JPS61269866A - Redox flow cell - Google Patents

Redox flow cell

Info

Publication number
JPS61269866A
JPS61269866A JP60111160A JP11116085A JPS61269866A JP S61269866 A JPS61269866 A JP S61269866A JP 60111160 A JP60111160 A JP 60111160A JP 11116085 A JP11116085 A JP 11116085A JP S61269866 A JPS61269866 A JP S61269866A
Authority
JP
Japan
Prior art keywords
insulating means
conduit
cell
electrolyte
redox flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60111160A
Other languages
Japanese (ja)
Inventor
Norihiro Mori
森 範宏
Masayuki Hirose
正幸 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60111160A priority Critical patent/JPS61269866A/en
Publication of JPS61269866A publication Critical patent/JPS61269866A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04276Arrangements for managing the electrolyte stream, e.g. heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To effectively prevent the generation of shunt current loss by arranging an insulating means in a part of conductor connecting cells in order to electrically insulate an electrolyte flowing inside the conductor. CONSTITUTION:Insulating means 21...26 and 31...36 are arranged in conductors 15, 16, 17, 18 connected with each cell, and also connected with pipings 9, 10, 12, 13 which connect each cell with a catholyte tank 11 and an anolyte tank 14. The insulating means 21 consists of a impeller having a plurality of impeller blades. Since electrolyte flowing inside the conductor 15 is usually strong acid, the insulating means 21 is made of good acid resistant insulating material such as fluorine resin. The electrolyte is nearly electrically insulated on both sides of the insulating means. Even if the potential difference caused by potential difference between cells exists in electrolytes on both sides of the insulating means, no shunt current through the insulating means 21 flows.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、電解液が流れる配管系の構造が改良された
レドックスフロー電池に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a redox flow battery with an improved structure of a piping system through which an electrolytic solution flows.

[従来の技術] たとえば特開昭59−13153号に、電力貯蔵用2次
電池としてレドックスフロー電池の一例が開示されてい
る。この種のレドックスフロー電池では、流通型電解セ
ルを用いており、電極活物質を含む電解液が、電解液タ
ンクと流通型電解セルとの間を流通され、充放電動作が
行なわれる。
[Prior Art] For example, Japanese Patent Application Laid-Open No. 59-13153 discloses an example of a redox flow battery as a secondary battery for power storage. This type of redox flow battery uses a flow-through electrolytic cell, and an electrolytic solution containing an electrode active material is passed between an electrolytic solution tank and the flow-through electrolytic cell to perform charging and discharging operations.

電解液としては、たとえば塩酸が用いられ、電極活物質
としては、たとえばFeCu5およびC10立、が用い
られる。充電動作に際しては、l”e2+イオンがFe
3+イオンに、Cr 3+イオンがCr2+イオンに変
化し、他方、放電動作では逆方向の電気化学反応が生じ
る。
As the electrolytic solution, for example, hydrochloric acid is used, and as the electrode active material, for example, FeCu5 and C10 are used. During charging operation, l”e2+ ions become Fe
3+ ions, Cr 3+ ions change to Cr2+ ions, while an electrochemical reaction in the opposite direction occurs in the discharge operation.

ところで、レドックスフロー電池では、出力を上げるた
めに、通常、第2図に示すように、複数個のセルが直列
接続された構成が用いられている。
By the way, in order to increase the output of a redox flow battery, a configuration in which a plurality of cells are connected in series is usually used, as shown in FIG. 2.

すなわち、正極セル1と負極セル4とからなる第1のセ
ル、正極セル2および負極セル5からなる第2のセル、
ならびに正極セル3および負極セル6からなる第3のセ
ルが、図示のように直列に接続されている。なお、各セ
ル間には、隔壁7.8が設けられている。
That is, a first cell consisting of a positive electrode cell 1 and a negative electrode cell 4, a second cell consisting of a positive electrode cell 2 and a negative electrode cell 5,
A third cell including a positive electrode cell 3 and a negative electrode cell 6 are connected in series as shown. Note that partition walls 7.8 are provided between each cell.

