WO2001085382A1 - Method of manufacturing conductive structure - Google Patents

Method of manufacturing conductive structure Download PDF

Info

Publication number
WO2001085382A1
WO2001085382A1 PCT/JP2001/003851 JP0103851W WO0185382A1 WO 2001085382 A1 WO2001085382 A1 WO 2001085382A1 JP 0103851 W JP0103851 W JP 0103851W WO 0185382 A1 WO0185382 A1 WO 0185382A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
conductivity
friction stir
strength
cathode
Prior art date
Application number
PCT/JP2001/003851
Other languages
French (fr)
Japanese (ja)
Inventor
Hisashi Hori
Shinya Makita
Masaaki Kumai
Shunji Maedomari
Yukirou Ishizu
Rintaro Togashi
Kensaku Fukuda
Original Assignee
Nippon Light Metal Company, Ltd.
Akita Zinc Co., Ltd.
Dowa Mining Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Company, Ltd., Akita Zinc Co., Ltd., Dowa Mining Co., Ltd. filed Critical Nippon Light Metal Company, Ltd.
Priority to AU2001252695A priority Critical patent/AU2001252695A1/en
Publication of WO2001085382A1 publication Critical patent/WO2001085382A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/10Aluminium or alloys thereof

Definitions

  • the present invention relates to a method for manufacturing a conductive structure such as a bus bar, a cathode for electrolytic deposition of non-ferrous metal, a jig for anodic oxidation, etc. by joining an aluminum alloy without lowering the conductivity.
  • a conductive aluminum material As a conductive aluminum material, a 100-series aluminum alloy having high conductivity is used, and a 600-series aluminum alloy is used for applications requiring strength. These aluminum alloys are generally joined by TIG welding, MIG welding, or the like using a filler metal.
  • a 600-series aluminum alloy filler material Using a 1000-series aluminum alloy filler material, a 600-series aluminum alloy is mutually connected, or a 600-series aluminum alloy and a 1000-series aluminum alloy are used. Welding tends to cause weld cracking. Also, TIG,
  • Aluminum alloys such as 5.6 are used as filler metals, but are currently being updated as corrosion progresses. Since the welded portion has a composition in which the components of the base metal and the filler metal are mixed, the properties become affected by the base metal and the filler metal. In this regard, even if an aluminum alloy such as a 1000 series or a 600 series suitable for applications requiring electrical conductivity is used, even when using aluminum alloys such as TIG welding and MIG welding, the low electrical conductivity of 40 Since an aluminum alloy such as 43 or 53356 is used, a decrease in the conductivity of the weld is inevitable.
  • the present invention has been devised in order to solve such a problem.
  • By joining aluminum alloys by friction stir welding it is not necessary to use a filler material that causes a decrease in conductivity.
  • the purpose is to maintain good electrical conductivity, strength and corrosion resistance even after joining. Disclosure of the invention
  • the present invention is characterized in that a plurality of aluminum alloy members are assembled by friction stir welding into a conductive structure having a required shape.
  • an aluminum alloy having a conductivity of 55% IACS or more when used as a conductive structure is preferable, and a 100-based aluminum alloy is used in a portion where strength is not required.
  • a precipitation-hardened aluminum alloy is used in areas where strength is required.
  • friction stir welding of a precipitation hardening type aluminum alloy it is preferable to impart strength by aging treatment after friction stir welding.
  • a cathode for non-ferrous metal electrolytic deposition is a bar made of aluminum alloy of 600 series and a bar made of aluminum alloy of 1000 series. It is assembled by friction stir welding of a plate and a hook made of a 600-series aluminum alloy.
  • pin 2 of rotating tool 1 is inserted into the mating surface of member M to be welded, and rotating tool 1 is moved along the butting line while rotating rotating tool 1.
  • the metal M is joined by plastically flowing the metal. Note that the shoulder 3 of the rotary tool 1 is slightly pushed into the member M in order to secure a sufficient amount of metal for joining the member M to be joined.
  • the welded portion formed by friction stir welding has almost the same properties as the welded member M before welding because there is no mixture of dissimilar materials and the metal of the welded member M is mixed.
  • it is a solid-phase diffusion bonding in principle, defects such as blow holes and sink marks do not occur at the bonding portion. Therefore, unlike fusion welding such as TIG welding and MIG welding, the conductivity of the joint does not decrease.
  • the present invention utilizes this advantage to produce a conductive structure by friction stir welding.
  • the material to be joined M is a material with a conductivity of 55% IACS or higher after tempering to secure current efficiency and prevent heat generation due to Joule heat.
  • 6101 alloy and the like are used.
  • the 100-based alloy is used for a plate, a busbar, and the like of a cathode for non-ferrous metal electrolytic deposition that does not require much strength.
  • 6 0 6 3 alloy, ⁇ Ruminiumu alloys such as 6 1 0 1 alloy, M g 2 S i is a material which is strengthened by the precipitation of such C u A l 2, the electrolytic deposition cathode for non-ferrous metal bars Used as hooks, jigs for non-ferrous metal anode oxidation, etc.
  • the cathode plate When zinc is deposited on the cathode plate to a thickness of about 2 to 3 mm, the cathode plate is pulled up from the electrolytic cell, and the plate-like zinc plate is mechanically peeled off from the cathode plate to collect zinc. The zinc stripped cathode plate is returned to the electrolytic cell again.
  • the non-ferrous metal electrodeposition cathode of the present invention is used in this method, the conductivity is high, the electric efficiency at the time of zinc electrodeposition is good, the corrosion resistance of the joint is good, and the life of the jig is long. Work loss due to tool maintenance is reduced.
  • the temperature of the member to be welded M rises, and the alloy component contained in the member to be welded M may form a solid solution in the A1 matrix.
  • the conductivity of the member to be joined M generally decreases due to the solid solution of the alloy component. The lowered conductivity can be recovered by aging treatment to precipitate alloy components after friction stir welding.
  • the precipitation hardening type aluminum alloy is gradually cooled during the temperature lowering process after the friction stir welding, alloy components are precipitated as precipitates that are not effective in improving the strength, and the strength is reduced.
  • the precipitation hardening type aluminum alloy subjected to friction stir welding is rapidly cooled after friction stir welding to suppress precipitation of alloy components.
  • the strength and conductivity are improved. If both the temperature and the time are below the lower limit, precipitation will be insufficient, and the strength and conductivity will decrease.
  • a heating temperature of 180 ° C or lower strength and conductivity may be satisfied by long-term aging, but the cost is high. Conversely, if the heating temperature exceeds 220 ° C or the heating time is longer than 10 hours, the over-aging will occur and the strength will decrease.
  • the cathode for non-ferrous metal electrolytic deposition As a welded structure assembled by friction stir welding, for example, there is a cathode for non-ferrous metal electrolytic deposition. As shown in FIG. 2, the cathode for non-ferrous metal electrolytic deposition has a cathode plate 4 immersed in an electrolytic solution fixed to a head bar 5 and a hook 6 attached to the head bar 5. The head bar 5 and the hook 6 require strength because the cathode plate 4 is suspended in the electrolytic cell, but the cathode plate 4 does not require much strength.
  • FIG. 1 is an explanatory view of a friction stir welding method.
  • FIG. 2 shows a cathode for non-ferrous metal electrolytic deposition provided by the present invention.
  • FIG. 3 is a graph showing that the strength and electrical conductivity of the joint formed by friction stir welding are recovered by the aging treatment.
  • the JIS A6603 aluminum alloy sheet having a thickness of 15 mm after the solution treatment and before the aging treatment was subjected to TIG welding, MIG welding and friction stir welding, and the effect of the difference in the welding method was investigated.
  • TIG welding 90 ° V-grooves are formed on both the front and back surfaces of the butt joint, and the two front and rear surfaces are subjected to the following conditions: Each surface was welded in three passes. The welding speed at this time was set to SOO mmZ.
  • the aluminum alloy sheet material joined by any of the methods was subjected to an aging treatment of heating and holding at 190 ° C. for 3 hours.
  • This member to be joined M As the member to be joined M, a 6101 aluminum alloy extruded plate material (thickness: 15 mm, plate width: 70 mm, length: 500 mm) was used. This member to be joined M is an unaged material that has been die-hardened after extrusion.
  • the end faces in the width direction of the two extruded plates are joined together, and the joint surfaces are friction stir welded
  • the friction stir welding conditions were as follows: using a rotating tool 1 with a shoulder diameter of 2 O mm and a pin 2 with a diameter of 8 mm and a length of 7 mm, a rotation speed of 1200 rpm and a movement speed of 50 O mmZ. Rotation tool 1 was moved along the joint line in minutes. When the temperature of the joint was measured during the friction stir welding, it was found that the temperature reached the maximum temperature of 5300C.
  • the joined portion was cooled at a cooling rate of 30 in a temperature range of 400 to 200 ° C. at a cooling rate of 30 / min. After cooling, the strength and conductivity of the joint were measured. As a result, the strength showed a low value of ⁇ 2 and a conductivity of 53% IACS. In addition, when the metal structure of the joined portion was observed as it was, the precipitate was clearly reduced as compared with the base metal portion.
  • the extruded plate material subjected to friction stir welding was subjected to aging treatment at 180 ° C to recover strength and electrical conductivity.
  • the strength and conductivity increased with the aging treatment time, and after aging treatment for about 4 hours, the values were almost the same as those of the base metal part.
  • the conductivity increased, there was a tendency for the strength to decrease due to overaging.
  • Table 2 shows the cell voltage, the amount of zinc deposited, and the unit power (the amount of power required to deposit 1 ton of zinc) when each cathode was used. As is evident from Table 2, when the cathode assembled by friction stir welding was used, Unit power consumption was reduced by 1 KWHZ ton compared to the cathode assembled in close contact. Table 2: Effect of cathode assembly method on electrolysis conditions
  • the present invention utilizes the advantages of friction stir welding in which dissimilar materials are not mixed into the joining portion, and joins the conductive aluminum alloy member without lowering the conductivity.
  • a welded part that is free from defects such as weld cracks, blowholes, sink marks, etc. as seen in TIG welding and MIG welding is formed, so that a welded structure with excellent strength and corrosion resistance is obtained, and good electrical conductivity is obtained.
  • a bus bar Used as a bus bar, a cathode for non-ferrous metal electrolytic deposition, a jig for non-ferrous metal anodic oxidation, etc., which require a high rate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

