WO2001076000A1 - Redox flow battery and method of operating it - Google Patents

Redox flow battery and method of operating it Download PDF

Info

Publication number
WO2001076000A1
WO2001076000A1 PCT/IT2000/000117 IT0000117W WO0176000A1 WO 2001076000 A1 WO2001076000 A1 WO 2001076000A1 IT 0000117 W IT0000117 W IT 0000117W WO 0176000 A1 WO0176000 A1 WO 0176000A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
battery
compartments
pumping
flow
Prior art date
Application number
PCT/IT2000/000117
Other languages
French (fr)
Inventor
Andrea Zocchi
Barry Michael Broman
Original Assignee
Squirrel Holdings Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Squirrel Holdings Ltd. filed Critical Squirrel Holdings Ltd.
Priority to CA002375339A priority Critical patent/CA2375339A1/en
Priority to CNB008083371A priority patent/CN1226800C/en
Priority to AU38356/00A priority patent/AU780390B2/en
Priority to US09/980,005 priority patent/US6692862B1/en
Priority to PCT/IT2000/000117 priority patent/WO2001076000A1/en
Priority to EP00917275A priority patent/EP1186069B1/en
Priority to DE60003815T priority patent/DE60003815T2/en
Priority to AT00917275T priority patent/ATE244935T1/en
Priority to ES00917275T priority patent/ES2203445T3/en
Priority to DK00917275T priority patent/DK1186069T3/en
Publication of WO2001076000A1 publication Critical patent/WO2001076000A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • H01M8/04283Supply means of electrolyte to or in matrix-fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/42Grouping of primary cells into batteries
    • H01M6/46Grouping of primary cells into batteries of flat cells
    • H01M6/48Grouping of primary cells into batteries of flat cells with bipolar electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • This invention relates generally to electrochemical reactors for conducting reduction and oxidation reactions in respective positive and negative liquid electrolytes, without gas evolution at the electrodes. More specifically, the invention relates to the operation of a membrane-separated, bipolar multicell electrochemical reactor implementing a redox flow battery system, although it may be useful also for different systems.
  • Redox flow battery systems are increasingly attracting interest as efficient energy storage systems.
  • the all vanadium redox system is one of the most preferred.
  • the electrochemical reactors that have been proposed for redox flow battery systems have been derived from the electrochemical reactor structures developed for general electrolysis processes, the only adaptation having concerned the materials employed as electrodes.
  • the electrochemical reactors used as redox batteries are conventionally composed of a stack of bipolar plate electrode elements separated by ion exchange membranes, defining a positive electrolyte flow chamber on one side of each membrane and a negative electrolyte flow chamber on the opposite side thereof.
  • the stack of bipolar elements is assembled together in a filter-pass arrangement between two end electrode elements.
  • the elements have a frame provided with coordinated through holes forming inlet and outlet manifolds for the two electrolytes that are circulated in a parallel mode through the positive electrolyte flow chambers and the negative electrolyte flow chambers, respectively.
  • the elements are conventionally mounted and operated in a vertical position.
  • the redox system require nonnegligible electrolyte flow rates through the flow chambers of the reactor in order to maintain optimal half-cell reactions conditions at the electrodes and this requirement may imply the necessity of operating the bipolar electrochemical reactor at relatively high positive pressures.
  • the alternate stack of elements is piled over a bottom end element and the stack is terminated by placing over the last membrane holding element a top end electrode element.
  • the two end electrode elements are then compressed over the stack by tightening a plurality of tie rods, conventionally arranged around the perimeter of the stacked elements, according to a common practice in tightening a filter-press stack in a hydraulically sealed manner, by virtue of the gaskets operatively installed between the coupling faces of the frames of the various elements.
  • the battery may be operated with the piled elements laying horizontally.
  • each bipolar plate electrode holding element and each ion exchange membrane separator holding element includes a substantially similar rectangular frame piece, made of an electrically nonconductive and chemically resistant material, typically of molded plastic material, having on its upper (assembly) face grooves for receiving O-ring type gasket means, and having through holes and recesses in coordinated locations disposed along two opposite sides of the rectangular frame fo ⁇ ning, upon completion of the assembling, ducts for the separate circulation of the negative electrolyte and of the positive electrolyte through all the negative electrolyte flow chambers and all positive electrolyte flow chambers, respectively, in cascade.
  • the negative electrolyte enters along a first side of a negative electrolyte flow chamber, flows through the chamber toward the opposite or second side thereof, exits the chamber, flows through the coordinated holes through the frame holding the electrode and through the frame holding the next membrane separator, reaching the level of the next negative electrolyte flow chamber and enters it from the same second side through which it exited from the previous negative electrolyte flow chamber and exits this next negative electrolyte flow chamber from the same first side it entered the previous negative electrolyte flow chamber, to flow through coordinated holes through the next pair of frames to the level of the next negative electrolyte flow chamber and so forth.
  • the same flow path is arranged also for the positive electrolyte, either in a "countercurrent" or in an "equicurrent" mode through the battery.
  • the bipolar electrochemical reactor does not have inlet and outlet manifolds for the two electrolytes, on the contrary, the electrolytes flow through the respective flow chambers in a zigzag path, that is essentially in hydraulic series or cascade mode instead than in hydraulic parallel mode.
  • by-pass current may only be "driven” by a voltage difference of about one-cell voltage and it does not cause any corrosion on conductive parts.
  • a typical way of using flow redox battery systems is to accumulate energy by transforming electrical energy into chemical energy during periods of excess electrical power generating capabilities (for example solar energy conversion during daylight hours or excess electrical power capabilities during night time hours in power generation plants) and to deliver accumulated energy in the form of electrical power when required by a load circuit.
  • excess electrical power generating capabilities for example solar energy conversion during daylight hours or excess electrical power capabilities during night time hours in power generation plants
  • the volumes of electrolytes, contained in the respective compartments of the cells composing the battery stack supports the by-pass currents that typically are practically entirely confined within the electrolyte battery stack and therefore tends to slowly decrement their state of charging.
  • the system may take several minutes of "start-up" before becoming ready to provide the appropriate output voltage, a condition that is attained upon a complete refreshing of the electrolytes in the compartments of the battery stack upon resuming their forced circulation by switching on the respective pumps.
  • This phenomenon may impose the presence of auxiliary battery systems for providing the electrical power necessary to operate the electrolyte pumps at least during the "start-up" period when the output voltage of the battery may have dropped to an insufficient level because of the intervening discharge of the electrolytes volumes retained in the respective compartments during a protracted period of idleness.
  • Another critical aspect that has been observed is the ability of exploiting the fullest nominal cell area of the battery.
  • Formation of velocity gradients in the body of electrolyte within an electrode compartment implies that numerous zones of the nominal cell area will tend to contain a relatively depleted (that is less charged) electrolyte than other zones where the pumped electrolyte tends to flow preferentially.
  • this phenomenon may in practice reduce the effective cell area (or active electrode area) to a fraction of the nominal size.
  • the phenomenon manifests itself in a severe drop of. the output voltage, during a discharge phase and in an abnormal rise of the voltage across the battery, during a charge phase.
  • liquid vein interrupters present on each compartment in either an outlet or an inlet port substantially preventing by-pass current during a not pumping phase, a definitely augmented overall efficiency may be achieved by pumping the electrolytes through the compartments of a battery stack intermittently, in other words in a pulsed manner, with a certain duty-cycle.
  • check valve means in the inlet and/or in the outlet port or ports of each compartment of the cell composing the battery stack is simple and inexpensive.
  • these check valves may be realized by confining a ball of noncorrodible material such as Teflon, polyethylene and any other suitable plastic material, provided its density is sufficiently greater than the density of the electrolyte, within a "housing" defined upon assembling together the elements of the battery stack which will permit the lifting off of the ball from a valve seat on which it rests by gravity, upon activating the circulation pumps.
  • a ball of noncorrodible material such as Teflon, polyethylene and any other suitable plastic material
  • FIGS 1 and 2 show alternative hydraulic schemes of the two electrolytes including the check valve means of the invention
  • Figure 3 is a partial exploded view of stackable element frames of a known battery architecture equipped with check valve means according to the present invention
  • Figure 4 is a detail cross section of an outlet port of a cell compartment showing the realization of a "gravity ball” valve
  • Figure 5 shows self discharge characteristics comparing the behavior of a cell provided with check valves according to the invention and without.
  • redox flow battery systems may adopt a "recycling" scheme of both electrolytes, by employing a single tank in each of the two circuits, as in the example depicted in Fig.l, or a so-called “one through” scheme, requiring a pair of tanks in each of the two electrolyte circuits, according to the scheme of Fig. 2.
