WO2005090009A1 - 脚式移動ロボットおよびその制御装置 - Google Patents

脚式移動ロボットおよびその制御装置

Info

Publication number
WO2005090009A1
WO2005090009A1 PCT/JP2005/002561 JP2005002561W WO2005090009A1 WO 2005090009 A1 WO2005090009 A1 WO 2005090009A1 JP 2005002561 W JP2005002561 W JP 2005002561W WO 2005090009 A1 WO2005090009 A1 WO 2005090009A1
Authority
WO
WIPO (PCT)
Prior art keywords
bending angle
toe
foot
mobile robot
timing
Prior art date
Application number
PCT/JP2005/002561
Other languages
English (en)
French (fr)
Inventor
Toru Takenaka
Hiroshi Gomi
Susumu Miyazaki
Kazushi Hamaya
Original Assignee
Honda Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co., Ltd. filed Critical Honda Motor Co., Ltd.
Priority to EP05710394A priority Critical patent/EP1736285B1/en
Priority to US10/593,493 priority patent/US7530410B2/en
Priority to DE602005024531T priority patent/DE602005024531D1/de
Publication of WO2005090009A1 publication Critical patent/WO2005090009A1/ja
Priority to US12/397,773 priority patent/US8583283B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/0091Shock absorbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1674Programme controls characterised by safety, monitoring, diagnostic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S901/00Robots
    • Y10S901/01Mobile robot