With a view to making it unnecessary to employ a filler material lowering the conductivity and keeping satisfactory conductivity, strength and corrosion-resistance after the jointing, an aluminum alloy member of a conductivity of 55 % or more is frictionally agitated and jointed to a material of the same or different kind and assembled into a conductive structure of a desired shape. As the aluminum alloy member of the conductivity of 55 % or more, a 1000-class aluminum alloy is used for a portion requiring no strength, and a precipitation hardened aluminum alloy is used for a portion requiring a strength. When the precipitation hardened aluminum alloy is frictionally agitated and jointed, it is preferable to give the strength by aging after the frictional agitation and jointing. It is also preferable that the temperature in the range of 400 to 300 °C is lowered at a rate of 20 ° /min in the temperature lowering process after the frictional agitation and jointing.

Description

明 細 書 導電用構造体の製造方法 技術分野  Description Manufacturing method of conductive structure Technical field
本発明は、 導電率を低下させることなく アルミ二ゥム合金を接合し、 ブスバー、 非鉄金属の電解析出用陰極、 陽極酸化用治具等の導電用構造 体を製造する方法に関する。 背景技術  The present invention relates to a method for manufacturing a conductive structure such as a bus bar, a cathode for electrolytic deposition of non-ferrous metal, a jig for anodic oxidation, etc. by joining an aluminum alloy without lowering the conductivity. Background art
導電用部材アルミニウム材料と しては、 導電率の高い 1 0 0 0系アル ミニゥム合金、 強度を必要とする用途では 6 0 0 0系のアルミニウム合 金が使用されている。 これらのアルミニウム合金は、 一般に溶加材を用 いた T I G溶接、 M I G溶接等で接合されている。  As a conductive aluminum material, a 100-series aluminum alloy having high conductivity is used, and a 600-series aluminum alloy is used for applications requiring strength. These aluminum alloys are generally joined by TIG welding, MIG welding, or the like using a filler metal.
1 0 0 0系のアルミ二ゥム合金溶加材を用いて 6 0 0 0系アルミユウ ム合金を相互に、 或いは 6 0 0 0系アルミ二ゥム合金と 1 0 0 0系アル ミニゥム合金とを溶接すると溶接割れが発生しやすい。 また、 T I G、 Using a 1000-series aluminum alloy filler material, a 600-series aluminum alloy is mutually connected, or a 600-series aluminum alloy and a 1000-series aluminum alloy are used. Welding tends to cause weld cracking. Also, TIG,
M I G等の溶融溶接では、 微細なブローホールゃヒケ巣が接合部に発生 することが避けられない。 In fusion welding of MIG, etc., it is inevitable that fine blowholes and sinkholes occur at the joint.
溶接割れ等の欠陥は、 強度を低下させるばかりでなく 、 腐食環境に曝 される用途では割れ部等に電解質が溜まるため割れ部等を起点とする腐 食を促進させる原因となる。 具体的には、 亜鉛等を電解精鍊する際に電 解浴から発生したミ ス トが割れ部等に溜まる と、 腐食が著しく加速され る。 そのため、 この種のアルミニウム合金の溶接には、 4 0 4 3 、 5 3 Defects such as weld cracks not only reduce the strength but also cause corrosion to accumulate in cracks and the like in applications exposed to a corrosive environment because electrolytes accumulate in the cracks and the like. Specifically, when mist generated from the electrolytic bath accumulates in cracks and the like when electrolytically refining zinc or the like, corrosion is significantly accelerated. Therefore, for welding this kind of aluminum alloy, 4 0 4 3, 5 3
5 6等のアルミ二ゥム合金が溶加材と して使用されているが、 腐食の進 行に応じて更新している現状である。 溶接部は、 母材及び溶加材の成分が混合された組成となるこ とから、 母材及び溶加材によって影響される性質になる。 この点、 導電率が要求 される用途に適した 1 0 0 0系、 6 0 0 0系等のアルミニウム合金を使 用しても、 T I G溶接、 M I G溶接等の際に導電率の低い 4 0 4 3や 5 3 5 6等のアルミニウム合金が使用されるため、 溶接部の導電率低下が 避けられない。 Aluminum alloys such as 5.6 are used as filler metals, but are currently being updated as corrosion progresses. Since the welded portion has a composition in which the components of the base metal and the filler metal are mixed, the properties become affected by the base metal and the filler metal. In this regard, even if an aluminum alloy such as a 1000 series or a 600 series suitable for applications requiring electrical conductivity is used, even when using aluminum alloys such as TIG welding and MIG welding, the low electrical conductivity of 40 Since an aluminum alloy such as 43 or 53356 is used, a decrease in the conductivity of the weld is inevitable.
本発明は、 このよ うな問題を解消すべく案出されたものであり、 摩擦 攪拌接合によってアルミニゥム合金を接合することによ り、 導電率の低 下をきたす溶加材の使用を不要と し、 接合後にも良好な導電率、 強度、 耐食性を維持することを目的とする。 発明の開示  The present invention has been devised in order to solve such a problem. By joining aluminum alloys by friction stir welding, it is not necessary to use a filler material that causes a decrease in conductivity. The purpose is to maintain good electrical conductivity, strength and corrosion resistance even after joining. Disclosure of the invention
本発明は、 その目的を達成するため、 複数のアルミニウム合金部材を 摩擦攪拌接合して必要形状の導電用構造体に組み立てることを特徴とす る。  In order to achieve the object, the present invention is characterized in that a plurality of aluminum alloy members are assembled by friction stir welding into a conductive structure having a required shape.