  • each electrolyte is flown to and from the same reservoir through the respective electrode compartments of the series of cells composing the battery stack in the same direction during the discharge and the charge processes.
  • each electrolyte is flown through the respective electrode compartments of the series of cells that compose the battery stack, drawing it from the tank containing the charged electrolyte, Tl and Tl ', and transferring it to the tank recovering the spent electrolyte, T2 and T2', during the discharge process, and vice versa during the charge process.
  • a more sophisticated control may avail itself of probes, ORP, of the actual redox potential, referred to a standard reference electrode, of the two electrolytes preferably placed in the outlet streams from the last cell compartment of the battery stack and being conveyed to either the respective spent electrolyte tanks, T2 and T2', or to the respective charged electrolyte tanks, Tl and Tl ', depending on whether the battery system is delivering power or is being recharged.
  • ORP of the actual redox potential
  • a standard reference electrode of the two electrolytes preferably placed in the outlet streams from the last cell compartment of the battery stack and being conveyed to either the respective spent electrolyte tanks, T2 and T2', or to the respective charged electrolyte tanks, Tl and Tl ', depending on whether the battery system is delivering power or is being recharged.
  • each electrolyte may be independently regulated in function of the sensed redox potential in order to maintain a pre-established minimum redox potential in the electrolyte being discharged leaving the battery stack during a current delivering phase of operation or a pre-established maximum redox potential in the electrolyte being charged leaving the battery stack during a charging phase of operation.
  • Any suitable logic circuitry may be employed to switch automatically the threshold potential to the value set for the discharge process or to the value set for the charge process, in function of the direction of the electric current through the battery stack.
  • a possible arrangement is schematically illustrated in Fig. 2.
  • P pumps the positive electrolyte from the tank Tl to the tank T2 when charging the battery by maintaining open VI and V4 and closed V3 and V2.
  • the same positive electrolyte is transferred back from T2 to Tl by maintaining open V2 and V3 and closed VI and V4.
  • each electrolyte through all the relative electrode compartments of the cell stack occurs in the same direction both during the charging process as well as during the discharge process.
  • each electrode compartment has check valve means, CK or CK', at either its inlet port (or ports in case of large cells) and/or at its outlet port (or ports).
  • check valves CK and CK' have been schematically depicted in Fig. 1 and 2 as being external to the cell stack 1, just for rendering more evident the function they perfo ⁇ n.
  • the check valves isolate the volumes of positive electrolyte retained in the positive electrode compartments from each other as well as from the volumes of electrolyte contained in the respective single tank of Fig. 1, or of the two tanks Tl and T2 of Fig. 2, by practically interrupting the liquid veins of electrically conductive electrolyte.
  • check valve means CK and CK' may be realized with simple gravity operated ball inserts installed upon assembling the suitably modified stackable component elements of the bipolar cell stack, few of the stackable elements are shown, in an exploded view, in Fig. 3.
  • the element 2 of Fig. 3 represents the end element of the cell stack housing a positive electrode (not shown) in a first positive electrolyte flow compartment.
  • the elements 3 are membrane elements and the element 4 is a bipolar electrode element.
  • All elements have a similarly shaped frame portion, usually made of moldable plastic, on which the grooves 8, 9 into which fit sealing O-ring gaskets are defined.
  • the frame portion In the frame portion are present through-passages (holes) and slots coordinated among each other for defining, upon assembling together all the various elements, distinct internal ductings and flow passages for the two electrolytes, according to the architecture described in said prior patent application or in alternative according to any other commonly known architecture of electrochemical bipolar cell stack.
  • the stackable membrane elements 3 and bipolar electrode elements 4 respectively fit within the window defined by the frame portion an ion exchange membrane 5 or a bipolar electrode 6, respectively.
  • a small ball 7 of a suitable material such as for example glass, ceramic, nylon® or teflon®, or any other corrosion resistant material of sufficiently higher density than the electrolytes, is placed within a suitably flared mouth of the hole through which the electrolyte passes so that it may fall and rest by gravity at the bottom of the flared mouth, effectively interrupting the liquid vein of the electrolyte in the passage through the thickness of the frame portion of the element in its flowing toward the next electrode compartment of the same polarity of the cell stack.
  • a suitable material such as for example glass, ceramic, nylon® or teflon®, or any other corrosion resistant material of sufficiently higher density than the electrolytes
  • the ball 7 upon completing the filter press assembly of the stack, the ball 7 remains confined within a housing defined by the juxtaposed flared mouths of the electrolyte flow holes through the frame portions of two adjacent elements of the stack.
  • the ball 7 drops by gravity practically interrupting the liquid vein of the electrolyte.
  • the motion impressed on the electrolyte dislodges the ball 7 from its seat and lifts it so that the electrolyte resumes its flowing through the various compartments of the battery stack.
  • the flared mouth of the cooperating hole in the frame portion of the juxtaposed element has slots or is shaped in a way as to ensure a free flow of the electrolyte upon the lifting of the ball 7.
  • This check valve action is exerted not only during prolonged idle periods but eventually also during each no-flow phase, in case of a pulsed pumping of the electrolyte according to another important aspect of this invention.
  • the check valve action performed by the ball inserts 7 effectively isolate the volumes of electrolyte retained into the cell compartments from each other, effectively preventing discharge processes through stray currents.
  • each electrolyte path from one compartment to the next of the same polarity in case of a sequential flow stack as the one described in said prior patent application PCT/IT99/00195 of the same applicant, or from an inlet manifold to an outlet manifold through as many paths as there are electrode compartments of same polarity may indeed include several inlet and outlet ports in parallel distributed along opposing sides of each compartment.
  • each of the inlet or outlet ports must be provided with check valve means. In practice this means that the check valve device realized by the use of ball inserts 7 must be duplicated for as many ports are realized in the cell compartments.
  • check valve devices CK and CK' may be present either in the inlet ports or in the outlet ports, however they may even be duplicated so that their liquid vein interrupting action be exerted both at the inlet ports and at the outlet ports of each compartment.
  • a horizontal disposition of the cells elements of the matrix stack according to the architecture of said prior patent application makes particularly easy the realization of functional check valve devices as described above. Nevertheless, though with a certain adaptation of the design, the same effective gravity operated ball check valve devices may be implemented even in the frame portions of vertically disposed cell stack elements (as customary in these types of filter press bipolar electrolyzers). Indeed any functionally effective way of implementing check valve devices in the inlet and/or outlet ports of each cell compartment of a battery stack assembly will provide for the desired effect of interrupting the liquid veins of electrolyte along by-pass or stray current paths during idling phases or periods of the electrolyte circulation pump or pumps, according to the present invention.
  • the battery stack was first assembled without implementing any check valve in the inlet and outlet ports of the electrode compartments.
  • the battery voltage at the moment of stopping the pumps and opening the circuit was of 17.1 V, but notwithstanding the absence of any electrical load capable of absorbing current from the battery te ⁇ ninals, the voltage at the battery terminals declined more or less steadily during the first two hours of idling to about 14.7 V. Thereafter the voltage continued to drop to an increased rate and was down to about 8 V after a total period of idling of three hours.
  • test has confirmed the effectiveness of the simple, gravity operated, check valve means of the invention in contrasting and substantially preventing self- discharge of the volumes of electrolytes retained in the respective compartments of the cell stack during idle periods with complete interruption of the pumping.
  • the battery is immediately ready to deliver power to an electric load even after prolonged stoppages of the pumps and therefore permit a considerable saving of energy that would necessarily be lost either for maintaining a trickle flow of the electrolytes or for quickly refreshing the electrolytes in the battery compartments whenever power is requested after a prolonged stop.
  • a pulsed pumping the electrolytes may be implemented. This may be done in many different ways.
  • the period of the pulsed pumping may be fixed or variable and in the vicinity of one to several minutes, preferably comprised between 2 and 10 or even more minutes.
  • the duty cycle may vary in function of the current flowing through the battery and may vary from 0 (idling of system) to about 80-90% of the period of the pulsed pumping.
  • the duty cycle may be regulated in function of redox potential probes, according to similar control schemes used for controlling the flow rate during "normal" operation of the battery, that is for powering an electric load or for recharging, sensing the output voltage in a closed external circuit condition.
  • the flow rate should rise to above the transition rate from a laminar to a turbulent flow within the cell compartments crossed by the streaming electrolyte.
  • the reaching of turbulent flow conditions effectively disrupt any tendency of the electrolyte to assume preferential flow patterns in streaming through the cell compartments, that is in the relative narrow and elongated flow section of the cell compartments.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