ところで、第2図に示した多段接続型のレドックスフロ
ー電池では、正極セル1,2.3が、配管9.10によ
り、正極液タンク11に接続されており、他方負極セル
4,5.6が、配管12゜13により負極液タンク14
に接続されている。
By the way, in the multi-stage connection type redox flow battery shown in FIG. 2, the positive electrode cells 1, 2.3 are connected to the positive electrode liquid tank 11 through piping 9.10, and the negative electrode cells 4, 5.6 However, the anode liquid tank 14 is connected to the pipe 12゜13.
It is connected to the.

すなわち、多段接続型レドックスフロー電池においては
、通常、正極セル1.2.3および負極セル4.5.6
に供給される正極液および負極液はそれぞれ、共通の電
解液タンク11.14から供給される。
That is, in a multi-stage connected redox flow battery, normally the positive electrode cell 1.2.3 and the negative electrode cell 4.5.6
The positive and negative electrolytes supplied to each are supplied from a common electrolyte tank 11.14.

[発明が解決しようとする問題点] 上述したような多段接続型レドックスフロー電池では、
大きな出力を得ることが一応可能とされているが、第2
図に示すように、共通の正極液タンク11および負極液
タンク14に、各正極セル1.2.3および負極セル4
.5.6が接続されている。よって、各配管9.10,
12.13、セル間に接続された導管15.16.17
.18の部分において電解液が連通しているので、シャ
ント・カレントと称されている現象が発生する。
[Problems to be solved by the invention] In the multi-stage connected redox flow battery as described above,
It is said that it is possible to obtain a large output, but the second
As shown in the figure, each positive electrode cell 1.2.3 and negative electrode cell 4 are placed in a common positive electrode liquid tank 11 and negative electrode liquid tank 14.
.. 5.6 is connected. Therefore, each pipe 9.10,
12.13, conduits connected between cells 15.16.17
.. Since the electrolyte is in communication at the portion 18, a phenomenon called shunt current occurs.

すなわち、第2図において、A、B、Cあるいは0、P
、Qで示される位置間に電位差が生じるので、導管9.
12.19.20を流れる電解液に電流(シャント・カ
レント)が流れ、その結果シャント・カレント・ロスが
発生し、電池構造全体の充放電効率が低下するという問
題があった。
That is, in FIG. 2, A, B, C or 0, P
, Q, resulting in a potential difference between the positions indicated by conduit 9.
There was a problem in that a current (shunt current) flows through the electrolyte flowing through the battery, resulting in shunt current loss and a decrease in the charging/discharging efficiency of the entire battery structure.

それゆえに、この発明の目的は、シャント・カレント・
ロスの発生を効果的に防止することができ、したがって
充放電効率に優れたレドックスフロー電池を提供するこ
とにある。
Therefore, the purpose of this invention is to
It is an object of the present invention to provide a redox flow battery that can effectively prevent the occurrence of loss and therefore has excellent charging and discharging efficiency.

[問題点を解決するための手段] この発明は、上記したような複数個のセルと、セル間を
相互に接続するための導管とを備えるレドックスフロー
電池において、導管内を流れる電解液を、その両側で電
気的に絶縁するために、セル間に接続された導管の一部
に絶縁手段を設けたことを特徴とする。
[Means for Solving the Problems] The present invention provides a redox flow battery comprising a plurality of cells as described above and conduits for interconnecting the cells, in which an electrolytic solution flowing in the conduits is A feature is that an insulating means is provided on a part of the conduit connected between the cells in order to electrically insulate both sides thereof.

[作用] この発明では、導管の一部に設けられた絶縁手段が、そ
の両側の電解液を電気的にほぼ絶縁し、したがって導管
内に各セル間の電位差に基づく電流はほとんど流れない
ことになる。
[Function] In this invention, the insulating means provided in a part of the conduit electrically insulates the electrolyte on both sides of the conduit, and therefore almost no current flows in the conduit due to the potential difference between each cell. Become.

