WO2001076879A1 - Structure d'elements a haute densite formee par assemblage de couches et son procede de fabrication - Google Patents

Structure d'elements a haute densite formee par assemblage de couches et son procede de fabrication Download PDF

Info

Publication number
WO2001076879A1
WO2001076879A1 PCT/FR2001/001116 FR0101116W WO0176879A1 WO 2001076879 A1 WO2001076879 A1 WO 2001076879A1 FR 0101116 W FR0101116 W FR 0101116W WO 0176879 A1 WO0176879 A1 WO 0176879A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
axis
elements
substrate
layers
Prior art date
Application number
PCT/FR2001/001116
Other languages
English (en)
Inventor
François BALERAS
Gilles Poupon
Bernard Aspar
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to JP2001574375A priority Critical patent/JP2003530249A/ja
Priority to DE60101326T priority patent/DE60101326T2/de
Priority to US10/240,751 priority patent/US6909445B2/en
Priority to EP01925619A priority patent/EP1272350B1/fr
Publication of WO2001076879A1 publication Critical patent/WO2001076879A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components with at least one potential-jump barrier or surface barrier specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays

Definitions

  • the invention relates to a structure comprising a succession of elements intended to transmit or receive a signal along an axis.
  • the invention advantageously applies to the case where the elements intended to transmit or receive the signal must reach a high density. It can be, for example, networks of optical components (laser diodes, optical fibers, detectors), networks of antennas, printheads, etc.
  • the invention will be more particularly described in the case of a print head.
  • a known printing technique is printing using bars.
  • Each bar includes elements aligned side by side.
  • Each element is either a magnetic head or a resistor, depending on whether the printing signal is magnetostatic or thermal.
  • One or more strips placed end to end form a line the width of the support to be printed.
  • the support which receives the impression scrolls in relation to the bars which transform the electrical writing signals received either into magnetic signals or into thermal signals.
  • the printing of the support is carried out line by line by relative scrolling of the support or the bars.
  • Each element receives a write signal which is renewed with each line to be printed.
  • a first known technique consists in assembling individual printheads.
  • An individual print head can include, for example, a magnetic head controlled by a diode or a transistor.
  • the magnetic head is made on a mechanical support and the control diode is welded on the support.
  • the individual print heads are then mounted on a mechanical support with an interposer between the heads.
  • This manufacturing method limits the resolution of the print head to values between 150 and 300 dpi (dpi for "dot per inch”).
  • a second manufacturing method is linked to microelectronics techniques.
  • the print heads are then produced collectively on a semiconductor substrate.
  • An example of a collective structure of printheads obtained according to this second method is shown in FIG. 1.
  • the print head 1 consists of a set of individual magnetic heads 3 produced on a semiconductor substrate 4. Each individual magnetic head 3 is controlled by a diode 2.
  • the diodes 2 can be integrated or attached to the semi substrate -conductor 4.
  • This second manufacturing technique achieves resolutions of the order of 600 dpi.
  • the drum 5 of the printer comes into contact with the magnetic heads 3.
  • the diodes 2 are attached to the substrate 4, it is then necessary to move the diodes 2 away from the heads 3 in order to d '' prevent the drum from coming into contact with the diodes.
  • the area between the diodes 2 and the heads 3 is then lost.
  • the length of the line which separates a diode 2 from a magnetic head 3 can then have an electrical resistance capable of reducing the performance of the magnetic head.
  • the invention does not have the drawbacks mentioned above.
  • the invention relates to a structure comprising a succession of elements for transmitting or receiving a signal along an axis. At least two successive elements in the direction of the axis are offset from each other in a direction perpendicular to the axis.
  • the structure comprises at least one set of at least two layers of material deposited on a receiving substrate, each layer of material comprising a succession of elements aligned in a direction parallel to the axis, two successive elements of the structure in the direction parallel to the axis belonging to different layers.
  • the invention also relates to a print head comprising a succession of magnetic heads or resistors for printing along an axis.
  • the print head is a structure such as according to the invention.
  • the invention also relates to a method of manufacturing a structure comprising a succession of elements for transmitting or receiving a signal along an axis.
  • the method comprises a step of assembling at least two layers of material each comprising a succession of elements aligned in a direction parallel to the axis, the assembly being carried out so that two successive elements of the structure according the direction parallel to the axis belong to two different layers.
  • the assembling of the layers of material is carried out by transfer of layers from a transfer support to a receiving substrate and by adhering contact of the transferred layers.
  • the invention also relates to a method for manufacturing a printhead comprising a succession of magnetic heads or resistors to make an impression along an axis.
  • the method implements a method according to the invention as mentioned above.
  • the invention also relates to a method of manufacturing a structure comprising a succession of elements for transmitting or receiving a signal along an axis, two successive elements in the direction of the axis being offset, one with respect to to the other, in a direction perpendicular to the axis, characterized in that it comprises the following stages:
  • the invention advantageously makes it possible to obtain a high resolution structure. It is possible to reach, for example, resolutions of the order of 1200 dpi, or even more, by successive layer transfers.
  • the method according to the preferred embodiment of the invention uses the technique of transfer of layers (or multilayers) by molecular adhesion on the wafer scale.
  • This technique consists in producing on a first substrate at least one semiconductor layer comprising print heads, then transferring, by molecular bonding, the semiconductor layer or layers comprising the print heads onto a second substrate already comprising at least one layer comprising printheads; successively, it is thus possible to increase the number of levels of printheads of the structure.
  • Molecular bonding enables interconnections to be made using microelectronics techniques (plasma etching, spraying). Depending on the structures produced, all of the inputs / outputs can be brought back on one side or on two sides.
  • the layer transfer technique is compatible with the process of brazing fusible balls.
  • This technique is also compatible with the methods of thinning the wafers, which makes it possible to further reduce the dimensions of the printing module.
  • the distance between two consecutive heads can be reduced to the thickness of the layers, which makes it possible to obtain a vertical step equivalent to the horizontal step.
  • This method also allows the assembly of several functionalities (layers for the heads and layers for the control circuits) and to realize the interconnections between the heads and the control circuits (always by microelectronics processes).
  • the assembly technique by layer transfer according to the preferred embodiment of the invention advantageously makes it possible, in a first step, to produce a stack of heads on a first support allowing the precision of microelectronics technologies to be used and then transferring the stack of heads to another support adapted to the desired application.
  • the first support can be, for example, a wafer of silicon, AsGa, Sic, SOI or InP.
  • the support adapted to the desired application can be, for example, a plastic substrate for a printer head application with a drum system (this then makes it possible to avoid degradation of the substrate due to the friction of the substrate on the drum) , a ceramic substrate for a head using a thermal effect, a printed circuit for connecting a stack of heads to other components such as control chips, or even a flexible printed circuit.
  • the assembly technique according to the invention thus makes it possible to integrate on one or two supports, depending on the variants, all of the functions (printheads, control circuits and interconnections) while minimizing the dimensions of the module (overall dimensions and distance between heads).
  • the invention relates to any structure comprising a succession of elements for transmitting or receiving a signal along an axis: network of optical components (laser diodes, optical fibers, detectors) , antenna networks, etc.
  • FIG. 1 shows a print head according to the prior art
  • FIG. 2 shows a sectional view of the print head of Figure 1, equipped with its drum
  • FIG. 3 represents a perspective view of a first embodiment of the print head according to the invention
  • FIGS. 4A and 4B respectively represent a view in longitudinal section of a print head and a view in cross section of a substrate comprising the print heads according to the invention
  • FIGS. 5A to 5F represent a method for manufacturing a print head according to the second embodiment shown in FIGS. 4A and 4B
