 1足平床傾斜がつまさきが浮く方向に変化しつつある状 況を意味する。 このまま推定を続行すると、 床形状推定入り第 1足平 Y補償角が 、 ますますつまさきが浮く方向に変化する。
第 3 7図フローチャートの説明に戻ると、 S 3 1 2で肯定されて条件 1、 条件 2または条件 3のいずれかを満足する場合には、 推定を中断すべきであるので、 S 3 1 4に進んで第 1足平床傾斜偏差 Y成分推定中断器の出力を 0にし、 それ以 外の場合には、 推定を実行しても問題がないので、 S 3 1 6に進んで前記出力を 0 f 1 e r r d i f f yにする。
条件 1、 条件 2および条件 3の式は、 以上に述べた状況を表わしていれば良い 。 従って、 条件 1では、 実第 1足平床反力 Z成分 (鉛直成分) F 1 a c t zの代 わりに、 実第 1足平床反力の力成 F 1 a c tの内の足平に垂直な成分 (この成分 を 「F 1 a c t z ' 」 と呼ぶ) を用いても良い。
また、 条件 2および条件 3では、 前記実第 1足平床反力中心点位置 Q 1 a c t の代わりに、 実第 1足平床反力モーメントの内の足平に垂直な方向を除く方向の 成分が 0となる足底上の作用点 (この点を 「Q 1 a c t ' 」 と呼ぶ) を用いても 良い。
また、 この実施の形態に係る第 1足平床傾斜偏差 X成分推定中断器の処理につ いて説明すると、 第 1足平床傾斜偏差 X成分推定中断器も、 第 1足平床傾斜偏差 Y成分推定中断器とほぼ同様の処理を行う。
相違点は、 前記条件 2および条件 3において、 つまさきまたはかかとが浮く条 件の代わりに足平の内エッジ、 外エッジが浮く条件を用いることである。 即ち、 条件 2と条件 3の代わりに、 以下の条件 2 ' と条件 3 ' を用いる。
ここで Q 1 m a X yおよび Q 1 m i n yは、 第 3 9図のように足平内エツジと 外エツジの足平中心側に設定される。
条件 2 ' ) Qlacty > Qlraaxy かつ 0 f lerrdiffx < 0
条件 3 ' ) Qlacty く Qlminy かつ S flerrdiffx > 0
尚、 座標系の向きの関係上、 不等号が、 条件 2、 条件 3の場合と一部異なる。 また、 第 1足平床傾斜偏差 X成分推定モードの遷移タイミングは、 第 1足平床傾 斜偏差 Y成分推定モードの場合と較べ、 準備完了モードの終了時期をもう少し遅 らせても良い。 つまさきエッジが接地していれば、 まだ第 1足平床傾斜偏差 X成 分が推定できるからである。
また、 第 2足平床傾斜偏差推定中断器の処理も、 第 1足平床傾斜偏差推定中断 器の処理と同様である。
次いで、 第 4 0図を参照して両脚間床傾斜偏差推定中断器 1 4 0の処理を説明 する。 この処理は毎制御周期に実行される。
この処理は、 第 1足平床傾斜偏差 Y成分推定中断器と基本的には同じであるが 、 細部が異なる。
以下説明すると、 先ず S 4 0 0において目標歩容の時期に応じて両脚間床傾斜 推定モードを決定する。
具体的には、 両脚間床傾斜推定モードは、 目標歩容の時間経過に対して、 第 4 1図のように決定する。 ただし、 これも第 5図に示す歩容に対するモードパター ンであり歩容が異なれば、 それに応じてモードパターンも変えるべきである。 次いで S 4 0 2に進み、 両脚間床傾斜推定モードに応じて以下のように処理す 両脚間床傾斜推定モードがリセッ トモ一ドである場合は S 4 0 4に進み、 推定 両脚間床傾斜偏差 f d b e s t m vを強制的に徐々に 0に収束させ、 S 4 0 6 に進んで両脚間床傾斜偏差推定中断器の出力を 0にする。 尚、 リセッ トモードは 、 第 4 1図に示すごとく、 床形状推定入り両脚補償角を動かしても全床反力に影 響がないように、 片脚支持期に存在させる。 1歩前の両脚間床傾斜偏差と次の 1歩の両脚間床傾斜偏差との関係に相関がな い場合には、 このように推定両脚間床傾斜偏差 0 f d b e s t m vを強制的に徐 々に 0に収束させるのが良い。 しかし、 例えば、 想定床に考慮されていない実床 面のうねりがゆったりとしていることが分かっているならば、 前記関係にある程 度の相関があると考えられるので、 推定両脚間床傾斜偏差 0 f d b e s t m vを 、 強制的に徐々に 1歩前の両脚間床傾斜偏差に 1より小さい正の定数を乗じた値 に収束させるようにしても良い。
さらに、 1歩前の推定両脚間床傾斜偏差だけでなく、 複数歩前の推定両脚間床 傾斜偏差も用いて収束目標値を決定しても良い。 また、 1歩前や複数歩前の推定 足平床傾斜偏差も用いて収束目標値を決定しても良い。
両脚間床傾斜推定モードがホールドモ一ドである場合は S 4 0 8に進み、 両脚 間床傾斜偏差推定中断器の出力を 0にする。 従って、 推定両脚間床傾斜偏差 0 ί d b e s t m vは、 ホールドモードに遷移する直前の値に保持される。
尚、 ホールドモードは、 推定両脚間床傾斜偏差 Θ ί d b e s t m vが発散しそ うな時期およびその精度が低下しそうな時期に存在させる。 例えば、 第 4 1図に 示すように、 両脚支持期の終了時点を始めとしてそれからしばらく後までの期間 に存在させる。
上記以外の時期、 即ち、 両脚間床傾斜偏差の推定が正常に実行できる時期では 、 両脚間床傾斜偏差モードは準備完了モードになる。 準備完了モードでは、 以下 の処理を行う。
先ず S 4 1 0に進み、 あらかじめ設定しておいた両脚間床傾斜推定許容最小床 反力 F m i n、 両脚間床傾斜推定許容比 r m i nに対し、 実各足平床反力が以下 の条件を満たすか否かを調べる。
条件 4 ) Flactz く Fmin または F2actz く Fmin
条件 5 ) F2actz I ( Flactz +F2actz ) < rmin かつ Θ fdberrdiffv > 0 条件 6 ) Flactz I ( Flactz +F2actz ) く rmin かつ 0 fdberrdiff v < 0 条件 4に関して補足すると、 両脚間床傾斜推定許容最小床反力 F m i nは、 第 1足平または第 2足平にこれ以下の床反力しか作用していない場合には、 両脚間 床傾斜が推定できないと判断される足平床反力設定値であり、 通常、 ロボッ ト 1 の自重より小さな値に設定しておく。 換言すれば、 条件 4は、 第 1足平または第
2足平と床との間の圧力が小さ過ぎて両脚間床傾斜が精度良く推定できない状況 思昧する。
一方、 条件 5および条件 6に関しては、 推定が理想的に実行されるならば、 両 脚間床傾斜推定許容比 r m i nは 0でも良い。 しかし実際には検出誤差が生じ、 それにより推定値が発散する場合がある。 それを防ぐために、 r m i nには、 1 よりかなり小さレ、正の値を設定しておく。
条件 5は、 第 2足平が浮きかかっているのに、 積分器入力 f d b e r r d i f f vが正、 即ち、 推定両脚間床傾斜が第 2足平が浮く方向に変化しつつある状 況を意味する。 このまま推定を続行すると、 床形状推定入り両脚補償角は、 ます ます第 2足平が浮く方向に変化する。
条件 6は、 第 1足平が浮きかかっているのに、 積分器入力 0 f d b e r r d i f f vが負、 即ち、 推定両脚間床傾斜が第 1足平が浮く方向に変化しつつある状 況を意味する。 このまま推定を続行すると、 床形状推定入り両脚補償角は、 ます ます第 1足平が浮く方向に変化する。
第 4 0図フローチャートの説明に戻ると、 条件 4、 条件 5または条件 6のいず れかを満足する場合には推定を中断すべきであるので、 S 4 1 2に進んで両脚間 床傾斜偏差推定中断器の出力を 0にし、 それ以外の場合には推定を実行しても問 題がないので、 S 4 1 4に進んで前記出力を 0 f d b e r r d i f f vにする。 条件 4、 条件 5および条件 6の式は、 以上に述べた状況を表わしていれば良い 。 従って、 実第 n足平床反力 Z成分 (鉛直成分) F n a c t zの代わりに、 実第 n足平床反力の力成分 F n a c tの内の足平に垂直な成分 F n a c t ' を用いて も良い。
この実施の形態は上記の如く構成したので、 従来技術では困難であつた床形状 の推定、 具体的には各足平の接地面傾斜と両足平接地面間の高低差を同時に、 換 言すれば複合的に、 精度良く推定することができる。
さらには、 床形状の推定結果を基に足平軌道を修正することにより、 床形状が 想定していた形状と異なっていても、 その影響を吸収して望み通りの床反力を発 生させることができる。 特に、 複合コンプライアンス制御で除去しきれなかつた実床反力の制御目標値 からの定常偏差を可能な限り零に近づける、 換言すれば床形状のずれに起因する 床反力の定常偏差を解消することができる。
また、 推定精度が低下しそうな状況あるいは推定値が発散しそうな状況では床 形状推定を中断するように構成したので、 前記した作用効果に加え、 推定値が不 適正なものとなることがない。
尚、 この実施の形態に係る脚式移動ロボッ 卜の床形状推定装置は上記した手法 で床形状を推定すれば足り、 推定値に基づいて床反力を操作して目標位置姿勢な どを制御することは必須ではない。
次いで、 この発明の第 2の実施の形態に係る脚式移動ロボッ トの床形状推定装 置を説明する。