アルミニゥム合金部材と しては、 導電用構造体と しての使用時に導電 率 5 5 % I A C S以上であるアルミ二ゥム合金が好ましく 、 強度が要求 されない部位には 1 0 0 0系のアルミニウム合金、 強度が要求される部 位には析出硬化型アルミ二ゥム合金が使用される。 析出硬化型アルミ二 ゥム合金を摩擦攪拌接合する場合、 摩擦攪拌接合後の時効処理で強度を 付与することが好ま しい。 また、 摩擦攪拌接合後の降温過程で、 4 0 0 〜 3 0 0 °Cの温度域を 2 0 °C /分以上の速度で冷却することが好ま しい 導電用構造体と しては、 非鉄金属電解析出用陰極、 非鉄金属陽極酸化 用治具、 ブスバー等がある。 たとえば、 非鉄金属電解析出用陰極は、 6 0 0 0系アルミ二ゥム合金製のバーに 1 0 0 0系アルミニゥム合金製の プレー ト及び 6 0 0 0系アルミ二ゥム合金製のフックを摩擦攪拌接合す ることによ り組み立てられる。 As the aluminum alloy member, an aluminum alloy having a conductivity of 55% IACS or more when used as a conductive structure is preferable, and a 100-based aluminum alloy is used in a portion where strength is not required. A precipitation-hardened aluminum alloy is used in areas where strength is required. When friction stir welding of a precipitation hardening type aluminum alloy, it is preferable to impart strength by aging treatment after friction stir welding. In addition, during the cooling process after the friction stir welding, it is preferable to cool the temperature range of 400 to 300 ° C at a rate of 20 ° C / min or more. Cathode for metal electrodeposition, jig for non-ferrous metal anodic oxidation, busbar, etc. For example, a cathode for non-ferrous metal electrolytic deposition is a bar made of aluminum alloy of 600 series and a bar made of aluminum alloy of 1000 series. It is assembled by friction stir welding of a plate and a hook made of a 600-series aluminum alloy.
摩擦攪拌接合では、 第 1図に示すよ うに被接合部材 Mの突合せ面に回 転ツール 1 のピン 2 を挿入し、 回転ツール 1 を回転させながら突合せ線 に沿って移動させ、 回転ツール 1近傍のメ タルを塑性流動させることに よ り被接合部材 Mを接合している。 なお、 被接合部材 Mの接合に十分な 量のメタルを確保するため、 回転ツール 1 のショルダ 3 を被接合部材 M に若干押し込んでいる。  In friction stir welding, as shown in Fig. 1, pin 2 of rotating tool 1 is inserted into the mating surface of member M to be welded, and rotating tool 1 is moved along the butting line while rotating rotating tool 1. The metal M is joined by plastically flowing the metal. Note that the shoulder 3 of the rotary tool 1 is slightly pushed into the member M in order to secure a sufficient amount of metal for joining the member M to be joined.
摩擦攪拌接合で形成された接合部は、 異材の混入がなく被接合部材 M のメタルが混合したものであるため、 接合前の被接合部材 Mとほぼ同じ 性質を呈する。 また、 原理的には固相拡散接合であることから、 ブロー ホール、 ヒケ巣等の欠陥が接合部に発生しない。 したがって、 T I G溶 接、 M I G溶接等の溶融溶接と異なり 、 接合部の導電率が低下するこ と はない。 本発明は、 この長所を活用し摩擦攪拌接合で導電用構造体を製 造している。  The welded portion formed by friction stir welding has almost the same properties as the welded member M before welding because there is no mixture of dissimilar materials and the metal of the welded member M is mixed. In addition, since it is a solid-phase diffusion bonding in principle, defects such as blow holes and sink marks do not occur at the bonding portion. Therefore, unlike fusion welding such as TIG welding and MIG welding, the conductivity of the joint does not decrease. The present invention utilizes this advantage to produce a conductive structure by friction stir welding.
被接合部材 Mと しては、 電流効率の確保及びジュール熱による発熱防 止のため調質後に導電率 5 5 % I A C S以上の材料である 1 0 0 0系ァ ルミニゥム合金、 6 0 6 3合金、 6 1 0 1合金等が使用される。 1 0 0 0系合金は、 強度がそれほど要求されない非鉄金属電解析出用陰極のプ レー ト、 ブスバー等に使用される。 6 0 6 3合金、 6 1 0 1合金等のァ ルミニゥム合金は、 M g 2 S i 、 C u A l 2等の析出によって強化された 材料であり、 非鉄金属の電解析出用陰極のバー及びフック、 非鉄金属陽 極酸化用治具等の部材と して使用される。 The material to be joined M is a material with a conductivity of 55% IACS or higher after tempering to secure current efficiency and prevent heat generation due to Joule heat. , 6101 alloy and the like are used. The 100-based alloy is used for a plate, a busbar, and the like of a cathode for non-ferrous metal electrolytic deposition that does not require much strength. 6 0 6 3 alloy, § Ruminiumu alloys such as 6 1 0 1 alloy, M g 2 S i, is a material which is strengthened by the precipitation of such C u A l 2, the electrolytic deposition cathode for non-ferrous metal bars Used as hooks, jigs for non-ferrous metal anode oxidation, etc.
硫酸酸性溶液中の金属イオンを不溶性陽極を用いて陰極に析出させる 電解採取では、 析出用の陰極と してアルミニウムが通常使用されている 。 たとえば亜鉛の電解採取では、 焙焼鉱を硫酸で浸出して得た浸出液を 、 亜鉛電解に適するよ うに浄化及び液調整し、 得られた含亜鉛硫酸性電 解液を電解槽に導き、 アルミニウム陰極板と含銀鉛陽極板 (不溶性陽極 ) との間で電解し、 陰極板表面に亜鉛を析出させている。 陰極板上に 2 〜 3 m m程度の厚さに亜鉛が析出した段階で電解槽から陰極板を引き上 げ、 板状の亜鉛板を陰極板から機械的に剥離して亜鉛を採取する。 亜鉛 が剥離された陰極板は、 再び電解槽に戻される。 この方法に本発明の非 鉄金属電解析出用陰極を使用すると、 導電率が高いために亜鉛電解析出 時の電気効率がよく、 接合部の耐食性がよいので治具の寿命が長く、 治 具のメ ンテナンスに伴う作業ロスが低減する。 In electrowinning, in which metal ions in a sulfuric acid solution are deposited on a cathode using an insoluble anode, aluminum is usually used as a cathode for deposition. For example, in zinc electrowinning, the leachate obtained by leaching the roasted ore with sulfuric acid is used. After purifying and adjusting the solution to be suitable for zinc electrolysis, the resulting zinc-sulfuric acid electrolytic solution was led to an electrolytic cell, and electrolyzed between an aluminum cathode plate and a silver-containing lead anode plate (insoluble anode). Zinc is deposited on the plate surface. When zinc is deposited on the cathode plate to a thickness of about 2 to 3 mm, the cathode plate is pulled up from the electrolytic cell, and the plate-like zinc plate is mechanically peeled off from the cathode plate to collect zinc. The zinc stripped cathode plate is returned to the electrolytic cell again. When the non-ferrous metal electrodeposition cathode of the present invention is used in this method, the conductivity is high, the electric efficiency at the time of zinc electrodeposition is good, the corrosion resistance of the joint is good, and the life of the jig is long. Work loss due to tool maintenance is reduced.