  • FIG. 3 represents a perspective view of two sub-assemblies making it possible to produce a first example of a printhead according to the invention.
  • a first subset El comprises a first strip 6, a second strip 7, and several blocks of diodes B1, B2, B3.
  • a second subset E2, identical to the first subset El, comprises a first strip 8, a second strip 9 and several blocks of diodes (not shown in the figure).
  • the bars 6 and 7 of the subassembly El, as well as the bars 8 and 9 of the subassembly E2, are fixed to each other, for example using solder balls deposited on the pads d hooking. These solder balls also allow an electrical connection between the bars 6 and 7 of the sub-assembly El and the bars 8 and 9 of the sub-assembly E2.
  • Each bar includes a set of magnetic heads produced on one of its faces. The side on which the magnetic heads of the bar 6 is fixed to the face on which the magnetic heads of the bar are located 7. Similarly, the face on which are located the magnetic heads of the bar 8 is fixed to the face on which the magnetic heads of the bar are located 9.
  • the control diodes of the magnetic heads of the first sub-assembly El are produced by blocks (B1, B2, B3) attached to the face of the bar 6 on which the magnetic heads are produced.
  • the diodes of the blocks B1, B2, B3 make it possible to control both the magnetic heads of the strip 6 and the magnetic heads of the strip 7.
  • control diodes of the magnetic heads of the second sub-assembly E2 are produced in blocks (not shown in the figure) attached to the face of the bar 8 on which the magnetic heads are produced.
  • the diodes of the blocks thus added make it possible to control the magnetic heads of the bars 8 and 9.
  • the two sub-assemblies El and E2 are assembled together using spacers T, for example rigid balls, placed in cavities C previously produced on the rear faces of the respective bars 6 and 8.
  • the two sub-assemblies El and E2 are pressed against each other and aligned.
  • the remaining space between the modules can then be filled with glue, for example epoxy resin.
  • the assembly of the sub-assemblies El and E2 can also be carried out by fusible balls transferred to the attachment studs. These attachment studs are then previously produced on the rear faces of the respective bars 6 and 8.
  • the reflow temperature of the balls used for assembling the sub-assemblies El and E2 is lower than that of the balls used for assembling the bars 6 and 7 (respectively 8 and 9).
  • the two sub-assemblies self-align.
  • the assembly can, at the end of the process, be advantageously filled, for example, with resin to obtain a mechanically rigid assembly (the same is true for the other exemplary embodiments).
  • the ends of the magnetic heads of the sub-assembly El and E2 constitute magnetic poles.
  • the sub-assembly El comprises 14 magnetic poles pEli, ..., pEl ⁇ 4 and the sub-assembly E2 comprises 14 magnetic poles pE2 ⁇ , ..., pE2 ⁇ 4 .
  • the signals which make it possible to form a printing line on the support then consist, for example, of signals coming from successive magnetic poles pEl ⁇ , pE2 lf pEl, pE2 2 , ..., pEl 14 , pE2 14 .
  • the difference in height of the poles in the direction perpendicular to the axis defined by the line can be compensated for by an electronic time shift system.
  • a resolution of 450 dpi for each subset El, E2 by assembling the respective bars of these sub-assemblies with an offset of half a step.
  • the assembly of the two subsets E1 and E2 with an offset of a quarter of a step then leads to a resolution of 900 dpi.
  • Such a resolution can be further increased if the pitch of the magnetic poles of a strip leads to a resolution greater than 225 dpi.
  • a resolution of 300 dpi for bars 6, 7, 8 and 9 leads to a resolution of 1200 dpi (4 x 300 dpi) for the print head made up of the two sub-assemblies El and E2.
  • the offset of the magnetic poles in a direction parallel to the printing axis can be achieved in different ways. It is for example possible either to produce different bars as to the position of the magnetic poles and to assemble the bars symmetrically, or to make identical bars and to assemble the bars with an offset.
  • FIGS. 4A and 4B show, respectively, a longitudinal section view of a print head and a cross section view of a substrate comprising the print heads according to the invention.
  • a substrate SI is covered with a layer K1 which is itself covered with a layer K2.
  • the increase in resolution is obtained by shifting the magnetic heads t (see Figure 4B).
  • the distance h which separates two successive magnetic heads in the direction perpendicular to the printing axis can reach a value of the order of 20 ⁇ m to 30 ⁇ m. This value of h can correspond substantially to the minimum distance d which separates two successive magnetic heads from the print head. No electronic compensation of the signals applied to the magnetic heads is then necessary.
  • FIGS. 4A and 4B comprises only two layers K1, K2 provided with magnetic heads. It should however be noted that, more generally, the invention relates to a print head comprising at least two layers provided with magnetic heads.
  • FIGS. 5A to 5F represent an example of a method of manufacturing a print head according to the invention .
  • FIG. 5A shows a structure made up of an initial substrate I on which are deposited a stop layer 11 and a layer K2 provided with magnetic heads t.
  • the substrate I allows the formation of layers 11 and K2 according to microelectronics technologies.
  • the substrate I can be, for example, a wafer of silicon, AsGa, Sic, SOI or InP.
  • the barrier layer 11 can be, for example, a silicon oxide.
  • the structure shown in FIG. 5A comprises a stop layer 11 and a layer K2 provided with magnetic heads t.
  • the invention also relates to the case where there is no stop layer 11 and / or the case where the structure comprises a stack of several layers provided with magnetic heads.
  • the process for manufacturing a print head from a structure as shown in FIG. 5A comprises the following steps: transfer, for example by gluing, of a transfer support T on the free face of the layer K2 .
  • the transfer support T commonly called handle, can be made of a transparent material, for example glass or pure silica, in order to avoid alignment problems (FIG. 5B), removal of the initial substrate I by a process conventional or a combination of conventional processes: mechanical rectification, polishing, separation along a cleavage plane induced by ion implantation, chemical, reactive, selective, or ultrasonic etching (Figure 5C), removal of the barrier layer 11 (FIG.
  • the method according to the invention also comprises steps of making electrical contact on the magnetic heads (opening in the passivation and etallization layers). These steps are not shown in the figures.
  • the layers K1 and K2 can be produced from semiconductor material.
  • the transfer of the layer K1 to the layer K2 can then be carried out by the molecular adhesion technique.
  • Molecular adhesion concerns two types of bonding: hydrophilic bonding and hydrophobic bonding.
  • Hydrophilic bonding results from the evolution of -OH interactions on the surface of a structure towards the formation, for example, of Si-O-Si bonds. The forces associated with this type of interaction are strong.
  • the bonding energy of the order of 100 mJ / m 2 at room temperature, reaches 500 mJ / m 2 after annealing at 400 ° C for 30 minutes (values obtained for a bonding of native Si02 or hydrophilic - unpolished thermal SiO2).
  • the bonding energy is generally determined by the blade method disclosed by W.P.
  • the bonding energy is of the order of 1 J / m 2 for annealing under the same conditions.
  • bonding energy of the order of 100 mJ / m 2 after annealing at 400 ° C for 30 minutes.
  • FIGS 6A to 6F show different examples of printheads according to the invention.
  • FIGS. 6A and 6B show, respectively, a longitudinal view and a transverse view of a structure composed of a substrate S2 on which four successive layers K3, K4, K5, K6 are stacked.
  • Figures 6C and 6D show two examples of printheads comprising structures assembled using solder ball connections.
  • the connection by solder balls is known to those skilled in the art under the name of “flip-chip” assembly.
  • Figure 6C shows an assembly of two structures.
  • a first structure consists of a substrate S3 on which are bonded two successive layers K7 and K8.
  • a second structure consists of a substrate S4 on which are bonded two successive layers K9 and K10. Connection by solder balls are produced between the free faces of layers K8 and K10.
  • the print head shown in FIG. 6D comprises the association of three structures.
  • a first structure consists of a substrate S5 covered, on a first face, with two layers K13 and K14 and, on the other face, with two layers K15 and K16.
  • the other two structures each consist of a substrate (S3, S6) on which are bonded two layers (K7 and K8 for the substrate K3; K15 and K16 for the substrate S6).
  • the free faces of layers K16 and K14, on the one hand, and the free faces of layers K8 and K12, on the other hand, are assembled by solder balls.
  • FIG. 6E represents a structure with two layers K17, K18, each layer comprising a set of diodes D for the control of the magnetic heads which it contains.
  • Figure 6F shows a two-layer structure K19, K20.
  • a block of diodes BD is connected by solder balls b to the free face of the upper layer K20.
  • FIGS. 6A-6F are given by way of nonlimiting examples. More generally, as mentioned previously, the invention relates to any structure comprising at least one assembly consisting of a receiving substrate on which are deposited at least two layers of material li
  • each provided with magnetic heads The assemblies consisting of a receiving substrate and layers of material can be linked together by solder balls or any other means.