Definitions

  • the present invention relates to a legged mobile robot and a control device therefor, and more particularly, to a legged mobile robot having a bendable toe on a foot and a control device therefor.
  • Patent Document 1 a technique described in Patent Document 1 can be cited.
  • a vertically rotatable toe provided at a front end of a foot, and rotation of the toe at a position where the bending angle of the toe is zero degree (almost horizontal).
  • a lock mechanism is provided to lock the toe, and the toe is pivoted before the legs land.This secures the ground contact area necessary for landing and locks the legs before they leave the floor. By releasing, the toe is retracted and rotated (bent) during the kick-out operation.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-236777 (paragraphs 0011, 0012, FIG. 2, FIG. 10, etc.)
  • the toe portion is free (rotatable) when the leg portion leaves the floor, so that the toe portion immediately after leaving the floor.
  • the robot returned to the initial position (the position where the bending angle was zero degree), and the toe touched the floor surface, possibly resulting in unstable posture of the robot.
  • an object of the present invention is to solve the above-mentioned problems, and it is possible to prevent the toe portion from coming into contact with the floor surface immediately after leaving the bed and to make the posture unstable, and to prevent the toe portion from standing when the toe is standing.
  • the present invention provides an upper body and a leg having an upper end connected to the upper body and a lower end connected to a foot as described in claim 1 described below.
  • a leg-type mobile robot that moves by driving the leg, wherein the foot is provided at a front end of the foot main body connected to the leg, and the foot main body; And a bending angle holding mechanism that can hold the bending angle of the toe portion within the movable range of the toe portion.
  • the present invention is configured to include a bending angle change suppressing mechanism for suppressing a bending angle change of the toe portion as described in claim 2 described later.
  • the present invention is configured such that the toe portion is connected to the foot body and also becomes an elastic material that bends while bending as described in claim 3 described later.
  • the present invention is configured such that the toe portion is connected to a front end of the foot main body via a rotation shaft rotatable around a pitch axis, as described in claim 4 described later. .
  • the present invention is configured to include an urging means for urging the toe portion in a direction of returning to the initial position, as described in claim 5 described later.
  • the present invention is configured such that the bending angle holding mechanism comprises a friction brake as described in claim 6 described later.
  • the bending angle change suppressing mechanism as described in claim 7 described below is provided.
  • the bending angle holding mechanism and the bending angle change suppressing mechanism as described in claim 8 described later are configured such that frictional force is adjustable friction friction force.
  • the present invention is configured such that the bending angle holding mechanism and the bending angle change suppressing mechanism are formed of a damper.
  • the present invention includes an upper body as described in claim 10 to be described later, and a leg having an upper end connected to the upper body and a lower end connected to a foot.
  • a foot main body connected to the leg, and a front end of the foot main body.
  • a toe that is bendable with respect to the foot main body.
  • a bend that can freely hold the bend angle of the toe in the movable range of the toe An angle holding mechanism, and a bending angle control means for operating the bending angle holding mechanism to control the holding and release of the bending angle of the toe, and the bending angle control means is provided when the leg part leaves the floor.
  • the holding of the bending angle of the toe portion is released at a second timing after the legs have left the floor, and the toe portion is released. It was configured to return to the initial position.
  • the present invention includes gait generating means for generating a gait of the legged mobile robot as described in claim 11 described later, and the bending angle control means includes: The first and second timings are configured to be determined based on the contents.
  • the present invention provides a gait generating means for detecting a bending angle of the toe portion, and a gait generating means for generating a gait of the legged mobile robot. And the bending angle control means determines the first timing based on the detected bending angle, and determines the second timing based on the generated gait. Configured.
  • the bending angle control means as described in claim 13 to be described later further includes a third angle control unit that is in the third stage after the second timing during the leaving of the legs. After the toe bending angle is held at the timing of the above, the bending angle of the toe portion is maintained at the fourth timing after the landing of the leg portion and before the next first timing. Was configured to cancel.
  • the present invention further includes a gait generating means for generating a gait of the legged mobile robot as described in claim 14 described later, and the bending angle control means includes: The first to fourth timings are determined based on the contents.
  • the present invention provides a gait generating means for detecting a bending angle of the toe portion, and a gait generating means for generating a gait of the legged mobile robot. And the bending angle control means determines the first and third timings based on the detected bending angle, while the second and fourth timings are determined based on the generated gait. It was configured to determine the timing.
  • the present invention includes a bending angle change suppressing mechanism for suppressing a bending angle change of the toe portion as described in claim 16 described later, and the bending angle control means is configured to control the second timing
  • the bending angle of the toe portion is released from holding at the same time as the bending angle change suppressing mechanism is operated to gradually reduce the bending angle and gradually return the toe portion to the initial position.
  • the present invention includes a bending angle change suppressing mechanism for suppressing a bending angle change of the toe portion, as described in claim 17 described later, and the bending angle control means includes the fourth timing.
  • Force The configuration is such that the bending angle change suppression mechanism is operated until the next first timing to control the floor reaction force acting through the foot.
  • the present invention provides a bending angle change suppressing mechanism for suppressing a bending angle change of the toe according to a predetermined resistance characteristic set with respect to the bending angular velocity, as described in claim 18 described later.
  • the bending angle control means adjusts the bending angle speed by operating the position and orientation of the foot during the period from the fourth timing to the next first timing.
  • the floor reaction force acting through the foot is controlled by changing the magnitude of the resistance generated by the angle change suppressing mechanism.
  • the present invention provides a bending angle change suppressing mechanism for suppressing a bending angle change of the toe portion, and a bending angle detecting means for detecting a bending angle of the toe portion, as described in claim 19 described later.
  • a floor shape estimating means for estimating the shape of the floor on which the legs touch the ground based at least on the detected bending angle, and the bending angle control means includes the fourth timing force. Until the first timing, the bending angle change suppressing mechanism is operated based on at least the estimated floor shape, and the floor reaction force acting through the foot is controlled.
  • the foot is provided at the front end of the foot main body connected to the leg and the foot main body, and is bendable with respect to the foot main body.
  • the toe section is equipped with a bending angle holding mechanism that can hold the bending angle of the toe section within its movable range. Therefore, it is possible to prevent the toe from coming into contact with the floor surface immediately after leaving the floor and the posture from becoming unstable.
  • the bending angle of the toe part can be maintained (the toe part is locked) even when the toe stands, so that the stability of the toe standing period can be improved.
  • the legged mobile robot according to claim 2 is provided with a bending angle change suppression mechanism for suppressing a bending angle change of the toe portion. When this is returned to the initial position, overshooting and vibration can be prevented from occurring.
  • the toe portion is configured to be continuous with the foot main body and to have a natural material force that bends while bending.
  • the structure of the foot can be simplified.
  • the toe portion is configured to be connected to the front end of the foot main body via a rotation shaft that is rotatable around the pitch axis,
  • the ground contact area during the toe standing period can be kept constant regardless of the bending angle of the toe.
  • the legged mobile robot according to claim 5 is configured to include the urging means for urging the toe in the direction of returning the toe to the initial position. It is possible to quickly return the toe to the initial position.
  • the bending angle holding mechanism is also configured to be a friction breaker, the same effect as described above can be obtained.
  • the bending angle change suppressing mechanism is configured to be a Danno, so that the same effects as described above can be obtained.
  • the bending angle holding mechanism and the bending angle change suppressing mechanism are configured so that the frictional force can be adjusted by a frictional braking force.
  • the structure of the foot can be further simplified.
  • the bending angle holding mechanism and the bending angle change suppressing mechanism are configured by dampers. Can be further simplified.
  • the bending angle holding mechanism capable of holding the bending angle of the toe in its movable range and the claw by operating the bending angle holding mechanism.
  • Bending angle control means for controlling the holding and release of the bending angle of the tip is provided, and the bending angle control means adjusts the bending angle of the toe at the time of leaving the floor or at a first timing before the lifting. After holding, the leg is released at the second timing after leaving the floor and the toe is returned to the initial position, so that the bending angle at the time of leaving the floor is maintained even after the leg is released from the floor. Therefore, it is possible to prevent the toe from coming into contact with the floor surface immediately after leaving the bed and the posture from becoming unstable. Further, by setting the first timing to a timing before the time of leaving the bed, it is possible to maintain the bending angle of the toe portion (to lock the toe portion) even when the toe is standing, so that the toe standing period Can be improved in stability.
  • control device for a legged mobile robot includes a gait generating means for generating a gait of the legged mobile robot, and the bending angle control means includes a Since the first and second timings are configured to be determined based on the contents, in addition to the above-described effects, the bending angle of the toe can be maintained and released at an appropriate timing.
  • a bending angle detecting means for detecting a bending angle of a toe portion
  • a gait generating means for generating a gait of the legged mobile robot.
  • the bending angle control means is configured to determine the first timing based on the detected bending angle while determining the second timing based on the generated gait. As a result, the bending angle of the toe portion can be maintained and released at a more appropriate timing.
  • the bending angle control means further includes a third timing after the second timing during leaving the floor of the leg. After holding the bending angle of the toe, the holding is released at the fourth timing after the landing of the leg and before the next first timing. In addition, a sufficient ground contact area can be secured when landing the legs.
  • control device for a legged mobile robot includes gait generating means for generating a gait of the legged mobile robot, and the bending angle control means includes: Since the first to fourth timings are determined based on the contents, in addition to the above-described effects, it is possible to execute the retention of the bending angle of the toe and the release thereof at an appropriate timing. it can.
  • a bending angle detecting means for detecting a bending angle of a toe portion
  • a gait generating means for generating a gait of the legged mobile robot.
  • the bending angle control means determines the first and third timings based on the detected bending angle, and determines the second and fourth timings based on the generated gait.
  • control device for a legged mobile robot includes a bending angle change suppression mechanism for suppressing a bending angle change of a toe, and the bending angle control means includes a second tag.
  • the bending angle change suppression mechanism is operated to gradually reduce the bending angle and gradually return the toe part to the initial position. In addition, it is possible to prevent the occurrence of overshoot or vibration when the toe is returned to the initial position.
  • control device for a legged mobile robot includes a bending angle change suppressing mechanism for suppressing a bending angle change of a toe, and the bending angle control means includes a fourth tag. Imming force Until the next first timing, the bending angle change suppression mechanism is operated to control the floor reaction force acting through the foot. Can be further improved.
  • the bending angle control means adjusts the bending angular velocity by manipulating the position and orientation of the foot until the fourth timing force and the first timing next time, thereby generating the bending angle change suppression mechanism. Since the floor reaction force acting through the foot is controlled by changing the magnitude of the resistance to be applied, the stability of the tiptoe standing period can be further improved in addition to the above-described effects.
  • a bending angle change suppressing mechanism for suppressing a bending angle change of a toe portion
  • a bending angle detecting device for detecting a bending angle of a toe portion.
  • a legged mobile robot according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view of a foot of the legged mobile robot shown in FIG. 1.
  • FIG. 6 is a block diagram showing details of a control unit of the legged mobile robot shown in FIG. 1.
  • FIG. 7 is a block diagram functionally showing the configuration and operation of the control device for the legged mobile robot shown in FIG.
  • FIG. 8 is a flowchart showing the operation of the control device for the legged mobile robot shown in FIG. 1.
  • FIG. 9 is a block diagram showing a calculation process of a composite compliance operation determination unit of FIG. 7.
  • FIG. 10 is a block diagram showing a calculation process of the compensating total floor reaction force moment distributor of FIG. 9.
  • FIG. 11 is a block diagram showing the arithmetic processing of the two-leg compensation angle determination unit in FIG.
  • FIG. 12 is a block diagram illustrating a calculation process of a foot compensation angle determination unit in FIG. 9;
  • FIG. 13 is a block diagram showing a process of controlling a diaphragm amount of the damper in FIG. 2.
  • FIG. 14 is a time chart showing transition of the control mode and the like of the damper in FIG. 2.
  • FIG. 15 is a time chart similarly showing a transition of a control mode of a damper and the like.
  • FIG. 16 is an enlarged sectional view showing a foot of a legged mobile robot according to a second embodiment of the present invention.
  • FIG. 17 is also an enlarged sectional view showing a foot of the legged mobile robot according to the second embodiment.
  • FIG. 18 is a schematic view showing a foot of a legged mobile robot according to a third embodiment of the present invention.
  • FIG. 19 is a schematic view showing a foot of a legged mobile robot according to a third embodiment.
  • FIG. 20 is a block diagram showing processing of hydraulic control of the friction brake shown in FIG. 18.
  • FIG. 21 is a time chart showing transitions of the friction brake control mode and the like in FIG. 18.
  • FIG. 22 is a schematic view showing a foot of a legged mobile robot according to a fourth embodiment of the present invention.
  • FIG. 23 is a schematic diagram showing a foot of a legged mobile robot according to a fourth embodiment.
  • FIG. 24 is a block diagram showing a process of hydraulic control of the friction brake of FIG. 22.
  • FIG. 25 is a time ′ chart showing transitions of the friction brake control mode and the like in FIG. 22.
  • FIG. 26 is an enlarged sectional view showing a foot of a legged mobile robot according to a fifth embodiment of the present invention.
  • FIG. 27 is an enlarged sectional view showing a foot of a legged mobile robot according to a fifth embodiment.
  • FIG. 28 is an enlarged sectional view showing a foot of a legged mobile robot according to a fifth embodiment.
  • FIG. 29 is an enlarged sectional view showing a foot of a legged mobile robot according to a fifth embodiment.
  • FIG. 30 is a time chart showing transition of a control mode and the like of a legged mobile robot according to a sixth embodiment of the present invention.
  • FIG. 31 is a block diagram showing calculation processing of a foot compensation angle determination unit in the control device for a legged mobile robot according to the sixth embodiment.
  • FIG. 32 is a block diagram showing processing for hydraulic control of a friction brake according to a sixth embodiment.
  • FIG. 33 is a time chart showing transition of a control mode and the like of a legged mobile robot according to a seventh embodiment of the present invention.
  • FIG. 34 is a block diagram showing a damper throttle amount control process according to a seventh embodiment.
  • FIG. 35 is a time chart showing transition of a control mode and the like of a legged mobile robot according to an eighth embodiment of the present invention.
  • FIG. 36 is a block diagram showing calculation processing of a foot compensation angle determination unit in the control device for a legged mobile robot according to the eighth embodiment.
  • FIG. 37 is a block diagram showing calculation processing of a foot compensation angle determination unit in the control device for a legged mobile robot according to the ninth embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a legged mobile robot according to this embodiment.
  • the legged mobile robot 1 (hereinafter referred to as "robot") has left and right legs (leg links) 2R and 2L (the right side in the forward direction is R, the left side is the same, and the same applies hereinafter). It is a biped walking robot equipped.
  • the left and right legs 2R (L) are provided with six rotation axes (degrees of freedom).
  • the six rotating shafts are the rotating shafts 10R and 10L for the rotation of the legs (around the Z axis) of the crotch (waist), the rotating shafts 12R and 12L around the roll axis of the crotch (around the X axis), Rotation axis 14R, 14L around pitch axis (Y axis), rotation axis 16R, 16L around knee pitch axis, rotation axis 18R, 18L around ankle pitch axis, rotation axis 20R, 20L around roll axis Consists of
  • Legs (foot) 22R, 22L are connected to the lower ends of the legs 2R (L).
  • An upper body 24 is connected to the upper ends of the legs 2R (L).
  • a control unit 26 which also becomes a microcomputer is stored.
  • the hip joint (or hip joint) is from the rotation axis 10R (L), 12R (L), 14R (L)
  • the knee joint is from the rotation axis 16R (L)
  • the ankle joint is the rotation axis 18R (L), 20R. (L).
  • the hip and knee joints are connected by thigh links 28R and 28L, and the knee and ankle joints are connected by crus links 30R and 30L.
  • the panel mechanisms 38R and 38L are disposed, and the sole also has elasticity (specifically).
  • the sole 4OR, 40L (typically made of rubber) is attached to form the compliance mechanism 42R, 42L.
  • FIGS. 2 to 5 are enlarged cross-sectional views of the foot 22.
  • FIG. The left and right feet 22R (L) are symmetrical Therefore, in the description after FIG. 2, the addition of R and L is omitted.
  • the sole 40 is made of two rubber materials (a sole in contact with the floor is denoted by reference numeral 40a, and a sole disposed above the floor is denoted by reference numeral 40b).
  • the foot plate 46 is arranged on the upper part.
  • the foot plate 46 is formed from an elastically deformable metal material. That is, the sole of the foot portion 22 is configured to be elastically deformable.
  • the above-mentioned panel mechanism 38 is arranged above the foot plate 46.
  • the panel mechanism body 38 includes a panel mechanism frame 381 formed of a highly rigid metal material and a plurality of rubber bushes (elastic bodies) housed in a space defined by the panel mechanism frame 381. 382, and a panel mechanism plate 383 attached to the upper surface of the rubber bush 382.
  • the panel mechanism body plate 383 is formed of a highly rigid metal material like the panel mechanism body frame 381.
  • a 6-axis force sensor 34 is attached to the upper part of the panel mechanism plate 383, and the lower leg link 30 of the leg 2 is connected to the upper part of the 6-axis force sensor 34 via the ankle joints 18, 20.
  • the compliance mechanism 42 changes the panel mechanism 38, the force of the soles 40 a and 40 b, and the position and orientation of the foot 22. This structure is important not only to reduce the impact of landing, but also to enhance controllability. The details are described in Japanese Patent Application Laid-Open No. 5-305584 previously proposed by the present applicant, and the description is omitted here.
  • the foot 22 includes a damper 50.
  • the damper 50 is a cylinder 50a in which a fluid (eg, oil) is sealed, a piston 50b slidably disposed inside the cylinder 50a, and a space in the cylinder 50a that flank the biston 50b.
  • the communicating passageway 50c, the orifice 50d provided in the middle of the communicating passageway 50c, and the opening area of the orifice 50d are adjusted to zero or to a predetermined value (other than zero) (in other words, the orifice 50d is closed).
  • a force is formed with the electromagnetic solenoid 50e and the piston rod 50f connected to the piston 50b. That is, the damper 50 utilizes the flow resistance of the fluid passing through the orifice 50d.
  • the electromagnetic solenoid 50e adjusts the opening area of the orifice 50d to a predetermined value when energized and adjusts it to zero when not energized.
  • One end (cylinder bottom) of the damper 50 is connected to a front end (a front end in a traveling direction) of the panel mechanism body frame 381 so as to be rotatable around a pitch axis.
  • the other end (rod head) of the damper 50 is connected to the front end of the foot plate 46 so as to be rotatable around a pitch axis.
  • the foot portion As shown in Fig. 3, when the force of the heel 22 is released from the floor surface, the portion of the elastically deformable foot 22 that is located in front of the portion where the panel mechanism frame 381, which also has the high rigidity member, is attached. Bends while bending.
  • the bent portion of the foot portion 22 is referred to as a “toe portion” and is denoted by reference numeral 22t.
  • the remaining portion of the foot portion 22 other than the toe portion 22t is referred to as a “foot portion main body” and denoted by reference numeral 22m.
  • the foot 22 includes the foot main body 22m connected to the leg 2 via the panel mechanism 38 and the like, and the toe 22t provided at the front end thereof. Further, the toe 22t also has an elastic body force that is continuous with the foot main body 22m, and can be bent with respect to the foot main body 22m.
  • the opening area of the orifice 50d is adjusted to zero while the toe 22t is bent, the movement of the piston 50b (expansion and contraction of the damper 50) becomes impossible.
  • the bending angle of the toe 22t at the time is maintained.
  • the opening area of the orifice 50d is returned to a predetermined value to allow the movement of the piston 50b when the robot 1 is not standing on the tip of the toe, the toe 22t is formed by the restoring force of the soles 40a, 40b and the foot plate 46. Returns to the initial position (the position where the bending angle is zero degree).
  • the toe 22t can be held at the initial position.
  • one end of the damper 50 is connected to the foot main body 22m side, the other end is connected to the toe portion 22t side, and the amount of damping of the damper 50 is adjusted to prohibit its expansion and contraction.
  • the electromagnetic solenoid 50e provided in the damper 50 By driving the electromagnetic solenoid 50e provided in the damper 50 to adjust the opening area of the orifice 50d to zero, the bending angle of the toe 22t is maintained at the angle at that time.
  • the damper 50 is provided between the foot main body 22m and the toe portion 22t, and the opening area of the orifice 50d is configured so that the zero force can also be adjusted to a predetermined value so that the bending angle of the toe portion 22t can be adjusted.
  • the bending angle of the toe 22t Can be held at an arbitrary angle within the movable range of the toe 22t (in other words, all continuous angles in the movable range).
  • the dambar 50 utilizes the flow resistance of the fluid passing through the orifice 50d as described above. Therefore, even when the bending angle of the toe portion 22t is not maintained, the resistance of the bending angle increases and decreases, and the change is suppressed.
  • the damper 50 functions as a mechanism capable of holding the bending angle of the toe portion 22t within its movable range (hereinafter, referred to as a “bending angle holding mechanism”), and at the same time, a mechanism that suppresses a change in the bending angle (hereinafter, “bending angle holding mechanism”). It also functions as a bending angle change suppressing mechanism.
  • the foot 22 includes the foot main body 22m connected to the leg 2, and the toe 22t provided at the front end of the foot main body 22m and capable of bending with respect to the foot main body 22.
  • a damper 50 is provided as a bending angle holding mechanism capable of holding the bending angle of the toe 22t in its movable range and a bending angle change suppressing mechanism for suppressing a change in the bending angle.
  • FIG. 6 is a block diagram showing details of the control unit 26. Outputs from the 6-axis force sensor 34R (L) and the tilt sensor 36 are converted into digital values by the AZD converter 60 in the control unit 26, and then input to the RAM 64 via the bus 62. The output of an encoder arranged adjacent to each electric motor is input to the RAM 64 via the counter 66.
  • first and second arithmetic units 70 and 72 each having a CPU power.
  • the first arithmetic unit 70 is used for gaits stored in a ROM 74 as described later.
  • a displacement command for each rotation axis or toe is calculated based on the calculated value and sent to the RAM 64.
  • the second arithmetic unit 72 reads the command and the detected actual value from the RAM 64, calculates the control values necessary for driving each rotating shaft and adjusting the bending angle of the toe, and outputs the control value to the DZA converter 76.
  • a joystick 80 is connected to the control unit 26 by wire or wirelessly, so that a request for a gait such as straight running or turning can be input to the robot 1 by an external force.
  • control device for a legged mobile robot according to this embodiment will be described in detail.
  • the control device according to this embodiment can be briefly described as a technology (floor reaction force acting on a robot by manipulating a posture inclination of a foot) described in Japanese Patent Application Laid-Open No. H10-277969 previously proposed by the present applicant.
  • Technology which is described below as “combined compliance control”. This is a control to which a control relating to a great toe is added.
  • FIG. 7 is a block diagram functionally showing the configuration and operation of the control device of the legged mobile robot according to this embodiment.
  • the control device includes a gait generator 100, and the gait generator 100 generates and outputs a desired gait.
  • the desired gait is composed of the desired movement pattern and the desired floor reaction force pattern, more specifically, the desired body position / posture trajectory, the desired foot position / posture trajectory, the desired total floor reaction force center point (target ZMP) trajectory, and the desired total gait. It consists of a floor reaction force trajectory (or pattern).
  • the desired total floor reaction force output by the gait generator 100 is a total floor reaction force that dynamically balances with the target motion pattern. Therefore, the target total floor reaction force center point matches the target ZMP.
  • the target floor reaction force distributor 102 receives the above-described target total floor reaction force center point (target ZMP) and the target foot position / posture as main inputs, and determines target foot floor reaction force center points. Output.
  • the gait generator 100 outputs the gait parameters (for example, the time of the two-leg support period and the target landing position of the swing leg), and the gait timing (for example, the current time is The information is also imported as needed.
  • the desired floor reaction force distributor 102 also determines and outputs each desired foot floor reaction force.
  • the target foot floor reaction force is required for radius compensation of the compliance mechanism 42.
  • the posture stabilization control calculation unit 104 estimates the state of the robot 1 based on the sensor information, and calculates a compensated total floor reaction force.
  • the actual floor reaction force detector 108 detects the actual floor reaction force (the resultant force is the actual floor reaction force) according to the output of the six-axis force sensor 34. Further, based on the actual displacement (and Z or displacement command) detected by the joint encoder, the relative position and orientation of each foot 22R (L) with respect to the coordinate system fixed to the body 24 is calculated. The coordinates of the detected value of the 6-axis force sensor 34 are converted to calculate the actual floor reaction force of each foot expressed in a coordinate system fixed to the upper body. After that, it is converted to the supporting leg coordinate system.
  • the robot geometric model (inverse kinematics calculation unit) 110 receives the body position and posture and the foot position and posture, it calculates each joint displacement that satisfies them.
  • the equations for the solution of the inverse kinematics were directly obtained, and each joint displacement was obtained simply by substituting the body position / posture and foot position / posture into the equations. That is, the robot geometric model 110 receives the target body position / posture and the corrected target foot position / posture trajectory (corrected target foot position / posture trajectory with mechanical deformation compensation) corrected by the composite compliance operation determination unit described later, From them, the displacement commands (values) of the 12 rotation axes (10R (L), etc.) are calculated.
  • the displacement controller 112 uses the joint displacement command (value) calculated by the robot geometric model (inverse kinematics arithmetic unit) 110 as a target value and sets the robot 1 Follow-up control of the displacement of the 12 rotation axes.
  • the composite compliance operation determination unit 114 corrects the desired foot position / posture trajectory so that the actual total floor reaction force matches the resultant of the target total floor reaction force and the compensation total floor reaction force.
  • the above-mentioned “total floor reaction force” and “foot floor reaction force” are specifically expressed by the point of action and the force applied thereto and the moment of the force. Force and moment components are used.
  • FIG. 8 flow chart (structured flow chart).
  • the left side of the figure shows the components of the block diagram of FIG. 7 that performs the corresponding processing.
  • the device is initialized in S10, and the process proceeds to S14 via S12 to wait for a timer interrupt.
  • Timer interrupts are issued every 50 [msec]. That is, the control cycle of this device is 50 Lmsec].
  • the process proceeds to S16, where it is determined whether or not the gait is switched, specifically, whether or not the support leg is switched. If it is denied, it proceeds to step S22, and if it is affirmed, it becomes S. Proceed to 18 to initialize the timer t, and proceed to S20 to set the desired gait parameters.
  • the gait parameters as described above are composed of motion parameters and floor reaction force parameters (ZMP trajectory parameters).
  • an instantaneous value of the desired gait is determined.
  • “instantaneous value” is for each control cycle.
  • the desired gait instantaneous value also includes the desired body position / posture, the desired foot position / posture, and the desired ZMP position force.
  • the “posture” means “direction” in the X, Z, and Z spaces.
  • the process proceeds to S30, in which the compensating total floor reaction force moments Mdmdx and Mdmdy (around the target total floor reaction force central point (target ZMP)) for stabilizing the posture such as the state of the robot 1 are determined.
  • n is the serial number of the leg (n: 1 or 2), and the leg that remains in contact with the floor surface during a certain gait is "1", and the other is "1". Is expressed as “2”.
  • FIG. 9 is a block diagram showing the calculation processing of the composite compliance operation determination unit 114. The processing will be described with reference to FIG.
  • the compensating total floor reaction force moment distributor 114a distributes the compensating total floor reaction force moment Mdmd to the two-leg compensation moment Mdmddb and the foot compensation moments Mdmdlx, Mdmdly, Mdmd2x, and Mdmd2y.
  • the two-leg compensation moment Mdmddb (the component around the V direction is described as Mdm ddbv) is calculated by manipulating the two-leg compensation angle (foot vertical movement) ⁇ dbv around the target total floor reaction force center point (target ZMP). This is the target value of the moment created by the force component of the floor reaction force.
  • “V” is a normal vector of a plane including the target foot floor reaction force center point and perpendicular to the horizontal plane, and its magnitude is 1.
  • Wdbx, Wdby, Wlx, Wly, W2x, W2y and Wdbint are distribution weight variables.
  • Vx is the value of the X component of vector V
  • Vy is the value of the Y component of vector V.
  • Wdbi nt is for canceling the total floor reaction force moment generated by operating the both leg compensation angle by operating each foot compensation angle.
  • FIG. 11 is a block diagram of a calculation process of the two-leg compensation angle determination unit 114b, and the two-leg compensation angle ⁇ d bv is calculated as shown.
  • the force component Flact of the actual floor reaction force acting on the desired first foot floor reaction force central point Q1 and the actual force acting on the desired second foot floor reaction force central point Q2 Based on the force component F2 act of the floor reaction force, a moment Mf If 2act to be generated around the target total floor reaction force center point P is obtained.
  • Mflf2actv is extracted.
  • Mflf2actv is passed through a low-pass filter 114i to obtain MfIf2actvfilt.
  • the two-leg compensation moment V-direction component Mdmddbv is passed through a compensation filter 114j, which is subtracted from Mflf2actvfilt to obtain a deviation moment V-direction component Mdiffv.