[実施例の説明] 第1図は、この発明の一実施例の概略構成図である。こ
こでも、正極セル1.負極セル4からなる第1のセル、
正極セル2および負極セル5からなる第2のセル、なら
びに正極セル3および負極セル6からなる第3のセルが
直列に接続されたレドックスフロー電池が用いられてい
る。この実施例の特徴は、各セルと正極液タンク11お
よび負極液タンク14を接続する配管9.10.12゜
13の一部、すなわち各セル間に接続された導管15.
16.17.18の一部に、絶縁手段21・・・26.
31・・・36が設けられていることにある。
[Description of Embodiment] FIG. 1 is a schematic diagram of an embodiment of the present invention. Again, positive electrode cell 1. a first cell consisting of a negative electrode cell 4;
A redox flow battery is used in which a second cell consisting of a positive electrode cell 2 and a negative electrode cell 5, and a third cell consisting of a positive electrode cell 3 and a negative electrode cell 6 are connected in series. A feature of this embodiment is that a portion of the piping 9, 10, 12, 13 connecting each cell with the positive electrode liquid tank 11 and the negative electrode liquid tank 14, that is, the conduit 15.
16.17.18, insulating means 21...26.
31...36 are provided.

絶縁手段21は、第3図に拡大して示すように、複数枚
の羽根21aを有する羽根車よりなる。導管15内を流
通する電・解液は、通常、強酸性であるため、絶縁手段
21はたとえばフッ素樹脂のような耐酸性に優れた絶縁
材料により構成される。
The insulating means 21 is composed of an impeller having a plurality of blades 21a, as shown in an enlarged view in FIG. Since the electrolytic solution flowing through the conduit 15 is usually strongly acidic, the insulating means 21 is made of an insulating material with excellent acid resistance, such as fluororesin.

また、絶縁手段21は、導管15内で軸22を中心とし
て回転可能に支持されている。よって、電解液が矢印S
方向に流れると、絶縁手段21は該電解液の流れにより
時計方向に回転されることになり、絶縁手段21の複数
枚の羽根218間に位置する電解液が、隣接するセルに
接続されている導管側に移動されることになる。したが
って、絶縁手段21°は、電解液の流れを妨げることは
ないことがわかる。
Furthermore, the insulating means 21 is rotatably supported within the conduit 15 about a shaft 22 . Therefore, the electrolyte is indicated by arrow S
direction, the insulating means 21 is rotated clockwise by the flow of the electrolyte, and the electrolyte located between the plurality of blades 218 of the insulating means 21 is connected to adjacent cells. It will be moved to the conduit side. Therefore, it can be seen that the insulating means 21° does not impede the flow of the electrolyte.

さらに、絶縁手段21は、上記したように絶縁材料によ
り構成されており、導管14の内壁近傍にまで延びる羽
根21aを備えているため、該絶縁手段21の両側で電
解液は電気的にほぼ絶縁された状態とされている。よっ
て、絶縁手段21の両側の電解液に、セル間の電位差に
基づく電位差が存在したとしても、この絶縁手段21を
越えてシャント・カレントが流れることはない。
Further, as described above, the insulating means 21 is made of an insulating material and is provided with the blades 21a extending close to the inner wall of the conduit 14, so that the electrolyte is almost electrically insulated on both sides of the insulating means 21. It is said to be in a state of being Therefore, even if a potential difference based on the potential difference between the cells exists in the electrolytic solution on both sides of the insulating means 21, no shunt current will flow beyond the insulating means 21.

なお、第3図に示した絶縁手段21の軸22に、モータ
等の回転駆動源を連結し、絶縁手段21を積極的に回転
駆動することも可能であり、それによって電解液の流れ
をより円滑にすることができる。
Note that it is also possible to connect a rotary drive source such as a motor to the shaft 22 of the insulating means 21 shown in FIG. It can be made smoother.