Abstract

L'invention concerne une structure comprenant une succession d'éléments (t) pour émettre ou recevoir un signal le long d'un axe. Deux éléments (t) successifs dans la direction de l'axe sont décalés, l'un par rapport à l'autre, dans une direction perpendiculaire à l'axe. La structure comprend au moins deux couches de matériau (K1, K2) déposées sur un substrat de réception (S1) par la technique de transfert de couches. L'invention s'applique plus particulièrement à tout type de structure pour laquelle les éléments doivent atteindre une densité élevée (tête d'impression, réseaux de composants optiques, réseaux d'antennes, etc.).

Description

STRUCTURE D'ELEMENTS A HAUTE DENSITE FORMEE PAR ASSEMBLAGE DE COUCHES ET SON PROCEDE DE FABRICATION
Domaine technique et art antérieur L'invention concerne une structure comprenant une succession d'éléments destinés à émettre ou à recevoir un signal le long d'un axe.
L'invention s'applique avantageusement au cas où les éléments destinés à émettre ou à recevoir le signal doivent atteindre une haute densité. Il peut s'agir, par exemple, de réseaux de composants optiques (diodes laser, fibres optiques, détecteurs), de réseaux d'antennes, de têtes d'impression, etc..
A titre d'exemple non limitatif, l'invention sera plus particulièrement décrite dans le cas d'une tête d'impression.
Une technique d'impression connue est l'impression à l'aide de barrettes. Chaque barrette comprend des éléments alignés côte à côte. Chaque élément est soit une tête magnétique, soit une résistance, selon que le signal d'impression est magnétostatique ou thermique. Une ou plusieurs barrettes mises bout à bout forment une ligne de la largeur du support à imprimer . Le support qui reçoit l'impression défile par rapport aux barrettes qui transforment les signaux électriques d'écriture reçus soit en signaux magnétiques, soit en signaux thermiques. L'impression du support s ' effectue ligne par ligne par défilement relatif du support ou des barrettes. Chaque élément reçoit un signal d'écriture qui se renouvelle à chaque ligne à imprimer. Plusieurs procédés de fabrication de tête d'impression sont connus de l'art antérieur.
Une première technique connue consiste à assembler des têtes d'impression individuelles. Une tête d'impression individuelle peut comporter, par exemple, une tête magnétique commandée par une diode ou un transistor. La tête magnétique est réalisée sur un support mécanique et la diode de commande est soudée sur le support. Les têtes d'impression individuelles sont alors montées sur un support mécanique avec un interposeur entre les têtes .
Cette méthode de fabrication limite la résolution de la tête d'impression à des valeurs comprises entre 150 et 300 dpi (dpi pour "dot per inch") .
Une deuxième méthode de fabrication est liée aux techniques de la micro-électronique. Les têtes d'impression sont alors réalisées de façon collective sur un substrat semi-conducteur. Un exemple de structure collective de têtes d'impression obtenue selon cette deuxième méthode est représentée en figure 1.
La tête d'impression 1 est constituée d'un ensemble de têtes magnétiques individuelles 3 réalisées sur un substrat semi-conducteur 4. Chaque tête magnétique individuelle 3 est commandée par une diode 2. Les diodes 2 peuvent être intégrées ou rapportées sur le substrat semi-conducteur 4.
Cette deuxième technique de fabrication permet d'atteindre des résolutions de l'ordre de 600 dpi.
Cependant, de telles résolutions ne peuvent être atteintes qu'à l'aide d'une réduction de la taille des têtes magnétiques. De façon désavantageuse il en résulte une diminution de l'intensité du champ magnétique induit par les têtes magnétiques .
Cette technique présente également d'autres inconvénients .
Comme représenté en figure 2, le tambour 5 de 1 ' imprimante vient au contact des têtes magnétiques 3. Dans le cas où les diodes 2 sont rapportées sur le substrat 4, il est alors nécessaire d'éloigner les diodes 2 des têtes 3 afin d'éviter que le tambour ne vienne au contact des diodes. La zone située entre les diodes 2 et les têtes 3 est alors perdue. La longueur de la ligne qui sépare une diode 2 d'une tête magnétique 3 peut alors présenter une résistance électrique susceptible de réduire les performances de la tête magnétique.
Dans le cas où les diodes 2 sont intégrées au substrat 4, l'inconvénient mentionné ci-dessus n'existe pas. Cependant, il est alors nécessaire de mettre en oeuvre deux technologies de fabrication différentes : une pour les diodes, une autre pour les têtes magnétiques. Le rendement de fabrication s'en trouve diminué .
L ' invention ne présente pas les inconvénients mentionnés ci-dessus.
Exposé de 1 ' invention
En effet, l'invention concerne une structure comprenant une succession d'éléments pour émettre ou recevoir un signal le long d'un axe. Au moins deux éléments successifs selon la direction de l'axe sont décalés, l'un par rapport à l'autre, dans une direction perpendiculaire à l'axe.
Selon le mode de réalisation préférentiel de l'invention, la structure comprend au moins un ensemble d'au moins deux couches de matériau déposées sur un substrat de réception, chaque couche de matériau comprenant une succession d'éléments alignés selon une direction parallèle à l'axe, deux éléments successifs de la structure selon la direction parallèle à l'axe appartenant à des couches différentes.
L'invention concerne également une tête d'impression comprenant une succession de têtes magnétiques ou de résistances pour réaliser une impression le long d'un axe. La tête d'impression est une structure telle que selon l'invention. ' invention concerne également un procédé de fabrication d'une structure comprenant une succession d'éléments pour émettre ou recevoir un signal le long d'un axe. Le procédé comprend une étape d'assemblage d'au moins deux couches de matériau comprenant, chacune, une succession d'éléments alignés selon une direction parallèle à l'axe, l'assemblage étant effectué de façon que deux éléments successifs de la structure selon la direction parallèle à l'axe appartiennent à deux couches différentes.
Selon le mode de réalisation préférentiel de l'invention, l'assemblage des couches de matériau est réalisé par transfert de couches depuis un support de transfert vers un substrat de réception et par mise en contact adhérant des couches transférées.