  • the compensation filter 114j improves the frequency response characteristics of the transfer function from the two-leg compensation moment V-direction component Mdmddbv to the actual total floor reaction moment.
  • FIG. 12 is a block diagram showing the arithmetic processing of the first foot X compensation angle determination unit 114c therein, and the first foot X compensation angle determination unit 114c illustrates the first foot X compensation angle ⁇ lx. Is calculated as follows. Although the description is omitted, the first foot Y compensation angle lyly, the second foot X compensation angle ⁇ 2x, and the second foot Y compensation angle ⁇ 2y are similarly obtained. Here, only the algorithm for calculating the first foot X compensation angle ⁇ lx will be described.
  • the compensation filter 114m improves the frequency response characteristics of the transfer function from Mdmdlx to the actual total floor reaction force.
  • the first foot X mechanism deformation compensation angle ff ff lx for canceling the influence of the deformation of the compliance mechanism 42 on the first foot compensation moment X component is obtained. . This is so-called feed-forward compensation.
  • the first foot X mechanism deformation compensation angle ⁇ fflx is added to the product of the deviation moment Mdifflx and the control gain Klx to obtain the first foot X compensation angle ⁇ lx.
  • the corrected target foot position / posture calculation unit 114g calculates the two-leg compensation angle
  • the mechanism deformation amount calculation unit 114h calculates the deformation amount of the compliance mechanism 42, which is expected to be generated by the target foot floor reaction force.
  • the corrected target foot position / posture calculating unit 114 ⁇ with mechanism deformation compensation further corrects the corrected target foot position / posture so as to cancel the calculated amount of mechanism deformation, and the corrected target foot position / posture with mechanism deformation compensation. Get posture.
  • the above-described compensation angle is determined in S34 as described above.
  • a joint displacement command (value) is calculated from the body position / posture and the corrected foot position / posture with mechanism deformation compensation, and the process proceeds to S42 to calculate the actual joint displacement.
  • the process proceeds to S44, updates the time by At, returns to S14, and repeats the above processing.
  • FIG. 13 is a block diagram showing a process of controlling the diaphragm amount of the damper 50. As shown in FIG. 13
  • the control device as shown includes a select switch 118.
  • the select switch 118 includes Rd_close (a command to close the orifice 50d; that is, a command to maintain the bending angle) and Rd_open (a command to open the orifice 50d) corresponding to the control mode of the damper 50 consisting of two types, “CLOSEJ and“ OPEN ” That is, two signals of the bending angle holding release command) are input. Then, one of them is selected at a predetermined timing described later, and is output to the damper 50 as a damper throttle amount command R_d (specifically, a command value for energizing the electromagnetic solenoid 50e).
  • Rd_close a command to close the orifice 50d; that is, a command to maintain the bending angle
  • Rd_open a command to open the orifice 50d
  • FIG. 14 is a time chart showing transition of the control mode and the like of the damper 50 when the robot 1 moves on level ground.
  • the target foot posture angle is zero when the foot 22 is horizontal, a positive value when the front end of the foot 22 is located below the rear end, and the front end of the foot 22 is It indicates a negative value when it is located above the rear end. Therefore, for example, when the leg 2 is on the floor and the target foot posture angle is a positive value, it indicates that the robot 1 is standing on the toe.
  • the target foot floor reaction force translational force vertical component means the Z-axis direction force component of the target floor reaction force translational component.
  • FIG. 14 outlines the time 'chart. From the first timing tl at the time of leaving the leg 2 to the second timing t2 after leaving the bed, "CLOSE” is selected, and the leg is moved from the second timing t2 to the leg. “OPEN” is selected until a third timing t3 before the landing of the unit 2. Further, from the third timing t3 to the fourth timing t4 when the leg 2 is landed and the toe standing is started, “CLOSE” is selected again, and the fourth timing t4 is also changed to the next first timing tl. Until "0 PEN" is selected.
  • the fourth timing at which the tiptoe starts is started. Until the first timing tl (that is, the period during which the toe stands), the holding of the bending angle is released to allow the toe portion 22t to freely bend, so that the toe portion 22t is moved in accordance with a change in the foot posture angle.
  • first timing tl to fourth timing t4 all correspond to the gait generator 10.
  • FIG. 15 is a time chart showing transitions of the control mode of the dambar 50 when the robot 1 climbs the stairs.
  • the first timing tl for maintaining the bending angle of the toe 22t is set to a timing that is earlier in time than when the leg 2 leaves the floor. I did it.
  • the target foot posture angle is kept constant, and the bending angle of the toe 22t is maintained. Accordingly, the above-described compliance control is effectively activated in the latter half of the toe standing period, and the posture can be stabilized.
  • the bending angle of the toe 22t is
  • the damper 50 is provided as a bending angle holding mechanism that can be held within a range, and the second timing t2 after the leg 2 leaves the floor from the first timing tl when the leg 2 leaves the floor or before that time.
  • the bend angle at the time of leaving the bed can be maintained even after the leg 2 has left the bed, so that the toe 22t contacts the floor immediately after leaving the bed.
  • the posture of the robot 1 can be prevented from becoming unstable.
  • the bending angle of the toe portion 22t is maintained even when the toe is standing (the toe portion 22t is locked). ), It is possible to improve the stability when standing on the toe.
  • the bend angle of the toe 22t is maintained until the fourth timing t4 at which toe standing starts. Since the toe 22t is locked in the initial position, the contact area at the time of landing and solid contact can be maximized.
  • the damper 50 also functions as a bending angle change suppressing mechanism that suppresses a bending angle change of the toe portion 22t, occurrence of overshoot or vibration when the toe portion 22t returns to the initial position is reduced. Can be prevented.
  • the toe 22t is continuous with the foot main body 22m, and also has a tough material that bends while bending, so that the structure of the foot 22 can be simplified.
  • FIG. 16 and FIG. 17 are enlarged sectional views showing the feet of the legged mobile robot according to the second embodiment.
  • the foot 222 according to the second embodiment has a foot main body 222m as shown in FIGS. 16 and 17. And the toe 222t are divided, and they are connected via a rotation shaft 222a rotatable about a pitch axis. That is, by rotating the rotation shaft 222a, the toe 222t is bent with respect to the foot main body 222m.
  • the foot main body 222m and the toe 222t are connected via the rotation shaft 222a. Therefore, there is no need to give elasticity to the foot as in the first embodiment. For this reason, the foot plate 46m on the side of the foot main body 222m is formed integrally with the panel mechanism frame 381 from a highly rigid metal material. Similarly, the foot plate 46t on the toe 222t side is also formed of a highly rigid metal material.
  • a restoring panel 222b that urges the toe portion 222t in a direction to return to the initial position is provided to assist in returning the toe portion 222t to the initial position.
  • the restoration panel 222b is specifically a compression coil panel, and is interposed between the cylinder 222 and the flange 222c provided on the rod head of the piston rod 50f.
  • the toe 222t and the foot main body 222m are divided and connected to each other via the rotary shaft 222a. Similar effects can be obtained.
  • the toe portion 222t is bent by rotating the rotation shaft 222a, the ground contact area during the toe standing period can be kept constant regardless of the bending angle. Further, by providing the restoration panel 222b, the toe portion 222t can be quickly returned to the initial position.
  • FIG. 18 and FIG. 19 are schematic diagrams showing the feet of the legged mobile robot according to the third embodiment.
  • the bending angle of the toe portion 223t can be held in the movable range.
  • a friction brake 60 is provided as a mechanism, and a damper 500 is provided as a bending angle suppressing mechanism for suppressing a change in bending angle.
  • the friction brake 60 has a shaft 60a rotatably mounted around the pitch axis at the front end of the toe 223t, and a gripping mechanism rotatably mounted around the pitch axis at an appropriate position on the foot body 223m. 60b.
  • the shaft 60a is movably inserted into the holding mechanism 60b.
  • a hydraulic pressure generating unit not shown
  • the gripping mechanism 60b The brake disposed to surround the shaft 60a is pressed against the shaft 60a, and thereby grips the shaft 60a. As a result, the shaft 60a cannot move, and the bending angle of the toe portion 223t is maintained.
  • the dambar 500 utilizes the flow resistance of the fluid, similarly to the dambar 50 described in the first and second embodiments, but differs in the following points. That is, in the foot 223 according to the third embodiment, since the friction brake 60 is provided as the bending angle holding mechanism, the damper 500 is not required to have a powerful function. Therefore, the damper 500 does not include an electromagnetic solenoid that is provided in the above-described damper 50 and that adjusts the opening area of the orifice.
  • FIG. 20 is a block diagram showing a process of hydraulic control of the friction brake 60.
  • the control device includes a select switch 120.
  • the select switch 120 has P_high (high pressure command, specifically the command to hold the bending angle) and P_zer o (hydraulic supply stop) corresponding to the friction brake 60 control mode consisting of two types of “LOCK” and “FREE”. Command, specifically, the command to release the bending angle). Then, one of them is selected at the above-mentioned predetermined timing, and is output to the hydraulic pressure generation unit as a hydraulic pressure command P_b.
  • FIG. 21 is a time chart showing transition of the control mode of the friction brake 60 when the robot 1 moves on level ground.
  • the timing of holding and releasing the bending angle of the toe in the third embodiment is the same as that of the previous embodiment (FIG. 14). Although illustration is omitted, when the robot 1 climbs the stairs, it is sufficient that the bending angle of the toe portion is maintained and released at the same timing as in the previous embodiment (FIG. 15).
  • the friction brake 60 is provided as a bending angle holding mechanism capable of holding the bending angle of the toe portion 223t within its movable range, and the bending for suppressing a change in the bending angle is provided. Since the damper 500 is provided as the angle change suppressing mechanism, the same effect as in the previous embodiment can be obtained.
  • FIG. 22 and FIG. 23 are schematic diagrams showing the feet of the legged mobile robot according to the fourth embodiment.
  • the foot 224 according to the fourth embodiment includes a friction brake 60 instead of the damper 50 provided on the foot 22 of the first embodiment.
  • the friction force of the above-described friction brake 60 can be adjusted freely, so that the friction brake 60 is connected to the bending angle of the toe portion 224t. It is made to function also as a bending angle change suppressing mechanism for suppressing the change.
  • FIG. 24 is a block diagram showing processing of hydraulic control of friction brake 60.
  • the control device includes a select switch 122.
  • the select switch 122 has a P_high (high pressure command; specifically, a command to hold the bending angle) corresponding to the three control modes of the friction brake 60 consisting of “LOCK:”, “SEMIFREE”, and “FREE”.
  • P_low a low pressure command; specifically, a command to suppress a change in the bending angle
  • P_zero a command to stop the hydraulic pressure supply; specifically, a command to cancel the holding of the bending angle. Then, one of them is selected at the above-mentioned predetermined timing, and is output to the hydraulic pressure generation unit as a hydraulic pressure command P_b.
  • FIG. 25 is a time chart showing transition of the control mode and the like of the friction brake 60 according to the fourth embodiment.
  • the second timing t2 Until the third timing t3, "SEMIFREE" is selected as the control mode of the friction brake 60, and the change in the bending angle of the toe 224t is suppressed. That is, at the second timing t2, the holding of the bending angle of the toe portion 224t is released, and at the same time, the bending angle is gradually reduced by using the frictional force of the friction brake 60 to gradually return to the initial position. As a result, it is possible to prevent the occurrence of overshoot or vibration when the toe portion 224t returns to the initial position.
  • Fig. 25 is a time chart when the robot 1 moves on level ground.
  • the first timing tl is set earlier than the time when the leg is lifted off as in the previous embodiment.
  • the timing should be set to
  • the remaining configuration is the same as in the previous embodiment, and a description thereof will be omitted.
  • FIG. 26 and FIG. 27 are enlarged sectional views showing the feet of the legged mobile robot according to the fifth embodiment.
  • the displacement (stroke amount) of the piston rod 50f is provided inside the damper 50 provided on the foot 22 according to the first embodiment.
  • a stroke sensor 22s linear encoder, potentiometer, etc.
  • the detection value of the stroke sensor 22s is input to the RAM 64 of the control unit 26 described above.
  • the stroke amount of the piston rod 50f changes according to the bending angle of the toe 22t as shown. That is, detecting the stroke amount of the piston rod 50f corresponds to detecting the bending angle of the toe 22t.
  • the detected value of the stroke sensor 22s is treated as the detected value of the bending angle of the toe 22t.
  • the first timing tl and the third timing t3 described above are connected to the toe portion. The determination was made based on the detected value of the bending angle of 22t.
  • the sensor for detecting the bending angle of the toe portion 22t is provided, and the first and third timings tl, at which the holding of the bending angle is started based on the detected value. Since t3 is determined, in addition to the effects described in the previous embodiment, the operation of maintaining the bending angle of the toe portion 22t can be executed at a more appropriate timing.
  • the foot 222 according to the second embodiment includes a rotation angle sensor 222s (rotary encoder or rotary potentiometer) for detecting the rotation angle of the rotation shaft 222a, as shown in FIGS. 28 and 29. This is also applicable to the case where the bending angle of the toe 222t is detected. Further, the case where the above-described sensors are provided on each foot described in the third embodiment and the fourth embodiment is similarly applicable.
  • a rotation angle sensor 222s rotary encoder or rotary potentiometer
  • a legged mobile robot and a control device thereof will be described with reference to FIGS. 30 to 32.
  • the legged mobile robot includes the foot 224 described in the fourth embodiment.
  • the frictional brake 60 is operated to control the floor anti-chamoment during the period when the toe stands.
  • FIG. 30 is a time chart showing transition of the control mode and the like of the friction brake 60 according to the sixth embodiment.
  • control modes of the friction brake 60 include three types of “LOCK”, “CNTRL”, and “SEMIFREE”.
  • the compliance control mode (See below) consists of three types: "HOLD”, “CNTRL”, and "RET”.
  • FIG. 31 is a block diagram showing the arithmetic processing of the foot compensation angle determination unit in the control device for a legged mobile robot according to the sixth embodiment.
  • the first foot X compensation angle ⁇ lx, the first foot Y compensation angle ly ly, the second foot X compensation angle ⁇ 2x, and the second foot Y compensation angle ⁇ 2y are all obtained by the same algorithm. Therefore, the serial numbers (n: l, 2) and X, Y of the legs are omitted below.
  • the characteristic feature of the process shown in FIG. 31 is that input switch of integrator 132 is switched according to compliance control mode, provided with select switch 130.
  • the required angle ⁇ cmpl_dmd of the compliance control compensation is obtained by multiplying the deviation moment Mdiff by K_cmpl (control gain), and is differentiated by the differentiator 138, and further integrated by the integrator 132 to perform the compliance control. Obtain the compensation angle ⁇ cmpl.
  • the foot mechanism deformation compensation angle ff ff is obtained, and is added to the compliance control compensation angle ⁇ cmpl to obtain the foot compensation angle ⁇ .
  • the compliance control compensation angle ⁇ cmpl is the compliance control compensation request angle ⁇ Almost matches cmpl_dmd.
  • FIG. 4 is a block diagram showing a control process.
  • the actual foot floor reaction force moment Mact is passed through a mouth-pass filter 140 for preventing oscillation to obtain Mactfilt. Further, the foot compensation moment Mdmd is passed through a compensation filter 142 for improving the frequency response characteristic, and the Mactfilt force is also reduced to obtain a deviation moment Mdiff.
  • the required pressure P_dmd is obtained by multiplying the deviation moment Mdiff by K_b (control gain), and the value obtained by adding the offset pressure P_offset to the required pressure P_dmd is output to the hydraulic pressure generation unit as a hydraulic pressure command P_b.
  • the characteristic feature is that the control mode of the friction brake 60 is set to "CNTRL" until the fourth timing t4 force and the next first timing tl (that is, the toe standing period). is there. That is, during this period, instead of the normal compliance control, the friction force is adjusted by controlling the hydraulic pressure supplied to the friction brake 60, and thus the bending angle of the toe 224t is adjusted to control the floor reaction force moment. I did it. Thereby, the stability of the posture during the toe standing period can be further improved.
  • the remaining configuration is the same as in the previous embodiment, and a description thereof will be omitted.
  • the sixth embodiment is configured so that the floor reaction force moment is controlled by adjusting the bending angle of the toe portion 224t during the toe standing period. Therefore, as in the previous embodiment, the robot 1 It is not always necessary to make the first timing 1 different when moving and going up the stairs! / ,.
  • the sixth embodiment has been described on the premise of the legged mobile robot according to the fourth embodiment, if the leg is provided with the friction brake 60, the legged mobile robot according to the other embodiment is not required. Can also be applied.
  • a legged mobile robot and a control device thereof according to a seventh embodiment of the present invention will be described with reference to FIG. 33 and FIG. In the following description, it is assumed that the legged mobile robot includes the foot 22 described in the first embodiment.
  • the damping characteristic of the damper 50 (that is, the magnitude of the resistance generated by the damper 50; in other words, the suppression force of the bending angle change) is to change the opening area of the orifice 50d by driving the electromagnetic solenoid 50e. Is adjustable. Therefore, in the seventh embodiment, the bending angle of the toe portion 22t is adjusted by adjusting the damping characteristic of the damper 50 during the standing of the toe, thereby controlling the floor reaction force moment.
  • FIG. 33 is a time chart showing transitions of the control mode and the like of the damper 50 according to the seventh embodiment.
  • the damper control mode includes “CLOSE” and “CNTRL”. ”And“ OPEN ”. Further, the compliance control mode includes three types of “HOLD”, “CNTRL”, and “RET” as in the sixth embodiment.
  • FIG. 34 shows a damper according to the seventh embodiment.
  • the actual foot floor reaction force moment Mact is passed through a low-pass filter 150 for preventing oscillation to obtain Mactfilt. Further, the foot compensation moment Mdmd is passed through a compensation filter 152 for improving the frequency response characteristic, and is reduced by the Mactfilt force to obtain a deviation moment.
  • the required damper throttle amount Rd_dmd is obtained by multiplying the deviation moment Mdiff by K_d (control gain), and the value obtained by adding the offset throttle amount Rd_offset thereto is output to the damper 50 as the damper throttle amount command R_d. I do.
  • the control mode of the damper 50 is not changed until the fourth timing t4 force until the next first timing tl (that is, the toe standing period).
  • the fourth timing t4 including the toe standing period is also set to “HOLD” until the fifth timing t5. That is, during the toe standing period, the damping characteristic of the damper 50 is adjusted by changing the opening area of the orifice 50d by driving the electromagnetic solenoid 50e instead of the normal compliance control, and thus the bending angle of the toe portion 22t is adjusted. Controlled the floor reaction force moment.
  • the stability of the posture during the tiptoe standing period can be further improved.
  • the remaining configuration is the same as in the previous embodiment, and a description thereof will not be repeated.
  • the seventh In this embodiment the floor reaction force moment is controlled by adjusting the bending angle of the toe during the toe standing period, as in the sixth embodiment, so that the robot 1 moves on a flat ground and up stairs. It is not always necessary to make the first timing 1 different from when!
  • the seventh embodiment has been described on the premise of the legged mobile robot according to the first embodiment, the legged mobile robot according to another embodiment may be provided if the leg is provided with the damper 50. Can be applied.
  • the dambar 500 utilizes the flow resistance of the fluid.
  • the flow resistance of the fluid depends on its flow velocity, and the flow velocity of the fluid in the damper 500 depends on the bending angular velocity of the toe 223t. That is, it can be said that the damper 500 has a predetermined resistance characteristic set with respect to the bending angular velocity of the toe portion 223t, and suppresses a change in the bending angle of the toe portion 223t according to the resistance characteristic. Therefore, in the eighth embodiment, the magnitude of the resistance generated by the damper 500 is changed by adjusting the bending angular velocity of the toe portion 223t by operating the position and orientation of the foot portion 223, thereby changing the floor reaction force. Control the moment.
  • FIG. 35 is a time chart showing the transition of the control mode and the like of the damper 500 according to the eighth embodiment.
  • the bending angular velocity control mode includes three types, "HOLD”, “CNTRL”, and "RET".
  • FIG. 36 is a block diagram showing the arithmetic processing of the foot compensation angle determination unit in the control device for a legged mobile robot according to the eighth embodiment. Note that, for the same reason as in the sixth embodiment, the serial numbers (n: l, 2) and X, Y of the legs are not described below.
  • a select switch 160 is provided, and the input to the integrator 162 is switched according to the bending angular velocity control mode.
  • Mactfilt is obtained by passing the foot floor reaction force moment Mact through a low-pass filter 164 for preventing oscillation. Further, the foot compensation moment Mdmd is passed through a compensation filter 166 for improving the frequency response characteristic, and is subtracted from Mactfilt to obtain a deviation moment Mdiff.
  • the foot mechanism deformation compensation angle ⁇ ff obtained in the same manner as in the sixth embodiment is calori-calculated to the value obtained by adding the damper control compensation angle ⁇ dcntrl and the compliance control compensation angle ⁇ cmpl. By doing so, the foot compensation angle ⁇ is obtained.
  • the angular velocity of the foot 223 with respect to the floor that is, the bending angular velocity of the toe 223t.
  • the magnitude of the resistance generated by the damper 500 is changed, thereby controlling the floor reaction force moment.
  • the position and orientation of the foot 223 may be operated by operating the gait of the robot 1 itself.
  • the eighth embodiment is configured to control the floor reaction force moment by adjusting the bending angle of the toe during the toe standing period as in the sixth embodiment, the robot 1 moves on level ground. It is not always necessary to make the first timing 1 different between when and when going up the stairs! / ,.
  • the eighth embodiment has been described on the premise of the legged mobile robot according to the third embodiment, the legged mobile robot according to another embodiment in which a damper 50 (a damper with an electromagnetic solenoid) is provided in a foot portion. It can be applied to the transfer port bot.
  • a damper 50 a damper with an electromagnetic solenoid
  • the ninth embodiment is directed to a legged mobile robot according to the fifth embodiment, which is provided with a sensor for detecting a bending angle of a toe portion, described in Japanese Patent Application Laid-Open No. 2000-147948, which was previously proposed by the present applicant.
  • This is an application of the technique (technique for estimating the floor shape) and the control described in the sixth embodiment.
  • FIG. 37 is a block diagram showing the arithmetic processing of the foot compensation angle determination unit in the control device for a legged mobile robot according to the ninth embodiment. Note that, for the same reason as in the sixth embodiment, the serial numbers (n: l, 2) and X, Y of the legs are not described below.
  • the configuration of the foot compensation angle determination unit (shown with the same reference numerals as in the sixth embodiment) described in the sixth embodiment is Floor shape estimator 170 is added [0224]
  • the processing shown in Fig. 37 will be described below.
  • the estimated foot floor inclination deviation fest festm output from the shape estimator 170 is added to obtain a foot compensation angle ⁇ .
  • the floor shape estimator 170 includes, in addition to the foot compensation angle ⁇ ⁇ obtained as described above, the actual foot floor reaction force Fact, Mact and the body inclination angle deviation ⁇ err, the stroke sensor 22s or the rotation angle. The bending angle of the toe 22t detected by the sensor 222s is input.
  • the floor shape estimator 170 calculates a floor shape estimated value (specifically, the estimated foot floor inclination deviation festfestm and the two-leg compensation angle ⁇ dbv described in the first embodiment) based on the floor shape estimator 170. Calculate and output the estimated floor-to-leg floor inclination deviation ⁇ fdbestmv) to be obtained. Since the operation of the floor shape estimator 170 is described in detail in the above-mentioned Japanese Patent Application Laid-Open No. 2000-147948, its explanation is omitted.
  • the floor shape estimated value is calculated based on the bending angle of the toe and the like, and the calculated value is calculated as the foot compensation angle ⁇ (and the double leg compensation angle ⁇ dbv). It was added as a parameter used for calculation. More generally, the shape of the floor on which the robot 1 walks is estimated, and the bending angle change suppression mechanism is operated based on the estimated floor shape and the like to control the floor reaction force moment. As a result, the stability of the toe standing period can be further improved. Also, normal compliance control can be performed with higher accuracy.
  • the floor shape estimator 170 is added to the foot compensation angle determining unit described in the sixth embodiment.
  • the foot compensation angle determining unit described in other embodiments is used. May be added.
  • the upper body (24) and the upper end are connected to the upper body, while the lower end is connected to the foot (22, 222, 223). , 224) connected to the legs (2R, 2L), and the leg-type mobile robot (1) moving by driving the legs.
  • (22m, 222m, 223m, 224m) and a toe (22t, 222t, 223t, 224t) provided at the front end of the foot body and capable of bending with respect to the foot body.
  • a bending angle holding mechanism (dumber 50, friction brake 60) capable of holding the bending angle ( ⁇ t) of the portion within the movable range of the toe portion. It was.
  • a bending angle change suppressing mechanism (dumber 50, dangling 500, friction brake 60) for suppressing the bending angle change of the toe portion.
  • the toe portion (22t, 223t, 224t) is continuous with the foot body (22m, 223m, 224m),
  • the elastic material that bends while bending is also configured.
  • the foot main body (222m, 222m, 222t, 223t, 224t) is rotated via a rotation shaft (222a) rotatable around a force pitch axis. 223m, 224m).
  • a configuration is provided in which a biasing means (restoring panel 222b) for biasing the toe portion in the direction of returning to the initial position is provided.
  • the bending angle holding mechanism is configured such that the friction brake (60) force is also exerted.
  • the bending angle change suppressing mechanism is configured to provide a damper (50, 500) force.
  • the bending angle holding mechanism and the bending angle change suppressing mechanism are configured so as to generate a friction brake (60) force whose friction force can be adjusted.
  • the bending angle holding mechanism and the bending angle change suppressing mechanism are configured to have a damper (50) force.
  • the upper body (24) and the upper end are connected to the upper body, while the foot (22, 222, 223, 224) is connected to the lower end.
  • a leg (2R, 2L) that is driven to move the leg, the foot is connected to the leg, and the foot main body (22m, 222m , 223m, 224m), and the toe body (22t, 222t, 223t, 224t) that is bendable with respect to the foot body.
  • ( ⁇ t) can be held within the movable range of the toe portion, and the bending angle holding mechanism (dumber 50, friction brake 60) can be freely operated, and the bending angle holding mechanism can be operated to hold and release the bending angle of the toe portion.
  • Angle control means for controlling the movement of the legs. After maintaining the bending angle of the toe portion at the first timing (tl) before this, the holding of the bending angle of the toe portion is released at the second timing (t2) after the legs have left the floor. Then, the toe is returned to the initial position.
  • a gait generating means for generating a gait of the legged mobile robot.
  • the bending angle control means is configured to determine the first and second timings based on the generated gait.
  • the bending angle detecting means stroke sensor 22s, rotation angle sensor 222s
  • the leg Gait generation means gait generator 100 for generating a gait of a bot of a moving type
  • the bending angle control means determines the first timing based on the detected bending angle.
  • the configuration is such that the second timing is determined based on the generated gait.
  • the bending angle control means may further include a third timing (t3) after the leg is lifted from the floor and after the second timing. ), The bending angle of the toe portion is held, and then, at the fourth timing (t4) after the landing of the leg portion and before the next first timing, the bending angle of the toe portion is maintained. Was configured to be released.
  • a gait generating means for generating a gait of the legged mobile robot.
  • the bending angle control means is configured to determine the first to fourth timings based on the generated gait.
  • the bending angle detecting means (stroke sensor 22s, rotation angle sensor 222s) for detecting the bending angle of the toe (22t, 222t), and the leg Gait generating means (gait generator 100) for generating a gait of a bot of a type-moving port
  • the bending angle control means includes the first and third gaits based on the detected bending angle. While the timing is determined, the second and fourth timings are determined based on the generated gait.
  • the bending angle that suppresses the change in the bending angle of the toe (224t) is described.
  • the bending angle control means releases the holding of the bending angle of the toe at the second timing, and simultaneously operates the bending angle change suppressing mechanism to cause the bending. The angle is gradually reduced and the toe is gradually returned to the initial position.
  • a bending angle change suppressing mechanism (a damper 50, a friction brake 60) for suppressing a bending angle change of the toe portion is provided, and the bending angle control means is provided.
  • the fourth timing force is configured to control the floor reaction force (floor reaction force moment) acting through the foot by operating the bending angle change suppression mechanism until the next first timing. did.
  • a bending angle change suppressing mechanism (dumber 500) for suppressing a change in the bending angle of the toe in accordance with a predetermined resistance characteristic set for the bending angular velocity.
  • the bending angle control means adjusts the bending angular velocity by operating the position and orientation of the foot (22R (L)) from the fourth timing to the next first timing. Therefore, the floor reaction force (floor reaction force moment) acting through the foot portion is controlled by changing the magnitude of the resistance generated by the bending angle change suppression mechanism.
  • a bending angle change suppressing mechanism for suppressing a bending angle change of the toe portion, and a bending for detecting the bending angle of the toe portion.
  • Angle detecting means stroke sensor 22s, rotation angle sensor 222s
  • floor shape estimating means floor shape estimator
  • the bending angle control means controls the bending angle change suppression mechanism based on at least the estimated floor shape until the fourth timing force also reaches the next first timing.
  • the floor reaction force (floor reaction force moment) acting through the foot is controlled.
  • the compliance mechanism 42R (L) necessary for cushioning impact upon landing and improving controllability is composed of the panel mechanism body 38R (L) and the sole 40R (L).
  • a panel panel may be provided on the sole to utilize the elasticity.
  • the material of the panel panel carbon or the like having elasticity is preferred from the viewpoint of light weight.
  • a bending angle holding mechanism for holding a bending angle of a toe portion and suppressing a change in bending angle.
  • the damper and the friction brake have been described as examples of the bending angle change suppression mechanism, it is needless to say that the invention is not limited thereto.
  • a ratchet mechanism may be used as the bending angle holding mechanism.
  • the bending angle can be held at all successive angles in the movable range of the toe.
  • any one of a plurality of angles corresponding to the number of gears of the ratchet is held (that is, the angle cannot be held within the range of the feed angle of the ratchet, but can be held). Is discontinuous), but there is an advantage that the operation for maintaining the bending angle is not required.
  • the foot comprises the foot main body and the bendable toe provided at the front end of the foot main body, and the bend capable of holding the bending angle of the toe. It is configured to include a corner holding mechanism.
  • the control device of the legged mobile robot holds the toe bending angle at the first timing before or at the time of leaving the leg, and the second after the leg is released.
  • the toe portion is configured to return to the initial position at a timing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Toys (AREA)

