JPH02847Y2 - - Google Patents

Info

Publication number
JPH02847Y2
JPH02847Y2 JP1983081874U JP8187483U JPH02847Y2 JP H02847 Y2 JPH02847 Y2 JP H02847Y2 JP 1983081874 U JP1983081874 U JP 1983081874U JP 8187483 U JP8187483 U JP 8187483U JP H02847 Y2 JPH02847 Y2 JP H02847Y2
Authority
JP
Japan
Prior art keywords
cell
electrolyte
blocks
piping
cell blocks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983081874U
Other languages
Japanese (ja)
Other versions
JPS59188675U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983081874U priority Critical patent/JPS59188675U/en
Publication of JPS59188675U publication Critical patent/JPS59188675U/en
Application granted granted Critical
Publication of JPH02847Y2 publication Critical patent/JPH02847Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【考案の詳細な説明】 この考案は電解質に例えばアルカリ水溶液を使
用し、運転時には電解液を連続的に送流させるよ
うにした自由電解液形燃料電池、特に電解液流路
を流れる漏洩電流の低減を目的とした燃料電池の
構成改良に関する。
[Detailed description of the invention] This invention is a free electrolyte fuel cell that uses, for example, an alkaline aqueous solution as the electrolyte and continuously flows the electrolyte during operation. This article relates to improving the configuration of fuel cells for the purpose of reducing fuel consumption.

まず第1図により頭記燃料電池の従来における
基本的な構成並びに電解液の循環送流回路を説明
する。図において、燃料電池は多数の単セル1を
順方向に直列に積層してセルスタツク2を構成
し、両端の出力端子3から電気出力を得るように
している。また周知のように単セル1は一対の隔
離された電極の間に電解液室が画成されており、
この電解液室へ電解液を供給するとともに、一方
では各電極へ反応ガスを供給することによつて電
池内で起電反応が行われる。またかかるセルスタ
ツク2に対して外部に電解液タンク4が備えら
れ、この電解液タンク4とセルスタツク2との間
を結んで送液ポンプ5を含む電解液循環ライン6
が配管されており、この循環ライン6およびセル
スタツク2の内部で各単セル1の間にまたがる共
通電解液流路7を通じて各単セル1へ並列に電解
液を循環送流するように構成されている。これに
より前記の起電反応に伴つてセル内に生じた発生
熱が電解液を媒体として外部に取り出され、電解
液タンク4で冷却除熱される。
First, with reference to FIG. 1, the basic structure of the conventional fuel cell and the electrolyte circulation circuit will be explained. In the figure, the fuel cell comprises a cell stack 2 in which a large number of single cells 1 are stacked in series in the forward direction, and electrical output is obtained from output terminals 3 at both ends. Furthermore, as is well known, the single cell 1 has an electrolyte chamber defined between a pair of isolated electrodes.
By supplying an electrolytic solution to this electrolytic solution chamber and, on the other hand, supplying a reactive gas to each electrode, an electromotive reaction takes place within the battery. Further, an electrolyte tank 4 is provided externally to the cell stack 2, and an electrolyte circulation line 6 including a liquid feed pump 5 connects the electrolyte tank 4 and the cell stack 2.
is configured to circulate and flow an electrolyte to each unit cell 1 in parallel through this circulation line 6 and a common electrolyte flow path 7 extending between each unit cell 1 inside the cell stack 2. There is. As a result, the heat generated in the cell due to the electromotive reaction is taken out to the outside using the electrolytic solution as a medium, and is cooled and removed in the electrolytic solution tank 4.

一方、上記燃料電池では、出力端子の間で互に
電気的に直列接続されている単セル1の相互間に
は、同時に電解液流路7を通じて互に連通し合う
電気的閉ループが形成されることになる。このた
めに燃料電池内では、出力回路の開、閉の如何を
問わず、前記の電解液流路7を通じて単セル間の
電位差に起因する電流iが流れる。この電流は漏
洩電流となつて出力損失となる。したがつて燃料
電池の総合効率の向上を図るには、前記の漏洩電
流を極力低値に抑え、これによる出力損失をでき
るだけ減少させることが望まれる。
On the other hand, in the fuel cell described above, an electrically closed loop is formed between the single cells 1 which are electrically connected in series between the output terminals and communicate with each other through the electrolyte flow path 7. It turns out. For this reason, in the fuel cell, a current i due to the potential difference between the single cells flows through the electrolyte flow path 7, regardless of whether the output circuit is open or closed. This current becomes a leakage current and results in output loss. Therefore, in order to improve the overall efficiency of the fuel cell, it is desirable to suppress the leakage current to as low a value as possible and to reduce the resulting output loss as much as possible.