L'invention concerne également un procédé de fabrication d'une tête d'impression comprenant une succession de têtes magnétiques ou de résistances pour réaliser une impression le long d'un axe. Le procédé met en œuvre un procédé selon 1 ' invention tel que mentionné ci-dessus. L ' invention concerne également un procédé de fabrication d'une structure comprenant une succession d'éléments pour émettre ou recevoir un signal le long d'un axe, deux éléments successifs dans la direction de l'axe étant décalés, l'un par rapport à l'autre, dans une direction perpendiculaire à l'axe, caractérisé en ce qu'il comprend les étapes suivantes :
- dépôt, sur un premier substrat semi-conducteur d'au moins une couche semi-conductrice comportant un ensemble d'éléments alignés pour émettre ou recevoir un signal le long de l'axe,
- report d'un support de transfert sur une face libre d'une couche semi-conductrice déposée sur le premier substrat,
- retrait du premier substrat, - report, à l'aide du support de transfert, de la face libre de la couche semi-conductrice apparue suite au retrait du premier substrat sur une face libre d'une couche semi-conductrice fixée sur un substrat de réception et comportant un ensemble d'éléments alignés pour émettre ou recevoir un signal le long de 1 ' axe,
- collage moléculaire des deux faces mises en contact par report à l'aide du support de transfert.
L'invention permet avantageusement d'obtenir une structure à haute résolution. Il est possible d'atteindre, par exemple, des résolutions de l'ordre de 1200 dpi, voire plus, par reports de couches successifs .
Le procédé selon le mode de réalisation préférentiel de 1 ' invention utilise la technique de transfert de couches (ou multicouches) par adhésion moléculaire à l'échelle du wafer. Cette technique consiste à réaliser sur un premier substrat au moins une couche semi-conductrice comportant des têtes d'impression, puis de transférer, par collage moléculaire, la ou les couches semi-conductrices comportant les têtes d'impression sur un deuxième substrat comportant déjà au moins une couche comportant des têtes d'impression ; de façon successive, on peut ainsi augmenter le nombre de niveaux de têtes d'impression de la structure. Le collage moléculaire permet la réalisation des interconnexions par les techniques de la microélectronique (gravure plasma, pulvérisation). Selon les structures réalisées, on peut ramener l'ensemble des entrées/sorties sur une seule face ou sur deux faces. De plus, la technique de transfert de couches est compatible avec le procédé de brasage de billes fusibles.
Cette technique est également compatible avec les méthodes d'amincissement des wafers, ce qui permet de réduire encore les dimensions du module d' impression.
La distance entre deux têtes consécutives peut se réduire à l'épaisseur des couches, ce qui permet d'obtenir un pas vertical équivalent au pas horizontal. Cette méthode permet aussi l'assemblage de plusieurs fonctionnalités (couches pour les têtes et couches pour les circuits de commande) et de réaliser les interconnexions entre les têtes et les circuits de commande (toujours par les procédés de la microélectronique) .
Dans le cas d'un report sur face arrière, l'avantage du report par collage moléculaire permet de réaliser des têtes d'impression sur les deux faces de sorte que les couches de chaque face ne viennent pas en contact des porte-substrats des équipements .
Par rapport aux techniques d'assemblage selon l'art antérieur, la technique d'assemblage par transfert de couches selon le mode de réalisation préférentiel de l'invention permet avantageusement, dans un premier temps, de réaliser un empilement de têtes sur un premier support permettant d'utiliser la précision des technologies de la microélectronique puis, ensuite, de transférer l'empilement de têtes sur un autre support adapté à l'application souhaitée. Le premier support peut être, par exemple, une plaquette de silicium, d'AsGa, de Sic, de SOI ou de InP. Le support adapté à l'application souhaitée peut être, par exemple, un substrat en plastique pour une application de tête d'imprimante à système à tambour (cela permet alors d'éviter la dégradation du substrat dû au frottement du substrat sur le tambour) , un substrat en céramique pour une tête utilisant un effet thermique, un circuit imprimé pour connecter un empilement de têtes à d'autres composants tels que des puces de commande, ou encore un circuit imprimé souple.
La technique d'assemblage selon l'invention permet ainsi d'intégrer sur un ou deux supports, selon les variantes, l'intégralité des fonctions (têtes d'impression, circuits de commande et interconnexions) tout en réduisant au minimum les dimensions du module (dimensions globales et distance entre les têtes) .
Dans la suite de la description, l'invention sera plus particulièrement décrite dans le cas où la structure est une tête d'impression dont les éléments sont des têtes magnétiques. De façon plus générale, comme cela a été mentionné précédemment, l'invention concerne toute structure comprenant une succession d'éléments pour émettre ou recevoir un signal le long d'un axe : réseau de composants optiques (diodes laser, fibres optiques, détecteurs), réseaux d'antennes, etc..
Brève description des figures
D'autres caractéristiques et avantages de 1 ' invention apparaîtront à la lecture de modes de réalisation de 1 ' invention fait en référence aux figures ci-annexées parmi lesquelles :
- la figure 1 représente une tête d'impression selon l'art antérieur, - la figure 2 représente une vue en coupe de la tête d'impression de la figure 1, équipée de son tambour,
- la figure 3 représente une vue en perspective d'un premier mode de réalisation de tête d'impression selon l'invention,
- les figures 4A et 4B représentent respectivement une vue en coupe longitudinale d'une tête d'impression et une vue en coupe transversale d'un substrat comportant les têtes d'impression selon l'invention, - les figures 5A à 5F représentent un procédé de fabrication de tête d'impression selon le deuxième mode de réalisation représenté aux figures 4A et 4B,
- les figures 6A à 6F représentent différents exemples de tête d'impression selon l'invention.
Description détaillée de modes de mise en oeuyre de 1 ' invention
Sur toutes les figures, les mêmes repères désignent les mêmes éléments.
Les figures 1 et 2 ont été décrites précédemment, il est donc inutile d'y revenir.
La figure 3 représente une vue en perspective de deux sous-ensembles permettant de réaliser un premier exemple de tête d'impression selon l'invention.