Abstract

 脚式移動ロボット(1)において、足部(22,222,223,224)が、足部本体(22m,222m,223m,224m)と、足部本体の前端に設けられ、屈曲自在な爪先部(22t,222t,223t,224t)とからなると共に、爪先部の屈曲角(θt)を保持自在な屈曲角保持機構(ダンパ50、摩擦ブレーキ60)を備えるように構成した。また、脚式移動ロボットの制御装置においては、脚部の離床時あるいはそれよりも前の第1のタイミング(t1)で爪先部の屈曲角を保持し、脚部が離床した後の第2のタイミング(t2)で爪先部を初期位置に復帰させるように構成した。それにより、脚部の離床後も離床時の屈曲角を保持し続けることができ、よって離床直後に爪先部が床面に接触して姿勢が不安定になるのを防止することができる。また、爪先立ちしているときの安定性も向上させることができる。

Description

明 細 書
脚式移動ロボットおよびその制御装置
技術分野
[0001] この発明は、脚式移動ロボットおよびその制御装置に関し、より詳しくは、足部に屈 曲自在な爪先部を備えた脚式移動ロボットとその制御装置に関する。
背景技術
[0002] 従来、脚式移動ロボットの足部に屈曲自在な爪先部を設けた技術が提案されてい る。この種の脚式移動ロボットの例として、例えば特許文献 1に記載される技術を挙 げることができる。特許文献 1に係る技術にあっては、足部の前端に設けられた上下 に回動自在な爪先部と、爪先部の屈曲角が零度(ほぼ水平)となる位置で当該爪先 部の回動をロックするロック機構とを備え、脚部が着床する以前に爪先部の回動を口 ックすることによって着床に必要な接地面積を確保すると共に、脚部が離床する以前 にロックを解除することによって蹴り出し動作時に爪先部を退避回動 (屈曲)させるよ うに構成している。
特許文献 1 :特開 2003— 236777号公報(段落 0011, 0012、図 2、図 10など) 発明の開示
発明が解決しょうとする課題
[0003] し力しながら、上記した特許文献 1に係る従来技術にあっては、脚部の離床時に爪 先部がフリー(回動自在)の状態にあることから、離床直後に爪先部が初期位置 (屈 曲角が零度の位置)に復帰し、爪先部が床面に接触してロボットの姿勢が不安定に なるおそれがあった。
[0004] また、例えば階段を上るときのように、支持脚後期に爪先立ちの期間が長く発生す る場合、爪先部がフリーの状態にあると安定した姿勢制御を行うのが難しいという不 具合があった。
[0005] 従って、この発明の目的は上記した課題を解決することにあり、離床直後に爪先部 が床面に接触して姿勢が不安定になるのを防止すると共に、爪先立ちしているときの 安定性を向上させるようにした脚式移動ロボットおよびその制御装置を提供すること にある。
課題を解決するための手段
[0006] この発明は、上記した課題を解決するために、後述する請求項 1に記載する如ぐ 上体と、上端が前記上体に連結される一方、下端に足部が連結される脚部とを備え
、前記脚部を駆動して移動する脚式移動ロボットにおいて、前記足部が、前記脚部 に連結される足部本体と、前記足部本体の前端に設けられ、前記足部本体に対して 屈曲自在な爪先部とからなると共に、前記爪先部の屈曲角を前記爪先部の可動範 囲で保持自在な屈曲角保持機構を備えるように構成した。
[0007] また、この発明は、後述する請求項 2に記載する如ぐ前記爪先部の屈曲角変化を 抑制する屈曲角変化抑制機構を備えるように構成した。
[0008] また、この発明は、後述する請求項 3に記載する如ぐ前記爪先部が、前記足部本 体に連続すると共に、橈みつつ屈曲する弾性材カもなるように構成した。
[0009] また、この発明は、後述する請求項 4に記載する如ぐ前記爪先部が、ピッチ軸回り に回転自在な回転軸を介して前記足部本体の前端に連結されるように構成した。
[0010] また、この発明は、後述する請求項 5に記載する如ぐ前記爪先部を初期位置に復 帰させる方向に付勢する付勢手段を備えるように構成した。
[0011] また、この発明は、後述する請求項 6に記載する如ぐ前記屈曲角保持機構が、摩 擦ブレーキからなるように構成した。
[0012] また、この発明は、後述する請求項 7に記載する如ぐ前記屈曲角変化抑制機構が
、ダンバからなるように構成した。
[0013] また、この発明は、後述する請求項 8に記載する如ぐ前記屈曲角保持機構および 前記屈曲角変化抑制機構が、摩擦力が調節自在な摩擦ブレーキ力 なるように構成 した。
[0014] また、この発明は、後述する請求項 9に記載する如ぐ前記屈曲角保持機構および 前記屈曲角変化抑制機構が、ダンバからなるように構成した。
[0015] また、この発明は、後述する請求項 10に記載する如ぐ上体と、上端が前記上体に 連結される一方、下端に足部が連結される脚部とを備え、前記脚部を駆動して移動 すると共に、前記足部が、前記脚部に連結される足部本体と、前記足部本体の前端 に設けられ、前記足部本体に対して屈曲自在な爪先部とからなる脚式移動ロボットの 制御装置にお!、て、前記爪先部の屈曲角を前記爪先部の可動範囲で保持自在な 屈曲角保持機構と、前記屈曲角保持機構を動作させて前記爪先部の屈曲角の保持 とその解除を制御する屈曲角制御手段とを備えると共に、前記屈曲角制御手段は、 前記脚部の離床時あるいはそれよりも前の第 1のタイミングで前記爪先部の屈曲角を 保持した後、前記脚部の離床後の第 2のタイミングで前記爪先部の屈曲角の保持を 解除して前記爪先部を初期位置に復帰させるように構成した。
[0016] また、この発明は、後述する請求項 11に記載する如ぐ前記脚式移動ロボットの歩 容を生成する歩容生成手段を備えると共に、前記屈曲角制御手段は、前記生成され た歩容に基づいて前記第 1および第 2のタイミングを決定するように構成した。
[0017] また、この発明は、後述する請求項 12に記載する如ぐ前記爪先部の屈曲角を検 出する屈曲角検出手段と、前記脚式移動ロボットの歩容を生成する歩容生成手段と を備えると共に、前記屈曲角制御手段は、前記検出された屈曲角に基づいて前記第 1のタイミングを決定する一方、前記生成された歩容に基づいて前記第 2のタイミング を決定するように構成した。
[0018] また、この発明は、後述する請求項 13に記載する如ぐ前記屈曲角制御手段は、さ らに、前記脚部の離床中であって前記第 2のタイミングよりも後の第 3のタイミングで前 記爪先部の屈曲角を保持した後、前記脚部の着床後であって次回の前記第 1のタイ ミングよりも前の第 4のタイミングで前記爪先部の屈曲角の保持を解除するように構成 した。
[0019] また、この発明は、後述する請求項 14に記載する如ぐ前記脚式移動ロボットの歩 容を生成する歩容生成手段を備えると共に、前記屈曲角制御手段は、前記生成され た歩容に基づいて前記第 1から第 4のタイミングを決定するように構成した。
[0020] また、この発明は、後述する請求項 15に記載する如ぐ前記爪先部の屈曲角を検 出する屈曲角検出手段と、前記脚式移動ロボットの歩容を生成する歩容生成手段と を備えると共に、前記屈曲角制御手段は、前記検出された屈曲角に基づいて前記第 1および第 3のタイミングを決定する一方、前記生成された歩容に基づいて前記第 2 および第 4のタイミングを決定するように構成した。 [0021] また、この発明は、後述する請求項 16に記載する如ぐ前記爪先部の屈曲角変化 を抑制する屈曲角変化抑制機構を備えると共に、前記屈曲角制御手段は、前記第 2 のタイミングで前記爪先部の屈曲角の保持を解除すると同時に、前記屈曲角変化抑 制機構を動作させて前記屈曲角を漸減させ、前記爪先部を徐々に初期位置に復帰 させるように構成した。
[0022] また、この発明は、後述する請求項 17に記載する如ぐ前記爪先部の屈曲角変化 を抑制する屈曲角変化抑制機構を備えると共に、前記屈曲角制御手段は、前記第 4 のタイミング力 次回の前記第 1のタイミングまでの間、前記屈曲角変化抑制機構を 動作させて前記足部を通じて作用する床反力を制御するように構成した。
[0023] また、この発明は、後述する請求項 18に記載する如ぐ前記爪先部の屈曲角変化 を、その屈曲角速度に対して設定された所定の抵抗特性に従って抑制する屈曲角 変化抑制機構を備えると共に、前記屈曲角制御手段は、前記第 4のタイミングから次 回の前記第 1のタイミングまでの間、前記足部の位置姿勢を操作して前記屈曲角速 度を調節し、よって前記屈曲角変化抑制機構が発生する抵抗の大きさを変化させて 前記足部を通じて作用する床反力を制御するように構成した。
[0024] また、この発明は、後述する請求項 19に記載する如ぐ前記爪先部の屈曲角変化 を抑制する屈曲角変化抑制機構と、前記爪先部の屈曲角を検出する屈曲角検出手 段と、少なくとも前記検出された屈曲角に基づいて前記脚部が接地する床の形状を 推定する床形状推定手段とを備えると共に、前記屈曲角制御手段は、前記第 4のタ イミング力 次回の前記第 1のタイミングまでの間、少なくとも前記推定された床形状 に基づいて前記屈曲角変化抑制機構を動作させ、よって前記足部を通じて作用する 床反力を制御するように構成した。
発明の効果
[0025] 請求項 1に係る脚式移動ロボットにあっては、足部が、脚部に連結される足部本体 と、足部本体の前端に設けられ、足部本体に対して屈曲自在な爪先部とからなると共 に、爪先部の屈曲角をその可動範囲で保持自在な屈曲角保持機構を備えるように 構成したので、脚部の離床後も離床時の屈曲角を保持し続けることができ、よって離 床直後に爪先部が床面に接触して姿勢が不安定になるのを防止することができる。 また、爪先立ちして 、るときも爪先部の屈曲角を保持する (爪先部をロックする)ことが できるため、爪先立ち期間の安定性を向上させることができる。
[0026] また、請求項 2に係る脚式移動ロボットにあっては、爪先部の屈曲角変化を抑制す る屈曲角変化抑制機構を備えるように構成したので、上記した効果に加え、爪先部 を初期位置に復帰させたときにオーバーシュートや振動が生じるのを防止することが できる。
[0027] また、請求項 3に係る脚式移動ロボットにあっては、爪先部が、足部本体に連続す ると共に、橈みつつ屈曲する弹性材力もなるように構成したので、上記した効果にカロ え、足部の構造を簡素化することができる。
[0028] また、請求項 4に係る脚式移動ロボットにあっては、爪先部が、ピッチ軸回りに回転 自在な回転軸を介して足部本体の前端に連結されるように構成したので、上記した 効果に加え、爪先立ち期間の接地面積を爪先部の屈曲角の多寡に関わらず一定に 保つことができる。
[0029] また、請求項 5に係る脚式移動ロボットにあっては、爪先部を初期位置に復帰させ る方向に付勢する付勢手段を備えるように構成したので、上記した効果に加え、爪先 部の初期位置への復帰を迅速に行うことができる。
[0030] また、請求項 6に係る脚式移動ロボットにあっては、屈曲角保持機構が、摩擦ブレ ーキカもなるように構成したので、上記したのと同様の効果を得ることができる。
[0031] また、請求項 7に係る脚式移動ロボットにあっては、屈曲角変化抑制機構が、ダン ノ からなるように構成したので、上記したのと同様の効果を得ることができる。
[0032] また、請求項 8に係る脚式移動ロボットにあっては、屈曲角保持機構および屈曲角 変化抑制機構が、摩擦力が調節自在な摩擦ブレーキ力 なるように構成したので、 上記した効果に加え、足部の構造をより簡素化することができる。
[0033] また、請求項 9に係る脚式移動ロボットにあっては、屈曲角保持機構および屈曲角 変化抑制機構が、ダンバからなるように構成したので、上記した効果に加え、足部の 構造をより簡素化することができる。
[0034] また、請求項 10に係る脚式移動ロボットの制御装置にあっては、爪先部の屈曲角 をその可動範囲で保持自在な屈曲角保持機構と、屈曲角保持機構を動作させて爪 先部の屈曲角の保持とその解除を制御する屈曲角制御手段を備えると共に、屈曲 角制御手段は、脚部の離床時あるいはそれよりも前の第 1のタイミングで爪先部の屈 曲角を保持した後、脚部が離床した後の第 2のタイミングでその保持を解除して爪先 部を初期位置に復帰させるように構成したので、脚部の離床後も離床時の屈曲角を 保持し続けることができ、よって離床直後に爪先部が床面に接触して姿勢が不安定 になるのを防止することができる。また、前記第 1のタイミングを離床時よりも前のタイミ ングに設定することで、爪先立ちしているときも爪先部の屈曲角を保持する (爪先部 をロックする)ことができるため、爪先立ち期間の安定性を向上させることができる。
[0035] また、請求項 11に係る脚式移動ロボットの制御装置にあっては、脚式移動ロボット の歩容を生成する歩容生成手段を備えると共に、屈曲角制御手段は、生成された歩 容に基づいて第 1および第 2のタイミングを決定するように構成したので、上記した効 果に加え、爪先部の屈曲角の保持およびその解除を適切なタイミングで実行すること ができる。
[0036] また、請求項 12に係る脚式移動ロボットの制御装置にあっては、爪先部の屈曲角 を検出する屈曲角検出手段と、脚式移動ロボットの歩容を生成する歩容生成手段と を備えると共に、屈曲角制御手段は、検出された屈曲角に基づいて第 1のタイミング を決定する一方、生成された歩容に基づいて第 2のタイミングを決定するように構成 したので、上記した効果にカ卩え、爪先部の屈曲角の保持およびその解除をより適切 なタイミングで実行することができる。
[0037] また、請求項 13に係る脚式移動ロボットの制御装置にあっては、屈曲角制御手段 は、さらに、脚部の離床中であって第 2のタイミングよりも後の第 3のタイミングで爪先 部の屈曲角を保持した後、脚部の着床後であって次回の第 1のタイミングよりも前の 第 4のタイミングでその保持を解除するように構成したので、上記した効果に加え、脚 部の着床時に十分な接地面積を確保することができる。
[0038] また、請求項 14に係る脚式移動ロボットの制御装置にあっては、脚式移動ロボット の歩容を生成する歩容生成手段を備えると共に、屈曲角制御手段は、生成された歩 容に基づいて第 1から第 4のタイミングを決定するように構成したので、上記した効果 に加え、爪先部の屈曲角の保持およびその解除を適切なタイミングで実行することが できる。
[0039] また、請求項 15に係る脚式移動ロボットの制御装置にあっては、爪先部の屈曲角 を検出する屈曲角検出手段と、脚式移動ロボットの歩容を生成する歩容生成手段と を備えると共に、屈曲角制御手段は、検出された屈曲角に基づいて第 1および第 3の タイミングを決定する一方、生成された歩容に基づいて前記第 2および第 4のタイミン グを決定するように構成したので、上記した効果に加え、爪先部の屈曲角の保持お よびその解除をより適切なタイミングで実行することができる。
[0040] また、請求項 16に係る脚式移動ロボットの制御装置にあっては、爪先部の屈曲角 変化を抑制する屈曲角変化抑制機構を備えると共に、屈曲角制御手段は、第 2のタ イミングで爪先部の屈曲角の保持を解除すると同時に、屈曲角変化抑制機構を動作 させて屈曲角を漸減させ、爪先部を徐々に初期位置に復帰させるように構成したの で、上記した効果に加え、爪先部を初期位置に復帰させたときにオーバーシュートや 振動が生じるのを防止することができる。
[0041] また、請求項 17に係る脚式移動ロボットの制御装置にあっては、爪先部の屈曲角 変化を抑制する屈曲角変化抑制機構を備えると共に、屈曲角制御手段は、第 4のタ イミング力 次回の第 1のタイミングまでの間、屈曲角変化抑制機構を動作させて足 部を通じて作用する床反力を制御するように構成したので、上記した効果に加え、爪 先立ち期間の安定性をより向上させることができる。
[0042] また、請求項 18に係る脚式移動ロボットの制御装置にあっては、爪先部の屈曲角 変化を、その屈曲角速度に対して設定された所定の抵抗特性に従って抑制する屈 曲角変化抑制機構を備えると共に、屈曲角制御手段は、第 4のタイミング力 次回の 第 1のタイミングまでの間、足部の位置姿勢を操作して屈曲角速度を調節し、よって 屈曲角変化抑制機構が発生する抵抗の大きさを変化させて足部を通じて作用する 床反力を制御するように構成したので、上記した効果に加え、爪先立ち期間の安定 '性をより向上させることができる。
[0043] また、請求項 19に係る脚式移動ロボットの制御装置にあっては、爪先部の屈曲角 変化を抑制する屈曲角変化抑制機構と、爪先部の屈曲角を検出する屈曲角検出手 段と、少なくとも検出された屈曲角に基づいて脚部が接地する床の形状を推定する 床形状推定手段とを備えると共に、屈曲角制御手段は、第 4のタイミング力 次回の 第 1のタイミングまでの間、少なくとも推定された床形状に基づいて屈曲角変化抑制 機構を動作させ、よって足部を通じて作用する床反力を制御するように構成したので 、上記した効果に加え、爪先立ち期間の安定性をより一層向上させることができる。 図面の簡単な説明
圆 1]この発明の第 1実施例に係る脚式移動ロボットである。
[図 2]図 1に示す脚式移動ロボットの足部の拡大断面図である。
圆 3]同様に、脚式移動ロボットの足部を示す拡大断面図である。
圆 4]同様に、脚式移動ロボットの足部を示す拡大断面図である。
圆 5]同様に、脚式移動ロボットの足部を示す拡大断面図である。
[図 6]図 1に示す脚式移動ロボットの制御ユニットの詳細を示すブロック図である。 圆 7]図 1に示す脚式移動ロボットの制御装置の構成および動作を機能的に示すブ ロック図である。
[図 8]図 1に示す脚式移動ロボットの制御装置の動作を示すフロー ·チャートである。
[図 9]図 7の複合コンプライアンス動作決定部の演算処理を示すブロック図である。
[図 10]図 9の補償全床反力モーメント分配器の演算処理を示すブロック図である。 圆 11]図 9の両脚補償角決定部の演算処理を示すブロック図である。
[図 12]図 9の足部補償角決定部の演算処理を示すブロック図である。
[図 13]図 2のダンバの絞り量制御の処理を示すブロック図である。
[図 14]図 2のダンバの制御モードなどの遷移を示すタイム ·チャートである。
[図 15]同様に、ダンバの制御モードなどの遷移を示すタイム ·チャートである。
圆 16]この発明の第 2実施例に係る脚式移動ロボットの足部を示す拡大断面図であ る。
[図 17]同様に、第 2実施例に係る脚式移動ロボットの足部を示す拡大断面図である。 圆 18]この発明の第 3実施例に係る脚式移動ロボットの足部を示す模式図である。
[図 19]同様に、第 3実施例に係る脚式移動ロボットの足部を示す模式図である。
[図 20]図 18の摩擦ブレーキの油圧制御の処理を示すブロック図である。
[図 21]図 18の摩擦ブレーキの制御モードなどの遷移を示すタイム ·チャートである。 [図 22]この発明の第 4実施例に係る脚式移動ロボットの足部を示す模式図である。
[図 23]同様に、第 4実施例に係る脚式移動ロボットの足部を示す模式図である。
[図 24]図 22の摩擦ブレーキの油圧制御の処理を示すブロック図である。
[図 25]図 22の摩擦ブレーキの制御モードなどの遷移を示すタイム'チャートである。
[図 26]この発明の第 5実施例に係る脚式移動ロボットの足部を示す拡大断面図であ る。
[図 27]同様に、第 5実施例に係る脚式移動ロボットの足部を示す拡大断面図である。
[図 28]同様に、第 5実施例に係る脚式移動ロボットの足部を示す拡大断面図である。
[図 29]同様に、第 5実施例に係る脚式移動ロボットの足部を示す拡大断面図である。
[図 30]この発明の第 6実施例に係る脚式移動ロボットの制御モードなどの遷移を示す タイム ·チャートである。
[図 31]第 6実施例に係る脚式移動ロボットの制御装置の中、足部補償角決定部の演 算処理を示すブロック図である。
[図 32]第 6実施例に係る摩擦ブレーキの油圧制御の処理を示すブロック図である。
[図 33]この発明の第 7実施例に係る脚式移動ロボットの制御モードなどの遷移を示す タイム ·チャートである。
[図 34]第 7実施例に係るダンバの絞り量制御の処理を示すブロック図である。
[図 35]この発明の第 8実施例に係る脚式移動ロボットの制御モードなどの遷移を示す タイム ·チャートである。
[図 36]第 8実施例に係る脚式移動ロボットの制御装置の中、足部補償角決定部の演 算処理を示すブロック図である。
[図 37]この発明の第 9実施例に係る脚式移動ロボットの制御装置の中、足部補償角 決定部の演算処理を示すブロック図である。
発明を実施するための最良の形態
[0045] 以下、添付図面に即してこの発明に係る脚式移動ロボットおよびその制御装置を実 施するための最良の形態について説明する。
実施例 1
[0046] 図 1は、この実施例に係る脚式移動ロボットを示す概略図である。 [0047] 図示の如ぐ脚式移動ロボット 1 (以下「ロボット」という)は、左右の脚部 (脚部リンク) 2R, 2L (前進方向右側を R、左側をしとする。以下同じ)を備える 2足歩行ロボットで ある。左右それぞれの脚部 2R(L)には、 6個の回転軸(自由度)が設けられる。 6個の 回転軸は上力も順に、股 (腰部)の脚部回旋用(Z軸回り)の回転軸 10R, 10L、股の ロール軸回り(X軸回り)の回転軸 12R, 12L、股のピッチ軸回り(Y軸回り)の回転軸 14R, 14L、膝部のピッチ軸回りの回転軸 16R, 16L、足首のピッチ軸回りの回転軸 18R, 18L、同ロール軸回りの回転軸 20R, 20Lから構成される。
[0048] 脚部 2R(L)の下端には足部(足平) 22R, 22Lが連結される。また、脚部 2R(L)の 上端には上体 24が連結される。上体 24の内部には、マイクロコンピュータ力もなる制 御ユニット 26などが格納される。上記において股関節(あるいは腰関節)は回転軸 10 R (L) , 12R(L) , 14R (L)から、膝関節は回転軸 16R(L)から、足首関節は回転軸 18R(L) , 20R(L)から構成される。また股関節と膝関節とは大腿リンク 28R, 28L、 膝関節と足首関節とは下腿リンク 30R, 30Lで連結される。
[0049] このように、ロボット 1の脚部 2R(L)には 6 * 2= 12個の回転軸が与えられる。そし て、各回転軸を電動モータ(図示せず)で適宜な角度に駆動することにより、脚部全 体に所望の動きを与えることができ、よってロボット 1を任意に歩行させることができる 。尚、ロボット 1は、上体 24に腕部や頭部を備えるが、それらは本願の特徴と直接の 関係を有しないため、図示および説明を省略する。