摩擦攪拌接合時に被接合部材 Mが昇温し、 被接合部材 Mに含まれてい る合金成分が A 1 マ ト リ ックスに固溶することがある。 被接合部材 Mは 、 合金成分の固溶によって導電率が一般的に低下する。 低下した導電率 は、 合金成分を析出させる時効処理を摩擦攪拌接合後に施すことにより 回復する。  During the friction stir welding, the temperature of the member to be welded M rises, and the alloy component contained in the member to be welded M may form a solid solution in the A1 matrix. The conductivity of the member to be joined M generally decreases due to the solid solution of the alloy component. The lowered conductivity can be recovered by aging treatment to precipitate alloy components after friction stir welding.
析出硬化型アルミ ニウム合金の場合、 時効処理を施した部材を摩擦攪 拌接合した後、 更に時効処理を施すと過時効となり、 部材強度が低下す ることがある。 そこで、 時効処理前の部材を摩擦攪拌接合し、 次いで時 効処理を施すことにより、 導電率及び強度の双方を満足する部材が得ら れる。  In the case of a precipitation hardening type aluminum alloy, if the aging-treated member is friction stir-bonded and then further subjected to aging treatment, overaging occurs and the strength of the member may be reduced. Therefore, a member that satisfies both conductivity and strength can be obtained by friction stir welding the members before the aging treatment and then performing the aging treatment.
析出硬化型のアルミ二ゥム合金を摩擦攪拌接合後の降温過程で徐冷す ると、 強度向上に有効でない析出物と して合金成分が析出し、 強度低下 を引き起こす。 このよ うな場合、 摩擦攪拌接合された析出硬化型アルミ ニゥム合金を摩擦攪拌接合後に急冷することにより合金成分の析出を抑 制する。 なかでも、 4 0 0〜 3 0 0 °Cの温度域を 2 0 °C Z分以上の冷却 速度で冷却することが好ましい。 2 0 °C Z分未満の冷却速度では、 冷却 過程で粗大な析出物が生じやすく、 その後の時効処理によっても強度を 向上させるこ とができない。 If the precipitation hardening type aluminum alloy is gradually cooled during the temperature lowering process after the friction stir welding, alloy components are precipitated as precipitates that are not effective in improving the strength, and the strength is reduced. In such a case, the precipitation hardening type aluminum alloy subjected to friction stir welding is rapidly cooled after friction stir welding to suppress precipitation of alloy components. In particular, it is preferable to cool the temperature range of 400 to 300 ° C at a cooling rate of 20 ° CZ or more. At a cooling rate of less than 20 ° CZ, coarse precipitates are likely to be formed during the cooling process, and the strength can be increased by the subsequent aging treatment. It cannot be improved.
合金成分の析出を抑制した条件下で冷却された溶接構造体は、 強度向 上に有効な M g 2 S i 、 C u A 1 2等の供給源となる合金成分を固溶状態 で含んでいる。 そのため、 この溶接構造体を時効処理して M g 2 S i 、 C u A 1 2等を析出させるこ とによ り必要強度が付与される。 また、 固 溶している合金成分が時効処理によって析出するため、 導電率も向上す る。 Welded structure is cooled under conditions suppressing the precipitation of the alloying elements, the strength improvement over the effective M g 2 S i, a source to become an alloy component such as C u A 1 2 include in a solid solution state I have. Therefore, the welded structure by aging treatment M g 2 S i, C u A 1 2 , etc. required strength Ri by the and this precipitating is given. Further, since the solid solution alloy component is precipitated by the aging treatment, the conductivity is also improved.
具体的には、 溶接構造体を 1 8 0〜 2 2 0 °Cに 1 . 5〜 1 0時間加熱 することによ り強度及び導電率が向上する。 温度 .· 時間ともに下限値を 下回ると析出が不十分になり、 強度及び導電率が低下する。 1 8 0 °C以 下の加熱温度では、 長時間時効によって強度及び導電率を満足すること もあるが、 コス ト高になる。 逆に 2 2 0 °Cを超える加熱温度や 1 0時間 を超える長時間加熱では、 過時効となって却って強度が低下する。  Specifically, by heating the welded structure to 180 to 220 ° C for 1.5 to 10 hours, the strength and conductivity are improved. If both the temperature and the time are below the lower limit, precipitation will be insufficient, and the strength and conductivity will decrease. At a heating temperature of 180 ° C or lower, strength and conductivity may be satisfied by long-term aging, but the cost is high. Conversely, if the heating temperature exceeds 220 ° C or the heating time is longer than 10 hours, the over-aging will occur and the strength will decrease.
摩擦攪拌接合で組み立てられる溶接構造体と しては、 たとえば非鉄金 属電解析出用陰極がある。 非鉄金属電解析出用陰極は、 第 2図に示すよ うに電解液に浸漬される陰極プレー ト 4をへッ ドバー 5 に固着し、 へッ ドバー 5 にフック 6 を取り付けている。 へッ ドバー 5及びフック 6 は陰 極プレー ト 4を電解槽中に吊り下げることから強度が要求されるが、 陰 極プレー ト 4にはそれほど強度が要求されない。  As a welded structure assembled by friction stir welding, for example, there is a cathode for non-ferrous metal electrolytic deposition. As shown in FIG. 2, the cathode for non-ferrous metal electrolytic deposition has a cathode plate 4 immersed in an electrolytic solution fixed to a head bar 5 and a hook 6 attached to the head bar 5. The head bar 5 and the hook 6 require strength because the cathode plate 4 is suspended in the electrolytic cell, but the cathode plate 4 does not require much strength.