第 2の実施の形態は、 第 1の実施の形態を簡易化したものであり、 その全体構 成を第 4 2図に示す。 第 1の実施の形態とは、 床形状推定器への入力と床形状推 定器内での処理が異なる。 それ以外は第 1の実施の形態と同様である。
第 2の実施の形態においては、 詳細は以下に説明するが、 簡単に言えば、 第 1 の実施の形態の機構コンプライアンスモデル 1 3 4を近似してから、 ブロック線 図を等価変換するようにした。
第 2の実施の形態に係る床形状推定器の処理を説明する前に、 先ず、 用語の定 義と、 第 2の実施の形態で用いられるコンプライアンスモデルの説明を行う。 第 4 3図の上部に示すように、 機構変形補償入り修正目標足平位置姿勢と目標 上体位置姿勢の相対関係を満足するように関節角を変位制御し、 同図中部に示す ように、 目標上体姿勢から上体傾斜偏差 e r rだけ傾けてロボット 1の上体 2 4を空中に支持し、 さらに同図下部に示すように、 目標各足平床反力に相当する 外力を足平に作用させたと仮定したときに、 そのような状況にある足平内の目標 第 1足平床反力中心点 Q 1 " 'を始点、 目標第 2足平床反力中心点 Q 2 " 'を終点と するベクトルの前記 V方向まわりの傾きを 「理想変形時両脚間傾斜」 と呼ぶ。 また、 この仮定における第 n足平の姿勢傾斜を 「理想変形時第 n足平傾斜」 と 呼ぶ。 上体傾斜偏差、 両脚補償角、 各足平補償角、 推定両脚間床傾斜偏差、 推定 第 1足平床傾斜偏差および推定第 2足平床傾斜偏差がすべて 0であるならば、 理 想変形時両脚間傾斜は想定両脚間床傾斜に一致し、 理想変形時第 n足平傾斜は想 定第 n足平床傾斜に一致する。
想定両脚間床傾斜に推定両脚間床傾斜偏差を加算したものを 「推定両脚間床傾 斜 J と呼ぶ。 これは、 V方向まわりの角度で表わされる。 また、 想定第 n足平床 傾斜に推定第 n足平床傾斜偏差を加算したものを 「推定第 n足平床傾斜」 と呼ぶ 。 理想変形時両脚間傾斜と推定両脚間床傾斜との差を 「推定両脚干渉角 S d b i n t v」 と呼ぶ。 これも、 V方向まわりの角度で表わされる。
また、 理想変形時第 1足平傾斜と推定第 1足平床傾斜との差を 「推定第 1足平 干渉角 Θ 1 i n t」 と呼ぶ。 同様に理想変形時第 2足平傾斜と推定第 2足平床傾 斜との差を 「推定第 2足平干渉角 S 2 i n t」 と呼ぶ。
推定両脚間床傾斜が実両脚間床傾斜に一致していて、 かつ実ロボッ トの足平の 目標各足平床反力中心点が接地していると仮定すると、 推定両脚干渉角 0 d b i n t vを打ち消すように、 実ロボッ トのコンプライアンス機構 4 2が変形してい るはずである。
さらにこの機構変形に応じて、 目標全床反力中心点まわりに各足平床反力の力 成分が作るモーメントの和の V方向成分が発生するはずである。 この成分を 「M d b e s t m v」 と呼ぶ。
そこで、 推定両脚干渉角 Θ d b i n t vと M d b e s t m vとの関係をあらか じめ調べておき、 記憶しておく。 この関係は、 実ロボットのコンプライアンス機 構 4 2の特性の内で、 両脚干渉角に関する特性だけを抽出したものであり、 それ 故に、 「両脚間機構コンプライアンスモデル」 1 3 4 a (第 4 4図に示す) と呼 ヽ
推定第 n足平床傾斜が実第 n足平床傾斜に一致していて、 かつ実13ボッ トの第 n足平がベたに接地していると仮定すると、 推定第 n足平干渉角 i n tを打 ち消すように、 実ロボッ トのコンプライアンス機構 4 2が変形しているはずであ る。
さらにこの機構変形に応じて、 目標第 1足平床反力中心点まわりに第 1足平床 反カ乇一メントが発生するはずである。 このモーメントを 「M 1 e s t m」 と呼 ぶ。 同様に目標第 2足平床反力中心点まわりに第 2足平床反力モ―メントが発生 するはずである。 このモーメントを 「M2 e s t m」 と呼ぶ。
そこで、 推定第 n足平干渉角の X成分 0 n i n t Xと前記モ一メントの X成分 Mn e s t mxとの関係をあらかじめ調べておき、 記憶しておく。 この関係は、 実ロボッ トのコンプライアンス機構 4 2の特性の内で、 足平干渉角に関する特性 だけを抽出したものであり、 それ故に、 「足平機構コンプライアンスモデル」 と 呼ぶ。 第 1足平 X成分用足平機構コンプライアンスモデルを第 4 5図に記載の 1 34 bに示す。
次に、 第 2の実施の形態における床形状推定器 1 3 0 aの構成を説明する。 第 2の実施の形態における床形状推定器 1 3 0 aは、 両脚間床傾斜偏差推定部
1 3 8 aと足平床傾斜偏差推定部 1 44 aとから構成される。 両脚間床傾斜偏差 推定部 1 3 8 aの処理機能ブロック図を第 4 4図に示す。 足平床傾斜偏差推定部
1 44 aの処理機能ブロック図を第 45図に示す。
第 4 5図では、 推定第 1足平床傾斜偏差 X成分に関する処理機能ブロック図の みを示すが、 推定第 1足平床傾斜偏差 Y成分、 推定第 2足平床傾斜偏差 X成分、 推定第 2足平床傾斜偏差 Y成分についても同様の処理を行う。
先ず、 第 2の実施の形態に係る両脚間床傾斜偏差推定部 1 3 8 aの処理を第 4 4図を参照して説明する。
先ず、 上体傾斜偏差 0 e r rを V方向成分とそれと直交する方向の成分に分解 したときの V方向成分 Θ e r r vを求める。
次に、 目標歩容の目標第 1足平床反力中心点 Q 1を始点、 目標第 2足平床反力 中心点 Q 2を終点とするべクトルの傾斜を求め、 求めた傾斜から想定両脚間床傾 斜を減じたものを想定両脚干渉角 0 db i n t cmd vとする。
次に、 次式により、 前述の推定両脚干渉角 0 d b i n t vを求める。
Θ dbintv二 Θ dbv' + Θ errv- θ fdbestmv+ θ dbintcmdv
• · ·式 25
ここで、 0 f db e s tmvは、 第 1の実施の形態でも述べたように、 推定両 脚間床傾斜偏差である。 また、 S db v' は、 床形状推定入り両脚補償角であり 、 第 4 3図に示すように、 両脚補償角 0 d b vと推定両脚間床傾斜偏差 0 f d b e s t m vの禾 Πでめる。 床形状推定入り両脚補償角 0 d b V ' および推定両脚間床傾斜偏差 Θ f d b e s tmvは、 それから今回値を求めるものであるから、 この処理では記憶してお いた直前の値を用いる。
尚、 両脚が接地する想定時刻よりも前から両脚間床傾斜偏差を推定したい場合 において、 より精度を高めるために、 想定両脚干渉角 0 d b i n t cmd Vを加 算することが望ましいが、 想定両脚干渉角 0 d b i n t cm d vの加算および想 定両脚干渉角 Θ d b i n t cm d vを算出する構成 (第 4 4図において点線で囲 まれる構成) は必ずしも必須ではない。
次に両脚間機構コンプライアンスモデル 1 3 4 aを用いて、 推定両脚干渉角 0 d b i n t vによって発生すると予想される前記 Md b e s t m vを求める。 一方、 目標全床反力中心点まわりに実各足平床反力の力成分が作る乇一メ ント の和の V方向成分 M f 1 f 2 a c t V (複合コンプライアンス制御の式 1 2およ び式 1 3で求められるモーメントの V方向成分) を求める。
次に、 前記 M f 1 f 2 a c t Vと前記 Md b e s t m vとの差を求めることに より、 両脚モーメン ト推定偏差 Mdb e r rを得る。 もし、 推定両脚間床傾斜偏 差 0 ί db e s t mvが実両脚間床傾斜偏差に一致しているならば、 両脚モ一メ ント推定偏差 Md b e r rは 0になる。 逆に、 もし両脚モーメント推定偏差 M d b e r r力 0ならば、 推定両脚間床傾斜偏差 Θ f d b e s t m vは実両脚閭床傾 斜偏差に一致する。
次に、 両脚間床傾斜偏差推定中断器 1 4 0 aにおいて、 両脚間床傾斜偏差の推 定を実行すべきか中断すべきかを判断する。 両脚間床傾斜偏差推定中断器 1 4 0 aは、 両脚間床傾斜偏差の推定を実行すべきと判断したならば、 両脚間床傾斜偏 差推定中断器 1 4 0 aへの入力である前記 Md b e r rをそのまま出力し、 中断 すべきと判断したならば、 0を出力する。 両脚間床傾斜偏差推定中断器 1 4 0 a に関する詳細は後述する。
次に、 両脚間床傾斜偏差推定中断器 1 4 0 aの出力を積分定数が Kd b e s t m' である積分器 1 4 2 aで積分し、 推定両脚間床傾斜偏差 Θ f d b e s t m v を得る。
以上が、 第 2の実施の形態における両脚間床傾斜偏差推定部 1 3 8 aの処理で ある。
さらに、 推定両脚間床傾斜偏差 0 f d b e s tmvは、 第 4 2図に示すように 、 両脚補償角 Θ d b Vに加算され、 床形状推定入り両脚補償角 Θ db v' として 修正目標足平位置姿勢算出部 1 1 4 gへ入力される。
このような処理を毎制御周期に繰り返し実行することにより、 両脚モーメント 推定偏差 Md b e r rが 0に収束するように、 積分器出力である推定両脚間床傾 斜偏差 0 f d b e s tmvが変化する。