かかる問題の対策として第2図に示すように、
セルスタツクを複数個の単セル積層体を1ブロツ
クとする複数のセルブロツク8,8に区分
し、かつ各セルブロツク8と8をセルブロツ
クの入口および出口側の相互間にまたがるように
外部に配管されたヘツダ配管9を介して前記の電
解液循環ライン6へ並列に接続配管するようにし
た電解液循環送流方式が従来より実施されてい
る。この方式によれば、電解液の供給は各セルブ
ロツク8,8を単位としてその内部で単セル
へ並列に、またセルブロツク8,8へは別な
ヘツダ配管9を通して行なわれるように構成され
ている。したがつて並列に接続される単セル数の
増加に伴ない指数関数的に増加する漏洩電流によ
る電力損失は単セル数を1/2としてセルブロツク
を二つに分けることによつて減少させることがで
きる。
As a countermeasure to this problem, as shown in Figure 2,
The cell stack is divided into a plurality of cell blocks 8, 8 each having a plurality of single cell laminates as one block, and each cell block 8 is connected to a header piped externally so as to span between the inlet and outlet sides of the cell blocks. Conventionally, an electrolyte circulation system has been implemented in which the electrolyte circulation line 6 is connected in parallel to the electrolyte circulation line 6 via the piping 9. According to this system, the electrolytic solution is supplied in parallel to the single cells within each cell block 8, 8 as a unit, and is supplied to the cell blocks 8, 8 through a separate header pipe 9. Therefore, power loss due to leakage current, which increases exponentially as the number of single cells connected in parallel increases, can be reduced by dividing the cell block into two by halving the number of single cells. can.

しかして前記のセルブロツク区分送流方式も、
第2図の電解液送流回路では、隣り合つて並ぶセ
ルブロツク8と8の積層方向が電流の流れ方
向に対して順方向であるために、セルブロツク8
と8にまたがるヘツダ配管9の両端の間には
各セルブロツクの電圧をVとすれば2Vの電位差
が加わることになり、ここを流れる漏洩電流iが
大きくなる。試算したところによれば、セルスタ
ツク全体での漏洩電流による電力損失のうち、前
記ヘツダ配管9を通じて流れる漏洩電流による損
失分は30〜40%にも達する。このことからヘツダ
配管の電解液通路を通じて流れる漏洩電流を何等
かの手段で低減できるならば、セルブロツク区分
送流方式の利点を生してセルスタツク全体として
の総合効率の大巾な向上が可能になる。
However, the cell block sectioned flow system described above also
In the electrolyte flow circuit shown in FIG. 2, since the stacking direction of the adjacent cell blocks 8 and 8 is in the forward direction with respect to the current flow direction, the cell blocks 8
If the voltage of each cell block is V, a potential difference of 2V is applied between both ends of the header pipe 9 spanning the cell blocks 9 and 8, and the leakage current i flowing therein becomes large. According to a trial calculation, the loss due to the leakage current flowing through the header pipe 9 reaches 30 to 40% of the power loss due to the leakage current in the entire cell stack. Therefore, if the leakage current flowing through the electrolyte passage in the header piping can be reduced by some means, it will be possible to take advantage of the cell block sectioned flow system and greatly improve the overall efficiency of the cell stack as a whole. .

この考案は上記の点にかんがみなされたもので
あり、従来の配管構造を何ら変えることなしに、
僅かにセルスタツクを構成するセルブロツクの並
べ方を変えるのみで漏洩電流をより一層低減でき
るようにした出力特性の優れた燃料電池を提供す
ることにある。
This idea was developed in consideration of the above points, and without changing the conventional piping structure,
It is an object of the present invention to provide a fuel cell with excellent output characteristics in which leakage current can be further reduced by only slightly changing the arrangement of cell blocks constituting a cell stack.

以下この考案を図示実施例に基づいて説明す
る。
This invention will be explained below based on illustrated embodiments.