[0050] 足首関節の下方には公知の 6軸力センサ 34R, 34Lが取着され、力の 3方向成分 Fx, Fy, Fzとモーメントの 3方向成分 Mx, My, Mzとを測定し、足部 22R (L)の接地 の有無および足部 22R (L)を通じてロボット 1に作用する床反力(接地荷重)などを検 出する。また、上体 24には傾斜センサ 36が設置され、 Z軸 (鉛直方向(重力方向))に 対する傾きとその角速度を検出する。また、各回転軸を駆動する電動モータには、そ の回転量を検出するロータリエンコーダが隣接して配置される。
[0051] さらに、足部 22R (L)の接地端と 6軸力センサ 34R(L)の間には、パネ機構体 38R , 38Lが配置されると共に、足底には弾性体力もなる(具体的にはゴム製の)ソール 4 OR, 40Lが貼られてコンプライアンス機構 42R, 42Lを構成する。
[0052] 図 2から図 5は、足部 22の拡大断面図である。尚、左右の足部 22R (L)は左右対称 であるため、図 2以降の説明では R, Lを付すのを省略する。
[0053] 図 2に示すように、ソール 40は上下に重ねて配置された 2枚のゴム材 (床に接する ソールを符号 40aで示す、その上部に配置されたソールを符号 40bで示す)からなり 、その上部には足部プレート 46が配置される。足部プレート 46は、弾性変形自在な 金属材料から形成される。即ち、足部 22の足底は、弾性変形自在に構成される。
[0054] 足部プレート 46の上部には、前記したパネ機構体 38が配置される。パネ機構体 38 は、高剛性の金属材料カゝら形成されたパネ機構体フレーム 381と、パネ機構体フレ ーム 381によって規定される空間内に収容された複数個のゴムブッシュ(弾性体) 38 2と、ゴムブッシュ 382の上面に取り付けられたパネ機構体プレート 383とからなる。
[0055] パネ機構体プレート 383は、パネ機構体フレーム 381と同様に高剛性の金属材料 から形成される。また、パネ機構体プレート 383の上部には 6軸力センサ 34が取り付 けられると共に、 6軸力センサ 34の上部には足首関節 18, 20を介して脚部 2の下腿 リンク 30が連結される。
[0056] ロボット 1が床反力を受けると、コンプライアンス機構 42においてパネ機構体 38とソ ール 40a, 40b力橈み、足部 22の位置姿勢が変化する。この構造は、着床時の衝撃 を緩和するためだけでなぐ制御性を高めるためにも重要なものである。尚、その詳 細は本出願人が先に提案した特開平 5— 305584号に記載されているので、ここでの 説明は省略する。
[0057] また、足部 22は、ダンバ 50を備える。ダンバ 50は、流体 (例えばオイル)が封入さ れたシリンダ 50aと、シリンダ 50aの内部に摺動自在に配置されたピストン 50bと、ビス トン 50bを挟んで対畤するシリンダ 50a内の空間同士を連通する連通路 50cと、連通 路 50cの途中に設けられたオリフィス 50dと、オリフィス 50dの開口面積を零および所 定値 (零以外)の 、ずれかに調節する (換言すれば、オリフィス 50dを閉鎖あるいは開 口させる)電磁ソレノイド 50eと、ピストン 50bに接続されたピストンロッド 50fと力も構成 される。即ち、ダンバ 50は、オリフィス 50dを通過する流体の流動抵抗を利用するも のである。尚、図 2は、オリフィス 50dの開口面積が所定値に調節された状態を示す。 また、電磁ソレノイド 50eは、通電されているときにオリフィス 50dの開口面積を所定値 に調節し、非通電のときに零に調節する。 [0058] ダンバ 50の一端 (シリンダボトム)は、パネ機構体フレーム 381の前端 (進行方向に おける前端)にピッチ軸回りに回動自在に接続される。一方、ダンバ 50の他端 (ロッド ヘッド)は、足部プレート 46の前端にピッチ軸回りに回動自在に接続される。
[0059] ここで、オリフィス 50dの開口面積が所定値に調節されているとき(即ち、シリンダ 50 aの内部をピストン 50bが移動自在であってダンバ 50の伸縮が可能であるとき)に足 部 22の力かとが床面力も離床すると、図 3に示すように、弾性変形自在な足部 22の 中、高剛性部材カもなるパネ機構体フレーム 381が取り付けられた部位よりも前の部 位が橈みつつ屈曲する。以下、足部 22において、この屈曲する部位を「爪先部」とい い、符号 22tで示す。また、足部 22において爪先部 22t以外の残余の部位を「足部 本体」と ヽ、符号 22mで示す。
[0060] このように、足部 22は、パネ機構体 38などを介して脚部 2に連結された足部本体 2 2mと、その前端に設けられた爪先部 22tとからなる。また、爪先部 22tは、足部本体 22mに連続する弾性体力もなり、足部本体 22mに対して屈曲自在とされる。
[0061] 一方、図 4に示すように、爪先部 22tが屈曲しているときにオリフィス 50dの開口面 積を零に調節すると、ピストン 50bの移動 (ダンバ 50の伸縮)が不可となってそのとき の爪先部 22tの屈曲角(図 4に Θ tで示す)が保持される。また、ロボット 1が爪先立ち の状態にないときにオリフィス 50dの開口面積を所定値に戻してピストン 50bの移動 を可能とすると、ソール 40a, 40bおよび足部プレート 46の復元力によって爪先部 22 tが初期位置 (屈曲角が零度の位置)に復帰する。さらに、図 5に示すように、爪先部 22tが屈曲していないときにオリフィス 50dの開口面積を零に調節することで、爪先部 22tを初期位置に保持することも可能である。
[0062] 即ち、ダンバ 50の一端を足部本体 22m側に接続し、他端を爪先部 22t側に接続 すると共に、ダンバ 50の絞り量を調節してその伸縮を禁止する、具体的には、ダンバ 50に設けられた電磁ソレノイド 50eを駆動してオリフィス 50dの開口面積を零に調節 することで、爪先部 22tの屈曲角をそのときの角度のまま保持するようにした。換言す れば、足部本体 22mと爪先部 22tの間にダンバ 50を設け、そのオリフィス 50dの開 口面積を零力も所定値の間で調整自在に構成することで、爪先部 22tの屈曲角を、 爪先部 22tの可動範囲の全域で保持自在とした。別言すれば、爪先部 22tの屈曲角 を、爪先部 22tの可動範囲の中の任意の角度(さらに別言すれば、可動範囲におい て連続する全ての角度)に保持できるようにした。
[0063] また、ダンバ 50は、前述したようにオリフィス 50dを通過する流体の流動抵抗を利用 するものである。従って、爪先部 22tの屈曲角が保持されていないときも、屈曲角の 増減の抵抗となり、その変化が抑制される。
[0064] 即ち、ダンバ 50は、爪先部 22tの屈曲角をその可動範囲で保持自在な機構 (以下 「屈曲角保持機構」という)として機能すると同時に、屈曲角変化を抑制する機構 (以 下「屈曲角変化抑制機構」と 、う)としても機能する。
[0065] このように、足部 22は、脚部 2に連結される足部本体 22mと、足部本体 22mの前端 に設けられ、足部本体 22に対して屈曲自在な爪先部 22tとからなると共に、爪先部 2 2tの屈曲角をその可動範囲で保持自在な屈曲角保持機構ならびに屈曲角変化を 抑制する屈曲角変化抑制機構として、ダンバ 50を備えるようにした。
[0066] 図 6は制御ユニット 26の詳細を示すブロック図である。 6軸力センサ 34R (L)や傾 斜センサ 36などの出力は、制御ユニット 26において AZD変翻 60でデジタル値に 変換された後、バス 62を介して RAM64に入力される。また、各電動モータに隣接し て配置されるエンコーダの出力は、カウンタ 66を介して RAM64に入力される。
[0067] 制御ユニット 26の内部には CPU力もなる第 1、第 2の演算装置 70, 72が設けられ ており、第 1の演算装置 70は後述の如ぐ ROM74に格納されている歩容に基づい て各回転軸や爪先部の変位指令を算出し、 RAM64に送出する。また、第 2の演算 装置 72は RAM64からその指令と検出された実測値とを読み出し、各回転軸の駆動 や爪先部の屈曲角の調節に必要な制御値を算出して DZA変換器 76とサーボアン プを介して各関節を駆動する電動モータに出力する。さらに、制御ユニット 26には、 有線あるいは無線でジョイスティック 80が接続され、ロボット 1に対して直進や旋回な どの歩容に対する要求を外部力 入力できるように構成される。
[0068] 次 、で、この実施例に係る脚式移動ロボットの制御装置につ 、て詳説する。この実 施例に係る制御装置は、概説すると、本出願人が先に提案した特開平 10— 277969 号公報に記載される技術 (足部の姿勢傾きを操作してロボットに作用する床反力を適 切に制御する技術。以下「複合コンプライアンス制御」という)に、上記した屈曲自在 な爪先部に関連する制御を追加したものである。
[0069] 尚、以下の説明で使用する用語の意味は、上記特開平 10— 277969号公報(およ びその中で引用した文献)での定義に従うものとする。また、以下の説明において、 本願の特徴部以外の構成についてはその動作の概要のみを説明するが、具体的に は、先に提案した上記文献に詳説される条件や数式などに従って行われる。
[0070] 図 7は、この実施例に係る脚式移動ロボットの制御装置の構成および動作を機能的 に示すブロック図である。
[0071] 図 7に示す如ぐ制御装置は歩容生成器 100を備え、歩容生成器 100は目標歩容 を生成して出力する。目標歩容は、目標運動パターンと目標床反力パターン、より具 体的には目標上体位置姿勢軌道、目標足部位置姿勢軌道、目標全床反力中心点( 目標 ZMP)軌道および目標全床反力軌道 (あるいはパターン)からなる。
[0072] 歩容生成器 100が出力する目標全床反力は、目標運動パターンに対して動力学 的に平衡する全床反力である。従って、目標全床反力中心点は、目標 ZMPに一致 する。
[0073] 目標床反力分配器 102は、上記した目標全床反力中心点(目標 ZMP)と目標足部 位置姿勢を主な入力とし、目標各足部床反力中心点を決定して出力する。実際には 、歩容生成器 100から歩容のパラメータ (例えば、両脚支持期の時間や遊脚足部の 目標着地位置など)や、歩容の時期'時刻(例えば、現在時刻が両脚支持期の初め 力 0. l[sec]であるなど)などの情報も必要に応じて取り込む。
[0074] また、目標床反力分配器 102は、目標各足部床反力も決定して出力する。目標各 足部床反力は、コンプライアンス機構 42の橈み補償のために必要である。
[0075] 姿勢安定ィ匕制御演算部 104は、センサ情報に基づいてロボット 1の状態を推定し、 補償全床反力を算出する。
[0076] また、実各足部床反力検出器 108は、 6軸力センサ 34の出力に従って実各足部床 反力(その合力が実全床反力)を検出する。さらに、関節のエンコーダによって検出さ れる実変位 (および Zまたは変位指令)に基づき、上体 24に固定された座標系に対 する各足部 22R (L)の相対位置姿勢を算出し、それによつて 6軸力センサ 34の検出 値を座標変換し、上体に固定された座標系で表現された実各足部床反力を算出し た後、支持脚座標系に変換する。
[0077] ロボット幾何学モデル (逆キネマテイクス演算部) 110は、上体位置姿勢と足部位置 姿勢を入力されると、それらを満足する各関節変位を算出する。ここでは逆キネマテ イクスの解の式を直接的に求めておき、式に上体位置姿勢と足部位置姿勢を代入す るだけで各関節変位を得るようにした。即ち、ロボット幾何学モデル 110は、目標上体 位置姿勢と後述する複合コンプライアンス動作決定部で修正された修正目標足部位 置姿勢軌道 (機構変形補償付き修正目標足部位置姿勢軌道)を入力し、それらから 12個の回転軸(10R(L)など)の変位指令 (値)を算出する。
[0078] 変位コントローラ 112 (前記した第 2の演算装置 72に同じ)は、ロボット幾何学モデ ル (逆キネマテイクス演算部) 110で算出された関節変位指令 (値)を目標値として口 ボット 1の 12個の回転軸の変位を追従制御する。
[0079] また、複合コンプライアンス動作決定部 114は、目標全床反力と補償全床反力の合 力に実全床反力を一致させるように、目標足部位置姿勢軌道を修正する。尚、上記 した「全床反力」や「足部床反力」は、具体的には作用点とそこにかかる力と力のモー メントによって表現され、実際の演算には、下記の如くその力成分やモーメント成分 が使用される。
[0080] 上記を前提とし、図 8フロー ·チャート (構造化フロー ·チャート)を参照してこの装置 の動作を説明する。尚、図の左端に該当する処理を行う図 7ブロック図の構成要素を 示す。
[0081] 先ず S10において装置を初期化し、 S12を経て S14に進み、タイマ割り込みを待機 する。タイマ割り込みは 50[msec]ごとになされる。即ち、この装置の制御周期は 50 Lmsec]である。
[0082] 続いて S16に進んで歩容の切り変わり目、具体的には支持脚の切り変わり目力否 か判断し、否定されるときは S22〖こ進むと共〖こ、肯定されるときは S 18に進んでタイマ tをイニシャライズし、 S20に進んで目標歩容パラメータを設定する。前記の如ぐ歩 容パラメータは、運動パラメータと床反力パラメータ (ZMP軌道パラメータ)から構成さ れる。
[0083] 続いて S22に進み、目標歩容の瞬時値を決定する。ここで『瞬時値』は制御周期ご との値を意味し、目標歩容瞬時値は、目標上体位置姿勢、目標各足部位置姿勢、お よび目標 ZMP位置力も構成される。尚、ここで『姿勢』とは、 X, Υ, Z空間における『 向き』を意味する。
[0084] 続いて S24に進んで目標各足部床反力中心点を求め、さらに S26に進んで目標 各足部床反力を求める。
[0085] 続いて S28に進み、前記した傾斜センサ 36などの出力から上体 24の傾斜などロボ ット 1の状態を検出する。
[0086] 続いて S30に進み、ロボット 1の状態など力も姿勢を安定ィ匕するための(目標全床 反力中心点(目標 ZMP)回りの)補償全床反力モーメント Mdmdx, Mdmdyを求める
[0087] 続いて S32に進んで実各足部床反力を検出する。これは前記の如ぐ 6軸力センサ 34の出力から検出する。
[0088] 続、て S 34に進み、両脚補償角 Θ dbvおよび各足部補償角 Θ nx (y)を決定する。
これは、前記した複合コンプライアンス動作決定部 114が行う作業である。
[0089] 尚、この明細書で「n」とは脚部の通し番号 (n: 1または 2)であり、ある歩容の期間に 床面に接触したままの脚部を「1」、もう一方を「2」と表現する。
[0090] 図 9は複合コンプライアンス動作決定部 114の演算処理を示すブロック図であり、 同図を参照してその処理を説明する。
[0091] 補償全床反力モーメント分配器 114aは、補償全床反力モーメント Mdmdを、両脚 補償モーメント Mdmddb、各足部補償モーメント Mdmdlx, Mdmdly, Mdmd2x, Mdmd2yに分配する。両脚補償モーメント Mdmddb (その V方向回りの成分を Mdm ddbvと記述する)は、両脚補償角(足部上下量) Θ dbvを操作することによって目標 全床反力中心点(目標 ZMP)回りに各足部床反力の力成分が作るモーメントの目標 値である。尚、上記で「V」とは、目標各足部床反力中心点を含み、かつ水平面と垂 直な平面の法線ベクトルであり、その大きさは 1とする。
[0092] 分配は、具体的には、図 10に示すブロック図に従って行われる。図 10において、 Wdbx, Wdby, Wlx, Wly, W2x, W2yおよび Wdbintは分配用重み変数である。 Vxはベクトル Vの X成分の値、 Vyはベクトル Vの Y成分の値である。この中で、 Wdbi ntは、両脚補償角を操作することによって発生した全床反力モーメントを、各足部補 償角を操作することによって打ち消すためのものである。
[0093] 図 9の説明に戻ると、次に、実各足部床反力と分配された補償全床反力モーメント などから、両脚補償角決定部 114bおよび第 n足部 X(Y)補償角決定部 114c, 114d
, 114e, 114fにおいて前述の補償角 0 dbvおよび 0 nx (y)を決定する。
[0094] 図 11は、両脚補償角決定部 114bの演算処理のブロック図であり、両脚補償角 Θ d bvは図示の如く演算される。
[0095] 図 11を参照して説明すると、目標第 1足部床反力中心点 Q1に作用する実床反力 の力成分 Flactと目標第 2足部床反力中心点 Q2に作用する実床反力の力成分 F2 actに基づき、目標全床反力中心点 Pの回りに発生させるモーメント Mf If 2actを求 める。
[0096] 次に、 Mflf2actのベクトル V方向成分 Mflf2actvを抽出する。次に、 Mflf2actv をローパスフィルタ 114iに通し、 Mf If 2actvfiltを得る。
[0097] 次に、両脚補償モーメント V方向成分 Mdmddbvを補償フィルタ 114jに通し、それ を、 Mf lf2actvfiltから減じ、偏差モーメント V方向成分 Mdiffvを得る。
[0098] 尚、補償フィルタ 114jは、両脚補償モーメント V方向成分 Mdmddbvから実全床反 力モーメントまでの伝達関数の周波数応答特性を改善するものである。
[0099] 次に、コンプライアンス機構 42の変形による両脚補償モーメント V方向成分 Mdmd dbvへの影響を打ち消すための両脚機構変形補償角 Θ ffdbvを求める。これは、い わゆるフィードフォワード補償である。
[0100] 最後に、偏差モーメント V方向成分 Mdiffvと制御ゲイン Kdbの積に両脚機構変形 補償角 Θ ffdbvを加算して両脚補償角 Θ dbvを得る。
[0101] 次いで、第 n足部補償角決定部について説明する。図 12はその中の第 1足部 X補 償角決定部 114cの演算処理を示すブロック図であり、第 1足部 X補償角決定部 114 cは第 1足部 X補償角 θ lxを図示の如く演算する。説明は省略するが、第 1足部 Y補 償角 Θ ly、第 2足部 X補償角 θ 2x、第 2足部 Y補償角 Θ 2yも同様に求める。ここで は第 1足部 X補償角 Θ lxを求めるアルゴリズムだけを説明する。
[0102] 実第 1足部床反力モーメント X成分 Mlactxをローパスフィルタ 114kに通して Mia ctfiltxを得る。第 1足部補償モーメント X成分 Mdmdlxを補償フィルタ 114mに通し
、それを、 Mlactfiltxから減じ、偏差モーメント Mdiff lxを得る。両脚補償角決定と 同様、補償フィルタ 114mは、 Mdmdlxから実全床反力までの伝達関数の周波数応 答特性を改善するものである。
[0103] 次に、両脚補償角決定と同様、コンプライアンス機構 42の変形による第 1足部補償 モーメント X成分への影響を打ち消すための第 1足部 X機構変形補償角 Θ ff lxを求 める。これは、いわゆるフィードフォワード補償である。
[0104] 最後に、偏差モーメント Mdifflxと制御ゲイン Klxの積に第 1足部 X機構変形補償 角 Θ fflxを加算して第 1足部 X補償角 Θ lxを得る。
[0105] 図 9の説明に戻ると、次に、修正目標足部位置姿勢算出部 114gは、両脚補償角
Θ dbv,第 1足部 X補償角 θ lx、第 1足部 Y補償角 Θ ly、第 2足部 X補償角 θ 2x、 第 2足部 Y補償角 Θ 2yに基づいて目標足部位置姿勢を修正し、修正目標足部位置 姿勢を得る。
[0106] 機構変形量算出部 114hは、目標各足部床反力によって発生が予想されるコンプ ライアンス機構 42の変形量を求める。
[0107] 機構変形補償付き修正目標足部位置姿勢算出部 114ηは、算出された機構変形 量を打ち消すように、修正目標足部位置姿勢をさらに修正し、機構変形補償付き修 正目標足部位置姿勢を得る。
[0108] 上記を前提として図 8フロー ·チャートの説明に戻ると、前記の如ぐ S34において 上記した補償角を決定する。
[0109] 次いで S36に進み、目標各足部床反力に基づいて機構変形補償量を算出し、 S3
8に進んで目標足部位置姿勢を補償角 Θ dbv, Θ nx(y)に応じて修正し、さらにこれ を機構変形補償量に応じて修正し、機構変形補償付き修正目標足部位置姿勢を得 る。
[0110] 次いで S40に進み、上体位置姿勢と機構変形補償入り修正足部位置姿勢から関 節変位指令 (値)を算出し、 S42に進んで実関節変位を算出された関節変位指令( 値)に追従させるようサーボ制御し、 S44に進んで時刻を A tだけ更新し、 S14に戻つ て上記の処理を繰り返す。 [0111] 次いで、図 13から図 15を参照し、この実施例に係る脚式移動ロボットの制御装置 の動作の中、爪先部 22tの屈曲角の保持およびその解除動作について説明する。
[0112] 図 13は、ダンバ 50の絞り量制御の処理を示すブロック図である。
[0113] 図示の如ぐ制御装置はセレクトスィッチ 118を備える。セレクトスィッチ 118には、「 CLOSEJおよび「OPEN」の 2種からなるダンバ 50の制御モードに対応した Rd_clos e (オリフィス 50dの閉鎖指令。即ち、屈曲角の保持指令)および Rd_open (オリフィス 50dの開口指令。即ち、屈曲角保持の解除指令)の 2つの信号が入力される。そして 、そのうちのいずれかを後述する所定のタイミングで選択し、ダンバ絞り量指令 R_d ( 具体的には、電磁ソレノイド 50eへの通電指令値)としてダンバ 50に出力する。
[0114] 図 14は、ロボット 1が平地を移動するときのダンバ 50の制御モードなどの遷移を示 すタイム'チャートである。尚、図 14において目標足部姿勢角とは、足部 22が水平で あるときに零、足部 22の前端が後端よりも下方に位置するときに正値、足部 22の前 端が後端よりも上方に位置するときに負値を示す。従って、例えば脚部 2が着床して おり、かつ目標足部姿勢角が正値であるときは、ロボット 1が爪先立ちしていることを 示す。また、 目標足部床反力並進力鉛直成分とは、 目標とする床反力の並進成分の 中、 Z軸方向の力成分を意味する。
[0115] 図 14タイム'チャートについて概説すると、脚部 2の離床時たる第 1のタイミング tlか ら離床後の第 2のタイミング t2までは「CLOSE」が選択され、第 2のタイミング t2から 脚部 2が着床する前の第 3のタイミング t3までは「OPEN」が選択される。また、第 3の タイミング t3から脚部 2が着床して爪先立ちが開始される第 4のタイミング t4までは再 度「CLOSE」が選択され、第 4のタイミング t4力も次回の第 1のタイミング tlまでは「0 PEN」が選択される。