そこで、 9 9 . 0質量%以上の A 1 を含む 1 0 0 0系アルミニウム合 金を陰極プレー ト 4に使用し、 A 1含有量が 9 7 . 5 0質量%以上で 6 0 6 3、 6 0 1 0等の 6 0 0 0系アルミニウム合金をへッ ドバー 5及び フック 6 に使用し、 へッ ドバー 5に陰極プレー ト 4及びフック 6 を摩擦 攪拌接合する。 摩擦攪拌接合で形成された接合部は、 1 0 0 0系及び 6 0 0 0系のメ タルが混じり合った組成をもつことから良好な導電性が維 持され、 腐食促進物が入り込むブローホール、 ヒケ巣等の隙間が溶接部 に形成されること もない。 図面の簡単な説明 Therefore, a 1000-base aluminum alloy containing 99.0% by mass or more of A1 was used for the cathode plate 4, and if the A1 content was 97.5% by mass or more, 6003% A 600-series aluminum alloy such as 600 is used for the head bar 5 and the hook 6, and the cathode plate 4 and the hook 6 are friction stir welded to the head bar 5. Since the joint formed by friction stir welding has a composition of a mixture of 1000-series and 600-series metal, good conductivity is maintained, and blow holes into which corrosion promoting substances enter. Gaps such as sink nests are welded It is not formed at all. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 摩擦攪拌接合法の説明図である。 第 2図は、 本発明が提供 される非鉄金属電解析出用陰極である。 第 3図は、 摩擦攪拌接合で形成 した接合部の強度及び導電率が時効処理によ り回復されることを表した グラフである。 発明を実施するための最良の形態  FIG. 1 is an explanatory view of a friction stir welding method. FIG. 2 shows a cathode for non-ferrous metal electrolytic deposition provided by the present invention. FIG. 3 is a graph showing that the strength and electrical conductivity of the joint formed by friction stir welding are recovered by the aging treatment. BEST MODE FOR CARRYING OUT THE INVENTION
<実施例 1 >  <Example 1>
溶体化処理後で時効処理前の板厚 1 5 mmの J I S A 6 0 6 3アル ミニゥム合金板材を T I G溶接、 M I G溶接及び摩擦攪拌接合し、 溶接 法の相違による影響を調査した。  The JIS A6603 aluminum alloy sheet having a thickness of 15 mm after the solution treatment and before the aging treatment was subjected to TIG welding, MIG welding and friction stir welding, and the effect of the difference in the welding method was investigated.
T I G溶接では、 突合せ部の表裏両面に 9 0度の V開先を形成し、 2 O O A— 1 9 V、 1 8 0 A— 1 8 V、 1 6 0 A— 1 8 Vの条件で表裏両 面それぞれ 3パスで溶接した。 このときの溶接速度は、 S O O mmZ分 に設定した。  In TIG welding, 90 ° V-grooves are formed on both the front and back surfaces of the butt joint, and the two front and rear surfaces are subjected to the following conditions: Each surface was welded in three passes. The welding speed at this time was set to SOO mmZ.
M I G溶接では、 突合せ部の表裏両面に 7 0度の V開先を形成し、 2 2 O A- 2 O V、 2 2 O A- 2 O Vの条件で表裏両面 2パスで溶接した 。 このときの溶接速度は、 5 0 0 mm,分に設定した。  In MIG welding, a V groove of 70 degrees was formed on both the front and back surfaces of the butt portion, and welding was performed in two passes on both the front and back surfaces under the conditions of 22 OA-2 OV and 22 OA-2 OV. The welding speed at this time was set to 500 mm / min.
摩擦攪拌接合では、 ショルダ径 2 0 mm、 ピン径 8 mm、 ピン長さ 7 mmの回転ツールを 1 2 0 0 r p mで回転させ、 5 0 O mmZ分の速度 でアルミ二ゥム合金板材を接合した。  In friction stir welding, a rotating tool with a shoulder diameter of 20 mm, a pin diameter of 8 mm, and a pin length of 7 mm is rotated at 1200 rpm to join aluminum alloy plate materials at a speed of 50 O mmZ. did.
何れの方法で接合されたアルミ二ゥム合金板材も、 1 9 0°Cに 3時間 加熱保持する時効処理を施した。  The aluminum alloy sheet material joined by any of the methods was subjected to an aging treatment of heating and holding at 190 ° C. for 3 hours.
各板材から試験片を切り 出し、 接合部の強度、 導電率及び耐食性を調 查した。 導電率は、 渦電流式導電率計を用いて測定した。 耐食性は、 5 0 °Cの 2 0 0 g Z l 硫酸水溶液に試験片を 7 日間浸漬したときの腐食減 量から評価した。 Cut out test specimens from each plate and adjust joint strength, conductivity and corrosion resistance I did. The conductivity was measured using an eddy current conductivity meter. The corrosion resistance was evaluated from the corrosion loss when the test specimen was immersed in a 200 g Zl sulfuric acid aqueous solution at 50 ° C for 7 days.
表 1 の調査結果にみられるよ うに、 T I G溶接で形成した接合部は、 強度、 導電率、 耐食性の何れにもに劣っていた。 1 0 7 0アルミニウム 合金を溶加材に使用した M I G溶接では、 母材とほぼ同じ導電率の接合 部が形成されたものの、 強度及び耐食性に劣っていた。 また、 5 3 5 6 、 4 0 4 3等のアルミ二ゥム合金を溶加材に使用した M I G溶接では、 導電率の低下が大き く 、 強度及び耐食性にも劣っていた。 これに対し、 摩擦攪拌接合で形成した接合部は、 強度、 導電率、 耐食性の何れにも優 れていた。 これは、 接合部に溶接割れ、 ブローホール、 ヒケ巣等の欠陥 がないことによるものと考えられる。 表 1 :溶接方法が接合部に及ぼす影響  As can be seen from the survey results in Table 1, the joints formed by TIG welding were inferior in strength, conductivity, and corrosion resistance. In the MIG welding using an aluminum alloy as a filler metal, a joint having almost the same conductivity as the base metal was formed, but the strength and the corrosion resistance were poor. In addition, in MIG welding using an aluminum alloy such as 535, 4403 as a filler metal, the electrical conductivity was significantly reduced, and the strength and corrosion resistance were poor. In contrast, the joint formed by friction stir welding was excellent in strength, electrical conductivity, and corrosion resistance. This is considered to be due to the absence of defects such as weld cracks, blowholes and sink marks at the joint. Table 1: Effect of welding method on joints