ところで前述したように、 両脚モ一メント推定偏差 Md b e r rが 0になると 、 推定両脚間床傾斜偏差 Θ f d b e s tmvが実際の両脚間床傾斜偏差に一致す る。 従って、 しばらく経つと、 推定両脚間床傾斜偏差 0 f d b e s tmvは、 実 両脚間床傾斜偏差に一致する。 即ち、 この処理によって、 両脚間床傾斜偏差が推 疋される。
尚、 両脚間機構コンプライアンスモデル 1 34 aが線形であるならば、 その処 理系の実両脚間床傾斜偏差から推定両脚間床傾斜偏差までの閉ループ伝達関数は 、 1次遅れになる。
その時定数 Tは、 両脚間機構コンプライアンスモデル 1 34 aにおける入力 ( 推定両脚干渉角) に対する出力 (前記モーメント Mdb e s tmv) の比 (絶対 値) を Cとすると、 次式で求められる。
T 二 1 / ( C* Kdbestm' )
. · ■式 2 6
第 1の実施の形態の積分ゲイン K d b e s tmに対して、 第 2の実施の形態の 積分ゲイン K d b e s ΐ m' を
Kdbestra' = Kdbestm I C
' ■ · ·式 27
とすることにより、 第 1の実施の形態とほぼ同一の特性を持つ両脚間床傾斜偏差 推定器 1 3 8 aが得られる。
次に、 足平床傾斜偏差推定部 1 44 aの 理を第 4 5図を参照して説明する。 第 4 5図では、 推定第 1足平床傾斜偏差 X成分に関する処理機能ブロック図の みを示すが、 推定第 1足平床傾斜偏差 Y成分、 推定第 2足平床傾斜偏差 X成分、 推定第 2足平床傾斜偏差 Y成分についても同様の処理を行う。
先ず、 目標歩容の第 1足平傾斜角を求め、 これから想定第 1足平床傾斜傾斜を 減じたものの X成分を、 想定第 1足平干渉角 X成分 0 1 i n t cmd xとする。 次に、 次式により前述の推定第 1足平干渉角の X成分 S 1 i n t xを求める。
0 lintx = θ lx' + Θ errx- Θ f lestmx + Θ lintcmdx
■ . .式 28
ここで、 0 f 1 e s tmxは、 第 1の実施の形態でも述べたように、 推定第 1 足平床傾斜偏差 X成分である。 また、 01 χ' は、 床形状推定入り第 1足平 X補 償角であり、 第 4 2図に示すように、 第 1足平 X補償角 0 1 Xと推定第 1足平床 傾斜偏差 X成分 0 f 1 e s tmxの和である。
床形状推定入り第 1足平 X補償角 Θ 1 x' および推定第 1足平床傾斜偏差 X成 分 0 f 1 e s t mxは、 それから今回値を求めるものであるから、 この処理では 記憶しておいた直前の値を用いる。
尚、 第 1足平が床にベたに接地する想定時刻よりも前から第 1足平床傾斜偏差 を推定したい場合において、 より精度を高めるために、 想定第 1足平干渉角 X成 分 Θ 1 i n t cmd xを加算することが望ましいが、 想定第 1足平干渉角 X成分 0 1 i n t cmd xの加算および想定第 1足平干渉角 X成分 0 l i n t cmd x を算出する構成 (第 4 5図において点線で囲われる構成) は必ずしも必須ではな い。
次に、 前記の足平機構コンプライアンスモデル 1 34 bを用いて、 推定第 1足 平干渉角 X成分 0 l i n t Xによって発生すると予想される前記 Ml e s tmの X成分 M 1 e s tmxを求める。
次に、 検出された実第 1足平床反力モ一メント M 1 a c t Xと前記 M l e s t mxとの差を求めることにより、 第 1足平床反カモ一メント推定偏差 X成分 M 1 e r r x 得る。
もし、 推定第 1足平床傾斜偏差 X成分 0 f 1 e s t mxが実第 1足平床傾斜偏 差に一致しているならば、 第 1足平床反力モーメント推定偏差 X成分 M l e r r xは 0になる。 逆に、 もし第 1足平床反力モーメント推定偏差 X成分 M l e r r xが 0ならば、 推定第 1足平床傾斜偏差 X成分 S f 1 e s "1111 は実第 1足平床 傾斜偏差に一致する。
次に、 第 1足平床傾斜偏差推定中断器において第 1足平床傾斜偏差の推定を実 行 (続行) すべきか中断すべきかを判断する。
第 1足平床傾斜偏差推定中断器は、 第 1足平床傾斜偏差の推定を実行すべきと 判断したならば、 第 1足平床傾斜偏差推定中断器への入力である第 1足平床反力 モーメント推定偏差 X成分 M l e r r xをそのまま出力し、 中断すべきと判断し たならば、 0を出力する。 尚、 足平床傾斜偏差推定中断器 1 4 6 aに関する詳細 は後述する。
次いで、 第 1足平床傾斜偏差推定中断器の出力を積分定数が K 1 e s t m x ' である積分器で積分し、 推定第 1足平床傾斜偏差 X成分 Θ f 1 e s t m xを得る ο
以上が、 第 2の実施の形態における第 1足平床傾斜偏差 X成分推定部の処理で める。
さらに、 推定第 1足平床傾斜偏差 X成分 Θ f 1 e s t m xは、 第 4 2図に示す ように、 第 1足平 X補償角 0 1 Xに加算され、 床形状推定入り第 1足平 X補償角 θ 1 χ ' として修正目標足平位置姿勢算出部 1 1 4 gへ入力される。
このような処理を毎制御周期に繰り返し実行することにより、 第 1足平床反力 モーメント推定偏差 X成分 M l e r r xが 0に収束するように、 積分器出力であ る推定第 1足平床傾斜偏差 X成分 0 f 1 e s t m xが変化する。
ところで前述したように、 第 1足平床反カモ一メント推定偏差 X成分 M 1 e r r xが 0になると、 推定第 1足平床傾斜偏差 X成分 0 f 1 e s 1;111 が実第 1足 平床傾斜偏差 X成分に一致する。 従って、 しばらく経つと、 推定第 1足平床傾斜 偏差 X成分 Θ f 1 e s t m xは、 実第 1足平床傾斜偏差 X成分に一致する。 即ち 、 この処理によって、 第 1足平床傾斜偏差 X成分が推定される。
尚、 足平機構コンプライアンスモデル 1 3 4 bが線形であるならば、 その処理 系の実第 1足平床傾斜偏差 X成分から推定第 1足平床傾斜偏差 X成分までの閉ル —プ伝達関数は、 1次遅れになる。
その時定数 Tは、 足平機構コンプライアンスモデル 1 3 4 bにおける入力 (推 定第 1足平干渉角 X成分 0 1 i n t x ) に対する出力 (前記モーメント M 1 e s t m x ) の比 (絶対値) を C 1 とすると、 次式で求められる。
T = 1 / ( CI * Klestmx' )
. . .式 2 9
第 1の実施の形態の積分ゲイン K 1 e s t m xに対し、 第 2の実施の形態の積 分ゲイン K l e s t m x ' を
Klestmx' = Klestmx I CI
, . '式 3 0
とすることにより、 第 1の実施の形態とほぼ同一の特性を持つ第 1足平床傾斜偏 差推定器が得られる。
尚、 目標足平の向きが目標上体の向きと異なる場合には、 上体傾斜を各足平座 標系で表わせばよい。
ここで、 第 1の実施の形態と第 2の実施の形態を比較する。
第 1の実施の形態では床形状推定器 1 3 0への入力として、 最終的に修正され た目標足平位置姿勢を用いていたが、 第 2の実施の形態では、 それを決定するた めに中間的に生成される変数を用いていると言える。
第 2の実施の形態は、 簡単に言えば、 第 1の実施の形態のコンプライアンスモ デルを、 両脚干渉角に関するコンプライアンスモデルである両脚間機構コンプラ ィアンスモデル 1 3 4 aと、 足平干渉角に関するコンプライアンスモデルである 足平機構コンプライアンスモデル 1 3 4 bに近似してから、 ブロック線図を等価 変換したものになっている。
第 2の実施の形態は機構コンプライアンスモデルが簡素化されているので、 第 1の実施の形態に比較すると、 やや推定精度が低下するが、 機構コンプライアン スの演算が簡単であるので、 制御ュニッ ト 2 6の負荷を軽減することができる。 それ以外は、 第 2の実施の形態は、 第 1の実施の形態と異ならない。 作用効果も 同様である。 床形状の推定のみでも良いことも、 第 1の実施の形態と同様である 尚、 上記において、 両脚支持期になる想定時刻 (即ち、 遊脚の着地想定時刻) よりも前から両脚間床傾斜偏差の推定を開始することがない場合には、 式 2 5か ら想定両脚干渉角 S d b i n t c m d vの項を削除した次式を用いても良い。 な ぜなら、 目標歩容の両脚支持期には、 想定両脚干渉角 S db i n t cmdvは 0 であるからである。
Θ dbintv= Θ dbv' + Θ errv- Θ fdbestmv
• ■ ·式 3 1
目標歩容の第 1足平の Y軸に沿ったエツジ (かかとエツジまたはつまさきエツ ジ) が接地する時刻よりも前から第 1足平床傾斜偏差 X成分の推定を開始するこ とがない場合には、 式 28から想定第 1足平干渉角 X成分 01 i n t cmdxの 項を削除した次式を用いても良い。 なぜなら、 目標歩容の第 1足平の Y軸に沿つ たエッジが接地しているときには、 想定第 1足平干渉角 X成分 01 i n t cmd xは 0であるからである。
Θ lintx = θ lx' + Θ errx- 0 f lestmx
. . ·式 32