Un premier sous-ensemble El comprend une première barrette 6, une deuxième barrette 7, et plusieurs blocs de diodes Bl, B2 , B3. Un deuxième sous- ensemble E2 , identique au premier sous-ensemble El, comprend une première barrette 8, une deuxième barrette 9 et plusieurs blocs de diodes (non représentés sur la figure) .
Les barrettes 6 et 7 du sous-ensemble El, de même que les barrettes 8 et 9 du sous-ensemble E2 , sont fixées l'une à l'autre, par exemple à l'aide de billes de soudure déposées sur des plots d'accrochage. Ces billes de soudure permettent aussi une connexion électrique entre les barrettes 6 et 7 du sous-ensemble El et les barrettes 8 et 9 du sous-ensemble E2. Chaque barrette comprend un ensemble de têtes magnétiques réalisées sur l'une de ses faces. La face sur laquelle sont situées les têtes magnétiques de la barrette 6 est fixée à la face sur laquelle sont situées les têtes magnétiques de la barrette 7. De même, la face sur laquelle sont situées les têtes magnétiques de la barrette 8 est fixée à la face sur laquelle sont situées les têtes magnétiques de la barrette 9.
Pour fixer la barrette 7 (respectivement 9) à la barrette 6 (respectivement 8) , la barrette 7
(respectivement 9) est positionnée sur la barrette 6 (respectivement 8) et pendant la phase de refonte des billes de soudure, les pièces s ' autoalignent .
Les diodes de commande des têtes magnétiques du premier sous-ensemble El sont réalisées par blocs (Bl, B2 , B3) rapportés sur la face de la barrette 6 sur laquelle sont réalisées les têtes magnétiques. Les diodes des blocs Bl, B2 , B3 permettent de commander à la fois les têtes magnétiques de la barrette 6 et les têtes magnétiques de la barrette 7.
De même, les diodes de commande des têtes magnétiques du deuxième sous-ensemble E2 sont réalisées par blocs (non représentés sur la figure) rapportés sur la face de la barrette 8 sur laquelle sont réalisées les têtes magnétiques .
Les diodes des blocs ainsi rapportés permettent de commander les têtes magnétiques des barrettes 8 et 9.
Les deux sous-ensembles El et E2 sont assemblés entre eux à l'aide d' entretoises T, par exemple des billes rigides, placées dans des cavités C préalablement réalisées sur les faces arrières des barrettes respectives 6 et 8. Les deux sous-ensembles El et E2 sont pressés l'un contre l'autre et alignés. L'espace restant entre les modules peut alors être rempli par de la colle, par exemple de la résine époxy. L'assemblage des sous-ensembles El et E2 peut également être réalisé par des billes fusibles reportées sur des plots d'accrochage. Ces plots d'accrochage sont alors préalablement réalisés sur les faces arrières des barrettes respectives 6 et 8. La température de refusion des billes utilisées pour l'assemblage des sous-ensembles El et E2 est inférieure à celle des billes utilisées pour l'assemblage des barrettes 6 et 7 (respectivement 8 et 9) . Pendant la phase de refonte, les deux sous- ensembles s ' auto-alignent .
Quel que soit l'empilement réalisé, l'ensemble peut, en fin de procédé, être avantageusement rempli, par exemple, par de la résine pour obtenir un ensemble mécaniquement rigide (il en est de même pour les autres exemples de réalisation) .
Les extrémités des têtes magnétiques du sous- ensemble El et E2 constituent des pôles magnétiques. A titre d'exemple non limitatif, le sous-ensemble El comprend 14 pôles magnétiques pEli, ... , pElχ4 et le sous-ensemble E2 comprend 14 pôles magnétiques pE2χ, ..., pE2ι4. Selon l'invention, les signaux qui permettent de former une ligne d'impression sur le support sont alors constitués, par exemple, des signaux issus des pôles magnétiques successifs pElχ, pE2lf pEl , pE22, ... , pEl14, pE214.
La différence de hauteur des pôles dans la direction perpendiculaire à l'axe que définit la ligne d'impression peut être compensée par un système électronique de déphasage temporel .
A titre d'exemple non limitatif, pour un pas des pôles magnétiques conduisant à une résolution de 225 dpi pour une barrette (6, 7, 8 ou 9), on peut obtenir une résolution de 450 dpi pour chaque sous- ensemble El, E2 en assemblant les barrettes respectives de ces sous-ensembles avec un décalage d'un demi-pas. L'assemblage des deux sous-ensembles El et E2 avec un décalage d'un quart de pas conduit alors à une résolution de 900 dpi. Une telle résolution peut encore être augmentée si le pas des pôles magnétiques d'une barrette conduit à une résolution supérieure à 225 dpi. Par exemple, une résolution de 300 dpi pour les barrettes 6, 7, 8 et 9 conduit à une résolution de 1200 dpi (4 x 300 dpi) pour la tête d'impression constituée des deux sous-ensembles El et E2.
Le décalage des pôles magnétiques selon une direction parallèle à l'axe d'impression peut être réalisé de différentes manières. Il est par exemple possible soit de réaliser des barrettes différentes quant à la position des pôles magnétiques et d'assembler symétriquement les barrettes, soit de réaliser des barrettes identiques et d'assembler les barrettes avec un décalage.
Les figures 4A et 4B représentent, respectivement, une vue en coupe longitudinale d'une tête d'impression et une vue en coupe transversale d'un substrat comportant les têtes d'impression selon l'invention.
Un substrat SI est recouvert d'une couche Kl qui est elle-même recouverte d'une couche K2. Chaque couche Ki (i=l, 2) est constituée d'un matériau 10 dans lequel sont formées des têtes magnétiques t . L'augmentation de la résolution est obtenue par décalage des têtes magnétiques t (cf. figure 4B) . Avantageusement, la distance h qui sépare deux têtes magnétiques successives selon la direction perpendiculaire à l'axe d'impression peut atteindre une valeur de l'ordre de 20μm à 30μm. Cette valeur de h peut correspondre sensiblement à la distance minimale d qui sépare deux têtes magnétiques successives de la tête d'impression. Aucune compensation électronique des signaux appliqués aux têtes magnétiques n'est alors nécessaire .
La tête d'impression décrite aux figures 4A et 4B ne comprend que deux couches Kl, K2 munies de têtes magnétiques. Il faut cependant noter que, de façon plus générale, l'invention concerne une tête d'impression comprenant au moins deux couches munies de têtes magnétiques Les figures 5A à 5F représentent un exemple de procédé de fabrication de tête d'impression selon 1 ' invention.