By realizing or installing check valve liquid vein interrupters in each compartment of the battery the phenomenon of slow discharge of the retained volumes of electrolytes during long periods of inactivity of a redox flow battery, with the electrolyte pumps stopped altogether, can be practically eliminated with the effect that the battery is perfectly ready to deliver electric power immediately upon request even after prolonged periods of inactivity. Moreover, the presence of liquid vein interrupters on each compartment in either an outlet or an inlet port substantially preventing by-pass current during a not pumping phase, permits to increase the by pumping the electrolytes through the compartments of a battery stack intermittently, in other words in a pulsed manner, with a certain duty-cycle. Relatively brief pumping phases at relatively high flow rate alternated to phases of not pumping provide for a volumetrically adequate refreshing of the electrolytes present in the battery compartments and contrast the formation of gradients in the bodies of electrolyte.

Description

"REDOX FLOW BATTERY AND METHOD OF OPERATING IT"
BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
This invention relates generally to electrochemical reactors for conducting reduction and oxidation reactions in respective positive and negative liquid electrolytes, without gas evolution at the electrodes. More specifically, the invention relates to the operation of a membrane-separated, bipolar multicell electrochemical reactor implementing a redox flow battery system, although it may be useful also for different systems.
2. DESCRIPTION OF RELATED ART
Redox flow battery systems are increasingly attracting interest as efficient energy storage systems. Among redox couple candidates, the all vanadium redox system is one of the most preferred.
Structurally, the electrochemical reactors that have been proposed for redox flow battery systems, have been derived from the electrochemical reactor structures developed for general electrolysis processes, the only adaptation having concerned the materials employed as electrodes.
Generally, the electrochemical reactors used as redox batteries are conventionally composed of a stack of bipolar plate electrode elements separated by ion exchange membranes, defining a positive electrolyte flow chamber on one side of each membrane and a negative electrolyte flow chamber on the opposite side thereof. The stack of bipolar elements is assembled together in a filter-pass arrangement between two end electrode elements.
Commonly, the elements have a frame provided with coordinated through holes forming inlet and outlet manifolds for the two electrolytes that are circulated in a parallel mode through the positive electrolyte flow chambers and the negative electrolyte flow chambers, respectively.
The elements are conventionally mounted and operated in a vertical position.
The parallel flow of the two electrolytes through the respective flow chambers poses serious problems in terms of minimization of so-called stray or by-pass electric currents in uninterrupted liquid veins of electrolyte, due to the fact that the electrolyte present in the manifolds offer innumerable paths for these by-pass or stray currents, driven by mutual voltage differences existing among the various bipolar elements functioning in electrical series between the two end electrodes on which the full battery voltage difference insists. By-pass or stray currents decrement the energy efficiency of the conversion system, but more seriously they cause severe corrosion phenomena on conductive parts (e.g.: carbon) because of abnormally high half-cell voltages at the conductor surface.
On the other hand, the redox system require nonnegligible electrolyte flow rates through the flow chambers of the reactor in order to maintain optimal half-cell reactions conditions at the electrodes and this requirement may imply the necessity of operating the bipolar electrochemical reactor at relatively high positive pressures.
A different architecture, object of the prior patent application PCT/IT99/00195 of the same applicant, contemplates alternately stacking a bipolar electrode holding subassembly and a membrane holding subassembly, laying them horizontally.
The alternate stack of elements is piled over a bottom end element and the stack is terminated by placing over the last membrane holding element a top end electrode element. The two end electrode elements are then compressed over the stack by tightening a plurality of tie rods, conventionally arranged around the perimeter of the stacked elements, according to a common practice in tightening a filter-press stack in a hydraulically sealed manner, by virtue of the gaskets operatively installed between the coupling faces of the frames of the various elements. The battery may be operated with the piled elements laying horizontally. In the above noted architecture, each bipolar plate electrode holding element and each ion exchange membrane separator holding element includes a substantially similar rectangular frame piece, made of an electrically nonconductive and chemically resistant material, typically of molded plastic material, having on its upper (assembly) face grooves for receiving O-ring type gasket means, and having through holes and recesses in coordinated locations disposed along two opposite sides of the rectangular frame foπning, upon completion of the assembling, ducts for the separate circulation of the negative electrolyte and of the positive electrolyte through all the negative electrolyte flow chambers and all positive electrolyte flow chambers, respectively, in cascade.
The negative electrolyte enters along a first side of a negative electrolyte flow chamber, flows through the chamber toward the opposite or second side thereof, exits the chamber, flows through the coordinated holes through the frame holding the electrode and through the frame holding the next membrane separator, reaching the level of the next negative electrolyte flow chamber and enters it from the same second side through which it exited from the previous negative electrolyte flow chamber and exits this next negative electrolyte flow chamber from the same first side it entered the previous negative electrolyte flow chamber, to flow through coordinated holes through the next pair of frames to the level of the next negative electrolyte flow chamber and so forth. The same flow path is arranged also for the positive electrolyte, either in a "countercurrent" or in an "equicurrent" mode through the battery.
In practice, the bipolar electrochemical reactor does not have inlet and outlet manifolds for the two electrolytes, on the contrary, the electrolytes flow through the respective flow chambers in a zigzag path, that is essentially in hydraulic series or cascade mode instead than in hydraulic parallel mode.
In this way, by-pass current may only be "driven" by a voltage difference of about one-cell voltage and it does not cause any corrosion on conductive parts.
Pitting corrosion is not the only consequent of by-pass currents. By-pass currents lower the overall efficiency of the charging and discharging processes because by-pass currents represent parasitic discharge mechanisms of the flow redox battery.
A typical way of using flow redox battery systems is to accumulate energy by transforming electrical energy into chemical energy during periods of excess electrical power generating capabilities (for example solar energy conversion during daylight hours or excess electrical power capabilities during night time hours in power generation plants) and to deliver accumulated energy in the form of electrical power when required by a load circuit.
Often, in the normal daily cycling of a flow redox battery system there may be prolonged periods of inactivity that is periods when the battery is not charging nor supplying electrical power to an external load circuit. During these idle periods, the pumps that circulate the positive electrolyte and the negative electrolyte through the cell are switched off to save energy and the electrolyte in the battery remain still.
In these conditions, the volumes of electrolytes, contained in the respective compartments of the cells composing the battery stack, supports the by-pass currents that typically are practically entirely confined within the electrolyte battery stack and therefore tends to slowly decrement their state of charging.
As a consequence, if electrical energy is required by the utilizer circuits, the system may take several minutes of "start-up" before becoming ready to provide the appropriate output voltage, a condition that is attained upon a complete refreshing of the electrolytes in the compartments of the battery stack upon resuming their forced circulation by switching on the respective pumps.
This phenomenon may impose the presence of auxiliary battery systems for providing the electrical power necessary to operate the electrolyte pumps at least during the "start-up" period when the output voltage of the battery may have dropped to an insufficient level because of the intervening discharge of the electrolytes volumes retained in the respective compartments during a protracted period of idleness.
Of course, in applications where this is intolerable, a possible solution would be to maintain a trickle charge current through the battery deriving such a maintenance power from an auxiliary source or maintain the electrolyte pumps in function to prevent a deep discharging of the electrolytes in the battery compartments. Both solutions are penalizing in terms of energy requirement, especially in those applications that contemplate prolonged periods of inactivity of the system.
Another critical aspect that has been observed is the ability of exploiting the fullest nominal cell area of the battery.
This criticality manifests itself at relatively high regimes of operation, that is when the level of current flowing through the battery, either in a discharge direction or in a charging direction, approaches the rated maximum value that, apart from other design parameters, is directly tied to the cell area (or active electrode area).
It has been found that the major factor effecting the ability of a battery to support relatively high currents while maintaining an acceptable reversibility is the formation of velocity gradients within the electrolyte flowing in the relatively narrow gap between the bipolar wall and the ion exchange separator in the cell compartments.