Figure imgf000009_0001
Figure imgf000009_0001
<実施例 2 > <Example 2>
被接合部材 Mと して、 6 1 0 1アルミニウム合金押出板材 (厚み 1 5 mm、 板幅 7 0 mm、 長さ 5 0 0 mm) を使用した。 この被接合部材 M は、 押出後にダイス端焼入れした未時効処理材である。  As the member to be joined M, a 6101 aluminum alloy extruded plate material (thickness: 15 mm, plate width: 70 mm, length: 500 mm) was used. This member to be joined M is an unaged material that has been die-hardened after extrusion.
2枚の押出板材の幅方向端面を突き合わせ、 接合面を摩擦攪拌接合し た。 摩擦攪拌接合条件と しては、 径 8 mm、 長さ 7 mmのピン 2を備え たショルダ径 2 O mmの回転ツール 1 を使用し、 回転速度 1 2 0 0 r p m、 移動速度 5 0 O mmZ分で回転ツール 1 を接合線に沿って移動させ た。 摩擦攪拌接合中に接合部の温度を測定したところ、 最高到達温度 5 3 0 °Cまで昇温していた。 The end faces in the width direction of the two extruded plates are joined together, and the joint surfaces are friction stir welded Was. The friction stir welding conditions were as follows: using a rotating tool 1 with a shoulder diameter of 2 O mm and a pin 2 with a diameter of 8 mm and a length of 7 mm, a rotation speed of 1200 rpm and a movement speed of 50 O mmZ. Rotation tool 1 was moved along the joint line in minutes. When the temperature of the joint was measured during the friction stir welding, it was found that the temperature reached the maximum temperature of 5300C.
摩擦攪拌接合後、 接合部を 4 0 0〜 2 0 0 °Cの温度域で冷却速度 3 0 で^ /分となるよ うに冷却した。 冷却後に接合部の強度及び導電率を測定 した結果、 強度が Ι Υ δ ΝΖπιπι2 導電率が 5 3 % I A C S と何れも 低い値を示した。 また、 接合されたままの接合部の金属組織を観察した と ころ、 母材部に比較して析出物が明らかに減少していた。 After the friction stir welding, the joined portion was cooled at a cooling rate of 30 in a temperature range of 400 to 200 ° C. at a cooling rate of 30 / min. After cooling, the strength and conductivity of the joint were measured. As a result, the strength showed a low value of ΙΔδΝΖπιπι 2 and a conductivity of 53% IACS. In addition, when the metal structure of the joined portion was observed as it was, the precipitate was clearly reduced as compared with the base metal portion.
そこで、 摩擦攪拌接合された押出板材に 1 8 0 °Cの時効処理を施し、 強度及び導電率を回復させた。 強度及び導電率は、 第 3図にみられるよ うに時効処理時間に応じて上昇し、 4時間程度の時効処理によってほぼ 母材部と変わらない値となった。 しかし、 8時間を超える長時間時効で は、 導電率は上昇するものの、 過時効に起因して強度低下の傾向がみら れた。  Therefore, the extruded plate material subjected to friction stir welding was subjected to aging treatment at 180 ° C to recover strength and electrical conductivity. As shown in Fig. 3, the strength and conductivity increased with the aging treatment time, and after aging treatment for about 4 hours, the values were almost the same as those of the base metal part. However, with long-term aging of more than 8 hours, although the conductivity increased, there was a tendency for the strength to decrease due to overaging.
<実施例 3 >  <Example 3>
6 1 0 1合金製のフック 6及ぴバー 5 と 1 0 7 0合金製の陰極プレー ト 4をそれぞれ摩擦攪拌接合及び M I G溶接し、 第 2図に示す形状に組 み立てた陰極を 2種類用意した。  2 types of cathodes assembled by friction stir welding and MIG welding of 6101 alloy hook 6 and bar 5 and 1700 alloy cathode plate 4 respectively Prepared.
2種類の陰極プレー トを亜鉛濃度 5 5 g 1 、 硫酸濃度 1 8 5 g Z 1 、 浴温 4 2 °Cの処理液に浸漬し、 6 0 O A Zm2で 2 4時間通電して陰 極プレー ト上に亜鉛を電解析出させた。 Two cathode plates zinc concentration 5 5 g 1, the sulfuric acid concentration 1 8 5 g Z 1, it was immersed in the treatment liquid of the bath temperature 4 2 ° C, negative pole by energizing 2 4 hours 6 0 OA Zm 2 Zinc was electrolytically deposited on the plate.
各陰極を使用したときの槽電圧、 亜鉛析出量、 単位電力量 ( 1 トンの 亜鉛を析出させるのに必要な電力量) を表 2に示す。 表 2から明らかな よ うに、 摩擦攪拌接合で組み立てた陰極を使用した場合には、 M I G溶 接で組み立てた陰極に比較して単位電力量を 1 K W H Z トン削減できた 表 2 : 陰極の組立て法が電解条件に及ぼす影響 Table 2 shows the cell voltage, the amount of zinc deposited, and the unit power (the amount of power required to deposit 1 ton of zinc) when each cathode was used. As is evident from Table 2, when the cathode assembled by friction stir welding was used, Unit power consumption was reduced by 1 KWHZ ton compared to the cathode assembled in close contact. Table 2: Effect of cathode assembly method on electrolysis conditions
Figure imgf000011_0001
産業上の利用可能性
Figure imgf000011_0001
Industrial applicability
以上に説明したよ う に、 本発明は、 接合部に異材が混入しない摩擦攪 拌接合の長所を活用し、 導電率の低下を来すことなく導電用アルミニゥ ム合金部材を接合している。 また、 T I G溶接、 M I G溶接にみられる よ うな溶接割れ、 ブローホール、 ヒケ巣等の欠陥がない接合部が形成さ れるため、 強度及び耐食性にも優れた溶接構造体が得られ、 良好な導電 率が要求されるブスバー、 非鉄金属電解析出用陰極、 非鉄金属陽極酸化 用治具等と して使用される。  As described above, the present invention utilizes the advantages of friction stir welding in which dissimilar materials are not mixed into the joining portion, and joins the conductive aluminum alloy member without lowering the conductivity. In addition, a welded part that is free from defects such as weld cracks, blowholes, sink marks, etc. as seen in TIG welding and MIG welding is formed, so that a welded structure with excellent strength and corrosion resistance is obtained, and good electrical conductivity is obtained. Used as a bus bar, a cathode for non-ferrous metal electrolytic deposition, a jig for non-ferrous metal anodic oxidation, etc., which require a high rate.