第4図は、この発明の他の実施例における絶縁手段を説
明するための概略構成図である。ここでは、導管が、第
1の導管15aと、第1の導管15aから分岐された第
2の導管15bとから構成されている。第1の導管15
aの一部に、弁31が設けられており、他方第2の導管
15bの分岐点近傍に弁42が設けられている。この弁
41゜42が、この発明の絶縁手段を構成する。
FIG. 4 is a schematic configuration diagram for explaining insulation means in another embodiment of the invention. Here, the conduit includes a first conduit 15a and a second conduit 15b branched from the first conduit 15a. First conduit 15
A valve 31 is provided in a part of the pipe a, and a valve 42 is provided near the branch point of the second conduit 15b. These valves 41 and 42 constitute the insulating means of the present invention.

第1の導管15aの端部には、ピストン43が構成され
ている。ピストン43は、第1の導管15aの端部をピ
ストンシリンダとし、その内部にピストンロッド45に
連結されたヘッド44が挿1人されている。
A piston 43 is configured at the end of the first conduit 15a. The piston 43 uses the end of the first conduit 15a as a piston cylinder, and a head 44 connected to a piston rod 45 is inserted into the piston cylinder.

第4図に示した構成においても、絶縁手段を構成する弁
41.42は、フッ素樹脂等の耐酸性に優れた絶縁材料
により構成される。弁41.42は第4図の実線で示す
一方向にしか開かない構造となる。よって、弁41.4
2の両側の電解液は、はぼ電気的に絶縁された状態とな
る。電解液の移動は、ピストンロッド45を往復駆動す
ることにより、第4図の矢印Tで示すようにチャンバ4
6内へ電解液を引込むことができ、またチャンバ46か
ら導管15bへ電解液を排出することが可能とされてい
る。
Also in the configuration shown in FIG. 4, the valves 41 and 42 constituting the insulating means are made of an insulating material with excellent acid resistance such as fluororesin. The valves 41 and 42 have a structure that opens only in one direction, as shown by the solid line in FIG. Therefore, valve 41.4
The electrolytes on both sides of 2 are almost electrically insulated. The electrolytic solution is moved by reciprocating the piston rod 45 into the chamber 4 as shown by arrow T in FIG.
It is possible to draw electrolyte into the chamber 46 and to drain it from the chamber 46 into the conduit 15b.

第3図に示した絶縁手段21および第4図に示した弁4
1.42を用いた実施例では、いずれにおいても絶縁手
段により電解液の流通が妨げられることはないため、配
管系における圧損の増大を招くことなく、シャント・カ
レントの発生を防止し得ることがわかる。
Insulating means 21 shown in FIG. 3 and valve 4 shown in FIG.
In the examples using 1.42, the flow of the electrolyte is not obstructed by the insulating means in any case, so it is possible to prevent the generation of shunt current without causing an increase in pressure loss in the piping system. Recognize.

[発明の効果] 以上のように、この発明によれば、複数個のセル間を接
続する導管の一部にその両側の電解液を電気的にほぼ絶
縁するための絶縁手段が設けられているため、シャント
・カレントの発生を効果的に防止することができ、よっ
て効率に優れたレドックスフロー電池を構成することが
可能となる。
[Effects of the Invention] As described above, according to the present invention, a part of the conduit connecting a plurality of cells is provided with an insulating means for electrically insulating the electrolyte on both sides thereof. Therefore, the generation of shunt current can be effectively prevented, and it is therefore possible to construct a redox flow battery with excellent efficiency.

【図面の簡単な説明】 第1図は、この発明の一実施例の概略構成図である。第
2図は、従来のレドックスフロー電池の一例を示す概略
構成図である。第3図は、第1図に示した実施例におけ
る絶縁手段を拡大して示す図である。第4図は、絶縁手
段の他の例を説明するための部分切欠断面図である。 図において、1.2.3は正極セル、4,5゜6は負極
セル、15,16,17.18は導管、21・・・26
.31・・・36は絶縁手段、41.42は絶縁手段を
構成する弁を示す。 特許出願人 住友電気工業株式会社 第1 図 1υ 1.2,3  二 正極f+し 4.5.6  :  負 本亡 乞 Jし1s 、 1
s、 17.+a : @ 131−0.36 ”鑵偵 第4図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of an embodiment of the present invention. FIG. 2 is a schematic configuration diagram showing an example of a conventional redox flow battery. FIG. 3 is an enlarged view showing the insulation means in the embodiment shown in FIG. 1. FIG. 4 is a partially cutaway sectional view for explaining another example of the insulating means. In the figure, 1.2.3 is a positive electrode cell, 4.5°6 is a negative electrode cell, 15, 16, 17.18 is a conduit, 21...26
.. 31...36 are insulating means, and 41 and 42 are valves constituting the insulating means. Patent applicant Sumitomo Electric Industries, Ltd. 1 Figure 1υ 1.2, 3 2 Positive electrode f + 4.5.6: Negative J 1s, 1
s, 17. +a: @ 131-0.36 ``Tai Figure 4