第3図および第4図において、セルスタツク2
は第2図と同じ複数のセルブロツク8に区分され
ている。このうち互に隣り合う二つのセルブロツ
ク8と8を1組として、各セルブロツクの単
セル積層方向が電流の流れ方向に関して対面させ
てある。つまり図示のように電池の極性が逆極性
となるように定めて並べてある。これは第2図に
おける片方のセルブロツク8の積層方向を180゜
転換したのと同様である。なお当然のことながら
セルブロツク8と8とは渡り配線10を介し
て電気的に直列に接続されている。またセルブロ
ツク8と8を循環ライン6へ並列接続するよ
うにセルブロツク8と8との間にまたがつて
配管されたヘツダ配管9は、その管路長さを長く
とつて電解液通路の電気抵抗を大にするように、
第2図と同じくセルブロツク8,8の間で最
も遠く離れた反対側端にまたがつて接続配管され
ている。
In FIGS. 3 and 4, cell stack 2
is divided into a plurality of cell blocks 8 as in FIG. Two adjacent cell blocks 8 and 8 are set as a set, and the single cell stacking direction of each cell block is made to face each other with respect to the current flow direction. That is, as shown in the figure, the batteries are arranged so that their polarities are opposite. This is similar to changing the stacking direction of one cell block 8 by 180° in FIG. Note that, as a matter of course, the cell blocks 8 and 8 are electrically connected in series via the crossover wiring 10. In addition, the header piping 9, which is piped between the cell blocks 8 and 8 so as to connect the cell blocks 8 and 8 in parallel to the circulation line 6, has a long pipe length to reduce the electrical resistance of the electrolyte passage. to make it bigger,
As in FIG. 2, connecting piping is provided across the farthest opposite end between the cell blocks 8,8.

上記の構成によれば、電解液送流の配管回路は
第2図のものと同一であるが、一方ヘツダ配管9
に関してその両端に加わる電位差は、第2図の順
方向積層構造と較べて1/2に軽減されることにな
る。この結果、セルブロツク8と8の間にま
たがるヘツダ配管9の電解液通路の長さ、したが
つてその通路の電気抵抗は第2図のものと同じで
あるにもかかわらず、その両端に加わる電位差が
1/2になるので、ここを流れる漏洩電流は半減し
それだけ電力損失を軽減できることになる。考案
者の試算によれば、それぞれ20個の単セル1でセ
ルブロツク8と8を構成した場合に、第3図
の構成での漏洩電流による電力損失は、第2図の
従来構成による電力損失の85%に低減することが
できる。なおセルスタツクが多数のセルブロツク
に区分されている場合には、その二つずつをとつ
て複数組に分け、各組について第3図、第4図の
ように構成して実施すればよい。
According to the above configuration, the piping circuit for electrolyte flow is the same as that in FIG.
The potential difference applied to both ends of the structure is reduced to 1/2 compared to the forward stacked structure shown in FIG. As a result, even though the length of the electrolyte passage in the header piping 9 spanning between the cell blocks 8 and 8, and therefore the electrical resistance of that passage, is the same as that in Fig. 2, there is a potential difference between the two ends. is reduced to 1/2, so the leakage current flowing there is halved and power loss can be reduced accordingly. According to the inventor's calculations, when cell blocks 8 and 8 are each configured with 20 single cells 1, the power loss due to leakage current in the configuration shown in Figure 3 is equal to the power loss in the conventional configuration shown in Figure 2. Can be reduced to 85%. If the cell stack is divided into a large number of cell blocks, each cell block may be divided into a plurality of groups, and each group may be constructed and implemented as shown in FIGS. 3 and 4.

以上述べたようにこの考案は、互に隣り合つて
並ぶ二つのセルブロツクを1組として各セルブロ
ツクの単セル積層方向を電流の流れ方向に関して
対面させ、しかもヘツダ配管を両セルブロツクの
反対側端の間にまたがつて接続配管したものであ
り、したがつてセルブロツクの相互間にまたがる
ヘツダ配管の電解液流路抵抗を大きくとりつつ、
しかもこの両端に加わる電位差を従来の半分に軽
減して漏洩電流を大巾に減少することができ、か
くして燃料電池全体の総合効率の向上が図れる。
またこの考案の構成は第2図に示した従来のセル
ブロツクの片方を電池極性を逆向きにして並べ変
えることにより容易に実施できるので、既設の燃
料電池に対しても、その配管系の部品をそのまま
使用して改良実施することができる。
As described above, this design consists of a set of two cell blocks arranged next to each other, with the single cell stacking directions of each cell block facing each other with respect to the current flow direction, and furthermore, the header piping is connected between the opposite ends of both cell blocks. Therefore, while maintaining a large electrolyte flow path resistance of the header piping that spans between the cell blocks,
Moreover, the potential difference applied to both ends can be reduced to half that of the conventional one, and the leakage current can be greatly reduced, thus improving the overall efficiency of the entire fuel cell.
Furthermore, the configuration of this invention can be easily implemented by rearranging one side of the conventional cell block shown in Figure 2 with the battery polarity reversed. It can be used as is and improved upon.