La figure 5A montre une structure constituée d'un substrat initial I sur lequel sont déposées une couche d'arrêt 11 et une couche K2 munie de têtes magnétiques t. Le substrat I permet la formation des couches 11 et K2 selon les technologies de la microélectronique. Le substrat I peut être, par exemple, une plaquette de silicium, d'AsGa, de Sic, de SOI ou de InP. La couche d'arrêt 11 peut être, par exemple, un oxyde de silicium. A titre d'exemple non limitatif, la structure représentée en figure 5A comprend une couche d'arrêt 11 et une couche K2 munie de têtes magnétiques t. L'invention concerne également le cas où il n'y a pas de couche d'arrêt 11 et/ou le cas où la structure comprend un empilement de plusieurs couches munies de têtes magnétiques .
Le procédé de fabrication d'une tête d'impression à partir d'une structure telle que représentée en figure 5A comprend les étapes suivantes : report, par exemple par collage, d'un support de transfert T sur la face libre de la couche K2. Le support de transfert T, communément appelé poignée, peut être réalisé dans une matière transparente, par exemple en verre ou en silice pure, afin d'éviter les problèmes d'alignement (figure 5B) , retrait du substrat initial I par un ι procédé classique ou une combinaison de procédés classiques : rectification mécanique, polissage, séparation le long d'un plan de clivage induit par implantation ionique, gravure chimique, réactive, sélective, ou par ultrasons (figure 5C) , retrait de la couche d'arrêt 11 (figure 5D) , - report de la face libre de la couche K2 sur la face libre d'une couche Kl dont l'autre face est fixée sur un substrat SI et mise en contact adhérant des deux faces, par exemple par collage ou adhésion moléculaire ; pour augmenter l'énergie de collage, des traitements de surface peuvent être effectués sur les surfaces à coller, retrait du support de transfert T par l'un des procédés mentionnés ci-dessus en description de la figure 5C (figure 5F)
Le procédé selon l'invention comprend également des étapes de prises de contact électrique sur les têtes magnétiques (ouverture dans les couches de passivation et étallisation) . Ces étapes ne sont pas représentées sur les figures.
A titre d'exemple non limitatif, les couches Kl et K2 peuvent être réalisées à partir de matériau semiconducteur. Le report de la couche Kl sur la couche K2 peut alors être réalisé par la technique d'adhésion moléculaire. L'adhésion moléculaire concerne deux types de collage : le collage hydrophile et le collage hydrophobe. Le collage hydrophile résulte de l'évolution d'interactions -OH à la surface d'une structure vers la formation par exemple de liaisons Si-O-Si. Les forces associées à ce type d'interaction sont fortes. L'énergie de collage, de l'ordre de 100mJ/m2 à température ambiante, atteint 500mJ/m2 après recuit à 400°C pendant 30 minutes (valeurs obtenues pour un collage Si02 natif ou hydrophile -Si02 thermique non poli) .
L'énergie de collage est généralement déterminée par la méthode de lame divulguée par W.P.
MASZARA et al. dans l'article « Bonding of silicon wafers for silicon-on-insulator » paru dans J.Appl.Phy.
64(10), 15 novembre 1988, pages 4943 - 4950. Pour un collage oxyde de silicium déposé et poli - oxyde de silicium déposé et poli, l'énergie de collage est de l'ordre de 1 J/m2 pour un recuit sous les mêmes conditions. Par contre, si une surface traitée hydrophile est collée par adhésion moléculaire sur une surface traitée hydrophobe, un collage de très mauvaise qualité est obtenu et les forces de collage sont très faibles : énergie de collage de l'ordre de 100 mJ/m2 après recuit à 400°C pendant 30 minutes.
Par cette méthode de collage, il est possible d'assembler deux substrats comportant des technologies de la micro-électronique à condition de préparer leurs états de surface. La précision sur le pas de deux têtes magnétiques successives est avantageusement obtenue par la précision de collage, soit + de l'ordre de lμm aussi bien selon la direction de l'axe d'impression que selon la direction perpendiculaire à l'axe d'impression.
Les figures 6A à 6F représentent différents exemples de têtes d'impression selon l'invention.
Les figures 6A et 6B représentent, respectivement, une vue longitudinale et une vue transversale d'une structure composée d'un substrat S2 sur lequel sont empilées quatre couches successives K3 , K4, K5, K6.
Les figures 6C et 6D représentent deux exemples de têtes d'impression comprenant des structures assemblées à l'aide de connexions par billes de soudure. La connexion par billes de soudure est connu de l'homme de l'art sous la dénomination de montage « flip-chip ».
La figure 6C représente un assemblage de deux structures. Une première structure est constituée d'un substrat S3 sur lequel sont collées deux couches successives K7 et K8. Une deuxième structure est constituée d'un substrat S4 sur lequel sont collées deux couches successives K9 et K10. La connexion par billes de soudure est réalisée entre les faces libres des couches K8 et KlO. Une telle structure permet, par exemple, d'atteindre une résolution de l'ordre de 1200 dpi . La tête d'impression représentée en figure 6D comprend l'association de trois structures. Une première structure est constituée d'un substrat S5 recouvert, sur une première face, de deux couches K13 et K14 et, sur l'autre face, de deux couches K15 et K16. Les deux autres structures sont constituées, chacune, d'un substrat (S3, S6) sur lequel sont collées deux couches (K7 et K8 pour le substrat K3 ; K15 et K16 pour le substrat S6) . Les faces libres des couches K16 et K14, d'une part, et les faces libres des couches K8 et K12, d'autre part, sont assemblées par billes de soudure .
Les figures 6E et 6F représentent deux exemples de tête d'impression selon l'invention incluant les diodes pour la commande des têtes magnétiques . La figure 6E représente une structure à deux couches K17 , K18, chaque couche comprenant un ensemble de diodes D pour la commande des têtes magnétiques qu'elle contient. La figure 6F représente une structure à deux couches K19, K20. Un bloc de diodes BD est connecté par billes de soudure b à la face libre de la couche supérieure K20.
Les figures 6A-6F sont données à titre d'exemples non limitatifs. De façon plus générale, comme cela a été mentionné précédemment, l'invention concerne toute structure comprenant au moins un ensemble constitué d'un substrat de réception sur lequel sont déposées au moins deux couches de matériau l i
munies, chacune, de têtes magnétiques. Les ensembles constitués d'un substrat de réception et de couches de matériau peuvent être reliés entre eux par billes de soudure ou tout autre moyen.