Claims (4)

【特許請求の範囲】[Claims] (1)複数個のセルと、セル間を相互に接続するための
導管とを備えるレドックスフロー電池において、 前記導管内を流れる電解液を、その両側で電気的に絶縁
するために、セル間に接続された前記導管の一部に設け
られた絶縁手段を備えることを特徴とする、レドックス
フロー電池。
(1) In a redox flow battery comprising a plurality of cells and a conduit for interconnecting the cells, in order to electrically insulate the electrolyte flowing in the conduit on both sides, there is a A redox flow battery, characterized in that it comprises an insulating means provided on a part of the connected conduit.
(2)前記絶縁手段は、前記導管内の電解液の流れを妨
げないように、導管内で回転可能に支持された絶縁材料
よりなる羽根車である、特許請求の範囲第1項記載のレ
ドックスフロー電池。
(2) The redox device according to claim 1, wherein the insulating means is an impeller made of an insulating material and rotatably supported within the conduit so as not to impede the flow of the electrolyte within the conduit. flow battery.
(3)前記羽根車を回転駆動するための駆動手段をさら
に備える、特許請求の範囲第2項記載のレドックスフロ
ー電池。
(3) The redox flow battery according to claim 2, further comprising a drive means for rotationally driving the impeller.
(4)前記絶縁手段は、絶縁材料よりなり、かつ導管の
一部に設けられた弁である、特許請求の範囲第1項記載
のレドックスフロー電池。
(4) The redox flow battery according to claim 1, wherein the insulating means is a valve made of an insulating material and provided in a part of the conduit.
JP60111160A 1985-05-23 1985-05-23 Redox flow cell Pending JPS61269866A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60111160A JPS61269866A (en) 1985-05-23 1985-05-23 Redox flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60111160A JPS61269866A (en) 1985-05-23 1985-05-23 Redox flow cell

Publications (1)

Publication Number Publication Date
JPS61269866A true JPS61269866A (en) 1986-11-29

Family

ID=14553997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60111160A Pending JPS61269866A (en) 1985-05-23 1985-05-23 Redox flow cell

Country Status (1)

Country Link
JP (1) JPS61269866A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108465A (en) * 1985-11-06 1987-05-19 Tohoku Electric Power Co Inc Electrolyte circulation type secondary cell associated with leak current preventer
JPS647763U (en) * 1987-07-02 1989-01-17
JPH01213967A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Non-continuous circulation type redox battery
JPH01213968A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Non-continuous circulation type redox battery
WO2001076000A1 (en) * 2000-03-31 2001-10-11 Squirrel Holdings Ltd. Redox flow battery and method of operating it
JP2007305501A (en) * 2006-05-15 2007-11-22 Abe Tomoki Electrolyte recirculation type battery
WO2012078786A2 (en) * 2010-12-08 2012-06-14 Enervault Corporation Shunt current resistors for flow battery systems
WO2012083239A1 (en) 2010-12-16 2012-06-21 24M Technologies, Inc. Stacked flow cell design and method
US20140057136A1 (en) * 2011-03-09 2014-02-27 University Of The West Of England, Bristol Microbial fuel cell
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
JP2017199492A (en) * 2016-04-26 2017-11-02 行政院原子能委員会核能研究所 Branch current suppression device and branch current suppression method for flow battery
WO2020080278A1 (en) * 2018-10-18 2020-04-23 東洋エンジニアリング株式会社 Cell frame and redox flow battery
WO2023165650A1 (en) 2022-03-04 2023-09-07 Schaeffler Technologies AG & Co. KG Redox flow battery