Claims

請 求 の 範 囲 The scope of the claims
1 . 複数のアルミニゥム合金部材を摩擦攪拌接合して必要形状に組み立 てることを特徴とする導電用構造体の製造方法。 1. A method for manufacturing a conductive structure, wherein a plurality of aluminum alloy members are assembled into a required shape by friction stir welding.
2 . 使用時の導電率 5 5 % I A C S以上のアルミ二ゥム合金部材を異種 材料又は同種材料と摩擦攪拌接合して必要形状に組み立てることを特徴 とする導電用構造体の製造方法。  2. A method for manufacturing a conductive structure, comprising: assembling an aluminum alloy member having a conductivity of 55% I ACS or more with a different material or a similar material into a required shape by friction stir welding.
3 . 使用時の導電率 5 5 % I A C S以上のアルミニウム合金部材と して 析出硬化型アルミ二ゥム合金を使用し、 摩擦攪拌接合後に時効処理を施 す請求の範囲第 2項記載の導電用構造体の製造方法。  3. Conductivity for use according to claim 2, wherein a precipitation hardening type aluminum alloy is used as an aluminum alloy member having an electrical conductivity of 55% IACS or more, and aging treatment is performed after friction stir welding. The method of manufacturing the structure.
4 . 析出硬化型アルミニウム合金部材を摩擦攪拌接合した後、 4 0 0〜4. After precipitation hardening type aluminum alloy members are friction stir welded,
3 0 0 °Cの温度域を 2 0 °C /分以上の速度で冷却する請求の範囲第 3項 記載の導電用構造体の製造方法。 4. The method for producing a conductive structure according to claim 3, wherein the temperature range of 300 ° C. is cooled at a rate of 20 ° C./min or more.
5 . 請求の範囲第 1項乃至第 4項記載の何れかの方法で製造した非鉄金 属電解析出用陰極。  5. A cathode for non-ferrous metal electrolytic deposition produced by the method according to any one of claims 1 to 4.
6 . 6 0 0 0系アルミニウム合金製のバーに 1 0 0 0系アルミニウム合 金製のプレー ト及び 6 0 0 0系アルミ二ゥム合金製のフックが摩擦攪拌 接合されている非鉄金属電解析出用陰極。 Electromagnetic analysis of non-ferrous metals in which a 600-series aluminum alloy bar and a 1000-series aluminum alloy plate and a 600-series aluminum alloy alloy hook are friction stir welded to a 600-series aluminum alloy bar Outgoing cathode.
7 . 請求の範囲第 5項又は第 6項記載の非鉄金属電解析出用陰極を用い て行う亜鉛電解法。  7. A zinc electrolysis method using the cathode for non-ferrous metal electrolytic deposition according to claim 5 or 6.
PCT/JP2001/003851 2000-05-08 2001-05-08 Method of manufacturing conductive structure WO2001085382A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001252695A AU2001252695A1 (en) 2000-05-08 2001-05-08 Method of manufacturing conductive structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000134408A JP3720240B2 (en) 2000-05-08 2000-05-08 Method for producing cathode for electrolytic deposition of nonferrous metal
JP2000-134408 2000-05-08