目標歩容の第 1足平の X軸に沿ったエッジ (即ち、 内エッジまたは外エッジ) が接地する時刻よりも前から第 1足平床傾斜偏差 Y成分の推定を開始することが ない場合には、 式 28の Xを yに置き換えた式の代わりに、 その式から想定第 1 足平干渉角 Y成分 Θ 1 i n t cmdyの項を削除した次式を用いても良い。 なぜ なら、 目標歩容の第 1足平の Y軸に沿ったエッジ (即ち、 内エッジまたは外エツ ジ) が接地しているときには、 想定第 1足平干渉角 Y成分 0 l i n t cmdyは 0であるからである。
Θ linty = Θ ly' + Θ erry- Θ f lestmy
. . ·式 33
さらに、 前記した式 1 2で求められるモーメント Mf 1 ί 2 a c t vの代わり に、 式 1 2 aで求められるモ一メント M f 1 f 2 a c t vを用いる場合には、 前 記 Mdb e s tmvの代わりに、 推定両脚干渉角を打ち消す機構変形によって発 生するはずの目標全床反力中心点まわりの全床反力モーメントを用いる。
さらに、 推定床形状偏差を床形状地図情報として記憶しておき、 次回同一場所 を歩行するときの目標歩容を生成する際の参考にしても良い。
次いで、 第 2の実施の形態に係る第 1足平床傾斜偏差 Y成分推定中断器の処理 を説明する。 第 2の実施の形態に係る第 1足平床傾斜偏差 Y成分推定中断器の処理は第 1の 実施の形態のそれとほとんど同様であり、 具体的には、 第 3 7図の 0 f 1 e r r d i f f yを第 1足平床反カモ一メント推定偏差 Y成分 M 1 e r r yに置き換え れぱ良い。
また、 両脚間床傾斜偏差推定中断器 1 4 0 aの処理も同様であって、 第 4 0図 フロー ·チヤ—トに示す処理において ø f d b e r r d i f f vを両脚モ一メン ト推定偏差 M d b e r rに置き換えれば良い。
ここで、 両脚間床傾斜偏差推定中断器 1 4 0 aの役割を説明すると、 両脚間床 傾斜偏差推定中断器 1 4 0 aは、 第 1足平床傾斜偏差推定中断器と同様に、 両脚 間床傾斜偏差の推定が正常に実行できるか否かを判断し、 正常に実行できないと 判断したときには推定を中断する。
より具体的には、 推定両脚間床傾斜偏差の精度が低下しそうな状況、 および推 定両脚間床傾斜偏差が発散しそうな状況では、 推定を中断するために 0を出力し 、 それ以外の状況では、 推定を継続するために両脚間床傾斜偏差推定中断器への 入力をそのまま出力する。
推定両脚間床傾斜偏差は、 各足平と床との間の接触圧力が十分にあるときには 発散しないが、 ある足平が浮きかかっているにもかかわらず、 両脚補償角が、 そ の足平が浮く方向に変化しつつある状況で発生する。 その発生メカニズムは推定 第 1足平床傾斜偏差 Y成分が発散する場合とほぼ同一なので、 これ以上の説明は 省略する。
上記の如く、 第 2の実施の形態においても、 床形状推定値、 具体的には各足平 の接地面傾斜と両脚接地面間の高低差を同時に、 精度良く推定することができる ο
さらに、 床形状が想定していた形状と異なっていても、 望み通りの床形状を発 生されることができると共に、 床形状のずれに起因する床反力の定常偏差を解消 することができる。
また、 床形状推定精度が低下しそうな状況あるいは推定値が発散しそうな状況 では床形状推定を中断するように構成したので、 前記した作用効果に加え、 推定 値が不適正なものとなることがない。 尚、 第 1および第 2の実施の形態において、 足平 2 2 R (L) が浮きそうな状 態の判断を、 6軸力センサ 34によって検出された実第 1足平床反力から前記実 床反力中心点位置 Q 1 a c ΐまたは前記 Q 1 a c ΐ ' を算出し、 それに基づいて 足平 22R (L) がどちらの方向に浮きやすいか (かかとが浮きやすいか、 つま さきが浮きやすいか、 足平内エッジが浮きやすいか、 または足平外エッジが浮き やすいか) を判定した。
し力、し、 それに限られるものではなく、 第 4 6図に示す如く、 足底弾性体 4 0 と足平本体 22 aの間に分布圧センサ 20 0を配置し、 その出力信号に基づいて 足平 22R (L) がどちらの方向に浮きやすいかを判定しても良い。 尚、 6軸力 センサ 34よりも分布圧センサ 2 0 0の方が実床反力による足平の変形をより細 緻に推定することができるので、 床形状推定の精度を向上させることができる。 さらには、 第 4 7図に示す如く、 足平 22R (L) に接触センサ 2 0 2を複数 個配置 (例えば足平の四隅に配置) し、 その出力信号に基づいて足平 2 2R (L ) がどちらの方向に浮きやすいかを判定しても良い。 尚、 判定のアルゴリズムと して、 接地していない接触センサが増々浮く方向への推定を中断する、 あるいは 、 全ての接触センサが浮いているときも推定を中断することなどが考えられる。 第 1、 第 2の実施の形態では上記の如く、 少なくとも上体 (基体) 24と、 前 記上体 24に第 1の関節 (股 (腰部) 関節 1 0、 1 2、 1 4 R, L) を介して連 結されると共に、 その先端に第 2の関節 (足 (足首) 関節 1 8、 2 O R, L) を 介して連結される足部 (足平) 22R, Lを備えた複数本の脚部 (脚部リンク) 2を備えると共に、 前記足部 2 2R, Lに接地する床面から作用する床反力に応 じて変形するコンプライアンス機構 4 2を備え、 少なくとも前記上体 24に対す る前記足部 2 2 R, Lの実位置姿勢を検出し、 前記足部 2 2 R, Lの目標位置姿 勢に追従させるように前記関節 ( 1 0、 1 2R, しなど) を駆動する関節駆動手 段 (電動モ—夕) を備えた脚式移動ロボットの床形状推定装置において、 前記上 体 24の鉛直軸方向に対する傾斜を検出する傾斜検出手段 (傾斜センサ 3 6) 、 前記足部 22 R, Lの実位置姿勢および/または前記足部 2 2 R, Lの目標位置 姿勢と前記検出された傾斜に基づき、 前記足部 22R, Lが接地する床面を含む 歩行環境における前記足部 22 R, Lの位置姿勢 (機構変形補償入り修正目標足 平位置姿勢) を算出する対歩行環境足部位置姿勢算出手段 (制御ュニッ ト 2 6、 複合コンプライアンス動作決定部 1 1 4、 機構変形補償入り修正目標足平位置姿 勢算出部 1 1 4 h、 両脚間床傾斜偏差推定部 1 3 8内の上体傾斜偏差の V方向成 分 0 e r r vの加算器、 足平床傾斜偏差推定部 1 4 4内の上体傾斜偏差の X成分 0 e r r xの加算器) 、 前記足部床面から作用する床反力による前記コンプライ アンス機構 4 2の変形が加えられた前記歩行環境における足部の変形位置姿勢 ( 機構変形後の推定各足平位置姿勢) を、 前記コンプライアンス機構 4 2をモデル 化して得た機構コンプライアンスモデル 1 3 4を用いて算出する変形足部位置姿 勢算出手段 (制御ュニッ ト 2 6、 複合コンプライアンスモデル 1 3 4、 床形状推 定器 1 3 0 (特に両脚間床傾斜偏差推定部 1 3 8内の θ ί d b v ' を算出するま での部分、 足平床傾斜偏差推定部 1 4 4内の 0 f 1 e r r x ' を算出するまでの 部分) ) 、 および前記算出された足部の変形位置姿勢に基づき、 前記足部 2 2 R , Lが接地するそれぞれの床面の形状 (推定第 n足平床傾斜 (偏差) 0 f n e s t m) およびそれらの相対位置関係 (推定両脚間床傾斜 (偏差) あるいは推定両 脚間床高低差 (偏差) 0 f d b e s t m v ) を示す床形状推定値を算出する床形 状推定値算出手段 (制御ュニッ ト 2 6、 複合コンプライアンス動作決定部 1 1 4 、 床形状推定器 1 3 0、 両脚間床傾斜偏差推定部 1 3 8 (特に 0 f d b e r r V 算出後の部分) 、 足平床傾斜偏差推定部 1 4 4 (特に 0 f 1 e r r x算出後の部 分) ) 、 を備える如く構成した。
また、 前記モデルが、 それぞれの足部 (各足平) 2 2 R , Lに作用する床反力 と、 それによるそれぞれの足部の位置姿勢の変化を記述する第 1のモデル (足平 機構コンプライアンスモデル 1 3 4 b ) と、 目標全床反力中心点に作用する床反 力と、 それによるそれぞれの足部間の相対位置の変化を記述する第 2のモデル ( 両脚間機構コンプライアンスモデル 1 3 4 a ) からなる如く構成した。
また、 前記床形状推定値算出手段は、 高周波成分を除去するフィルタ (両脚間 床傾斜偏差推定部 1 3 8内の 0 f d b e r r vから Θ f d b e s t m vを算出す る部分と、 足平床傾斜偏差推定部 1 4 4内の Θ f 1 e r rから Θ f 1 e s t mと を算出する部分) を備え如く構成した。
さらに、 前記算出された床形状推定値に基づいて前記足部 2 2 R, Lの目標位 置姿勢を修正する修正手段 (制御ュニッ ト 2 6、 加算器 1 3 2 ( 1 3 2 a, 1 3 2 b) 、 修正目標足平位置姿勢算出部 1 1 4 g) を備える如く構成した。