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108465A (en) * 1985-11-06 1987-05-19 Tohoku Electric Power Co Inc Electrolyte circulation type secondary cell associated with leak current preventer
JPH0365625B2 (en) * 1985-11-06 1991-10-14
JPS647763U (en) * 1987-07-02 1989-01-17
JPH01213967A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Non-continuous circulation type redox battery
JPH01213968A (en) * 1988-02-22 1989-08-28 Agency Of Ind Science & Technol Non-continuous circulation type redox battery
WO2001076000A1 (en) * 2000-03-31 2001-10-11 Squirrel Holdings Ltd. Redox flow battery and method of operating it
US6692862B1 (en) 2000-03-31 2004-02-17 Squirrel Holdings Ltd. Redox flow battery and method of operating it
JP2007305501A (en) * 2006-05-15 2007-11-22 Abe Tomoki Electrolyte recirculation type battery
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
WO2012078786A3 (en) * 2010-12-08 2012-10-04 Enervault Corporation Shunt current resistors for flow battery systems
WO2012078786A2 (en) * 2010-12-08 2012-06-14 Enervault Corporation Shunt current resistors for flow battery systems
EP2652825A4 (en) * 2010-12-16 2015-03-11 24M Technologies Inc Stacked flow cell design and method
WO2012083239A1 (en) 2010-12-16 2012-06-21 24M Technologies, Inc. Stacked flow cell design and method
US10270117B2 (en) * 2011-03-09 2019-04-23 John Greenman Microbial fuel cell
US20140057136A1 (en) * 2011-03-09 2014-02-27 University Of The West Of England, Bristol Microbial fuel cell
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
JP2017199492A (en) * 2016-04-26 2017-11-02 行政院原子能委員会核能研究所 Branch current suppression device and branch current suppression method for flow battery
WO2020080278A1 (en) * 2018-10-18 2020-04-23 東洋エンジニアリング株式会社 Cell frame and redox flow battery
CN112889168A (en) * 2018-10-18 2021-06-01 东洋工程株式会社 Cell frame and redox flow battery
JPWO2020080278A1 (en) * 2018-10-18 2021-09-09 東洋エンジニアリング株式会社 Cell frame and redox flow battery
WO2023165650A1 (en) 2022-03-04 2023-09-07 Schaeffler Technologies AG & Co. KG Redox flow battery
DE102022105113A1 (en) 2022-03-04 2023-09-07 Schaeffler Technologies AG & Co. KG Redox flow battery

Similar Documents

Publication Publication Date Title
JPS61269866A (en) Redox flow cell
US8105731B2 (en) Fuel cell system
US7384703B2 (en) Fuel cell system
US9362582B2 (en) Flow cell stack with single plate cells
JP4820068B2 (en) Fuel cell stack
US7972737B2 (en) Fuel cell
JP2000058099A (en) Diaphragm for redox flow battery
EP2573852A1 (en) Solid polymer fuel cell
KR101807378B1 (en) Electrochemical device and method for controlling corrosion
US10158141B2 (en) Fuel cell system including multiple fuel cell stacks
JPH10308232A (en) Electrolyte circulation type battery with internal resistance recovery mechanism
JP2008016216A (en) Fuel cell system
JP2006040591A (en) Redox flow battery
JP3574514B2 (en) Redox flow type secondary battery system
JP6772343B2 (en) Polymer electrolyte fuel cell, fuel cell
JPH02250269A (en) Electrolyte circulation type secondary battery
JPS63236268A (en) Fuel cell
JPS6235461A (en) Electrolyte circulation type secondary cell
JP3135360B2 (en) Electrolyte tank for electrolyte flow type battery
CN220821643U (en) Device for reducing leakage loss
JP7101184B2 (en) New modular electrochemical cell and stack design
JP7138364B2 (en) Flow battery, its manufacturing process, and its method of use
JP2009158139A (en) Fuel cell system
JPH02847Y2 (en)
JPH0548363Y2 (en)