[0116] 即ち、脚部 2の離床時たる第 1のタイミング tlで爪先部 22tの屈曲角を保持した後、 脚部 2が離床した後の第 2のタイミング t2で屈曲角の保持を解除する。さらに、第 2の タイミング t2よりも時間的に後で、かつ脚部 2の着床前の第 3のタイミング t3で爪先部 22tの屈曲角を再度保持し、脚部 2の着床後であって次回の第 1のタイミング tlよりも 時間的に前の第 4のタイミング t4でその保持を解除する。
[0117] 以下具体的に説明すると、爪先立ちが開始される第 4のタイミング t4力 離床時た る第 1のタイミング tlまでの間 (即ち、爪先立ちの期間)、屈曲角の保持を解除して爪 先部 22tを屈曲自在とすることで、足部姿勢角の変化に応じて爪先部 22tを屈曲させ
、よって蹴り出しに必要な接地面積を確保する。
[0118] 次いで、離床する瞬間の屈曲角を、離床した後の第 2のタイミング t2まで (具体的に は、爪先部 22tが床面から十分に離れるまで)保持し続ける。
[0119] そして、第 2のタイミング t2で屈曲角の保持を解除することにより、爪先部 22tを初 期位置に復帰させる。このとき、ダンバ 50の流動抵抗によって爪先部 22tの屈曲角 は漸減し、初期位置に徐々に復帰する。
[0120] さらに、離床中であって前記第 2のタイミング t2よりも時間的に後の第 3のタイミング t
3 (より詳しくは、爪先部 22tが初期位置に復帰した後のタイミング)力も爪先立ちが開 始する第 4のタイミング t4 (換言すれば、足部 22のべた接地終了時)まで爪先部 22t の屈曲角を保持し、爪先部 22tを初期位置にロックすることにより、着床時およびべた 接地時の接地面積を最大限に確保する。
[0121] 尚、上記した第 1のタイミング tlから第 4のタイミング t4は、いずれも歩容生成器 10
0が出力するロボット 1の目標歩容に基づいて決定される。
[0122] 図 15は、ロボット 1が階段を上るときのダンバ 50の制御モードなどの遷移を示すタイ ム'チャートである。
[0123] 一般に、階段を上るときは支持脚後期に爪先立ちの期間が長く発生する。上述した コンプライアンス制御は、足部の姿勢傾きを操作してロボットに作用する床反力を適 切に制御する技術であることから、爪先部 22tが屈曲自在な期間が長くなると制御性 の低下を招くおそれがある。そこで、図 15に示すように、階段を上るときは、爪先部 2 2tの屈曲角を保持する第 1のタイミング tlを、脚部 2の離床時よりも時間的に前のタイ ミングに設定するようにした。
[0124] 具体的には、図示の如ぐ爪先立ち期間の後半は目標足部姿勢角を一定にすると 共に、爪先部 22tの屈曲角を保持するようにした。これにより、上述したコンプライアン ス制御が爪先立ち期間の後半に有効に働くようになり、姿勢を安定ィ匕することができ る。
[0125] このように、第 1実施例に係るロボット 1にあっては、爪先部 22tの屈曲角をその可動 範囲で保持自在な屈曲角保持機構としてダンバ 50を備えると共に、脚部 2の離床時 あるいはそれよりも時間的に前の第 1のタイミング tlから脚部 2が離床した後の第 2の タイミング t2までの間、爪先部 22tの屈曲角を保持するようにしたので、脚部 2の離床 後も離床時の屈曲角を保持し続けることができ、よって離床直後に爪先部 22tが床面 に接触してロボット 1の姿勢が不安定になるのを防止することができる。さらに、屈曲 角の保持を開始する第 1のタイミング tlを離床時よりも前のタイミングに設定すること で、爪先立ちしているときも爪先部 22tの屈曲角を保持する(爪先部 22tをロックする )ことができるため、爪先立ちしているときの安定性を向上させることができる。
[0126] さらに、脚部 2離床中であって前記第 2のタイミング t2よりも後の第 3のタイミング t3 力 爪先立ちが開始する第 4のタイミング t4まで、爪先部 22tの屈曲角を保持して爪 先部 22tを初期位置にロックするようにしたので、着床時およびべた接地時の接地面 積を最大限に確保することができる。
[0127] また、ダンバ 50が爪先部 22tの屈曲角変化を抑制する屈曲角変化抑制機構として も機能することから、爪先部 22tが初期位置に復帰する際にオーバーシュートや振動 が発生するのを防止することができる。
[0128] また、爪先部 22tが、足部本体 22mに連続すると共に、橈みつつ屈曲する弹性材 力もなるようにしたので、足部 22の構造を簡素化することができる。
実施例 2
[0129] 次いで、図 16および図 17を参照し、この発明の第 2実施例に係る脚式移動ロボット およびその制御装置について説明する。
[0130] 図 16および図 17は、第 2実施例に係る脚式移動ロボットの足部を示す拡大断面図 である。
[0131] 以下、第 1実施例との相違点に焦点をおいて説明すると、第 2実施例に係る足部 2 22にあっては、図 16および図 17に示すように、足部本体 222mと爪先部 222tを分 割し、ピッチ軸回りに回転自在な回転軸 222aを介してそれらを連結するようにした。 即ち、回転軸 222aを回動させることにより、爪先部 222tを足部本体 222mに対して 屈曲させるようにした。
[0132] また、回転軸 222aを介して足部本体 222mと爪先部 222tを連結するようにしたの で、第 1実施例のように足部に弾性を与える必要がない。このため、足部本体 222m 側の足部プレート 46mを、パネ機構体フレーム 381と一体的に高剛性の金属材料か ら形成するようにした。同様に、爪先部 222t側の足部プレート 46tも、高剛性の金属 材料から形成される。
[0133] 一方、足部が弾性を備えないことから、爪先部 222tを初期位置に復帰させる方向 に付勢する復元パネ 222bを設け、爪先部 222tの初期位置への復帰をアシストする ようにした。復元パネ 222bは、具体的には圧縮コイルパネであり、ピストンロッド 50f のロッドヘッドに設けられたフランジ 222cとシリンダ 50aの間に介挿される。
[0134] 尚、残余の構成は第 1実施例と同様であるので、説明を省略する。
[0135] このように、第 2実施例にあっては、爪先部 222tと足部本体 222mを分割すると共 に、回転軸 222aを介してそれらを連結するようにしたので、第 1実施例と同様の効果 を得ることができる。また、回転軸 222aを回動させることによって爪先部 222tを屈曲 させるようにしたことから、その屈曲角の多寡に関わらず爪先立ち期間の接地面積を 一定に保つことができる。さらに、復元パネ 222bを設けることで、爪先部 222tの初期 位置への復帰を迅速に行うことができる。
実施例 3
[0136] 次いで、図 18から図 21を参照し、この発明の第 3実施例に係る脚式移動ロボットお よびその制御装置について説明する。
[0137] 図 18および図 19は、第 3実施例に係る脚式移動ロボットの足部を示す模式図であ る。
[0138] 第 1実施例との相違点に焦点をおいて説明すると、第 3実施例に係る足部 223にあ つては、爪先部 223tの屈曲角をその可動範囲で保持自在な屈曲角保持機構として 摩擦ブレーキ 60を備えると共に、屈曲角変化を抑制する屈曲角抑制機構としてダン パ 500を備えるようにした。
[0139] 摩擦ブレーキ 60は、爪先部 223tの前端にピッチ軸回りに回動自在に取り付けられ たシャフト 60aと、足部本体 223mの適宜位置にピッチ軸回りに回動自在に取り付け られた把持機構 60bとからなる。シャフト 60aは、把持機構 60bの内部に移動自在に 挿通される。把持機構 60bは、図示しない油圧発生ユニットから油圧を供給されると、 シャフト 60aを囲むように配置されたブレーキをシャフト 60aに押圧し、よってシャフト 6 Oaを把持する。これにより、シャフト 60aの移動が不可となって爪先部 223tの屈曲角 が保持される。
[0140] ダンバ 500は、第 1実施例および第 2実施例で述べたダンバ 50と同様に、流体の 流動抵抗を利用したものであるが、以下の点で異なる。即ち、第 3実施例に係る足部 223にあっては、屈曲角保持機構として摩擦ブレーキ 60を備えることから、ダンバ 50 0には力かる機能は要求されない。従って、ダンバ 500は、前述したダンバ 50に設け られて 、たオリフィスの開口面積を調節する電磁ソレノイドを備えな 、。
[0141] 次いで、第 3実施例に係る脚式移動ロボットの制御装置の動作の中、爪先部 223t の屈曲角の保持およびその解除動作にっ 、て説明する。
[0142] 図 20は、摩擦ブレーキ 60の油圧制御の処理を示すブロック図である。
[0143] 図示の如ぐ第 3実施例に係る制御装置は、セレクトスィッチ 120を備える。セレクト スィッチ 120には、「LOCK」および「FREE」の 2種からなる摩擦ブレーキ 60の制御 モードに対応した P_high (高圧指令。具体的には、屈曲角の保持指令)および P_zer o (油圧供給停止指令。具体的には、屈曲角保持の解除指令)の 2つの信号が入力 される。そして、そのうちのいずれかを上述した所定のタイミングで選択し、油圧指令 P_bとして油圧発生ユニットに出力する。
[0144] 図 21は、ロボット 1が平地を移動するときの摩擦ブレーキ 60の制御モードなどの遷 移を示すタイム ·チャートである。
[0145] 図 21タイム'チャートに示すように、第 3実施例に係る爪先部の屈曲角の保持およ びその解除のタイミングは、従前の実施例のそれ(図 14)と同じである。また、図示は 省略するが、ロボット 1が階段を上るときも従前の実施例(図 15)と同様のタイミングで 爪先部の屈曲角の保持およびその解除を行えば良 、。
[0146] このように、第 3実施例にあっては、爪先部 223tの屈曲角をその可動範囲で保持 自在な屈曲角保持機構として摩擦ブレーキ 60を備えると共に、屈曲角変化を抑制す る屈曲角変化抑制機構としてダンバ 500を備えるようにしたので、従前の実施例と同 様の効果を得ることができる。
[0147] 尚、残余の構成は従前の実施例と同様であるため、説明を省略する。また、上記の 説明は、第 2実施例で述べた足部 222において、ダンバ 50に代えて摩擦ブレーキ 6 0とダンバ 500を設けた場合にも妥当するものである。
実施例 4
[0148] 次いで、図 22から図 25を参照し、この発明の第 4実施例に係る脚式移動ロボットお よびその制御装置について説明する。
[0149] 図 22および図 23は、第 4実施例に係る脚式移動ロボットの足部を示す模式図であ る。
[0150] 図 22および図 23に示すように、第 4実施例に係る足部 224にあっては、第 1実施 例の足部 22に設けられたダンバ 50に代え、摩擦ブレーキ 60を備える。
[0151] 従前の実施例との相違点について説明すると、第 4実施例にあっては、上記した摩 擦ブレーキ 60の摩擦力を調節自在とし、よって摩擦ブレーキ 60を、爪先部 224tの 屈曲角変化を抑制する屈曲角変化抑制機構としても機能させるようにした。
[0152] 即ち、摩擦ブレーキ 60の供給油圧を上記 P_highと P_zeroの間の値に設定すること で、シャフト 60aの移動を抑制し、よって爪先部 224tの屈曲角の変化を抑制するよう にした。
[0153] 以下、第 4実施例に係る脚式移動ロボットの制御装置の動作の中、爪先部 224tの 屈曲角の保持およびその解除動作にっ 、て説明する。
[0154] 図 24は、摩擦ブレーキ 60の油圧制御の処理を示すブロック図である。
[0155] 図示の如ぐ第 4実施例に係る制御装置は、セレクトスィッチ 122を備える。セレクト スィッチ 122には、「LOCK:」、 「SEMIFREE」および「FREE」の 3種からなる摩擦ブ レーキ 60の制御モードに対応した P_high (高圧指令。具体的には、屈曲角の保持指 令)、 P_low (低圧指令。具体的には、屈曲角変化の抑制指令)および P_zero (油圧 供給停止指令。具体的には、屈曲角保持の解除指令)の 3つの信号が入力される。 そして、そのうちのいずれかを上述した所定のタイミングで選択し、油圧指令 P_bとし て油圧発生ユニットに出力する。
[0156] 図 25は、第 4実施例に係る摩擦ブレーキ 60の制御モードなどの遷移を示すタイム' チャートである。
[0157] 図 25タイム'チャートに示すように、第 4実施例にあっては、第 2のタイミング t2から 第 3のタイミング t3までの間、摩擦ブレーキ 60の制御モードとして「SEMIFREE」を 選択し、爪先部 224tの屈曲角の変化を抑制するようにした。即ち、第 2のタイミング t 2で爪先部 224tの屈曲角の保持を解除すると同時に、摩擦ブレーキ 60の摩擦力を 利用して屈曲角を漸減させ、初期位置に徐々に復帰させるようにした。これにより、爪 先部 224tが初期位置に復帰する際のオーバーシュートや振動の発生を防止するこ とがでさる。
[0158] 尚、図 25はロボット 1が平地を移動するときのタイム ·チャートであり、階段を上るとき は、従前の実施例と同様に第 1のタイミング tlを脚部の離床時よりも前のタイミングに 設定すれば良い。また、残余の構成は従前の実施例と同様であるので、説明を省略 する。
[0159] また、上記の説明は、第 2実施例で述べた足部 222において、ダンバ 50に代えて 摩擦ブレーキ 60を設けた場合にも妥当する。
実施例 5
[0160] 次いで、図 26から図 29を参照し、この発明の第 5実施例に係る脚式移動ロボットお よびその制御装置について説明する。
[0161] 図 26および図 27は、第 5実施例に係る脚式移動ロボットの足部を示す拡大断面図 である。
[0162] 図 26および図 27に示すように、第 5実施例にあっては、第 1実施例に係る足部 22 に設けられたダンバ 50の内部に、ピストンロッド 50fの変位 (ストローク量)を検出する ストロークセンサ 22s (リニアエンコーダゃポテンショメータなど)を設けるようにした。尚 、ストロークセンサ 22sの検出値は、前記した制御ユニット 26の RAM64に入力される
[0163] ピストンロッド 50fのストローク量は、図示の如ぐ爪先部 22tの屈曲角に応じて変化 する。即ち、ピストンロッド 50fのストローク量を検出することは、爪先部 22tの屈曲角 を検出することに相当する。以下、ストロークセンサ 22sの検出値を、爪先部 22tの屈 曲角の検出値として扱う。
[0164] 次いで、第 5実施例に係る脚式移動ロボットの制御装置について説明する。
[0165] 第 5実施例にあっては、前述した第 1のタイミング tlと第 3のタイミング t3を、爪先部 22tの屈曲角の検出値に基づ 、て決定するようにした。
[0166] 具体的には、第 4のタイミング t4で爪先部 22tの屈曲角の保持を解除した後、屈曲 角の検出値が所定値に達したときを第 1のタイミング tlと決定し、屈曲角を保持する。 また、第 2のタイミング t2で爪先部 22tの屈曲角の保持を解除した後、屈曲角の検出 値が零に達したときを第 3のタイミング t3と決定し、屈曲角を再度保持する。
[0167] 尚、残余の構成は従前の実施例と同様であるため、説明を省略する。
[0168] このように、第 5実施例にあっては、爪先部 22tの屈曲角を検出するセンサを設け、 検出値に基づいて屈曲角の保持を開始する第 1および第 3のタイミング tl, t3を決定 するようにしたので、従前の実施例で述べた効果に加え、爪先部 22tの屈曲角の保 持動作をより適切なタイミングで実行することができる。
[0169] 尚、上記の説明は、図 28および図 29に示すように、第 2実施例に係る足部 222に 回転軸 222aの回転角を検出する回転角センサ 222s (ロータリエンコーダや回転式 ポテンショメータなど)を設け、よって爪先部 222tの屈曲角を検出するようにした場合 にも妥当するものである。また、第 3実施例および第 4実施例で説明した各足部に上 記各センサを設けた場合にも、同様に妥当する。
実施例 6
[0170] 次いで、図 30から図 32を参照し、この発明の第 6実施例に係る脚式移動ロボットお よびその制御装置について説明する。尚、以下の説明では、第 4実施例で説明した 足部 224を備える脚式移動ロボットを前提とする。
[0171] 第 6実施例にあっては、爪先立ちの期間、摩擦ブレーキ 60を動作させて床反カモ 一メントを制御するようにした。
[0172] 従前の実施例との主な相違点は、前述した足部補償角決定部 114c一 114fの演 算処理と、屈曲角変化抑制機構の動作にあるので、以下、その点に焦点をおいて説 明する。
[0173] 図 30は、第 6実施例に係る摩擦ブレーキ 60の制御モードなどの遷移を示すタイム' チャートである。
[0174] 図 30に示すように、この実施例に係る摩擦ブレーキ 60の制御モードは、「LOCK」 、「CNTRL」および「SEMIFREE」の 3種からなる。また、コンプライアンス制御モー ド(後述)は、「HOLD」、「CNTRL」および「RET」の 3種からなる。
[0175] 図 31は、第 6実施例に係る脚式移動ロボットの制御装置の中、足部補償角決定部 の演算処理を示すブロック図である。尚、第 1足部 X補償角 Θ lx、第 1足部 Y補償角 Θ ly、第 2足部 X補償角 θ 2x、第 2足部 Y補償角 Θ 2yのいずれも同様のァルゴリズ ムで求められることから、下記では脚部の通し番号 (n: l, 2)や X, Yの記載は省略す る。
[0176] 図 31に示す処理で特徴的なことは、セレクトスィッチ 130を備え、コンプライアンス 制御モードに応じて積分器 132の入力が切り換えられることである。
[0177] 最初に、コンプライアンス制御モードとして「CNTRL」が選択されているとき(セレク トスイッチ 130が CNTRL側に接続されているとき)の処理について説明すると、先ず 、実足部床反力モーメント Mactを発振防止用のローパスフィルタ 134に通して Mact filtを得る。また、足部補償モーメント Mdmdを補償フィルタ 136に通し、それを Mact filt力も減じ、偏差モーメント Mdiffを得る。補償フィルタ 136は、図 12に示したそれと 同様、足部補償モーメント Mdmdから実全床反力までの伝達関数の周波数応答特 性を改善するものである。
[0178] そして、偏差モーメント Mdiffに K_cmpl (制御ゲイン)を乗じることによってコンプラ ィアンス制御補償要求角 Θ cmpl_dmdを求め、それを微分器 138で微分した後、さら に積分器 132で積分してコンプライアンス制御補償角 Θ cmplを得る。
[0179] 次に、図 12で示した処理と同様に足部機構変形補償角 Θ ffを求め、それをコンプ ライアンス制御補償角 Θ cmplに加算して足部補償角 Θを得る。
[0180] 尚、積分器 132の値は、「CNTRL」モードとなる前に次に説明する「RET」モード でほぼ零になっているので、コンプライアンス制御補償角 Θ cmplはコンプライアンス 制御補償要求角 Θ cmpl_dmdにほぼ一致する。
[0181] 次に、コンプライアンス制御モードとして「RET」が選択されているときの処理につい て説明する。コンプライアンス制御モードとして「RET」が選択されると、セレクトスイツ チ 130が RET側に接続され、積分器 132にはコンプライアンス制御補償角 Θ cmpl に K_retを乗じた値が入力される。これにより、コンプライアンス制御補償角 Θ cmpl の変化率が、 K_ret * Θ cmplとなる。即ち、コンプライアンス制御補償角 Θ cmplは 、時定数 lZK_retの 1次遅れ系のステップ応答で、徐々に零に戻る。
[0182] 一方、コンプライアンス制御モードとして「HOLD」が選択されると、セレクトスィッチ
130が HOLD側に接続され、積分器 132に零が入力される。即ち、コンプライアンス 制御補償角 Θ cmplとして、それまでの値が保持される。
[0183] 次いで、第 6実施例に係る摩擦ブレーキ 60の油圧制御について説明する。図 32は
、その制御の処理を示すブロック図である。
[0184] 図 32について説明すると、先ず、実足部床反力モーメント Mactを発振防止用の口 一パスフィルタ 140に通して Mactfiltを得る。また、足部補償モーメント Mdmdを周 波数応答特性改善用の補償フィルタ 142に通し、それを Mactfilt力も減じ、偏差モ 一メント Mdiffを得る。
[0185] 次に、偏差モーメント Mdiffに K_b (制御ゲイン)を乗じることによって要求圧 P_dmd を求め、それにオフセット圧 P_off setを加算して得た値を油圧指令 P_bとして油圧発 生ユニットに出力する。
[0186] 尚、上記は摩擦ブレーキ制御モードとして図示の如く「CNTRL」が選択されていて セレクトスィッチ 144が CNTRL側に接続されているときの処理であり、「LOCK」また は「SEMIFREE」が選択されているときは、第 4実施例と同様に、セレクトスィッチ 14 4を介して P_high (屈曲角保持指令)または P_low (屈曲角保持解除指令)が油圧指 令 P_bとして油圧発生ユニットに出力される。
[0187] 上記を前提に図 30タイム'チャートについて説明すると、コンプライアンス制御モー ドは、第 4のタイミング t4力も離床後の第 5のタイミング t5までの間、「HOLD」が選択 される。また、第 5のタイミング t5から脚部 2の着床前の第 6のタイミング t6までの間( 即ち、離床中の一定期間)は、「RET」が選択される。また、第 6のタイミング t6から次 回の第 4のタイミング t4までの間(即ち、脚部 2の着床前からベた接地終了(爪先立ち 開始)までの間)は、「CNTRL」が選択される。
[0188] 具体的に説明すると、脚部 2が着床する前の第 6のタイミング t6からべた接地が終 了する第 4のタイミング t4までの間は、通常のコンプライアンス制御を行う。一方、ロボ ット 1が爪先立ちを開始する第 4のタイミング t4力 脚部 2が離床した後の第 5のタイミ ング t5までの間(即ち、少なくとも爪先立ち期間を含む期間)は、ベた接地終了時の コンプライアンス制御補償角 Θ cmplを保持する。そして、第 5のタイミング t5から次回 の第 6のタイミング t6までの離床期間中にコンプライアンス制御補償角 Θ cmplを零に 戻し、次回のコンプライアンス制御に備える。
[0189] ここで特徴的なことは、第 4のタイミング t4力 次回の第 1のタイミング tlまでの間( 即ち、爪先立ち期間)、摩擦ブレーキ 60の制御モードが「CNTRL」に設定されること にある。即ち、この期間は、通常のコンプライアンス制御に代え、摩擦ブレーキ 60に 供給される油圧を制御することによってその摩擦力を調節し、よって爪先部 224tの 屈曲角を調節して床反力モーメントを制御するようにした。これにより、爪先立ち期間 の姿勢の安定性をより向上させることができる。