さらに、 前記ロボッ ト 1の少なくとも前記足部 22 R, Lの目標位置姿勢を含 む運動パターン (目標上体位置姿勢、 目標足平位置姿勢) と、 前記ロボッ ト 1に 作用する全床反力の目標パターン (目標全床反力、 目標全床反力中心点 (二目標 ZMP) ) を少なくとも含む前記ロボッ トの歩容を生成する歩容生成手段 (制御 ユニッ ト 2 6、 歩容生成器 1 0 0、 3 1 0から322) 、 前記生成された歩容の 全床反力を前記足部 22 R, Lのそれぞれに分配したときの前記足部 2 2 R, L 上の作用中心点たる目標足部床反力中心点 (目標各足平床反力中心点) を決定す る目標足部床反力中心点決定手段 (制御ュニッ ト 2 6、 目標床反力分配器 1 0 2 、 S 24, S 2 6) 、 前記足部に作用する実床反力 (実各足平床反力) を検出す る実床反力検出手段 (制御ュニッ ト 2 6、 6軸力センサ 3 4、 実各足平床反カ検 出器 1 0 8、 S 32) 、 および前記検出された実床反力が前記算出された目標足 部床反力中心点まわりに作用するモーメント (実第 n足平床反力モーメント Ma c t x, y, z) を算出し、 少なくとも前記算出されたモーメン トに基づいて前 記足部を回転させる回転量 (両脚補償角 0 d b v、 第 n足平補償角 0 n x, y) を決定する足部回転量決定手段 (制御ュニッ ト 2 6、 複合コンプライアンス動作 決定部 1 1 4、 両脚補償角決定部 1 1 4 b、 第 n足平補償角決定部 1 1 4 c、 S 3 2, S 3 4, S 1 0 0から S 1 0 8) 、 を備えると共に、 前記修正手段は、 前 記算出された床形状推定値に基づいて前記足部回転量を修正 (床形状推定入り両 脚補償角 0 d b v' , 床形状推定入り第 n足平補償角 Θ η χ' , y' ) する足部 回転量修正手段 (制御ュニット 2 6、 加算器 1 32 ( 1 32 a, 1 3 2 b) ) 、 および前記修正された足部回転量に基づいて前記足部の位置姿勢が回転するよう に前記目標位置姿勢を修正する足部位置姿勢修正手段 (制御ュニッ ト 2 6、 修正 目標足平位置姿勢算出部 1 1 4 g、 S 3 8, S 4 0) 、 を備える如く構成した。 さらに、 前記ロボッ ト 1の少なくとも前記足部 22 R, Lの目標位置姿勢を含 む運動パターン (目標上体位置姿勢、 目標足平位置姿勢) と、 前記ロボッ ト 1に 作用する全床反力の目標パターン (目標全床反力、 目標全床反力中心点 ( 目標 ZMP) ) を少なくとも含む前記ロボッ トの歩容を生成する歩容生成手段 (制御 ユニッ ト 26、 歩容生成器 1 00、 ≤ 1 0から322) 、 前記生成された歩容の 全床反力を前記足部 22 R, Lのそれぞれに分配したときの前記足部 22 R, L 上の作用中心点たる目標足部床反力中心点 (目標各足平床反力中心点) を決定す る目標足部床反力中心点決定手段 (制御ュニッ ト 26、 目標床反力分配器 1 02 、 S 24, S 26) 、 前記足部に作用する実床反力 (実各足平床反力) を検出す る実床反力検出手段 (制御ュニッ ト 26、 6軸力センサ 34、 実各足平床反カ検 出器 1 08、 S 32) 、 および少なくとも前記検出された実床反力に基づいて前 記足部 22R, Lを回転させる回転量 (両脚補償角 0db v、 第 n足平補償角 0 n X, y) を決定する足部回転量決定手段 (制御ュニッ ト 26、 複合コンプライ アンス動作決定部 1 1 4、 両脚補償角決定部 1 1 4 b、 第 n足平補償角決定部 1 1 4 c, d、 S 32, S 34, S 1 00から S 1 08) 、 を備えると共に、 前記 修正手段は、 前記算出された床形状推定値に基づいて前記足部回転量を修正 (床 形状推定入り両脚補償角 S dbv' 、 床形状推定入り第 n足平補償角 0ηχ' , y' ) する足部回転量修正手段 (制御ュニッ ト 26、 加算器 1 32 ( 1 32 a, 1 32b) ) . および前記修正された足部回転量に基づいて前記足部の位置姿勢 が、 前記決定された目標足部床反力中心点 (目標各足平床反力中心点) あるいは その近傍まわりに回転するように、 前記目標位置姿勢を修正する足部位置姿勢修 正手段 (制御ュニット 26、 修正目標足平位置姿勢算出部 1 1 4 g、 S 38, S 40) 、 を備える如く構成した。
また、 前記足部位置姿勢修正手段は、 前記決定された足部回転量に基づいて前 記足部の位置姿勢が、 前記決定された目標足部床反力中心点あるいはその近傍ま わりに回転するように、 前記目標位置姿勢を修正する如く構成した。
さらに、 前記ロボッ トに実際に作用する全床反力モーメント (より正確にはモ 一メン ト成分 PQ 1 *F 1 a c t +PQ2*F 2 a c t+Ml a c t +M2 a c t) 、 または前記ロボットに実際に作用する全床反力モーメン ト (PQ 1 *F 1 a c t +PQ 2 *F 2 a c t +Ml a c t+M2 a c t) から前記足部に作用す る床反力モーメン ト (Ml a c t+M2 a c t) を減算して得たモ一メント (M f 1 f 2 a c t=PQ l *F l a c t+PQ2 *F 2 a c t) のいずれかを算出 し、 少なくとも前記算出されたモーメントに応じて前記足部 22R, Lを移動さ せる移動量 (Θ d b v) を決定する足部移動量決定手段 (制御ュニッ ト 2 6、 補 償全床反力モーメン ト分配器 1 1 4 a、 両脚補償角決定部 1 1 4 b、 S 1 0 0か ら S 1 0 6) 、 を備え、 前記足部位置姿勢修正手段は、 前記決定された足部回転 量および前記決定された移動量に基づいて前記足部の位置姿勢を修正する如く構 成した。
また、 前記足部位置姿勢修正手段は、 前記ロボッ トの姿勢偏差に基づいて前記 目標位置姿勢をさらに修正する如く構成した。
また、 前記全床反力の目標パターンに付加する姿勢安定化補償全床反力モーメ ン ト (補償全床反力 Mdmd) を求め、 前記足部回転量決定手段および/または 前記足部移動量決定手段は、 少なくとも前記検出された実床反力 (実各足平床反 力) と前記求めた姿勢安定化補償全床反力モーメン トに基づいて前記足部の回転 量および Zまたは移動量を決定する (S 34, S 1 0 0から S 1 0 8) 如く構成 した。
また、 前記姿勢安定化補償全床反力モーメントを、 少なく とも前記ロボッ トの 傾き偏差 (0 e r r X, y) に基づいて求める (S 2 8) 如く構成した。
また、 前記足部回転量決定手段および Zまたは前記足部移動量決定手段は、 前 記姿勢安定化補償全床反力モ一メントが前記複数本の脚部のそれぞれに分配され るように、 前記足部の回転量および/または移動量を決定する (S 3 4, S 1 0 0から S 1 0 8) 如く構成した。
さらに、 前記ロボッ ト 1の少なくとも前記足部 2 2 R, Lの目標位置姿勢を含 む運動パ夕—ン (目標上体位置姿勢、 目標足平位置姿勢) と、 前記ロボッ ト 1に 作用する全床反力の目標パターン (目標全床反力、 目標全床反力中心点 (二目標 ZMP) ) を少なくとも含む前記ロボッ トの歩容を生成する歩容生成手段 (制御 ュニッ ト 2 6、 歩容生成器 1 0 0、 S 1 0から S 22) 、 前記ロボッ 卜の姿勢安 定化のための補償全床反力 (補償全床反力 Mdmd) を算出する姿勢安定化補償 全床反力算出手段 (制御ュニッ ト 2 6、 姿勢安定化制御演算部 1 04、 S 28, S 30) 、 前記足部に作用する実床反力 (実各足平床反力) を検出する足部実床 反力検出手段 (6軸力センサ 3 4、 制御ュニット 2 6、 実各足平床反力検出器 1 0 8、 S 3 2) 、 および前記目標歩容の全床反力と前記補償全床反力を分配する 床反力分配手段 (制御ュニッ ト 2 6、 目標床反力分配器 1 0 2、 S 3 4, S 1 0 0から S 1 0 4) 、 を備えると共に、 前記修正手段は、 前記分配された目標歩容 の床反力と補償床反力と前記検出された足部実床反力および前記算出された床形 状推定値に基づいて前記目標歩容の足部の位置姿勢を修正 (制御ュニッ ト 2 6、 補償角決定部 1 1 4 b, 1 1 4 c. 加算器 1 3 2 ( 1 3 2 a , 1 3 2 b ) 、 修正 足平位置姿勢算出部 1 1 4 g、 機構変形補償入り修正目標足平位置姿勢算出部 1 1 4 h、 機構変形量算出部 1 1 4 η) する如く構成した。
また、 前記姿勢安定化補償全床反力を、 少なくとも前記ロボッ トの傾き偏差 ( Θ e r τ X, y) に基づいて求める (S 2 8) 如く構成した。
尚、 上記した第 1、 第 2の実施の形態において、 ブロック線図は演算処理順序 を変えるなどの等価変形をしても良い。
また、' この発明を 2足歩行ロボッ トに関して説明してきたが、 2足歩行ロボッ トに限らず、 多脚ロボッ トにも応用することができる。 産業上の利用可能性
この発明によれば、 従来技術では困難であった各足平の接地面傾斜と両足平接 地面間の高低差を同時に、 換言すれば複合的に、 精度良く推定することができる 脚式移動ロボッ トを提供することが可能となる。 さらに、 構成としても簡易であ o
また、 前記した効果に加え、 複合コンプライアンス制御で除去しきれなかった 実床反力の制御目標値からの定常偏差を可能な限り零に近づける、 換言すれば床 形状のずれによる床反力の誤差に起因する定常偏差を解消することができる脚式 移動ロボットを提供することが可能となる。