The problem becomes even more critical when the active electrodes are in the form of a felt or of alike open structures crossed by the streaming electrolyte forced by the pumps.
Formation of velocity gradients in the body of electrolyte within an electrode compartment implies that numerous zones of the nominal cell area will tend to contain a relatively depleted (that is less charged) electrolyte than other zones where the pumped electrolyte tends to flow preferentially.
In extreme conditions, this phenomenon may in practice reduce the effective cell area (or active electrode area) to a fraction of the nominal size.
At high electric current regimes, the phenomenon manifests itself in a severe drop of. the output voltage, during a discharge phase and in an abnormal rise of the voltage across the battery, during a charge phase.
To cure this problem and optimize the pumping "cost", it is a trivial expedient to increase the pumping rate of the electrolyte in function of the current through the battery. However, even this approach implies a remarkable penalty in terms of overall efficiency due to an augmented power absorption by the pumps.
Conventional considerations on hydraulic systems and the objective of limiting the power expenditure for pumping the electrolytes have led designers to minimize the flow rates of the electrolyte to the lowest value compatible with the requisites of providing for an adequate refresh of the electrolyte throughout the area of the cell compartments at the particular current of operation. The flow of electrolytes in known electrolysers and in particular in redox flow batteries is laminar in order to take place with minimum pressure drops.
OBJECT AND SUMMARY OF THE INVENTION
Nis-a-vis this state of the art, it has now been found that by realizing or installing check valve liquid vein interrupters in each compartment of the battery the above discussed phenomenon of slow discharge of the retained volumes of electrolytes during long periods of inactivity of the battery, with the electrolyte pumps stopped altogether can be practically eliminated with the effect that the battery is perfectly ready to deliver electric power immediately upon request even after prolonged periods of inactivity.
Moreover, by virtue of liquid vein interrupters present on each compartment in either an outlet or an inlet port substantially preventing by-pass current during a not pumping phase, a definitely augmented overall efficiency may be achieved by pumping the electrolytes through the compartments of a battery stack intermittently, in other words in a pulsed manner, with a certain duty-cycle.
According to this embodiment, during normal functioning, relatively brief pumping phases at relatively high flow rate alternated to phases of not pumping. In this way, providing for a volumetrically adequate refreshing of the electrolytes present in the battery compartments, the formation of gradients in the bodies of electrolyte, each representing the volume of electrolyte currently contained in a compartment of the battery, is contrasted.
It has been observed that, a proportionately augmented flow rate of pumping during the pumping phase of each cycle, such to cause a turbulent flow that may last practically for the entire pumping phase of each cycle or develop for just a fraction of the duration of the brief pumping phase, appears to be instrumental in "destroying" any incipient tendency of the electrolytes streaming through the compartments of the battery of assuming preferred flow patterns.
In case of the existence of "free flow" gaps in the compartments, substantially between the face of the active electrode and the ion exchange membrane cell separator, the slight increase of the pressure drop associated to the switching from a laminar to a turbulent flow is abundantly counterbalanced by the markedly improved conditions of operation and a remarkable improvement of the reversibility characteristic of the battery and an overall net increase of conversion efficiency are observed.
Most surprisingly it has been observed that in case of a cell structure with "no free flow" gaps in the compartments, that is when a felt electrode or otherwise porous electrode mass occupies practically the entire space between the bipolar (or end) wall and the ion exchange membrane cell separator, the pressure drop along the battery may even decrease as compared to the case of a conventional continuous pumping under uninterrupted and purely laminar flow conditions.
An explanation of this may be attributed to the peculiar conditions under which the flow of the electrolyte occurs through a porous mass of solid electrode fiber or particulated material, as noted in the volume "Perry's Chemical Engineer Handbook" chapter 5.53: "Flow through fixed beds of granular solids".
Irrespective of the physical explanation of such a behavior, the beneficial effects of circulating the electrolytes through the cell compartments of the battery in a pulsed manner and preferably with periods of turbulent flow within the compartments, are sensible.
According to a preferred embodiment of the invention, the realization of check valve means in the inlet and/or in the outlet port or ports of each compartment of the cell composing the battery stack, is simple and inexpensive. In a simplest form, these check valves may be realized by confining a ball of noncorrodible material such as Teflon, polyethylene and any other suitable plastic material, provided its density is sufficiently greater than the density of the electrolyte, within a "housing" defined upon assembling together the elements of the battery stack which will permit the lifting off of the ball from a valve seat on which it rests by gravity, upon activating the circulation pumps. Of course, electromagnetically or even magnetically operated check valves could also be employed, although sensibly complicating the design.
BRIEF DESCRIPTION OF THE DRAWINGS
The different aspects and advantages of the invention will become even more evident through the following description of several embodiments and by referring to the attached drawings, wherein:
Figures 1 and 2 show alternative hydraulic schemes of the two electrolytes including the check valve means of the invention;
Figure 3 is a partial exploded view of stackable element frames of a known battery architecture equipped with check valve means according to the present invention;
Figure 4 is a detail cross section of an outlet port of a cell compartment showing the realization of a "gravity ball" valve;
Figure 5 shows self discharge characteristics comparing the behavior of a cell provided with check valves according to the invention and without.
DESCRIPTION OF EMBODIMENTS OF THE INVENTION
Generally, redox flow battery systems may adopt a "recycling" scheme of both electrolytes, by employing a single tank in each of the two circuits, as in the example depicted in Fig.l, or a so-called "one through" scheme, requiring a pair of tanks in each of the two electrolyte circuits, according to the scheme of Fig. 2.
According to the scheme of Fig.1 , each electrolyte is flown to and from the same reservoir through the respective electrode compartments of the series of cells composing the battery stack in the same direction during the discharge and the charge processes.
According to the scheme of Fig.2, each electrolyte is flown through the respective electrode compartments of the series of cells that compose the battery stack, drawing it from the tank containing the charged electrolyte, Tl and Tl ', and transferring it to the tank recovering the spent electrolyte, T2 and T2', during the discharge process, and vice versa during the charge process. In case of a "one through" scheme, it becomes essential to vary the flow rate of the two electrolytes in function, for example, of the electric current through the battery in order to make an efficient use of the energy storing volumes of the two electrolytes.
A more sophisticated control may avail itself of probes, ORP, of the actual redox potential, referred to a standard reference electrode, of the two electrolytes preferably placed in the outlet streams from the last cell compartment of the battery stack and being conveyed to either the respective spent electrolyte tanks, T2 and T2', or to the respective charged electrolyte tanks, Tl and Tl ', depending on whether the battery system is delivering power or is being recharged.
The flow rate of each electrolyte may be independently regulated in function of the sensed redox potential in order to maintain a pre-established minimum redox potential in the electrolyte being discharged leaving the battery stack during a current delivering phase of operation or a pre-established maximum redox potential in the electrolyte being charged leaving the battery stack during a charging phase of operation. Any suitable logic circuitry may be employed to switch automatically the threshold potential to the value set for the discharge process or to the value set for the charge process, in function of the direction of the electric current through the battery stack. A possible arrangement is schematically illustrated in Fig. 2.
Even in case of a hydraulic scheme as that of Fig. 2, the transfer of each electrolyte alternately to one and the other tank can be driven by a single pump, P and P', assisted by four electro-magnetically operated valves: VI, V2, V3, V4 and VI ', V2', V3', V4', respectively.
P pumps the positive electrolyte from the tank Tl to the tank T2 when charging the battery by maintaining open VI and V4 and closed V3 and V2. By contrast, when the battery discharges, the same positive electrolyte is transferred back from T2 to Tl by maintaining open V2 and V3 and closed VI and V4.
Of course, the same type of flow control is implemented also for the negative electrolyte.
As may be appreciated, the flow of each electrolyte through all the relative electrode compartments of the cell stack occurs in the same direction both during the charging process as well as during the discharge process.
In the figures, only two cells are depicted for representing a battery stack that may be composed of any number of cells in electrical series, typically in the order of several tens or even of hundreds of cells.
According to an essential aspect of the invention, each electrode compartment has check valve means, CK or CK', at either its inlet port (or ports in case of large cells) and/or at its outlet port (or ports).