[0190] 尚、残余の構成は従前の実施例と同様であるので、説明を省略する。但し、第 6実 施例は、爪先立ち期間に爪先部 224tの屈曲角を調節して床反力モーメントを制御 するように構成して 、るので、従前の実施例のようにロボット 1が平地を移動するときと 階段を上るときとで第 1のタイミング 1を相違させる必要は必ずしもな!/、。
[0191] また、第 6実施例は第 4実施例に係る脚式移動ロボットを前提として説明したが、足 部に摩擦ブレーキ 60を備えていれば、他の実施例に係る脚式移動ロボットにも適用 することができる。
実施例 7
[0192] 次いで、図 33および図 34を参照し、この発明の第 7実施例に係る脚式移動ロボット およびその制御装置について説明する。尚、以下の説明では、第 1実施例で説明し た足部 22を備える脚式移動ロボットを前提とする。
[0193] ダンバ 50のダンピング特性 (即ち、ダンバ 50が発生する抵抗の大きさ。換言すれば 、屈曲角変化の抑制力)は、電磁ソレノイド 50eを駆動してオリフィス 50dの開口面積 を変化させることにより、調節自在である。そこで、第 7実施例にあっては、爪先立ち の期間、ダンバ 50のダンピング特性を調節することによって爪先部 22tの屈曲角を 調節し、よって床反力モーメントを制御するようにした。
[0194] 図 33は、第 7実施例に係るダンバ 50の制御モードなどの遷移を示すタイム.チヤ一 トである。
[0195] 図 33に示すように、この実施例に係るダンバ制御モードは、「CLOSE」、「CNTRL 」および「OPEN」の 3種力もなる。また、コンプライアンス制御モードは、第 6実施例と 同様に「HOLD」、「CNTRL」および「RET」の 3種からなる。
[0196] 以下、第 6実施例との相違点について説明する。図 34は、第 7実施例に係るダンバ
50の絞り量制御の処理を示すブロック図である。
[0197] 図 34に示すように、先ず、実足部床反力モーメント Mactを発振防止用のローパス フィルタ 150に通して Mactfiltを得る。また、足部補償モーメント Mdmdを周波数応 答特性改善用の補償フィルタ 152に通し、それを Mactfilt力 減じ、偏差モーメント
Mdiffを得る。
[0198] 次に、偏差モーメント Mdiffに K_d (制御ゲイン)を乗じることによって要求ダンバ絞り 量 Rd_dmdを求め、それにオフセット絞り量 Rd_offsetを加算して得た値をダンバ絞り 量指令 R_dとしてダンバ 50に出力する。
[0199] 尚、上記はダンバ制御モードとして図示の如く「CNTRL」が選択されている(セレク トスイッチ 154が CNTRL側に接続されている)ときの処理であり、「CLOSE」または「 OPEN」が選択されているときは、第 1実施例と同様に、セレクトスィッチ 154を介して Rd.close (屈曲角保持指令)または Rd_open (屈曲角保持解除指令)がダンバ絞り量 指令 R_dとしてダンバ 50に出力される。
[0200] また、説明は省略するが、第 7実施例にあっても前述した第 6実施例の図 31と同様 な足部補償角決定部の演算処理が行われる。
[0201] 上記を前提に図 33タイム'チャートについて説明すると、図示の如ぐ第 4のタイミン グ t4力も次回の第 1のタイミング tlまでの間(即ち、爪先立ち期間)、ダンバ 50の制御 モードが「CNTRL」に設定される。また、コンプライアンス制御モードは、爪先立ち期 間を含む第 4のタイミング t4力も第 5のタイミング t5までの間、「HOLD」に設定される 。即ち、爪先立ち期間は、通常のコンプライアンス制御に代え、電磁ソレノイド 50eを 駆動することによってオリフィス 50dの開口面積を変化させてダンバ 50のダンピング 特性を調節し、よって爪先部 22tの屈曲角を調節して床反力モーメントを制御するよ うにした。これにより、第 6実施例と同様に、爪先立ち期間の姿勢の安定性をより向上 させることがでさる。
[0202] 尚、残余の構成は従前の実施例と同様であるので、説明を省略する。但し、第 7実 施例も第 6実施例と同様に爪先立ち期間に爪先部の屈曲角を調節して床反力モー メントを制御するように構成しているので、ロボット 1が平地を移動するときと階段を上 るときとで第 1のタイミング 1を相違させる必要は必ずしもな!/、。
[0203] また、第 7実施例は第 1実施例に係る脚式移動ロボットを前提として説明したが、足 部にダンバ 50を備えていれば、他の実施例に係る脚式移動ロボットにも適用すること ができる。
実施例 8
[0204] 次いで、図 35および図 36を参照し、この発明の第 8実施例に係る脚式移動ロボット およびその制御装置について説明する。尚、以下の説明では、第 3実施例で説明し た足部 223を備える脚式移動ロボットを前提とする。
[0205] 前述したように、ダンバ 500は流体の流動抵抗を利用している。流体の流動抵抗は その流速に依存し、ダンバ 500内の流体の流速は、爪先部 223tの屈曲角速度に依 存する。即ち、ダンバ 500は、爪先部 223tの屈曲角速度に対して設定された所定の 抵抗特性を有し、その抵抗特性に従って爪先部 223tの屈曲角変化を抑制している と言える。そこで、第 8実施例にあっては、足部 223の位置姿勢を操作して爪先部 22 3tの屈曲角速度を調節することによってダンバ 500が発生する抵抗の大きさを変化 させ、よって床反力モーメントを制御するようにした。
[0206] 図 35は、第 8実施例に係るダンバ 500の制御モードなどの遷移を示すタイム.チヤ ートである。
[0207] 図 35に示すように、屈曲角速度制御モード (後述)は、「HOLD」、「CNTRL」およ び「RET」の 3種からなる。
[0208] 図 36は、第 8実施例に係る脚式移動ロボットの制御装置の中、足部補償角決定部 の演算処理を示すブロック図である。尚、第 6実施例と同様な理由から、下記では脚 部の通し番号 (n: l, 2)や X, Yの記載は省略する。
[0209] 図 36に示す如ぐ第 8実施例にあっては、セレクトスィッチ 160を備え、屈曲角速度 制御モードに応じて積分器 162への入力を切り換えるようにした。
[0210] 最初に、屈曲角速度制御モードとして「CNTRL」が選択されているとき (セレクトス イッチ 160が CNTRL側に接続されているとき)の処理について説明すると、先ず、実 足部床反力モーメント Mactを発振防止用のローパスフィルタ 164に通して Mactfilt を得る。また、足部補償モーメント Mdmdを周波数応答特性改善用の補償フィルタ 1 66に通し、それを Mactfiltから減じ、偏差モーメント Mdiffを得る。
[0211] そして、偏差モーメント Mdiffに D_cntrl (制御ゲイン)を乗じて得た値を積分器 162 で積分してダンバ制御補償角 Θ dcntrlを求める。また、偏差モーメント Mdiffに K_c mpl (制御ゲイン)を乗じて前記したコンプライアンス制御補償角 Θ cmplを得る。
[0212] 最後に、ダンバ制御補償角 Θ dcntrlとコンプライアンス制御補償角 Θ cmplを加算 して得た値に、さらに第 6実施例と同様にして求めた足部機構変形補償角 Θ ffをカロ 算することにより、足部補償角 Θを得る。この足部補償角 Θに基づいてロボット 1の関 節変位を操作して足部 223の位置姿勢を操作することにより、足部 223の床に対す る角速度、即ち、爪先部 223tの屈曲角速度を調節してダンバ 500が発生する抵抗 の大きさを変化させ、よって床反力モーメントを制御する。尚、関節変位の操作に代 え、ロボット 1の歩容そのものを操作することによって足部 223の位置姿勢を操作する ようにしても良い。
[0213] 次いで、屈曲角速度制御モードとして「RET」が選択されているときの処理につい て説明する。屈曲角速度制御モードとして「RET」が選択されると、セレクトスィッチ 1 60が RET側に接続され、積分器 162にはダンバ制御補償角 Θ dcntrlに K_retを 乗じた値が入力される。これにより、ダンバ制御補償角 Θ dcntrlの変化率力 -K_ret * Θ dcntrlとなる。即ち、ダンバ制御補償角 Θ dcntrlは、時定数 lZK_retの 1次遅 れ系のステップ応答で、徐々に零に戻る。
[0214] 一方、屈曲角速度制御モードとして「HOLD」が選択されると、セレクトスィッチ 160 力 ¾OLD側に接続され、積分器 162に零が入力される。即ち、ダンバ制御補償角 Θ dcntrlとして、それまでの値が保持される。
[0215] 尚、摩擦ブレーキ 60の油圧制御に関しては、第 3実施例のそれ(図 20)と同様であ るので、説明を省略する。
[0216] 上記を前提に図 35タイム'チャートについて説明すると、屈曲角速度制御モードは 、第 4のタイミング t4力も次回の第 1のタイミング tlまでの間(即ち、爪先立ち期間)、「 CNTRL」が選択される。また、第 1のタイミング tlから離床中の第 7のタイミング t7ま での間、「HOLD」が選択される。また、第 7のタイミング t7力も第 4のタイミング t4まで の間 (即ち、脚部 2の着床前力 ベた接地終了(爪先立ち開始)までの間)、「RET」 が選択される。
[0217] 屈曲角速度制御モードとして「CNTRL」が選択される爪先立ちの期間は、摩擦ブ レーキ制御モードは「FREE」が選択されており、爪先部 223tは屈曲自在とされる。 即ち、この期間は、足部 223の位置姿勢を変化させて爪先部 223tの屈曲角速度を 調節することにより、ダンバ 500が発生する抵抗の大きさを操作し、よって床反力モー メントが制御するようにした。これにより、爪先立ち期間の姿勢の安定性をより向上さ せることができる。
[0218] 尚、残余の構成は従前の実施例と同様であるので、説明を省略する。但し、第 8実 施例も第 6実施例と同様に爪先立ち期間に爪先部の屈曲角を調節して床反力モー メントを制御するように構成しているので、ロボット 1が平地を移動するときと階段を上 るときとで第 1のタイミング 1を相違させる必要は必ずしもな!/、。
[0219] また、第 8実施例は第 3実施例に係る脚式移動ロボットを前提として説明したが、足 部にダンバ 50 (電磁ソレノイド付きのダンバ)を備えた他の実施例に係る脚式移動口 ボットにち適用することがでさる。
実施例 9
[0220] 次いで、図 37を参照し、この発明の第 9実施例に係る脚式移動ロボットおよびその 制御装置について説明する。
[0221] 第 9実施例は、爪先部の屈曲角を検出するセンサを備えた第 5実施例に係る脚式 移動ロボットに、本出願人が先に提案した特開 2000— 147948号公報に記載される 技術 (床形状を推定する技術)と第 6実施例で説明した制御を適用したものである。
[0222] 図 37は、第 9実施例に係る脚式移動ロボットの制御装置の中、足部補償角決定部 の演算処理を示すブロック図である。尚、第 6実施例と同様な理由から、下記では脚 部の通し番号 (n: l, 2)や X, Yの記載は省略する。
[0223] 図 37に示すように、第 9実施例にあっては、第 6実施例で述べた足部補償角決定 部の構成 (第 6実施例と同一符号を付して示す)に、床形状推定器 170が付加される [0224] 以下、図 37に示す処理について説明すると、第 6実施例と同様の処理によって算 出されたコンプライアンス制御補償角 Θ cmplと足部機構変形補償角 Θ ffの和に、さ らに床形状推定器 170から出力された推定足部床傾斜偏差 Θ festmを加算して足 部補償角 Θを求める。
[0225] 床形状推定器 170には、上記のようにして求めた足部補償角 Θの他、実足部床反 力 Fact, Mactや上体傾斜角偏差 Θ err,ストロークセンサ 22sあるいは回転角セン サ 222sで検出した爪先部 22tの屈曲角などが入力される。床形状推定器 170は、そ れらに基づいて床形状推定値 (具体的には、前記推定足部床傾斜偏差 Θ festmと、 第 1実施例で述べた両脚補償角 Θ dbvの算出に用いられるべき推定両脚間床傾斜 偏差 Θ fdbestmv)を算出して出力する。尚、床形状推定器 170の動作については、 上記した特開 2000-147948号公報に詳しいので説明を省略する。
[0226] このように、第 9実施例にあっては、爪先部の屈曲角などに基づいて床形状推定値 を算出し、その値を足部補償角 Θ (および両脚補償角 Θ dbv)の算出に用いるパラメ ータとして追加するようにした。より概略的には、ロボット 1が歩行する床の形状を推定 すると共に、推定された床形状などに基づいて屈曲角変化抑制機構を動作させ、床 反力モーメントを制御するようにした。これにより、爪先立ち期間の安定性をより一層 向上させることができる。また、通常のコンプライアンス制御もより精度良く行うことが できる。
[0227] 尚、第 9実施例では第 6実施例で説明した足部補償角決定部に床形状推定器 170 を付加するようにしたが、他の実施例で説明した足部補償角決定部に付加しても良 い。
[0228] 以上の如ぐこの発明の第 1から第 9実施例にあっては、上体(24)と、上端が前記 上体に連結される一方、下端に足部(22, 222, 223, 224)が連結される脚部(2R, 2L)とを備え、前記脚部を駆動して移動する脚式移動ロボット(1)において、前記足 部力 前記脚部に連結される足部本体(22m, 222m, 223m, 224m)と、前記足部 本体の前端に設けられ、前記足部本体に対して屈曲自在な爪先部(22t, 222t, 22 3t, 224t)とからなると共に、前記爪先部の屈曲角( Θ t)を前記爪先部の可動範囲 で保持自在な屈曲角保持機構 (ダンバ 50、摩擦ブレーキ 60)を備えるように構成し た。
[0229] また、前記爪先部の屈曲角変化を抑制する屈曲角変化抑制機構 (ダンバ 50、ダン ノ 500、摩擦ブレーキ 60)を備えるように構成した。
[0230] また、第 1実施例および第 3から第 9実施例にあっては、前記爪先部(22t, 223t, 224t)が、前記足部本体(22m, 223m, 224m)に連続すると共に、橈みつつ屈曲 する弾性材カもなるように構成した。
[0231] また、第 2から第 9実施例にあっては、前記爪先部(222t, 223t, 224t)力 ピッチ 軸回りに回転自在な回転軸(222a)を介して前記足部本体(222m, 223m, 224m )の前端に連結されるように構成した。
[0232] また、第 2から第 9実施例にあっては、前記爪先部を初期位置に復帰させる方向に 付勢する付勢手段 (復元パネ 222b)を備えるように構成した。
[0233] また、第 3から第 6実施例および第 8実施例から第 9実施例にあっては、前記屈曲 角保持機構が、摩擦ブレーキ (60)力もなるように構成した。
[0234] また、第 1, 2, 3, 5, 7, 8, 9実施例にあっては、前記屈曲角変化抑制機構が、ダ ンパ(50, 500)力 なるように構成した。
[0235] また、第 4, 6, 9実施例にあっては、前記屈曲角保持機構および前記屈曲角変化 抑制機構が、摩擦力が調節自在な摩擦ブレーキ (60)力もなるように構成した。
[0236] また、第 1, 2, 5, 7, 9実施例にあっては、前記屈曲角保持機構および前記屈曲角 変化抑制機構が、ダンバ (50)力 なるように構成した。
[0237] また、第 1から第 9実施例にあっては、上体 (24)と、上端が前記上体に連結される 一方、下端に足部(22, 222, 223, 224)が連結される脚部(2R, 2L)とを備え、前 記脚部を駆動して移動すると共に、前記足部が、前記脚部に連結される足部本体と 、前記足部本体(22m, 222m, 223m, 224m)の前端に設けられ、前記足部本体 に対して屈曲自在な爪先部(22t, 222t, 223t, 224t)とからなる脚式移動ロボット の制御装置において、前記爪先部の屈曲角( Θ t)を前記爪先部の可動範囲で保持 自在な屈曲角保持機構 (ダンバ 50、摩擦ブレーキ 60)と、前記屈曲角保持機構を動 作させて前記爪先部の屈曲角の保持とその解除を制御する屈曲角制御手段 (制御 ユニット 26)を備えると共に、前記屈曲角制御手段は、前記脚部の離床時あるいはそ れよりも前の第 1のタイミング (tl)で前記爪先部の屈曲角を保持した後、前記脚部が 離床した後の第 2のタイミング (t2)で前記爪先部の屈曲角の保持を解除して前記爪 先部を初期位置に復帰させるように構成した。
[0238] また、第 1から第 4実施例および第 6から第 9実施例にあっては、前記脚式移動ロボ ットの歩容を生成する歩容生成手段 (歩容生成器 100)備えると共に、前記屈曲角制 御手段は、前記生成された歩容に基づいて前記第 1および第 2のタイミングを決定す るように構成した。
[0239] また、第 5から第 9実施例にあっては、前記爪先部(22t、 222t)の屈曲角を検出す る屈曲角検出手段 (ストロークセンサ 22s、回転角センサ 222s)と、前記脚式移動口 ボットの歩容を生成する歩容生成手段 (歩容生成器 100)とを備えると共に、前記屈 曲角制御手段は、前記検出された屈曲角に基づいて前記第 1のタイミングを決定す る一方、前記生成された歩容に基づ 、て前記第 2のタイミングを決定するように構成 した。
[0240] また、第 1から第 9実施例にあっては、前記屈曲角制御手段は、さらに、前記脚部の 離床中であって前記第 2のタイミングよりも後の第 3のタイミング (t3)で前記爪先部の 屈曲角を保持した後、前記脚部の着床後であって次回の前記第 1のタイミングよりも 前の第 4のタイミング (t4)で前記爪先部の屈曲角の保持を解除するように構成した。
[0241] また、第 1から第 4実施例および第 6から第 9実施例にあっては、前記脚式移動ロボ ットの歩容を生成する歩容生成手段 (歩容生成器 100)を備えると共に、前記屈曲角 制御手段は、前記生成された歩容に基づいて前記第 1から第 4のタイミングを決定す るように構成した。
[0242] また、第 5から第 9実施例にあっては、前記爪先部(22t, 222t)の屈曲角を検出す る屈曲角検出手段 (ストロークセンサ 22s、回転角センサ 222s)と、前記脚式移動口 ボットの歩容を生成する歩容生成手段 (歩容生成器 100)とを備えると共に、前記屈 曲角制御手段は、前記検出された屈曲角に基づいて前記第 1および第 3のタイミン グを決定する一方、前記生成された歩容に基づ 、て前記第 2および第 4のタイミング を決定するように構成した。
[0243] また、第 4実施例にあっては、前記爪先部(224t)の屈曲角変化を抑制する屈曲角 変化抑制機構 (摩擦ブレーキ 60)を備えると共に、前記屈曲角制御手段は、前記第 2のタイミングで前記爪先部の屈曲角の保持を解除すると同時に、前記屈曲角変化 抑制機構を動作させて前記屈曲角を漸減させ、前記爪先部を徐々に初期位置に復 帰させるように構成した。
[0244] また、第 6, 7, 9実施例にあっては、前記爪先部の屈曲角変化を抑制する屈曲角 変化抑制機構 (ダンバ 50、摩擦ブレーキ 60)を備えると共に、前記屈曲角制御手段 は、前記第 4のタイミング力 次回の前記第 1のタイミングまでの間、前記屈曲角変化 抑制機構を動作させて前記足部を通じて作用する床反力 (床反力モーメント)を制御 するように構成した。
[0245] また、第 8実施例にあっては、前記爪先部の屈曲角変化を、その屈曲角速度に対 して設定された所定の抵抗特性に従って抑制する屈曲角変化抑制機構 (ダンバ 500 )を備えると共に、前記屈曲角制御手段は、前記第 4のタイミングから次回の前記第 1 のタイミングまでの間、前記足部(22R (L) )の位置姿勢を操作して前記屈曲角速度 を調節し、よって前記屈曲角変化抑制機構が発生する抵抗の大きさを変化させて前 記足部を通じて作用する床反力(床反力モーメント)を制御するように構成した。
[0246] また、第 9実施例にあっては、前記爪先部の屈曲角変化を抑制する屈曲角変化抑 制機構 (ダンバ 50、摩擦ブレーキ 60)と、前記爪先部の屈曲角を検出する屈曲角検 出手段 (ストロークセンサ 22s、回転角センサ 222s)と、少なくとも前記検出された屈 曲角に基づ 、て前記脚部が接地する床の形状を推定する床形状推定手段 (床形状 推定器 170)とを備えると共に、前記屈曲角制御手段は、前記第 4のタイミング力も次 回の前記第 1のタイミングまでの間、少なくとも前記推定された床形状に基づいて前 記屈曲角変化抑制機構を動作させ、よって前記足部を通じて作用する床反力 (床反 力モーメント)を制御するように構成した。
[0247] 尚、上記にぉ 、て、着床時の衝撃緩和と制御性の向上に必要なコンプライアンス 機構 42R(L)を、パネ機構体 38R(L)とソール 40R(L)とから構成したが、例えば足 底に板パネを設け、その弾性を利用するようにしても良い。板パネの材質としては、 軽量ィ匕の観点から、弾性を備えたカーボンなどが好ま 、。
[0248] また、爪先部の屈曲角を保持する屈曲角保持機構ならびに屈曲角変化を抑制する 屈曲角変化抑制機構としてダンバと摩擦ブレーキを例に挙げたが、それらに限られ ないのは言うまでもない。例えば、屈曲角保持機構としては、ラチェット機構を用いて も良い。屈曲角保持機構としてダンバや摩擦ブレーキを用いた場合、屈曲角は、爪 先部の可動範囲において連続する全ての角度で保持可能である。これに対し、ラチ エツト機構の場合、ラチェットのギヤ数に対応した複数の角度の中のいずれか〖こ保持 される(即ち、ラチェットの送り角の範囲内には保持できず、保持可能な角度が非連 続となる)ことになるが、屈曲角を保持する際の動作が不要となるという利点もある。 産業上の利用可能性
この発明によれば、脚式移動ロボットにおいて、足部は、足部本体と、足部本体の 前端に設けられ、屈曲自在な爪先部とからなると共に、爪先部の屈曲角を保持自在 な屈曲角保持機構を備えるように構成される。また、脚式移動ロボットの制御装置に ぉ 、ては、脚部の離床時あるいはそれよりも前の第 1のタイミングで爪先部の屈曲角 を保持し、脚部が離床した後の第 2のタイミングで爪先部を初期位置に復帰させるよ うに構成される。それにより、脚部の離床後も離床時の屈曲角を保持し続けることが でき、よって離床直後に爪先部が床面に接触して姿勢が不安定になるのを防止する ことができる。また、爪先立ちしているときの安定性も向上させることができる。