Claims

請求の範囲
1 . 少なくとも上体と、 前記上体に第 1の関節を介して連結されると共に、 その 先端に第 2の関節を介して連結される足部を備えた複数本の脚部を備えると共に 、 前記足部に接地する床面から作用する床反力に応じて変形するコンプライアン ス機構を備え、 少なくとも前記上体に対する前記足部の実位置姿勢を検出し、 前 記足部の目標位置姿勢に追従させるように前記関節を駆動する関節駆動手段を備 えた脚式移動ロボッ トの床形状推定装置において、
a . 前記上体の鉛直軸方向に対する傾斜を検出する傾斜検出手段、
b . 前記足部の実位置姿勢および Zまたは前記足部の目標位置姿勢と前記検出さ れた傾斜に基づき、 前記足部が接地する床面を含む歩行環境における前記足 部の位置姿勢を算出する対歩行環境足部位置姿勢算出手段、
c 前記床面から作用する床反力による前記コンプライアンス機構の変形が加え られた、 前記歩行環境における足部の変形位置姿勢を、 前記コンプライアン ス機構をモデル化して得た機構コンプライアンスモデルを用いて算出する変 形足部位置姿勢算出手段、
および
d . 前記算出された足部の変形位置姿勢に基づき、 前記足部が接地するそれぞれ の床面の形状およびそれらの相対位置関係を示す床形状推定値を算出する床 形状推定値算出手段、
を備えることを特徴とする脚式移動ロボッ トの床形状推定装置。
2 . 前記モデルが、 それぞれの足部に作用する床反力と、 それによるそれぞれの 足部の位置姿勢の変化を記述する第 1のモデルと、 目標全床反力中心点に作用す る床反力と、 それによるそれぞれの足部間の相対位置の変化を記述する第 2のモ デルからなることを特徴とする請求項 1項記載の脚式移動口ボットの床形状推定
3 . 前記床形状推定値算出手段は、 高周波成分を除去するフィルタを備えること を特徴とする請求項 1項または 2項記載の脚式移動ロボッ トの床形状推定装置。
4 . さらに、
e . 前記算出された床形状推定値に基づいて前記足部の目標位置姿勢を修正する 修正手段
を備えることを特徴とする請求項 1項から 3項のいずれかに記載の脚式移動ロボ ッ トの床形状推定装置。
5 . さらに、
f . 前記ロボッ トの少なくとも前記足部の目標位置姿勢を含む運動パターンと、 前記ロボッ トに作用する全床反力の目標パターンを少なくとも含む前記ロボ ッ トの歩容を生成する歩容生成手段、
g . 前記生成された歩容の全床反力を前記足部のそれぞれに分配したときの前記 足部上の作用中心点たる目標足部床反力中心点を決定する目標足部床反力中 心点決定手段、
h . 前記足部に作用する実床反力を検出する実床反力検出手段、
および
i . 前記検出された実床反力が前記算出された目標足部床反力中心点まわりに作 用するモ一メントを算出し、 少なくとも前記算出されたモ一メントに基づい て前記足部を回転させる回転量を決定する足部回転量決定手段、
を備えると共に、 前記修正手段は、
j . 前記算出された床形状推定値に基づいて前記足部回転量を修正する足部回転 量修正手段、
および
k . 前記修正された足部回転量に基づいて前記足部の位置姿勢が回転するように 前記目標位置姿勢を修正する足部位置姿勢修正手段、
を備えることを特徴とする請求項 4項記載の脚式移動ロボッ トの床形状推定装置
6 . さらに、
1 . 前記ロボッ トの少なくとも前記足部の目標位置姿勢を含む運動パターンと、 前記ロボッ トに作用する全床反力の目標パターンを少なくとも含む前記ロボ ッ トの歩容を生成する歩容生成手段、
m. 前記生成された歩容の全床反力を前記足部のそれぞれに分配したときの前記 足部上の作用中心点たる目標足部床反力中心点を決定する目標足部床反力中 心点決定手段、
n . 前記足部に作用する実床反力を検出する実床反力検出手段、
および
0 . 少なくとも前記検出された実床反力に基づいて前記足部を回転させる回転量 を決定する足部回転量決定手段、
を備えると共に、 前記修正手段は、
P . 前記算出された床形状推定値に基づいて前記足部回転量を修正する足部回転 量修正手段、
および
q . 前記修正された足部回転量に基づいて前記足部の位置姿勢が、 前記決定され た目標足部床反力中心点あるいはその近傍まわりに回転するように、 前記目 標位置姿勢を修正する足部位置姿勢修正手段、
を備えることを特徴とする請求項 4項記載の脚式移動ロボッ トの床形状推定装置
7 . 前記足部位置姿勢修正手段は、 前記決定された足部回転量に基づいて前記足 部の位置姿勢が、 前記決定された目標足部床反力中心点あるいはその近傍まわり に回転するように、 前記目標位置姿勢を修正することを特徴とする請求項 5項記 載の脚式移動ロボッ トの床形状推定装置。
8 . さらに、
r . 前記ロボッ トに実際に作用する全床反力モーメント、 または前記ロボッ トに 実際に作用する全床反力モーメントから前記足部に作用する床反力モーメン トを減算して得たモ一メントのいずれかを算出し、 少なくとも前記算出され たモーメントに応じて前記足部を移動させる移動量を決定する足部移動量決 定手段、
を備え、 前記足部位置姿勢修正手段は、 前記決定された足部回転量および前記決 定された移動量に基づいて前記足部の位置姿勢を修正することを特徴とする請求 項 5項から 7項のいずれかに記載の脚式移動口ボッ トの床形状推定装置。
9 . 前記足部位置姿勢修正手段は、 前記ロボッ トの姿勢偏差に基づいて前記目標 位置姿勢をさらに修正することを特徴とする請求項 5項から 8項のいずれかに記 載の脚式移動ロボッ トの床形状推定装置。
1 0 . 前記全床反力の目標パターンに付加する姿勢安定化補償全床反カモ一メ ン トを求め、 前記足部回転量決定手段および Zまたは前記足部移動量決定手段は、 少なくとも前記検出された実床反力と前記求めた姿勢安定化補償全床反力モ一メ ントに基づいて前記足部の回転量および Zまたは移動量を決定することを特徴と する請求項 5項から 9項のいずれかに記載の脚式移動 αボットの床形状推定装置
1 1 . 前記姿勢安定化補償全床反力モーメン トを、 少なくとも前記ロボッ トの傾 き偏差に基づいて求めることを特徴とする請求項 1 0項記載の脚式移動ロボッ ト の床形状推定装置。
1 2 . 前記足部回転量決定手段および/または前記足部移動量決定手段は、 前記 姿勢安定化補償全床反力モーメントが前記複数本の脚部のそれぞれに分配される ように、 前記足部の回転量および Ζまたは移動量を決定することを特徴とする請 求項 1 0項または 1 1項に記載の脚式移動ロボッ 卜の床形状推定装置。
1 3 . さらに、
s . 前記ロボッ 卜の少なくとも前記足部の目標位置姿勢を含む運動パターンと、 前記ロボッ 卜に作用する全床反力の目標軌跡パターンからなる前記ロボッ ト の歩容を生成する歩容生成手段、
t . 前記ロボッ トの姿勢安定化のための補償全床反力を算出する姿勢安定化補償 全床反力算出手段、
U . 前記足部に作用する実床反力を検出する足部実床反力検出手段、
および
V . 前記目標歩容の全床反力と前記補償全床反力を分配する床反力分配手段、 を備えると共に、 前記修正手段は、 前記分配された目標歩容の床反力と補償床反 力と前記検出された足部実床反力および前記算出された床形状推定値に基づいて 前記目標足部位置姿勢を修正することを特徴とする請求項 4項記載の脚式移動口 ボッ トの床形状推定装置。
1 4 . 前記姿勢安定化補償全床反力を、 少なくとも前記ロボッ トの傾き偏差に基 づいて求めることを特徴とする請求項 1 3項記載の脚式移動ロボットの床形状推
PCT/JP2001/004118 2000-05-19 2001-05-17 Dispositif servant a deduire la forme du sol pour robot mobile pourvu de jambes WO2001087548A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/276,742 US6920374B2 (en) 2000-05-19 2001-05-17 Floor shape estimation system of legged mobile robot
DE60141016T DE60141016D1 (de) 2000-05-19 2001-05-17 Vorrichtung zur festsetzung des bodenprofils für bewegliche roboter mit beinen
EP01932116A EP1291136B1 (en) 2000-05-19 2001-05-17 Floor shape deducing device for legged mobile robot