These check valves CK and CK' have been schematically depicted in Fig. 1 and 2 as being external to the cell stack 1, just for rendering more evident the function they perfoπn.
In practice, upon the stopping of the circulation pump P, the check valves isolate the volumes of positive electrolyte retained in the positive electrode compartments from each other as well as from the volumes of electrolyte contained in the respective single tank of Fig. 1, or of the two tanks Tl and T2 of Fig. 2, by practically interrupting the liquid veins of electrically conductive electrolyte.
Exactly the same occurs for the volumes of negative electrolyte retained in the negative electrode compartments.
In order to illustrate how effective check valve means CK and CK' may be realized with simple gravity operated ball inserts installed upon assembling the suitably modified stackable component elements of the bipolar cell stack, few of the stackable elements are shown, in an exploded view, in Fig. 3.
The example shown reproduces substantially the same stack architecture described in prior patent application PCT/IT99/00195.
For conformity with the schemes of Figures. 1 and 2, the element 2 of Fig. 3 represents the end element of the cell stack housing a positive electrode (not shown) in a first positive electrolyte flow compartment.
The elements 3 are membrane elements and the element 4 is a bipolar electrode element.
All elements have a similarly shaped frame portion, usually made of moldable plastic, on which the grooves 8, 9 into which fit sealing O-ring gaskets are defined. In the frame portion are present through-passages (holes) and slots coordinated among each other for defining, upon assembling together all the various elements, distinct internal ductings and flow passages for the two electrolytes, according to the architecture described in said prior patent application or in alternative according to any other commonly known architecture of electrochemical bipolar cell stack.
In the particular example shown, the stackable membrane elements 3 and bipolar electrode elements 4 respectively fit within the window defined by the frame portion an ion exchange membrane 5 or a bipolar electrode 6, respectively.
As schematically depicted in the exploded partial view of Fig. 3, in each passage hole of the electrolyte, arranged in the frame portion of the elements, a small ball 7 of a suitable material such as for example glass, ceramic, nylon® or teflon®, or any other corrosion resistant material of sufficiently higher density than the electrolytes, is placed within a suitably flared mouth of the hole through which the electrolyte passes so that it may fall and rest by gravity at the bottom of the flared mouth, effectively interrupting the liquid vein of the electrolyte in the passage through the thickness of the frame portion of the element in its flowing toward the next electrode compartment of the same polarity of the cell stack.
The arrangement is better depicted in the enlarged detailed cross section view of Fig. 4.
As may be readily seen, upon completing the filter press assembly of the stack, the ball 7 remains confined within a housing defined by the juxtaposed flared mouths of the electrolyte flow holes through the frame portions of two adjacent elements of the stack.
When the circulation pump stops, for example during idle periods of the battery, the ball 7 drops by gravity practically interrupting the liquid vein of the electrolyte. Immediately as the circulation pump is turned on again either for charging or for discharging the battery, the motion impressed on the electrolyte dislodges the ball 7 from its seat and lifts it so that the electrolyte resumes its flowing through the various compartments of the battery stack. Of course the flared mouth of the cooperating hole in the frame portion of the juxtaposed element has slots or is shaped in a way as to ensure a free flow of the electrolyte upon the lifting of the ball 7. This check valve action is exerted not only during prolonged idle periods but eventually also during each no-flow phase, in case of a pulsed pumping of the electrolyte according to another important aspect of this invention.
In either situations, the check valve action performed by the ball inserts 7 effectively isolate the volumes of electrolyte retained into the cell compartments from each other, effectively preventing discharge processes through stray currents.
Of course, in case of cells of considerable size, in order to improve electrolyte distribution within the flow compartments, each electrolyte path from one compartment to the next of the same polarity in case of a sequential flow stack as the one described in said prior patent application PCT/IT99/00195 of the same applicant, or from an inlet manifold to an outlet manifold through as many paths as there are electrode compartments of same polarity, may indeed include several inlet and outlet ports in parallel distributed along opposing sides of each compartment. In this case, each of the inlet or outlet ports must be provided with check valve means. In practice this means that the check valve device realized by the use of ball inserts 7 must be duplicated for as many ports are realized in the cell compartments.
The check valve devices CK and CK' may be present either in the inlet ports or in the outlet ports, however they may even be duplicated so that their liquid vein interrupting action be exerted both at the inlet ports and at the outlet ports of each compartment.
A horizontal disposition of the cells elements of the matrix stack according to the architecture of said prior patent application, makes particularly easy the realization of functional check valve devices as described above. Nevertheless, though with a certain adaptation of the design, the same effective gravity operated ball check valve devices may be implemented even in the frame portions of vertically disposed cell stack elements (as customary in these types of filter press bipolar electrolyzers). Indeed any functionally effective way of implementing check valve devices in the inlet and/or outlet ports of each cell compartment of a battery stack assembly will provide for the desired effect of interrupting the liquid veins of electrolyte along by-pass or stray current paths during idling phases or periods of the electrolyte circulation pump or pumps, according to the present invention.
EXAMPLE An all vanadium redox flow battery system according to a scheme as the one depicted in Fig. 2 and employing a battery stack composed of twelve cells in electrical series, each having carbon felt electrodes of 18 x 18 cm separated with a cation exchange Nafion® membrane, manufactured by Du Pont de Nemours, was considered fully charged when attaining a concentration of V+5 in the positively charged sulfuric acid electrolyte and a concentration of V+2 in the negatively charged sulfuric acid electrolyte above 90% molar of the total amount of vanadium dissolved in the sulfuric acid electrolyte.
The battery stack was first assembled without implementing any check valve in the inlet and outlet ports of the electrode compartments.
After charging it, the system has been left idle by stopping the pumps and opening the electric circuit.
The battery voltage at the moment of stopping the pumps and opening the circuit was of 17.1 V, but notwithstanding the absence of any electrical load capable of absorbing current from the battery teπninals, the voltage at the battery terminals declined more or less steadily during the first two hours of idling to about 14.7 V. Thereafter the voltage continued to drop to an increased rate and was down to about 8 V after a total period of idling of three hours.
Such a "self-discharge" test was repeated under the same conditions of initial charge and temperature, with the same battery stack this time assembled with glass balls inserts in the outlet ports of each compartment to implement the gravity operated check valve means according to this invention. After the same time of idling, the voltage at the terminal of the battery had dropped from the starting 17.1 V to 17.0 V.
The self-discharge characteristics for the two comparative tests are shown in the diagram of Fig. 5.
The test has confirmed the effectiveness of the simple, gravity operated, check valve means of the invention in contrasting and substantially preventing self- discharge of the volumes of electrolytes retained in the respective compartments of the cell stack during idle periods with complete interruption of the pumping.
The battery is immediately ready to deliver power to an electric load even after prolonged stoppages of the pumps and therefore permit a considerable saving of energy that would necessarily be lost either for maintaining a trickle flow of the electrolytes or for quickly refreshing the electrolytes in the battery compartments whenever power is requested after a prolonged stop.
According to the secondary and optional aspect of the invention, a pulsed pumping the electrolytes, may be implemented. This may be done in many different ways.
The use of specially designed reciprocating pumps is one way of implementing the desired pulsed pumping. An alternative way may be to use pressure accumulating vessels and electrically controlled on-off electrolyte feed valves.
Irrespectively of the way the pulsed pumping is realized, during normal operation of the battery, either during a charging process or a discharging process, the period of the pulsed pumping may be fixed or variable and in the vicinity of one to several minutes, preferably comprised between 2 and 10 or even more minutes. The duty cycle may vary in function of the current flowing through the battery and may vary from 0 (idling of system) to about 80-90% of the period of the pulsed pumping.
Alternatively, the duty cycle may be regulated in function of redox potential probes, according to similar control schemes used for controlling the flow rate during "normal" operation of the battery, that is for powering an electric load or for recharging, sensing the output voltage in a closed external circuit condition.
Preferably, during the pumping phase of each period, the flow rate should rise to above the transition rate from a laminar to a turbulent flow within the cell compartments crossed by the streaming electrolyte. The reaching of turbulent flow conditions effectively disrupt any tendency of the electrolyte to assume preferential flow patterns in streaming through the cell compartments, that is in the relative narrow and elongated flow section of the cell compartments.