Claims

REVENDICATIONS
1. Structure comprenant une succession d'éléments (t) pour émettre ou recevoir un signal le long d'un axe, caractérisée en ce que deux éléments (t) successifs dans la direction de l'axe sont décalés, l'un par rapport à l'autre, dans une direction perpendiculaire à l'axe et en ce que la structure comprend au moins un ensemble d'au moins deux couches de matériau (Kl, K2 , K3 , K4) déposées sur un substrat de réception (S3), chaque couche de matériau comprenant une succession d'éléments alignés selon une direction parallèle à l'axe, deux éléments successifs de la structure selon la direction parallèle à l'axe appartenant à deux couches différentes.
2. Structure selon la revendication 1, caractérisée en ce qu'un premier ensemble est connecté à un deuxième ensemble par des billes de soudure (b) .
3. Structure selon la revendication 1 ou 2, caractérisée en ce qu'au moins un substrat de réception (S5) est recouvert d'au moins deux couches de matériau (Kll, K12) sur une première face et d'au moins deux couches de matériau (K13, K14) sur une deuxième face.
4. Structure selon l'une quelconque des revendications précédentes, caractérisée en ce qu'au moins une couche de matériau est une couche de matériau semi-conducteur.
5. Structure selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend au moins un ensemble de diodes sous la forme d'une puce (BD) connectée par billes de soudure sur une face d'une couche de matériau.
6. Structure selon l'une quelconque des revendications 4 ou 5, caractérisée en ce qu'elle comprend au moins un ensemble de diodes (D) sous la forme de diodes intégrées à une couche de matériau se i-conducteur .
7. Structure selon l'une quelconque des revendications précédentes, caractérisée en ce que le substrat de réception (S3) est un substrat en plastique ou un substrat en céramique ou un circuit imprimé.
8. Tête d'impression comprenant une succession de têtes magnétiques ou de résistances (t) pour réaliser une impression le long d'un axe, caractérisée en ce qu'elle est une structure selon l'une quelconque des revendications 1 à 7 dans laquelle un élément de la succession d'éléments est une tête magnétique ou une résistance.
9. Procédé de fabrication d'une structure comprenant une succession d'éléments (t) pour émettre ou recevoir un signal le long d'un axe, caractérise en ce qu'il comprend une étape d'assemblage d'au moins deux couches de matériau (Kl, K2 ) comprenant, chacune, une succession d'éléments alignés selon une direction parallèle à l'axe, l'assemblage étant effectué de façon que deux éléments successifs de la structure selon la direction parallèle à l'axe appartiennent à deux couches différentes.
10. Procédé selon la revendication 9, caractérisé en ce que l'étape d'assemblage comprend le transfert d'une deuxième couche de matériau (K2) sur une première couche de matériau (Kl) de façon à mettre en contact adhérant une première face de la première couche (Kl) avec une première face de la deuxième couche (K2) .
11. Procédé selon la revendication 10, caractérisé en ce que le transfert de la deuxième couche de matériau (K2) sur la première couche de matériau (Kl) est effectué à l'aide d'un support de transfert (T) fixé à la deuxième couche (K2) .
12. Procédé selon la revendication 11, caractérisé en ce qu'il comprend le retrait du support de transfert (T) , une fois la mise en contact adhérant effectuée.
13. Procédé selon l'une quelconque des revendications 9 à 12 , caractérisé en ce qu'il comprend une étape de connexion, par billes de soudure, entre un premier ensemble constitué d'un premier substrat de réception (S5) sur lequel sont fixées, par mise en contact adhérant, au moins deux couches de matériau (KÏÎM K12) et au moins un deuxième ensemble constitué d'un deuxième substrat de réception (S3, S6) sur lequel sont fixées, par mise en contact adhérant, au moins deux couches de matériau (K7, K8 ; K15, K16) .
14. Procédé selon l'une quelconque des revendications 9 à 13 , caractérisé en ce que le matériau d'au moins deux couches voisines est un matériau semi-conducteur et en ce que la mise en contact adhérant des deux couches voisines est effectuée par adhésion moléculaire.
15. Procédé selon l'une quelconque des revendications 10 à 14, caractérisé en ce qu'il comprend la connexion par billes de soudure d'au moins un premier ensemble de diodes (BD) sur au moins une couche de matériau, chaque diode du premier ensemble de diodes permettant la commande d'un élément (t) de la couche .
16. Procédé selon l'une quelconque des revendications 14 ou 15, caractérisé en ce qu'il comprend la formation d'au moins un deuxième ensemble de diodes (D) dans au moins une couche de matériau semi-conducteur, chaque diode du deuxième ensemble de diodes permettant la commande d'un élément (t) de la couche de matériau semi-conducteur .
17. Procédé de fabrication d'une tête d'impression comprenant une succession de têtes magnétiques ou de résistances (t) pour réaliser une impression le long d'un axe, caractérisé en ce qu'il met en œuvre un procédé selon l'une quelconque des revendications 9 a" 16 dans lequel un élément de la succession d'éléments est une tête magnétique ou une résistance.
18. Procédé de fabrication d'une structure comprenant une succession d'éléments (t) pour émettre ou recevoir un signal le long d'un axe, deux éléments successifs dans la direction de l'axe étant décalés, l'un par rapport à l'autre, dans une direction perpendiculaire à l'axe, caractérisé en ce qu'il comprend les étapes suivantes :
- dépôt, sur un premier substrat semi-conducteur (I) d'au moins une couche semi-conductrice comportant un ensemble d'éléments alignés pour émettre ou recevoir un signal le long de l'axe,
- report d'un support de transfert (T) sur une face libre d'une couche semi-conductrice déposée sur le premier (I) , - retrait du premier substrat (I) ,
- report, à l'aide du support de transfert (T) , de la face libre de la couche semi-conductrice apparue suite au retrait du premier substrat (I) sur une face libre d'une couche semi-conductrice (Kl) fixée à un substrat de réception (SI) et comportant un ensemble d'éléments (t) pour émettre ou recevoir un signal le long de l'axe,
- collage moléculaire des deux faces mises en contact par report à l'aide du support de transfert.
19. Procédé de fabrication d'une tête d'impression comprenant une succession de têtes magnétiques ou de résistances (T) pour réaliser une impression le long d'un axe, caractérisé en ce qu'il met en œuvre un procédé selon la revendication 18, dans lequel un élément, (t) de la succession d'éléments est une tête magnétique ou une résistance et le substrat de réception (Si) est un substrat en plastique, ou un substrat en céramique ou un circuit imprimé.
PCT/FR2001/001116 2000-04-11 2001-04-11 Structure d'elements a haute densite formee par assemblage de couches et son procede de fabrication WO2001076879A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001574375A JP2003530249A (ja) 2000-04-11 2001-04-11 層アセンブリによって形成された高密度要素の構造及びその製造方法
DE60101326T DE60101326T2 (de) 2000-04-11 2001-04-11 Anordnung von bauteilen mit hoher dichte bestehend aus mehreren schichten und herstellungsverfahren
US10/240,751 US6909445B2 (en) 2000-04-11 2001-04-11 High density element structure formed by assembly of layers and method for making same
EP01925619A EP1272350B1 (fr) 2000-04-11 2001-04-11 Structure d'elements a haute densite formee par assemblage de couches et son procede de fabrication

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/04617 2000-04-11
FR0004617A FR2807546B1 (fr) 2000-04-11 2000-04-11 Structure d'elements a haute densite formee par assemblage de couches et son procede de fabrication

Publications (1)

Publication Number Publication Date
WO2001076879A1 true WO2001076879A1 (fr) 2001-10-18