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000147948A JP3634238B2 (ja) 2000-05-19 2000-05-19 脚式移動ロボットの床形状推定装置
JP2000-147948 2000-05-19

Publications (1)

Publication Number Publication Date
WO2001087548A1 true WO2001087548A1 (fr) 2001-11-22

Family

ID=18654057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004118 WO2001087548A1 (fr) 2000-05-19 2001-05-17 Dispositif servant a deduire la forme du sol pour robot mobile pourvu de jambes

Country Status (5)

Country Link
US (1) US6920374B2 (ja)
EP (1) EP1291136B1 (ja)
JP (1) JP3634238B2 (ja)
DE (1) DE60141016D1 (ja)
WO (1) WO2001087548A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057424A1 (fr) 2001-12-28 2003-07-17 Honda Giken Kogyo Kabushiki Kaisha Production de demarche pour robot se deplaçant sur des jambes
WO2003061917A1 (fr) * 2002-01-18 2003-07-31 Honda Giken Kogyo Kabushiki Kaisha Dispositif de commande pour robot bipede
CN100336633C (zh) * 2002-02-18 2007-09-12 独立行政法人科学技术振兴机构 双腿步行式移动装置及其步行控制装置
US7906493B2 (en) 2003-12-22 2011-03-15 Btg International Limited Core 2 GlcNAc-T inhibitors
US7998943B2 (en) 2005-07-06 2011-08-16 Btg International Limited Core 2 GlcNAc-T inhibitors III

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3760186B2 (ja) * 2001-06-07 2006-03-29 独立行政法人科学技術振興機構 二脚歩行式移動装置及びその歩行制御装置並びに歩行制御方法
JP3726057B2 (ja) 2001-12-28 2005-12-14 本田技研工業株式会社 脚式移動ロボットおよびその床反力検出装置
JP3726058B2 (ja) * 2001-12-28 2005-12-14 本田技研工業株式会社 脚式移動ロボットおよびその床反力検出装置
WO2003090978A1 (fr) * 2002-04-26 2003-11-06 Honda Giken Kogyo Kabushiki Kaisha Dispositif de commande d'un robot mobile dote de jambes
JP3646169B2 (ja) * 2002-05-07 2005-05-11 独立行政法人産業技術総合研究所 脚式ロボットの歩行制御装置
JP3598507B2 (ja) * 2002-06-12 2004-12-08 独立行政法人 科学技術振興機構 歩行式移動装置及びその歩行制御装置及び歩行制御方法
EP1552908A4 (en) * 2002-10-11 2008-10-15 Fujitsu Ltd DEVICE FOR CREATING A ROBOT CONTROL ALGORITHM, PROGRAM FOR CREATING A ROBOT CONTROL ALGORITHM, ROBOT CONTROL PROGRAM AND ROBOT
US20050228540A1 (en) * 2003-03-23 2005-10-13 Tomohisa Moridaira Robot device and method of controlling the same
DE602004030893D1 (de) * 2003-03-27 2011-02-17 Sony Corp Robotervorrichtung und verfahren zur steuerung derselben
JP3972854B2 (ja) * 2003-04-10 2007-09-05 ソニー株式会社 ロボットの運動制御装置
JP4246534B2 (ja) * 2003-04-17 2009-04-02 本田技研工業株式会社 二足歩行移動体の床反力作用点推定方法及び二足歩行移動体の関節モーメント推定方法
JP4246535B2 (ja) 2003-04-17 2009-04-02 本田技研工業株式会社 二足歩行移動体の床反力作用点推定方法及び二足歩行移動体の関節モーメント推定方法
WO2005005108A1 (ja) * 2003-07-11 2005-01-20 Honda Motor Co., Ltd. 2足歩行移動体の関節モーメント推定方法
US7603199B2 (en) 2003-11-27 2009-10-13 Honda Motor Co., Ltd. Control device for mobile body
JP2006068872A (ja) * 2004-09-03 2006-03-16 Honda Motor Co Ltd 脚式移動ロボット
KR101234726B1 (ko) 2004-12-14 2013-02-19 혼다 기켄 고교 가부시키가이샤 다리식 이동 로봇 및 그 제어 프로그램
WO2006132330A1 (ja) * 2005-06-08 2006-12-14 Nagoya Institute Of Technology 脚式移動体の平衡点安定化装置
JP4311391B2 (ja) * 2005-10-03 2009-08-12 ソニー株式会社 接触形状算出装置及び接触形状算出方法、並びにコンピュータ・プログラム
JP4807583B2 (ja) 2007-03-29 2011-11-02 本田技研工業株式会社 射影変換収束演算処理方法
JP4840239B2 (ja) 2007-04-20 2011-12-21 トヨタ自動車株式会社 脚式移動ロボットの制御方法及び脚式移動ロボット
JP5104355B2 (ja) * 2008-02-01 2012-12-19 富士通株式会社 ロボット制御装置、ロボット制御方法およびロボット制御プログラム
JP5219956B2 (ja) * 2009-07-23 2013-06-26 本田技研工業株式会社 移動体の制御装置
JP5284923B2 (ja) * 2009-10-28 2013-09-11 本田技研工業株式会社 脚式移動ロボットの制御装置
KR101687630B1 (ko) * 2010-01-11 2016-12-20 삼성전자주식회사 보행 로봇 및 그 균형 제어 방법
KR101687628B1 (ko) * 2010-01-12 2016-12-21 삼성전자주식회사 로봇의 보행 제어 장치 및 그 제어 방법
KR20130068694A (ko) * 2011-12-16 2013-06-26 삼성전자주식회사 보행 로봇 및 그 제어 방법
KR101326957B1 (ko) * 2012-05-15 2013-11-13 현대자동차주식회사 보행 로봇의 발목제어 방법
JP5409844B2 (ja) * 2012-05-30 2014-02-05 株式会社神戸製鋼所 多関節ロボットの軌跡制御装置および制御方法
KR101428328B1 (ko) * 2012-12-27 2014-08-08 현대자동차주식회사 로봇의 보행제어방법 및 시스템
JP6330287B2 (ja) * 2013-10-29 2018-05-30 セイコーエプソン株式会社 ロボット、ロボット用当接部材
US9387588B1 (en) * 2014-08-25 2016-07-12 Google Inc. Handling gait disturbances with asynchronous timing
US9618937B1 (en) 2014-08-25 2017-04-11 Google Inc. Slip detection using robotic limbs
JP6228097B2 (ja) * 2014-10-06 2017-11-08 本田技研工業株式会社 移動ロボット
US9499218B1 (en) 2014-12-30 2016-11-22 Google Inc. Mechanically-timed footsteps for a robotic device
JP6450273B2 (ja) * 2015-07-08 2019-01-09 本田技研工業株式会社 移動ロボットの動作環境情報生成装置
CN105511465B (zh) * 2015-12-02 2017-08-04 歌尔股份有限公司 一种双足机器人的步态控制方法和装置
JP6483014B2 (ja) 2015-12-25 2019-03-13 本田技研工業株式会社 移動ロボットの制御装置
US10179619B1 (en) * 2016-03-30 2019-01-15 Schaft Inc. Robotic foot sensor
US10828767B2 (en) 2016-11-11 2020-11-10 Sarcos Corp. Tunable actuator joint modules having energy recovering quasi-passive elastic actuators with internal valve arrangements
US10821614B2 (en) 2016-11-11 2020-11-03 Sarcos Corp. Clutched joint modules having a quasi-passive elastic actuator for a robotic assembly
US11453128B2 (en) * 2017-06-29 2022-09-27 Sony Interactive Entertainment Inc. Robot control apparatus, control method and control program
CN109693236B (zh) * 2017-10-23 2021-03-02 深圳市优必选科技有限公司 足式机器人着地控制方法及装置
US11241801B2 (en) 2018-12-31 2022-02-08 Sarcos Corp. Robotic end effector with dorsally supported actuation mechanism
US11833676B2 (en) 2020-12-07 2023-12-05 Sarcos Corp. Combining sensor output data to prevent unsafe operation of an exoskeleton
US11738452B1 (en) * 2022-07-29 2023-08-29 Sarcos Corp. Sole with various compliant regions for robots
US11826907B1 (en) 2022-08-17 2023-11-28 Sarcos Corp. Robotic joint system with length adapter
US11717956B1 (en) 2022-08-29 2023-08-08 Sarcos Corp. Robotic joint system with integrated safety
US11897132B1 (en) 2022-11-17 2024-02-13 Sarcos Corp. Systems and methods for redundant network communication in a robot
US11924023B1 (en) 2022-11-17 2024-03-05 Sarcos Corp. Systems and methods for redundant network communication in a robot