Claims

C L A I M S
1. A redox flow battery plant comprising a plurality of cells in electrical series defined by a stacked and repetitive arrangement of a conductive intercell separator having a generally bipolar function, a positive electrode, an ion exchange membrane, a negative electrode and another conductive intercell separator, each electrode being confined in a flow compartment, at least a tank storing a positive half-cell electrolyte, at least a tank storing a negative half-cell electrolyte, negative half-cell electrolyte ducting and pumping means for flowing said negative half-cell electrolyte through respective flow compartments of said cells, positive half-cell electrolyte ducting and pumping means for flowing said positive half-cell electrolyte through the respective flow compartments of said cells, and characterized in that at least one of inlet and outlet ports of each of said compartments has a check valve closing the flow orifice in absence of pumping.
2. The redox flow battery system of claim 1, wherein said check valves are in the form of a gravity operated plastic ball lifted off a valve seat by the streaming electrolyte during said pumping phases.
3. The redox flow battery system of claim 1, characterized in that each electrolyte is flown from a charged electrolyte tank to a spent electrolyte tank and vice versa depending on the direction of electric current through the battery while the electrolytes flows through the respective compartments in the same direction.
4. The redox flow battery system of claim 3, characterized in that respective charged electrolyte storage tanks are disposed at an elevated level above the cell stack and respective spent electrolyte tanks are disposed at a level lower than the cell stack.
5. A method of operating a redox flow battery comprising a plurality of cells in electrical series defined by a stacked and repetitive arrangement of a conductive intercell separator having a generally bipolar function, a positive electrode, an ion exchange membrane, a negative electrode and another conductive intercell separator, each electrode being confined in a flow compartment, comprising flowing a positive half-cell electrolyte containing reducible and oxidizable ions of a first redox couple through the compartments containing said positive electrodes from a first tank through said compartments and back to said tank or to a second tank and viceversa depending on the direction of the electric current through the battery, and a negative half-cell electrolyte containing reducible and oxidizable ions of a second redox couple through the compartments containing said negative electrodes from a third tank through said compartments and back to said third tank or to a fourth tank and viceversa depending on the direction of the electric current through the battery, characterized in that said electrolytes are flown through the respective electrode compartments in a pulsed manner with a certain duty cycle, whereby during the pumping phase of each cycle the electrolytes are pumped at a flow rate sufficiently high to determine a turbulent flow within said electrode compartments and during the no pumping phase of each cycle and during idle periods the volumes of electrolytes contained in the electrode compartments are isolated from each other by check valve means.
6. The method of claim 5, wherein the period of the pulsed pumping is between 2 and 10 minutes and the duty cycle varies from 0 during idling to 90%.
7. The method of claim 5, wherein said duty cycle varies in function of the electric current through the battery.
8. The method of claim 5, characterized in that said duty cycle is regulated independently for each electrolyte in function of the redox potential of the electrolyte leaving the battery.
9. The method of claim 5, characterized in that electric current by-pass paths among electrodes through liquid veins of electrolyte are interrupted by said check valves during no pumping phases and idle periods.
10. The method of any one of the preceding claims, wherein the redox flow battery employs a V(III)/V(II) redox couple in the negative half-cell electrolyte and a N(V)/N(IN) redox couple in the positive half-cell electrolyte.
PCT/IT2000/000117 2000-03-31 2000-03-31 Redox flow battery and method of operating it WO2001076000A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA002375339A CA2375339A1 (en) 2000-03-31 2000-03-31 Redox flow battery and method of operating it
CNB008083371A CN1226800C (en) 2000-03-31 2000-03-31 Radox flow battery and method of operating it
AU38356/00A AU780390B2 (en) 2000-03-31 2000-03-31 Redox flow battery and method of operating it
US09/980,005 US6692862B1 (en) 2000-03-31 2000-03-31 Redox flow battery and method of operating it
PCT/IT2000/000117 WO2001076000A1 (en) 2000-03-31 2000-03-31 Redox flow battery and method of operating it
EP00917275A EP1186069B1 (en) 2000-03-31 2000-03-31 Redox flow battery and method of operating it
DE60003815T DE60003815T2 (en) 2000-03-31 2000-03-31 REDOX FLOW BATTERY AND METHOD FOR THEIR OPERATION
AT00917275T ATE244935T1 (en) 2000-03-31 2000-03-31 REDOX FLOW BATTERY AND METHOD OF OPERATION THEREOF
ES00917275T ES2203445T3 (en) 2000-03-31 2000-03-31 REDOX FLOW BATTERY AND OPERATING METHOD OF THE SAME.
DK00917275T DK1186069T3 (en) 2000-03-31 2000-03-31 Redox flow-through battery and method for operating it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IT2000/000117 WO2001076000A1 (en) 2000-03-31 2000-03-31 Redox flow battery and method of operating it

Publications (1)

Publication Number Publication Date
WO2001076000A1 true WO2001076000A1 (en) 2001-10-11

Family

ID=11133503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IT2000/000117 WO2001076000A1 (en) 2000-03-31 2000-03-31 Redox flow battery and method of operating it

Country Status (10)

Country Link
US (1) US6692862B1 (en)
EP (1) EP1186069B1 (en)
CN (1) CN1226800C (en)
AT (1) ATE244935T1 (en)
AU (1) AU780390B2 (en)
CA (1) CA2375339A1 (en)
DE (1) DE60003815T2 (en)
DK (1) DK1186069T3 (en)
ES (1) ES2203445T3 (en)
WO (1) WO2001076000A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069692A2 (en) 2002-02-14 2003-08-21 E-Fuel Technology Limited Redox flow battery
EP1385226A1 (en) * 2001-05-01 2004-01-28 Sumitomo Electric Industries, Ltd. Secondary cell and method of operating the secondary cell
AT505560B1 (en) * 2008-02-28 2009-02-15 Cellstrom Gmbh REDOX FLOW BATTERY WITH LEAKAGE RETURN
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
WO2012042288A1 (en) * 2010-10-01 2012-04-05 Krisada Kampanatsanyakorn Frameless electrochemical cell stack having self centering rigid plastic bushings in aligned through holes of interconnects and membrane assemblies
TWI426636B (en) * 2011-06-24 2014-02-11
WO2014083387A1 (en) 2012-11-30 2014-06-05 Hydraredox Technologies Inc. Back plate-electrode-membrane assembly for a redox, flow energy storage electrochemical cell
WO2014091283A1 (en) 2012-12-14 2014-06-19 Hydraredox Technologies Inc. Redox flow battery system and method of controlling it
ITBO20130328A1 (en) * 2013-06-25 2014-12-26 Proxhima S R L FLOW BATTERY
US10014545B2 (en) 2013-11-05 2018-07-03 Lotte Chemical Corporation Method for operating redox flow battery
JP2020518114A (en) * 2017-04-28 2020-06-18 イーエスエス テック インコーポレーテッドESS Tech,Inc. Battery system and method