Claims

請求の範囲
[1] 上体と、上端が前記上体に連結される一方、下端に足部が連結される脚部とを備 え、前記脚部を駆動して移動する脚式移動ロボットにおいて、前記足部が、前記脚 部に連結される足部本体と、前記足部本体の前端に設けられ、前記足部本体に対し て屈曲自在な爪先部とからなると共に、前記爪先部の屈曲角を前記爪先部の可動 範囲で保持自在な屈曲角保持機構を備えることを特徴とする脚式移動ロボット。
[2] 前記爪先部の屈曲角変化を抑制する屈曲角変化抑制機構を備えることを特徴とす る請求項 1記載の脚式移動ロボット。
[3] 前記爪先部が、前記足部本体に連続すると共に、橈みつつ屈曲する弾性材からな ることを特徴とする請求項 1または 2記載の脚式移動ロボット。
[4] 前記爪先部が、ピッチ軸回りに回転自在な回転軸を介して前記足部本体の前端に 連結されることを特徴とする請求項 1または 2記載の脚式移動ロボット。
[5] 前記爪先部を初期位置に復帰させる方向に付勢する付勢手段を備えることを特徴 とする請求項 4記載の脚式移動ロボット。
[6] 前記屈曲角保持機構が、摩擦ブレーキ力 なることを特徴とする請求項 1から 5の いずれかに記載の脚式移動ロボット。
[7] 前記屈曲角変化抑制機構が、ダンバからなることを特徴とする請求項 2から 6のい ずれかに記載の脚式移動ロボット。
[8] 前記屈曲角保持機構および前記屈曲角変化抑制機構が、摩擦力が調節自在な摩 擦ブレーキ力もなることを特徴とする請求項 2から 5のいずれかに記載の脚式移動口 ホット。
[9] 前記屈曲角保持機構および前記屈曲角変化抑制機構が、ダンバからなることを特 徴とする請求項 2から 5のいずれかに記載の脚式移動ロボット。
[10] 上体と、上端が前記上体に連結される一方、下端に足部が連結される脚部とを備 え、前記脚部を駆動して移動すると共に、前記足部が、前記脚部に連結される足部 本体と、前記足部本体の前端に設けられ、前記足部本体に対して屈曲自在な爪先 部とからなる脚式移動ロボットの制御装置において、前記爪先部の屈曲角を前記爪 先部の可動範囲で保持自在な屈曲角保持機構と、前記屈曲角保持機構を動作させ て前記爪先部の屈曲角の保持とその解除を制御する屈曲角制御手段とを備えると 共に、前記屈曲角制御手段は、前記脚部の離床時あるいはそれよりも前の第 1のタイ ミングで前記爪先部の屈曲角を保持した後、前記脚部の離床後の第 2のタイミングで 前記爪先部の屈曲角の保持を解除して前記爪先部を初期位置に復帰させることを 特徴とする脚式移動ロボットの制御装置。
[11] 前記脚式移動ロボットの歩容を生成する歩容生成手段を備えると共に、前記屈曲 角制御手段は、前記生成された歩容に基づいて前記第 1および第 2のタイミングを決 定することを特徴とする請求項 10記載の脚式移動ロボットの制御装置。
[12] 前記爪先部の屈曲角を検出する屈曲角検出手段と、前記脚式移動ロボットの歩容 を生成する歩容生成手段とを備えると共に、前記屈曲角制御手段は、前記検出され た屈曲角に基づいて前記第 1のタイミングを決定する一方、前記生成された歩容に 基づいて前記第 2のタイミングを決定することを特徴とする請求項 10記載の脚式移 動ロボットの制御装置。
[13] 前記屈曲角制御手段は、さらに、前記脚部の離床中であって前記第 2のタイミング よりも後の第 3のタイミングで前記爪先部の屈曲角を保持した後、前記脚部の着床後 であって次回の前記第 1のタイミングよりも前の第 4のタイミングで前記爪先部の屈曲 角の保持を解除することを特徴とする請求項 10記載の脚式移動ロボットの制御装置
[14] 前記脚式移動ロボットの歩容を生成する歩容生成手段を備えると共に、前記屈曲 角制御手段は、前記生成された歩容に基づいて前記第 1から第 4のタイミングを決定 することを特徴とする請求項 13記載の脚式移動ロボットの制御装置。
[15] 前記爪先部の屈曲角を検出する屈曲角検出手段と、前記脚式移動ロボットの歩容 を生成する歩容生成手段とを備えると共に、前記屈曲角制御手段は、前記検出され た屈曲角に基づいて前記第 1および第 3のタイミングを決定する一方、前記生成され た歩容に基づいて前記第 2および第 4のタイミングを決定することを特徴とする請求 項 13記載の脚式移動ロボットの制御装置。
[16] 前記爪先部の屈曲角変化を抑制する屈曲角変化抑制機構を備えると共に、前記 屈曲角制御手段は、前記第 2のタイミングで前記爪先部の屈曲角の保持を解除する と同時に、前記屈曲角変化抑制機構を動作させて前記屈曲角を漸減させ、前記爪 先部を徐々に初期位置に復帰させることを特徴とする請求項 10から 15のいずれか に記載の脚式移動ロボットの制御装置。
[17] 前記爪先部の屈曲角変化を抑制する屈曲角変化抑制機構を備えると共に、前記 屈曲角制御手段は、前記第 4のタイミング力 次回の前記第 1のタイミングまでの間、 前記屈曲角変化抑制機構を動作させて前記足部を通じて作用する床反力を制御す ることを特徴とする請求項 13から 15のいずれかに記載の脚式移動ロボットの制御装 置。
[18] 前記爪先部の屈曲角変化を、その屈曲角速度に対して設定された所定の抵抗特 性に従って抑制する屈曲角変化抑制機構を備えると共に、前記屈曲角制御手段は 、前記第 4のタイミング力 次回の前記第 1のタイミングまでの間、前記足部の位置姿 勢を操作して前記屈曲角速度を調節し、よって前記屈曲角変化抑制機構が発生す る抵抗の大きさを変化させて前記足部を通じて作用する床反力を制御することを特 徴とする請求項 13から 15のいずれかに記載の脚式移動ロボットの制御装置。
[19] 前記爪先部の屈曲角変化を抑制する屈曲角変化抑制機構と、前記爪先部の屈曲 角を検出する屈曲角検出手段と、少なくとも前記検出された屈曲角に基づいて前記 足部が接地する床の形状を推定する床形状推定手段とを備えると共に、前記屈曲角 制御手段は、前記第 4のタイミング力も次回の前記第 1のタイミングまでの間、少なくと も前記推定された床形状に基づいて前記屈曲角変化抑制機構を動作させ、よって 前記足部を通じて作用する床反力を制御することを特徴とする請求項 13から 18のい ずれかに記載の脚式移動ロボットの制御装置。
PCT/JP2005/002561 2004-03-23 2005-02-18 脚式移動ロボットおよびその制御装置 WO2005090009A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05710394A EP1736285B1 (en) 2004-03-23 2005-02-18 Legged mobile robot and control device therefor
US10/593,493 US7530410B2 (en) 2004-03-23 2005-02-18 Legged mobile robot and control system thereof
DE602005024531T DE602005024531D1 (de) 2004-03-23 2005-02-18 Beweglicher roboter mit beinen und steuervorrichtung dafür
US12/397,773 US8583283B2 (en) 2004-03-23 2009-03-04 Legged mobile robot and control system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004085601A JP4744092B2 (ja) 2004-03-23 2004-03-23 脚式移動ロボットおよびその制御装置
JP2004-085601 2004-03-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10/593,493 A-371-Of-International US7530410B2 (en) 2004-03-23 2005-02-18 Legged mobile robot and control system thereof
US12/397,773 Division US8583283B2 (en) 2004-03-23 2009-03-04 Legged mobile robot and control system thereof

Publications (1)

Publication Number Publication Date
WO2005090009A1 true WO2005090009A1 (ja) 2005-09-29

Family

ID=34993515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002561 WO2005090009A1 (ja) 2004-03-23 2005-02-18 脚式移動ロボットおよびその制御装置

Country Status (6)

Country Link
US (2) US7530410B2 (ja)
EP (1) EP1736285B1 (ja)
JP (1) JP4744092B2 (ja)
KR (1) KR100816134B1 (ja)
DE (1) DE602005024531D1 (ja)
WO (1) WO2005090009A1 (ja)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2932110B1 (fr) * 2008-06-05 2010-12-31 Bia Pied pour robot humanoide
CN104523404B (zh) * 2009-07-01 2018-04-13 瑞克仿生学有限公司 助动器的控制系统
AU2009348961B2 (en) * 2009-07-01 2014-12-04 Rex Bionics Limited Control system for a mobility aid
JP5306959B2 (ja) * 2009-10-07 2013-10-02 本田技研工業株式会社 脚式移動ロボットの制御装置
JP5506618B2 (ja) * 2009-12-28 2014-05-28 本田技研工業株式会社 ロボットの制御装置
JP5506617B2 (ja) * 2009-12-28 2014-05-28 本田技研工業株式会社 ロボットの制御装置
KR101772972B1 (ko) * 2010-12-22 2017-09-01 삼성전자주식회사 보행 로봇 및 그 제어 방법
US8504208B2 (en) * 2011-05-25 2013-08-06 Honda Motor Co., Ltd. Mobile object controller and floor surface estimator
JP6071815B2 (ja) * 2013-09-06 2017-02-01 本田技研工業株式会社 脚式移動ロボットの制御装置
US9849926B2 (en) * 2014-07-23 2017-12-26 Boston Dynamics, Inc. Predictively adjustable hydraulic pressure rails
US9638216B1 (en) 2014-07-31 2017-05-02 Google Inc. Discretized valve state control for multi-level hydraulic systems
US10081098B1 (en) 2014-08-25 2018-09-25 Boston Dynamics, Inc. Generalized coordinate surrogates for integrated estimation and control
US9387588B1 (en) 2014-08-25 2016-07-12 Google Inc. Handling gait disturbances with asynchronous timing
US9618937B1 (en) 2014-08-25 2017-04-11 Google Inc. Slip detection using robotic limbs
JP6228097B2 (ja) * 2014-10-06 2017-11-08 本田技研工業株式会社 移動ロボット
US9446518B1 (en) 2014-11-11 2016-09-20 Google Inc. Leg collision avoidance in a robotic device
US9499218B1 (en) 2014-12-30 2016-11-22 Google Inc. Mechanically-timed footsteps for a robotic device
US9731416B1 (en) * 2015-03-11 2017-08-15 Google Inc. Legged robot passive fluid-based ankles with spring centering
US9594377B1 (en) * 2015-05-12 2017-03-14 Google Inc. Auto-height swing adjustment
US9586316B1 (en) 2015-09-15 2017-03-07 Google Inc. Determination of robotic step path
US9789919B1 (en) 2016-03-22 2017-10-17 Google Inc. Mitigating sensor noise in legged robots
US10471609B2 (en) * 2017-06-10 2019-11-12 Benjamin F. Dorfman Secured computer system
DE102017119591A1 (de) * 2017-08-25 2019-02-28 Vorwerk & Co. Interholding Gmbh Sich selbsttätig fortbewegendes Bodenbearbeitungsgerät mit einem Steighebel
CN108068908B (zh) * 2017-12-29 2023-10-10 深圳市优必选科技有限公司 机器人脚板结构和人形机器人
US20220144358A1 (en) * 2019-02-25 2022-05-12 Agility Robotics, Inc. Method and System for Improving Locomotion in a Robot
JP2022018562A (ja) * 2020-07-16 2022-01-27 日本電気株式会社 脚式移動ロボット、脚制御方法およびコンピュータプログラム
CN114211526B (zh) * 2021-12-07 2024-01-09 江苏集萃智能制造技术研究所有限公司 基于液压驱动系统的机器人减震系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994785A (ja) * 1995-09-29 1997-04-08 Honda Motor Co Ltd 脚式歩行ロボットの歩容生成方法
JP2003236777A (ja) 2002-02-15 2003-08-26 Seiko Epson Corp 脚式移動ロボット及びその制御方法
JP2003236782A (ja) 2002-02-18 2003-08-26 Japan Science & Technology Corp 二脚歩行式移動装置及びその歩行制御装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5255753A (en) * 1989-12-14 1993-10-26 Honda Giken Kogyo Kabushiki Kaisha Foot structure for legged walking robot
JP2826858B2 (ja) * 1989-12-14 1998-11-18 本田技研工業株式会社 脚式歩行ロボットの足部構造
DE69124486T2 (de) * 1990-11-30 1997-05-15 Honda Motor Co Ltd System zur Steuerung der Fortbewegung eines Schreitroboters mit Beinen
US5355064A (en) * 1992-03-04 1994-10-11 Honda Giken Kogyo Kabushiki Kaisha Control system for legged mobile robot
US5455497A (en) * 1992-04-20 1995-10-03 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot and a system for controlling the same
JP3118777B2 (ja) * 1992-04-20 2000-12-18 本田技研工業株式会社 脚式歩行ロボットの足部構造
US5416393A (en) * 1992-05-20 1995-05-16 Honda Giken Kogyo Kabushiki Kaisha Legged mobile robot foot structure
US5808433A (en) * 1995-09-29 1998-09-15 Honda Giken Kogyo Kabushiki Kaisha Method of generating gait of legged walking robot and system for controlling its locomotion
WO1998026905A1 (fr) * 1996-12-19 1998-06-25 Honda Giken Kogyo Kabushiki Kaisha Controleur d'attitude de robot mobile sur jambes
JP3672406B2 (ja) * 1997-01-31 2005-07-20 本田技研工業株式会社 脚式移動ロボットの歩容生成装置
JP2000176866A (ja) * 1998-12-21 2000-06-27 Sony Corp 歩行用ロボット
US20020094919A1 (en) * 2000-07-26 2002-07-18 Rennex Brain G. Energy-efficient running aid
US6443995B1 (en) * 2000-12-22 2002-09-03 Barry W. Townsend Prosthetic foot
JP3691434B2 (ja) * 2001-12-25 2005-09-07 本田技研工業株式会社 脚式移動ロボットの着床衝撃緩衝装置
JP3652643B2 (ja) * 2001-12-25 2005-05-25 本田技研工業株式会社 脚式移動ロボットの着床衝撃緩衝装置
WO2003057423A1 (fr) * 2001-12-28 2003-07-17 Honda Giken Kogyo Kabushiki Kaisha Dispositif de production de demarche pour robot se deplaçant sur des jambes
JP2005153038A (ja) * 2003-11-20 2005-06-16 Sony Corp 脚式移動ロボット、並びに脚式移動ロボットのための足部構造
JP4513320B2 (ja) * 2003-12-17 2010-07-28 ソニー株式会社 ロボット装置、並びにロボット装置の運動制御方法
US7734375B2 (en) * 2004-06-09 2010-06-08 Boston Dynamics Robot and robot leg mechanism
US20060249315A1 (en) * 2005-03-31 2006-11-09 Massachusetts Institute Of Technology Artificial human limbs and joints employing actuators, springs, and variable-damper elements
US20070043449A1 (en) * 2005-03-31 2007-02-22 Massachusetts Institute Of Technology Artificial ankle-foot system with spring, variable-damping, and series-elastic actuator components
US20110015762A1 (en) * 2009-07-14 2011-01-20 Tensegrity Prosthetics Inc. Joints for prosthetic, orthotic and/or robotic devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994785A (ja) * 1995-09-29 1997-04-08 Honda Motor Co Ltd 脚式歩行ロボットの歩容生成方法
JP2003236777A (ja) 2002-02-15 2003-08-26 Seiko Epson Corp 脚式移動ロボット及びその制御方法
JP2003236782A (ja) 2002-02-18 2003-08-26 Japan Science & Technology Corp 二脚歩行式移動装置及びその歩行制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1736285A4

Also Published As

Publication number Publication date
US20070193789A1 (en) 2007-08-23
US8583283B2 (en) 2013-11-12
JP4744092B2 (ja) 2011-08-10
KR100816134B1 (ko) 2008-03-24
EP1736285A4 (en) 2008-05-21
KR20060127214A (ko) 2006-12-11
JP2005271110A (ja) 2005-10-06
EP1736285B1 (en) 2010-11-03
DE602005024531D1 (de) 2010-12-16
US20090210091A1 (en) 2009-08-20
US7530410B2 (en) 2009-05-12
EP1736285A8 (en) 2007-02-21
EP1736285A1 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
WO2005090009A1 (ja) 脚式移動ロボットおよびその制御装置
EP1514777B1 (en) Control system of legged mobile robot
JP3629133B2 (ja) 脚式移動ロボットの制御装置
EP1291136B1 (en) Floor shape deducing device for legged mobile robot
EP1120203B1 (en) Controller for legged mobile robot
EP1291137B1 (en) Floor shape deducing device for legged mobile robot
JP3672426B2 (ja) 脚式移動ロボットの姿勢制御装置
WO1998026905A1 (fr) Controleur d'attitude de robot mobile sur jambes
JP4912891B2 (ja) 脚式移動ロボットおよびその制御プログラム
JP2007160428A (ja) 脚式移動ロボットの歩容生成装置
JP3167420B2 (ja) 脚式移動ロボットの歩行制御装置
JP2006175567A (ja) 脚式移動ロボットの制御装置
JP3629143B2 (ja) 脚式移動ロボットの制御装置
JP3024028B2 (ja) 脚式移動ロボットの歩行制御装置
JP3629142B2 (ja) 脚式移動ロボットの制御装置
JP4237130B2 (ja) 脚式移動ロボットの制御装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10593493

Country of ref document: US

Ref document number: 2007193789

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067019485

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2005710394

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067019485

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005710394

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10593493

Country of ref document: US