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311109A (en) * 1992-03-31 1994-05-10 Honda Giken Kogyo Kabushiki Kaisha Locomotion control system for legged mobile robot
US5404086A (en) * 1992-07-20 1995-04-04 Honda Giken Kogyo Kabushiki Kaisha System for controlling locomotion of legged mobile robot and correcting inclinometer's output thereof
JPH10277969A (ja) 1997-01-31 1998-10-20 Honda Motor Co Ltd 脚式移動ロボットの制御装置
WO1999054095A1 (fr) * 1998-04-20 1999-10-28 Honda Giken Kogyo Kabushiki Kaisha Controleur pour robot mobile muni de jambes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3330710B2 (ja) * 1993-12-30 2002-09-30 本田技研工業株式会社 移動ロボットの位置検知および制御装置
US5808433A (en) * 1995-09-29 1998-09-15 Honda Giken Kogyo Kabushiki Kaisha Method of generating gait of legged walking robot and system for controlling its locomotion
WO1998004388A1 (fr) * 1996-07-25 1998-02-05 Honda Giken Kogyo Kabushiki Kaisha Dispositif de reproduction de la demarche pour robot articule muni de jambes
US6505096B2 (en) * 1996-12-19 2003-01-07 Honda Giken Kogyo Kabushiki Kaisha Posture control system of legged mobile robot
JP3672406B2 (ja) * 1997-01-31 2005-07-20 本田技研工業株式会社 脚式移動ロボットの歩容生成装置
WO1998033629A1 (fr) * 1997-01-31 1998-08-06 Honda Giken Kogyo Kabushiki Kaisha Appareil de controle de robot mobile du type a jambes
FR2773339B1 (fr) * 1998-01-06 2000-01-28 Commissariat Energie Atomique Appareil stabilise par un gyroscope, et notamment un robot bipede
JP2000153476A (ja) * 1998-09-14 2000-06-06 Honda Motor Co Ltd 脚式移動ロボット

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311109A (en) * 1992-03-31 1994-05-10 Honda Giken Kogyo Kabushiki Kaisha Locomotion control system for legged mobile robot
US5404086A (en) * 1992-07-20 1995-04-04 Honda Giken Kogyo Kabushiki Kaisha System for controlling locomotion of legged mobile robot and correcting inclinometer's output thereof
JPH10277969A (ja) 1997-01-31 1998-10-20 Honda Motor Co Ltd 脚式移動ロボットの制御装置
WO1999054095A1 (fr) * 1998-04-20 1999-10-28 Honda Giken Kogyo Kabushiki Kaisha Controleur pour robot mobile muni de jambes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1291136A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003057424A1 (fr) 2001-12-28 2003-07-17 Honda Giken Kogyo Kabushiki Kaisha Production de demarche pour robot se deplaçant sur des jambes
WO2003057423A1 (fr) 2001-12-28 2003-07-17 Honda Giken Kogyo Kabushiki Kaisha Dispositif de production de demarche pour robot se deplaçant sur des jambes
KR100889598B1 (ko) * 2001-12-28 2009-03-20 혼다 기켄 고교 가부시키가이샤 다리식 이동로봇의 보용 생성 장치
WO2003061917A1 (fr) * 2002-01-18 2003-07-31 Honda Giken Kogyo Kabushiki Kaisha Dispositif de commande pour robot bipede
CN100336633C (zh) * 2002-02-18 2007-09-12 独立行政法人科学技术振兴机构 双腿步行式移动装置及其步行控制装置
US7906493B2 (en) 2003-12-22 2011-03-15 Btg International Limited Core 2 GlcNAc-T inhibitors
US7998943B2 (en) 2005-07-06 2011-08-16 Btg International Limited Core 2 GlcNAc-T inhibitors III
EP2382981A2 (en) 2005-07-06 2011-11-02 BTG International Limited Use of Core 2 GlcNac-T inhibitors III for the treatment of inflammatory conditions
EP2382979A2 (en) 2005-07-06 2011-11-02 BTG International Limited Use of core 2 GlcNac-T inhibitors III for treating autoimmune diseases
EP2382980A2 (en) 2005-07-06 2011-11-02 BTG International Limited Use of Core 2 GlcNac-T inhibitors III for treating vascular complications of diabetes

Also Published As

Publication number Publication date
EP1291136A1 (en) 2003-03-12
US6920374B2 (en) 2005-07-19
EP1291136A4 (en) 2005-12-07
JP2001322076A (ja) 2001-11-20
DE60141016D1 (de) 2010-02-25
JP3634238B2 (ja) 2005-03-30
US20030125839A1 (en) 2003-07-03
EP1291136B1 (en) 2010-01-06

Similar Documents

Publication Publication Date Title
WO2001087548A1 (fr) Dispositif servant a deduire la forme du sol pour robot mobile pourvu de jambes
JP3726009B2 (ja) 脚式移動ロボットの床形状推定装置
EP1514777B1 (en) Control system of legged mobile robot
JP3629133B2 (ja) 脚式移動ロボットの制御装置
US6289265B1 (en) Controller for legged mobile robot
JP3132156B2 (ja) 脚式移動ロボットの歩容生成装置
JP4181114B2 (ja) 脚式移動ロボットの自己姿勢推定装置
US5432417A (en) Locomotion control system for legged mobile robot
JP4641252B2 (ja) 脚式移動ロボットの歩容生成装置
JP4912891B2 (ja) 脚式移動ロボットおよびその制御プログラム
JPH05337849A (ja) 脚式移動ロボットの姿勢安定化制御装置
WO2005090009A1 (ja) 脚式移動ロボットおよびその制御装置
JPH05305579A (ja) 脚式移動ロボットの歩行制御装置
JP3629143B2 (ja) 脚式移動ロボットの制御装置
JP3629142B2 (ja) 脚式移動ロボットの制御装置
JP2009279668A (ja) 脚式歩行ロボットの安定化制御装置
JP4237130B2 (ja) 脚式移動ロボットの制御装置
JP2005238443A (ja) 脚式移動ロボットの姿勢制御装置
JP3071032B2 (ja) 脚式移動ロボットの制御装置
JP3183558B2 (ja) リンク式移動ロボットの制御装置
JP4946566B2 (ja) 歩行ロボット及び歩行制御方法
WO2005051608A2 (ja) 移動体の制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10276742

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001932116

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001932116

Country of ref document: EP