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7560189B2 (en) * 2001-08-10 2009-07-14 Plurion Limited Mixed electrolyte battery
US6986966B2 (en) * 2001-08-10 2006-01-17 Plurion Systems, Inc. Battery with bifunctional electrolyte
US7252905B2 (en) * 2001-08-10 2007-08-07 Plurion Limited Lanthanide batteries
US7270911B2 (en) 2001-08-10 2007-09-18 Plurion Limited Load leveling battery and methods therefor
US7625663B2 (en) * 2001-08-10 2009-12-01 Plurion Limited Company Cerium batteries
US20060063065A1 (en) * 2001-08-10 2006-03-23 Clarke Robert L Battery with bifunctional electrolyte
US7297437B2 (en) * 2001-08-10 2007-11-20 Plurion Limited Battery with gelled electrolyte
US7214443B2 (en) * 2002-02-12 2007-05-08 Plurion Limited Secondary battery with autolytic dendrites
US20080233484A1 (en) * 2002-02-12 2008-09-25 Plurion Limited Battery with Gelled Electrolyte
US7855005B2 (en) * 2007-02-12 2010-12-21 Deeya Energy, Inc. Apparatus and methods of determination of state of charge in a redox flow battery
US8871403B2 (en) * 2007-08-02 2014-10-28 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode and electronic device
US8587150B2 (en) * 2008-02-28 2013-11-19 Deeya Energy, Inc. Method and modular system for charging a battery
US7927731B2 (en) * 2008-07-01 2011-04-19 Deeya Energy, Inc. Redox flow cell
US8785023B2 (en) * 2008-07-07 2014-07-22 Enervault Corparation Cascade redox flow battery systems
EP2351184A4 (en) * 2008-10-10 2014-07-09 Deeya Energy Technologies Inc Method and apparatus for determining state of charge of a battery
US20100092843A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Venturi pumping system in a hydrogen gas circulation of a flow battery
WO2010042900A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Methods for bonding porous flexible membranes using solvent
US8231993B2 (en) * 2008-10-10 2012-07-31 Deeya Energy, Inc. Flexible multi-walled tubing assembly
US8236463B2 (en) * 2008-10-10 2012-08-07 Deeya Energy, Inc. Magnetic current collector
CN102246338B (en) * 2008-10-10 2014-06-11 迪亚能源股份有限公司 Thermal control of a flow cell battery
WO2010042905A1 (en) * 2008-10-10 2010-04-15 Deeya Energy Technologies, Inc. Level sensor for conductive liquids
CN102844925B (en) * 2009-05-28 2015-11-25 艾默吉电力系统股份有限公司 Electrolyte composition
US8587255B2 (en) 2009-05-28 2013-11-19 Deeya Energy, Inc. Control system for a flow cell battery
WO2010138948A2 (en) 2009-05-28 2010-12-02 Deeya Energy, Inc. Buck-boost control circuit
WO2010138942A2 (en) * 2009-05-28 2010-12-02 Deeya Energy, Inc. Redox flow cell rebalancing
US8349477B2 (en) * 2009-05-28 2013-01-08 Deeya Energy, Inc. Optical leak detection sensor
WO2010138945A2 (en) * 2009-05-28 2010-12-02 Deeya Energy, Inc. Preparation of flow cell battery electrolytes from raw materials
WO2010138947A2 (en) * 2009-05-29 2010-12-02 Deeya Energy, Inc. Methods of producing hydrochloric acid from hydrogen gas and chlorine gas
US8460814B2 (en) * 2009-07-29 2013-06-11 The Invention Science Fund I, Llc Fluid-surfaced electrode
US20110027638A1 (en) * 2009-07-29 2011-02-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Fluid-surfaced electrode
US10074879B2 (en) * 2009-07-29 2018-09-11 Deep Science, Llc Instrumented fluid-surfaced electrode
US20110027629A1 (en) * 2009-07-29 2011-02-03 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Instrumented fluid-surfaced electrode
US8889312B2 (en) * 2009-07-29 2014-11-18 The Invention Science Fund I, Llc Instrumented fluid-surfaced electrode
US8974939B2 (en) * 2009-07-29 2015-03-10 The Invention Science Fund I, Llc Fluid-surfaced electrode
US8865361B2 (en) * 2009-07-29 2014-10-21 The Invention Science Fund I, Llc Instrumented fluid-surfaced electrode
CN101989660B (en) * 2009-08-03 2012-10-31 夏嘉琪 Exhaust system for closed electrolyte storage tank of vanadium ion redox flow battery
US8951665B2 (en) * 2010-03-10 2015-02-10 Imergy Power Systems, Inc. Methods for the preparation of electrolytes for chromium-iron redox flow batteries
US9281535B2 (en) 2010-08-12 2016-03-08 Imergy Power Systems, Inc. System dongle
US9269982B2 (en) 2011-01-13 2016-02-23 Imergy Power Systems, Inc. Flow cell stack
US20120189880A1 (en) * 2011-01-20 2012-07-26 International Business Machines Corporation Electrochemical power delivery voltage regulator
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US9774044B2 (en) 2011-09-21 2017-09-26 United Technologies Corporation Flow battery stack with an integrated heat exchanger
US9231268B2 (en) * 2011-12-20 2016-01-05 United Technologies Corporation Flow battery system with standby mode
DE102011122010A1 (en) * 2011-12-23 2013-06-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Redox flow battery with external supply line and / or disposal line
US9300000B2 (en) * 2012-02-28 2016-03-29 Uchicago Argonne, Llc Organic non-aqueous cation-based redox flow batteries
US9966625B2 (en) 2012-02-28 2018-05-08 Uchicago Argonne, Llc Organic non-aqueous cation-based redox flow batteries
CN103515641B (en) * 2012-06-18 2016-04-13 攀钢集团攀枝花钢铁研究院有限公司 A kind of trivalent vanadium ion electrolyte and preparation method thereof and a kind of vanadium cell
DE102013009827A1 (en) 2013-06-11 2014-12-11 Linde Aktiengesellschaft Redox flow accumulator system and method for its operation
ITBO20130327A1 (en) * 2013-06-25 2014-12-26 Proxhima S R L FLOW BATTERY
US9650586B2 (en) * 2013-07-23 2017-05-16 The Boeing Company Redox couple-based mitigation of fluid-flow-driven electrochemical surface degradation
US20150072261A1 (en) * 2013-09-06 2015-03-12 Matthew Mench High power high efficiency flow type battery
US9214686B2 (en) * 2014-02-27 2015-12-15 Vizn Energy Systems, Inc. Flow cell with shunt current counter electrode
DE102014009396A1 (en) 2014-06-24 2015-12-24 Rainer Schmidt Energy storage combination
KR20160075923A (en) * 2014-12-19 2016-06-30 오씨아이 주식회사 Redox flow battery having reduced shunt loss
KR101945529B1 (en) * 2015-07-07 2019-02-08 킴스테크날리지 주식회사 Flow Battery
CA3045509A1 (en) 2016-12-16 2018-06-21 Lockheed Martin Advanced Energy Storage, Llc Flow batteries incorporating a nitroxide compound within an aqueous electrolyte solution
WO2018117070A1 (en) * 2016-12-19 2018-06-28 昭和電工株式会社 Method for operating redox flow cell
US10374239B2 (en) 2016-12-29 2019-08-06 Uchicago Argonne, Llc Aqueous pyridinium cation-based redox flow batteries
KR101855290B1 (en) * 2017-03-02 2018-05-04 스탠다드에너지(주) Redox flow battery
JP7121044B2 (en) 2017-04-28 2022-08-17 イーエスエス テック インコーポレーテッド Integrated hydrogen recycling system using pressurized multi-chamber tanks
CN110574201B (en) 2017-04-28 2023-10-31 Ess技术有限公司 Flow battery cleaning cycle to maintain electrolyte health and system performance
US11817606B2 (en) 2017-04-28 2023-11-14 Ess Tech, Inc. Methods and systems for rebalancing electrolytes for a redox flow battery system
AU2018258692B2 (en) 2017-04-28 2023-07-27 Ess Tech, Inc. Methods and systems for operating a redox flow battery system
WO2018201081A1 (en) 2017-04-28 2018-11-01 Ess Tech, Inc. Methods and systems for redox flow battery electrolyte hydration
US10553890B2 (en) 2017-06-23 2020-02-04 Uchicago Argonne, Llc Aqueous redox flow batteries
US10424805B2 (en) 2017-08-15 2019-09-24 Uchicago Argonne, Llc Benzothiophene-based redox molecules for flow battery
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271237B2 (en) 2019-07-29 2022-03-08 Uchicago Argonne, Llc Organic redox molecules for flow batteries
US11664512B2 (en) 2020-05-15 2023-05-30 Ess Tech, Inc. Methods and system for redox flow battery idle state
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency
CN114497654B (en) * 2022-04-06 2022-07-08 杭州德海艾科能源科技有限公司 Liquid path current blocker