Family

ID=8849113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001116 WO2001076879A1 (fr) 2000-04-11 2001-04-11 Structure d'elements a haute densite formee par assemblage de couches et son procede de fabrication

Country Status (6)

Country Link
US (1) US6909445B2 (fr)
EP (1) EP1272350B1 (fr)
JP (1) JP2003530249A (fr)
DE (1) DE60101326T2 (fr)
FR (1) FR2807546B1 (fr)
WO (1) WO2001076879A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4614715B2 (ja) * 2004-08-31 2011-01-19 三洋電機株式会社 半導体レーザ装置およびその製造方法
US7927975B2 (en) 2009-02-04 2011-04-19 Micron Technology, Inc. Semiconductor material manufacture
WO2014020387A1 (fr) 2012-07-31 2014-02-06 Soitec Procédés de formation de structures semi-conductrices incluant des dispositifs de microsystème électromécanique et des circuits intégrés sur les côtés opposés de substrats, et structures ainsi que dispositifs connexes

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054866A (ja) * 1983-09-05 1985-03-29 Hitachi Ltd 感熱記録ヘツド
US4590492A (en) * 1983-06-07 1986-05-20 The United States Of America As Represented By The Secretary Of The Air Force High resolution optical fiber print head
US4651168A (en) * 1984-10-11 1987-03-17 Yokogawa Hokushin Electric Corporation Thermal print head
JPS63290767A (ja) * 1987-05-22 1988-11-28 Matsushita Electric Ind Co Ltd エッジ型サ−マルヘッド
EP0335473A1 (fr) * 1988-04-01 1989-10-04 Dynamics Research Corporation Tête d'impression thermique à haute résolution et procédé de fabrication
EP0493055A2 (fr) * 1990-12-28 1992-07-01 Xerox Corporation Matrice à haute densité de lasers à semiconducteurs/diodes électroluminescentes à émission de surface adressables individuellement
US5300788A (en) * 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
US5402436A (en) * 1993-12-29 1995-03-28 Xerox Corporation Nonmonolithic array structure of multiple beam diode lasers
US5485193A (en) * 1989-07-28 1996-01-16 Kabushiki Kaisha Toshiba Thermal head including at least one paralellogrammatic resistor
US5624708A (en) * 1988-01-05 1997-04-29 Max Levy Autograph, Inc. High-density circuit and method of its manufacture

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585279A (ja) * 1981-07-01 1983-01-12 Mitani Denshi Kogyo Kk サ−マルヘツド
JPS60203466A (ja) * 1984-03-29 1985-10-15 Toshiba Corp サ−マルヘツド

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4590492A (en) * 1983-06-07 1986-05-20 The United States Of America As Represented By The Secretary Of The Air Force High resolution optical fiber print head
JPS6054866A (ja) * 1983-09-05 1985-03-29 Hitachi Ltd 感熱記録ヘツド
US4651168A (en) * 1984-10-11 1987-03-17 Yokogawa Hokushin Electric Corporation Thermal print head
JPS63290767A (ja) * 1987-05-22 1988-11-28 Matsushita Electric Ind Co Ltd エッジ型サ−マルヘッド
US5624708A (en) * 1988-01-05 1997-04-29 Max Levy Autograph, Inc. High-density circuit and method of its manufacture
EP0335473A1 (fr) * 1988-04-01 1989-10-04 Dynamics Research Corporation Tête d'impression thermique à haute résolution et procédé de fabrication
US5485193A (en) * 1989-07-28 1996-01-16 Kabushiki Kaisha Toshiba Thermal head including at least one paralellogrammatic resistor
EP0493055A2 (fr) * 1990-12-28 1992-07-01 Xerox Corporation Matrice à haute densité de lasers à semiconducteurs/diodes électroluminescentes à émission de surface adressables individuellement
US5300788A (en) * 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
US5402436A (en) * 1993-12-29 1995-03-28 Xerox Corporation Nonmonolithic array structure of multiple beam diode lasers

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 009, no. 187 (M - 401) 3 August 1985 (1985-08-03) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 118 (M - 806) 23 March 1989 (1989-03-23) *

Also Published As

Publication number Publication date
EP1272350B1 (fr) 2003-11-26
DE60101326T2 (de) 2004-09-16
US20030052945A1 (en) 2003-03-20
EP1272350A1 (fr) 2003-01-08
JP2003530249A (ja) 2003-10-14
FR2807546B1 (fr) 2005-04-01
FR2807546A1 (fr) 2001-10-12
DE60101326D1 (de) 2004-01-08
US6909445B2 (en) 2005-06-21

Similar Documents

Publication Publication Date Title
EP2054929B1 (fr) Procede de fabrication collective de modules electroniques 3d
EP3625822B1 (fr) Procédé de fabrication d'un dispositif d'affichage émissif à led
EP2973750B1 (fr) Procede de formation de diodes electroluminescentes
EP1269238B1 (fr) Procede et dispositif d'alignement passif de fibres optiques et de composants optoelectroniques
CN101593932B (zh) 发光装置和发光装置制造方法
FR2917234A1 (fr) Dispositif multi composants integres dans une matrice semi-conductrice.
WO2021099713A1 (fr) Procede de fabrication d'une puce fonctionnelle adaptee pour etre assemblee a des elements filaires
EP3811423B1 (fr) Puce photonique comportant une source laser enterrée
EP3329511A1 (fr) Procede de collage direct avec auto-alignement par ultrasons
EP1272350B1 (fr) Structure d'elements a haute densite formee par assemblage de couches et son procede de fabrication
EP4057039B1 (fr) Dispositif optoélectronique comportant un interposeur photonique actif auquel sont connectées une puce microélectronique et une puce de conversion électro-optique
EP1192593B1 (fr) Dispositif et procede de fabrication de dispositifs comprenant au moins une puce montee sur un support
EP3770968B1 (fr) Procede de mise en courbure collective d'un ensemble de puces electroniques
EP3809467B1 (fr) Procédé de mise en courbure collective d'un ensemble de puces eléctroniques
EP1427008B1 (fr) Procédé de fabrication d'un module électronique comportant un composant actif sur une embase
EP2040291B1 (fr) Procédé de collage de puces sur un substrat de contrainte et procédé de mise sous contrainte d'un circuit de lecture semi-conducteur
WO2018073517A1 (fr) Procede de realisation d'une puce microelectronique destinee a etre hybridee a une deuxieme puce
EP3937244B1 (fr) Procédé de réalisation d'un imageur
WO2001076878A1 (fr) Structure de composants haute-densite formee par assemblage et son procede de fabrication
EP4120332A1 (fr) Procédé de fabrication de puces électroniques
FR3094141A1 (fr) procede de fabrication d’un composant optoelectronique a transmission optique en face arriere
EP4148470A1 (fr) Procede de fabrication d'un systeme optoelectronique en photonique sur silicium comportant un dispositif optique couple a un circuit photonique integre
EP1359617A1 (fr) Procédé de fabrication de modules électroniques
FR2953063A1 (fr) Procede d'encapsulation de composants electroniques sur tranche

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001925619

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 574375

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10240751

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001925619

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001925619

Country of ref document: EP