なおこの考案は燃料電池のほかに、電解液循環
形の亜鉛空気積層電池等にも応用実施することが
可能である。
In addition to fuel cells, this invention can also be applied to electrolyte circulation type zinc-air stacked batteries and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ異なる従来の燃
料電池の電解液送流回路図、第3図および第4図
はそれぞれこの考案の実施例による燃料電池の電
解液送流回路図および構造外観図である。 1……単セル、2……セルスタツク、6……電
解液循環ライン、7……セル内の共通電解液流
路、8,8……セルブロツク、9……ヘツダ
配管、i……漏洩電流。
Figures 1 and 2 are electrolyte flow circuit diagrams of different conventional fuel cells, and Figures 3 and 4 are electrolyte flow circuit diagrams and structural external views of fuel cells according to embodiments of this invention, respectively. It is. 1... Single cell, 2... Cell stack, 6... Electrolyte circulation line, 7... Common electrolyte flow path in the cell, 8, 8... Cell block, 9... Header piping, i... Leakage current.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 多数の単セルを直列に積層してなるセルスタツ
クに対し、外部の電解液循環ラインおよびセル内
の各単セルにまたがる共通電解液流路を通じてセ
ルスタツクを構成している各単セルへ並列に電解
液を送流するようにした自由電解液形燃料電池に
おいて、セルスタツクを複数のセルブロツクに区
分し、かつ各セルブロツクをセルブロツク相互に
またがる外部のヘツダ配管を介して前記の電解液
循環ラインに接続配管するとともに、互に隣り合
つて並ぶ二つのセルブロツクを1組として各セル
ブロツクの単セル積層方向を電流の流方向に関し
て互に対面させ、しかも前記ヘツダ配管を両セル
ブロツクの反対側端の間にまたがつて接続配管し
たことを特徴とする自由電解液形燃料電池。
For a cell stack made up of a large number of single cells stacked in series, electrolyte is supplied in parallel to each single cell making up the cell stack through an external electrolyte circulation line and a common electrolyte flow path spanning each single cell within the cell. In a free electrolyte fuel cell configured to flow electrolyte, the cell stack is divided into a plurality of cell blocks, and each cell block is connected to the electrolyte circulation line via external header piping that spans the cell blocks. , a set of two cell blocks arranged next to each other is arranged such that the single cell lamination direction of each cell block faces each other with respect to the current flow direction, and the header piping is connected astride between opposite ends of both cell blocks. A free electrolyte fuel cell characterized by piping.
JP1983081874U 1983-06-01 1983-06-01 Free electrolyte fuel cell Granted JPS59188675U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983081874U JPS59188675U (en) 1983-06-01 1983-06-01 Free electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983081874U JPS59188675U (en) 1983-06-01 1983-06-01 Free electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPS59188675U JPS59188675U (en) 1984-12-14
JPH02847Y2 true JPH02847Y2 (en) 1990-01-10

Family

ID=30211829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983081874U Granted JPS59188675U (en) 1983-06-01 1983-06-01 Free electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JPS59188675U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871403B2 (en) * 2007-08-02 2014-10-28 Sony Corporation Fuel cell stack system, channel structure, fuel cell, electrode and electronic device

Also Published As

Publication number Publication date
JPS59188675U (en) 1984-12-14

Similar Documents

Publication Publication Date Title
US7682728B2 (en) Electrochemical battery incorporating internal manifolds
US5366824A (en) Flow battery
US20070072067A1 (en) Vanadium redox battery cell stack
US7199550B2 (en) Method of operating a secondary battery system having first and second tanks for reserving electrolytes
DK1051766T3 (en) Redox flow battery system and cell stack
GB2070321A (en) Shunt current elimination
KR940010444A (en) Membrane flow cell battery
CN101313430B (en) Fuel cell
CN110620250A (en) Flow battery energy storage device and flow battery energy storage system
US20130154364A1 (en) Vanadium redox battery energy storage system
JPH1012260A (en) Redox flow battery
US20150364767A1 (en) Porous electrode assembly, liquid-flow half-cell, and liquid-flow cell stack
CN116247260A (en) Flow battery pile
JPH02847Y2 (en)
KR20200041121A (en) Redox flow battery
JP3574514B2 (en) Redox flow type secondary battery system
JPH02250269A (en) Electrolyte circulation type secondary battery
JPH02848Y2 (en)
US3522098A (en) Fuel cells with device for reducing electrolyte short-circuit currents
JPH05166550A (en) Electrolyte circulation type layered secondary battery
US20240287694A1 (en) Device and method for ionic shunt current elimination
JPH0548363Y2 (en)
JPS5996671A (en) Improved electrochemical device
JPH01146269A (en) Electrolyte flow type cell
KR20200080949A (en) A Battery Cell for Redox flow battery having a mixed serial and parallel structure