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269866A (en) * 1985-05-23 1986-11-29 Sumitomo Electric Ind Ltd Redox flow cell
JPS63164172A (en) * 1986-12-26 1988-07-07 Nkk Corp Shunt current erasing device for redox flow battery
JPH01146267A (en) * 1987-12-03 1989-06-08 Chiyoda Corp Operation of redox-flow cell
JPH01213967A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Non-continuous circulation type redox battery
JPH01213964A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Operating method for redox battery
US4930492A (en) * 1989-06-16 1990-06-05 Rich Albert C Solar water heating system
WO1999039397A1 (en) * 1998-01-28 1999-08-05 Chemieco S.R.L. Redox flow battery system and cell stack

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996064A (en) * 1975-08-22 1976-12-07 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Electrically rechargeable REDOX flow cell
JPS62200668A (en) * 1986-02-27 1987-09-04 Agency Of Ind Science & Technol Battery device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61269866A (en) * 1985-05-23 1986-11-29 Sumitomo Electric Ind Ltd Redox flow cell
JPS63164172A (en) * 1986-12-26 1988-07-07 Nkk Corp Shunt current erasing device for redox flow battery
JPH01146267A (en) * 1987-12-03 1989-06-08 Chiyoda Corp Operation of redox-flow cell
JPH01213967A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Non-continuous circulation type redox battery
JPH01213964A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Operating method for redox battery
US4930492A (en) * 1989-06-16 1990-06-05 Rich Albert C Solar water heating system
WO1999039397A1 (en) * 1998-01-28 1999-08-05 Chemieco S.R.L. Redox flow battery system and cell stack

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 122 (E - 500) 16 April 1987 (1987-04-16) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 425 (E - 681) 10 November 1988 (1988-11-10) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 404 (E - 817) 7 September 1989 (1989-09-07) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 525 (E - 850) 22 November 1989 (1989-11-22) *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1385226A1 (en) * 2001-05-01 2004-01-28 Sumitomo Electric Industries, Ltd. Secondary cell and method of operating the secondary cell
EP1385226A4 (en) * 2001-05-01 2008-04-09 Sumitomo Electric Industries Secondary cell and method of operating the secondary cell
WO2003069692A2 (en) 2002-02-14 2003-08-21 E-Fuel Technology Limited Redox flow battery
WO2003069692A3 (en) * 2002-02-14 2003-11-27 Fuel Technology Ltd E Redox flow battery
GB2400974A (en) * 2002-02-14 2004-10-27 Fuel Technology Ltd E Redox flow battery
GB2400974B (en) * 2002-02-14 2006-06-14 Fuel Technology Ltd E Redox flow battery
CN100359741C (en) * 2002-02-14 2008-01-02 E-燃料技术有限公司 Redox flow battery
US7537859B2 (en) 2002-02-14 2009-05-26 E-Fuel Technology Ltd. Redox flow battery
AT505560B1 (en) * 2008-02-28 2009-02-15 Cellstrom Gmbh REDOX FLOW BATTERY WITH LEAKAGE RETURN
WO2009106452A1 (en) * 2008-02-28 2009-09-03 Cellstrom Gmbh Redox flow battery with leakage return
US7820321B2 (en) 2008-07-07 2010-10-26 Enervault Corporation Redox flow battery system for distributed energy storage
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
WO2012042288A1 (en) * 2010-10-01 2012-04-05 Krisada Kampanatsanyakorn Frameless electrochemical cell stack having self centering rigid plastic bushings in aligned through holes of interconnects and membrane assemblies
TWI426636B (en) * 2011-06-24 2014-02-11
WO2014083387A1 (en) 2012-11-30 2014-06-05 Hydraredox Technologies Inc. Back plate-electrode-membrane assembly for a redox, flow energy storage electrochemical cell
WO2014091283A1 (en) 2012-12-14 2014-06-19 Hydraredox Technologies Inc. Redox flow battery system and method of controlling it
US9680174B2 (en) 2012-12-14 2017-06-13 Hydraredox Technologies Holdings Ltd. Redox flow battery system and method of controlling it
ITBO20130328A1 (en) * 2013-06-25 2014-12-26 Proxhima S R L FLOW BATTERY
US10014545B2 (en) 2013-11-05 2018-07-03 Lotte Chemical Corporation Method for operating redox flow battery
JP2020518114A (en) * 2017-04-28 2020-06-18 イーエスエス テック インコーポレーテッドESS Tech,Inc. Battery system and method
EP3616249A4 (en) * 2017-04-28 2021-01-20 ESS Tech, Inc. Methods and system for a battery
JP7189887B2 (en) 2017-04-28 2022-12-14 イーエスエス テック インコーポレーテッド Battery system and method
AU2018256895B2 (en) * 2017-04-28 2023-12-07 Ess Tech, Inc. Methods and system for a battery

Also Published As

Publication number Publication date
AU3835600A (en) 2001-10-15
ES2203445T3 (en) 2004-04-16
US6692862B1 (en) 2004-02-17
DE60003815D1 (en) 2003-08-14
ATE244935T1 (en) 2003-07-15
CN1226800C (en) 2005-11-09
CA2375339A1 (en) 2001-10-11
AU780390B2 (en) 2005-03-17
EP1186069B1 (en) 2003-07-09
EP1186069A1 (en) 2002-03-13
DK1186069T3 (en) 2003-10-27
CN1353870A (en) 2002-06-12
DE60003815T2 (en) 2004-03-04

Similar Documents

Publication Publication Date Title
EP1186069B1 (en) Redox flow battery and method of operating it
EP1051766B1 (en) Redox flow battery system and cell stack
US7199550B2 (en) Method of operating a secondary battery system having first and second tanks for reserving electrolytes
JP2015520484A (en) Vanadium flow battery
CN115606026A (en) Redox flow battery and battery system
KR20170132005A (en) Redox flow battery
CN115606024A (en) Redox flow battery and battery system
JP2007305501A (en) Electrolyte recirculation type battery
ZA200109001B (en) Redox flow battery and method of operating it.
JP2006040591A (en) Redox flow battery
JP2002329523A (en) Cell frame for redox flow battery
KR20200080950A (en) Redox flow battery using balancing flow path
JP7149623B2 (en) redox flow battery
CN115668562A (en) Electrode assembly for redox flow battery
US20190296373A1 (en) Redox flow battery using electrolyte concentration gradient and operation method thereof
JP2003059513A (en) Separator for fuel cell
EP3724942A1 (en) Redox flow battery and method of operation
CN113594498B (en) Fuel cell system and control method thereof
CN110400955B (en) Redox flow battery
JPH01264178A (en) Self-discharge preventing method for electrolyte low type cell
CN117577901A (en) Flow battery pile and energy storage system
WO2022093117A1 (en) Flow frame for redox flow battery and redox flow battery
JP2003036880A (en) Redox flow battery
KR20180043044A (en) Redox flow battery
JPS63291365A (en) Redox flow type battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 00808337.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CN ID IL IN JP KR MX NO NZ RO RU SG TR US VN ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2001/09001

Country of ref document: ZA

Ref document number: 38356/00

Country of ref document: AU

Ref document number: 200109001

Country of ref document: ZA

ENP Entry into the national phase

Ref document number: 2375339

Country of ref document: CA

Ref document number: 2375339

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2000917275

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09980005

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000917275

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000917275

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 38356/00

Country of ref document: AU