Publications (1)

Publication Number Publication Date
WO2001085382A1 true WO2001085382A1 (en) 2001-11-15

Family

ID=18642693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003851 WO2001085382A1 (en) 2000-05-08 2001-05-08 Method of manufacturing conductive structure

Country Status (3)

Country Link
JP (1) JP3720240B2 (en)
AU (1) AU2001252695A1 (en)
WO (1) WO2001085382A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573289A (en) * 2017-08-22 2019-12-13 日本轻金属株式会社 Method for manufacturing liquid cooling jacket

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6444471A (en) * 1987-08-11 1989-02-16 Fujitsu Ltd Toner supply mechanism
US6726085B2 (en) * 2002-05-14 2004-04-27 The Boeing Company Method and apparatus for producing a refined grain structure
US7360676B2 (en) * 2002-09-21 2008-04-22 Universal Alloy Corporation Welded aluminum alloy structure
US8313622B2 (en) * 2010-07-09 2012-11-20 Rsr Technologies, Inc. Electrochemical anodes having friction stir welded joints and methods of manufacturing such anodes
JP6077409B2 (en) * 2013-07-08 2017-02-08 昭和電工株式会社 Bus bar and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454056A1 (en) * 1990-04-23 1991-10-30 Austria Metall Aktiengesellschaft Aluminium cathode-plate for the electrowinning of zinc
JPH10328855A (en) * 1997-05-30 1998-12-15 Showa Alum Corp Manufacture of conductive joined body joined with different kinds of metal
JP2000248399A (en) * 1999-02-26 2000-09-12 Kobe Steel Ltd Aluminum or aluminum alloy member, vacuum vessel and reaction vessel having excellent corrosion resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0454056A1 (en) * 1990-04-23 1991-10-30 Austria Metall Aktiengesellschaft Aluminium cathode-plate for the electrowinning of zinc
JPH10328855A (en) * 1997-05-30 1998-12-15 Showa Alum Corp Manufacture of conductive joined body joined with different kinds of metal
JP2000248399A (en) * 1999-02-26 2000-09-12 Kobe Steel Ltd Aluminum or aluminum alloy member, vacuum vessel and reaction vessel having excellent corrosion resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110573289A (en) * 2017-08-22 2019-12-13 日本轻金属株式会社 Method for manufacturing liquid cooling jacket

Also Published As

Publication number Publication date
JP2002307173A (en) 2002-10-22
JP3720240B2 (en) 2005-11-24
AU2001252695A1 (en) 2001-11-20

Similar Documents

Publication Publication Date Title
JP7503048B2 (en) Aluminum material manufacturing method and manufacturing device
CN111945148B (en) Method for improving wear-resisting and corrosion-resisting properties of magnesium alloy
CN102011144A (en) Nickel-based alloy material suitable for inert anode of metal molten salt electrolyzer
AU2012259533A1 (en) Bimetallic connections for heavy current applications
CN101426961A (en) Heat-resistant Sn-plated Cu-Zn alloy strip suppressed in whiskering
WO2001085382A1 (en) Method of manufacturing conductive structure
CN108642520A (en) A method of zinc is generated based on choline chloride-malonic acid eutectic system
CN112894123A (en) Friction stir welding method for aluminum-copper dissimilar metal
CN106048667B (en) A kind of connection method of the same race or dissimilar metal based on plating
CN101817128B (en) Preparation method of aluminum-based brazing filler metal with low melting point
JPH031394B2 (en)
JP4820228B2 (en) Cu-Zn-Sn alloy strips with excellent heat-resistant peelability for Sn plating and Sn plating strips thereof
US3923609A (en) Method of joining silicon metal
CN108340092B (en) Brazing material for repairing anode steel claw and preparation method thereof
CN108890117A (en) A kind of dual outfield improves the method and device of Mechanical properties of friction stir welds
JP2005105307A (en) REFLOW-Sn-PLATED MEMBER, METHOD FOR MANUFACTURING THE MEMBER, AND COMPONENT FOR ELECTRICAL AND ELECTRONIC EQUIPMENT USING THE MEMBER
Wang et al. Corrosion behaviors of 316LN stainless steel joints brazed with Sn-plated silver filler metals
US3956098A (en) Apparatus containing silicon metal joints
CN108723534B (en) Electrolytic aluminum cathode steel-aluminum fusion brazing welding method
CN111945189A (en) Lap joint type copper-aluminum integrated beam for zinc electrodeposition and preparation method thereof
Walker Structure and properties of electrodeposited metals
CN103305870A (en) Ferro-nickel anticorrosion alloy material for inert anode
JP4153260B2 (en) Steel electrical components with excellent weldability and electrical conductivity, and steel electrical component assemblies with excellent electrical conductivity and mechanical strength at welded joints
KR100835499B1 (en) Fe-al alloy having intermediate binding layer with fe-al or fe-al alloy, and manufacturing process thereof
JP2639950B2 (en) Insoluble anode material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase