WO2001072633A1 - Sistema de control y de eliminacion de hydrogeno - Google Patents

Sistema de control y de eliminacion de hydrogeno Download PDF

Info

Publication number
WO2001072633A1
WO2001072633A1 PCT/ES2000/000117 ES0000117W WO0172633A1 WO 2001072633 A1 WO2001072633 A1 WO 2001072633A1 ES 0000117 W ES0000117 W ES 0000117W WO 0172633 A1 WO0172633 A1 WO 0172633A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
elimination system
control
solid catalyst
hydrogen control
Prior art date
Application number
PCT/ES2000/000117
Other languages
English (en)
French (fr)
Inventor
Dimitri Furkasov
Alexander Kalinnikov
Garri Boronov
Ricardo Blach Bizoso
Original Assignee
David Systems Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by David Systems Technology, S.L. filed Critical David Systems Technology, S.L.
Priority to EP00912675A priority Critical patent/EP1279640A1/en
Priority to MXPA02009701A priority patent/MXPA02009701A/es
Priority to PCT/ES2000/000117 priority patent/WO2001072633A1/es
Priority to CN00819387A priority patent/CN1452591A/zh
Priority to AU2000234340A priority patent/AU2000234340A1/en
Priority to BR0017205-7A priority patent/BR0017205A/pt
Priority to JP2001570555A priority patent/JP2004500577A/ja
Priority to CA002402966A priority patent/CA2402966A1/en
Publication of WO2001072633A1 publication Critical patent/WO2001072633A1/es
Priority to US10/262,512 priority patent/US20030077202A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8671Removing components of defined structure not provided for in B01D53/8603 - B01D53/8668
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J15/00Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor
    • B01J15/005Chemical processes in general for reacting gaseous media with non-particulate solids, e.g. sheet material; Apparatus specially adapted therefor in the presence of catalytically active bodies, e.g. porous plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • G21C19/317Recombination devices for radiolytic dissociation products
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/04Means for suppressing fires ; Earthquake protection
    • G21C9/06Means for preventing accumulation of explosives gases, e.g. recombiners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00018Construction aspects
    • B01J2219/0002Plants assembled from modules joined together
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00054Controlling or regulating the heat exchange system
    • B01J2219/00056Controlling or regulating the heat exchange system involving measured parameters
    • B01J2219/00058Temperature measurement
    • B01J2219/00063Temperature measurement of the reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00186Controlling or regulating processes controlling the composition of the reactive mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/00259Preventing runaway of the chemical reaction
    • B01J2219/00263Preventing explosion of the chemical mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00768Baffles attached to the reactor wall vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/32Details relating to packing elements in the form of grids or built-up elements for forming a unit of module inside the apparatus for mass or heat transfer
    • B01J2219/324Composition or microstructure of the elements
    • B01J2219/32466Composition or microstructure of the elements comprising catalytically active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the invention relates to a system based on which it is possible to control the accumulation of hydrogen in the air, as well as to prevent the accumulation of hydrogen in that same medium above its lower flammability limit of 4% by volume.
  • the process is carried out at the expense of maximum parameters of the hydrogen recombination process, that is, greater service efficiency at smaller overall dimensions and use of the minimum possible catalytic material.
  • the safety of the hydrogen recombination process is achieved with maximum hydrogen oxidation efficiency (practically 100%).
  • the measurement of the hydrogen content should be reduced rapidly, in order to characterize the structure of a gas mixture in the maximum volume, so that it does not depend on external conditions and to use a minimum amount of the parameters of concentration for concentration measurements. Work measured immediately. All components of the device at different maintenance parameters and environmental influence should not be sources of ignition or detonation of flammable or explosive gas mixtures.
  • the hydrogen control and elimination system as a whole materializes in a complex device necessary to prevent the accumulation and hydrogen in the Air in several places.
  • the system is proposed for the rapid removal of hydrogen in an emergency, produced by a large concentration of hydrogen in an atmospheric place, and as a tool for a fast and safe method for measuring the concentration of hydrogen in a gaseous medium containing oxygen .
  • the exposed device is proposed as an addition to regular cooling systems for hydrogen installations in normal situations and as a basic device in an emergency caused by a power interruption, and in conditions where it is impossible to effectively use the refrigeration.
  • the device consists constructively of two basic components:
  • CPR Passive Catalytic Hydrogen Recombinant
  • DTC Thermocatalytic hydrogen detector
  • the DTC and RPC devices are based on the known principles of catalytic combustion of hydrogen with enriched air, in the case of DTC, and for the determination of the concentration the measurement is used for the thermal effect of a catalytic reaction.
  • the system is applicable as a means of fire explosion safety in various branches of industrial production, such as those in which explosive concentrations of hydrogen and combustible gases are formed, including nuclear power plants using water-cooled reactors, as well as in the electrochemical industry, gas pumping stations, etc. BACKGROUND OF THE INVENTION
  • the highly regulated catalyst geometric structure of the hydrogen recombiners considered results in the formation of a stable boundary layer.
  • a boundary layer there is an essential decrease in the transport of hydrogen through the boundary layer and, as a consequence, the reduction in the rate of hydrogen combustion, as well as incomplete combustion.
  • the incomplete combustion of hydrogen can lead to the inflammation of the mixture of hydrogen and hot air at the outlet, which is potentially dangerous, in relation to the hydrogen-air mixture igniting at the low end of the active modules of the recombiners considered.
  • the hydrogen transfer rate in this place reaches significant magnitudes and essentially exceeds heat transfer. This factor can also lead to the destruction of catalyst coatings by local overheating.
  • a boundary layer Stable in the catalyst walls results in the displacement of the flow of hydrogen-air to the core, which results in the increase of the dynamic gas resistance of the system as a whole.
  • the magnitude of a dynamic gaseous resistance for natural convective systems determines the efficiency in the speed of the hydrogen-air flow through the catalyst and the effectiveness of the recombinant.
  • the developed hydrogen recombiners are not optimal at a specific combustion rate.
  • thermocatalytic hydrogen detectors are used coated by the heat resistance of the catalyst, or wire of a catalyst material heated by a current and included in the measuring device.
  • a catalytic reaction that predicts its heating.
  • a characteristic signal of the presence of hydrogen is the change in the electrical resistance of the sensors, due to the increase in the temperature of the catalyst and the change in the balance of the measuring device.
  • the reaction rate depends linearly on the concentration of combustible gases.
  • heated open filaments are not safe in a hydrogen inflammation ratio.
  • the presence of open wires with electricity is generally not desirable.
  • the sensors of a hydrogen detector isolated from a medium are normal Analyzable and the measurements will be carried out in a specially organized flow of analysable gas (gas feed with a constant velocity).
  • analysable gas gas feed with a constant velocity.
  • external inductors fans, etc.
  • special covers of a porous material are used for diffusion feed of the analyzed gas to the sensors.
  • a characteristic signal of the presence of hydrogen is the change in an electrical resistance of the sensor related to an electrical resistance of the comparison element produced by the increase in the temperature of the catalyst.
  • the indicated hydrogen detectors have a number of drawbacks:
  • the hydrogen concentration is not measured directly in an analysable medium, and in a specially prepared probe.
  • the response time depends on the rate of diffusion of hydrogen, or the rate of preparation of a probe, and is large enough.
  • the use of sensors, working in extreme conditions a platinum filament and thermistors under high electric current).
  • the system claimed has been designed to solve the above-mentioned problem, based on means that allow to increase the rate of hydrogen combustion, safety, as well as decrease the cost of the corresponding hydrogen recombinant, with an increase in safety , confidence and lack of intakes of the test elements for a hydrogen detector.
  • the technical result of the hydrogen recombinant is achieved thanks to the activated high-power cellular materials (HPCM) used as catalytic elements, these having an irregular three-dimensional spatial structure, which basically does not allow the generation of a stable boundary layer for dynamic gas flows , which results in a substantial increase in the parameters of heat and matter transfer in the use of HPCM catalysts, even of small sizes.
  • HPCM activated high-power cellular materials
  • the safety of recombinants is achieved by the choice of metal as a material for a solid porous catalyst.
  • the high thermal conductivity of the catalytic material allows the absence of specific overheating points, which can be a source of hydrogen ignition.
  • the high rate of combustion of hydrogen is achieved in particular by the construction of a convective cover of the recombinant, which consists of two vertical walls - interior and exterior. The space between them is filled with a thermo-insulating material.
  • the rate of hydrogen combustion is determined by the speed of the hydrogen-air mixture through the catalyst, which results in a balance of the gaseous dynamic resistance of the recombinant and an elevation of the Archimedes force. The latter is determined by the temperature of the gas in the convective cover. If there is an appreciable loss of heat from the recombinant convective cover, the rate of hydrogen combustion decreases.
  • the recombinant is isolated to avoid thermal losses in the convective cover of the recombinant.
  • the solid catalyst is placed in a thermo-insulated suspension support relative to the convective cover of the recombinant to minimize heat losses and facilitate the initiation of catalytic combustion of hydrogen at the time of hydrogen appearance.
  • the space inside the recombinant convective cover is divided into vertical divisions into two or more parts to prevent the non-uniformity of catalytic combustion under the passage section and the decrease in recombinant efficiency.
  • the technical result for a hydrogen detector is achieved by the use of a natural convective flow to feed an analytable air to the sensors of a detector (the porous solid catalyst). Inside the cover, the explosion-proof electric heating element is positioned for the organization of a convective natural flow of an analysable air through a detector sensor.
  • HPCM highly porous cellular materials
  • the convective cover consists of two vertical walls -interior and exterior-, where the intermediate space is filled with a thermo-insulating material in order to minimize heat losses and the electrical power required for heating preliminary flow of incoming gas and catalyst.
  • the safety of the detector is achieved by the choice of metal as a material for a porous catalyst.
  • the high thermal conductivity of the catalytic material allows the absence of local overheating points, which can be a source of hydrogen inflammation.
  • the catalyst is placed on a thermo-insulating suspension support relative to the hydrogen detector cover.
  • the temperature difference between the previously heated air flow and the catalyst, and the outgoing air flow after the catalyst, is measured for the determination of the concentration of hydrogen in the air.
  • Hydrogen detectors can be placed both outside and inside the recombinant convective cover, • in this latter alternative the hot convective flow of the detector accelerates the start of the recombiner process in the presence of hydrogen. In the presence of hydrogen and with the recombinant working, essentially the operating range of the detector is extended, if the recombinant convective flow is more powerful, air is supplied in greater volume.
  • the switching blocks contain thermocouple signal amplifiers and microprocessors for the handling, storage and display of the signal from the detectors, which can be used for the measurement of a complete hydrogen detector in the system.
  • HPCM high porosity cellular materials
  • Figure 1 shows a representation in section through a vertical plane of the device of the invention.
  • Figure 2. Shows a detailed image for the construction of a control detector, represented in section, and made in accordance with the system of the invention.
  • Figure 3. Shows the basic flow chart for the connection of the detector to the data control system.
  • the hydrogen control and elimination system embodied in the device, includes two basic components, one corresponding to the so-called recombinant A and another corresponding to the detector D of the recombinant.
  • Recombinant A represents the vertically located duct with double walls that are made of a material tested against corrosion, for example stainless steel.
  • the interior walls of that recombinant are convective covers (1), whereby the total dimensions of the convective cover are calculated with a view to achieving the effectiveness of the necessary device and measuring a location, for example, the 180250 mm pitch section 2 and weight of 1500.
  • the solid catalyst (2) as a module located perpendicular to the incoming flow, is located at the bottom of the convective cover.
  • the solid catalyst is installed in the cartridge (3) to prevent heat transfer to the walls of the convective cover.
  • the cartridge (3) represents two symmetrical structures, in each of which there are elongated series of wire (4).
  • the cross-sectional cut of the cartridge is smaller than the area geometric solid catalyst.
  • the solid catalyst is installed between the upper and lower structures of the cartridge, which together narrow together.
  • the cartridge (3) with solid catalytic (2) completely overlaps the passage section of the convective cover, so that it prevents direct gas flow from passing out of the catalyst.
  • the divisions (5) divide the inner volume of the convective cover into two or more parts in an association of the cutting area of the convective cover. For example, for a sample recombinant in Figure 1, the passage section of the convective cover is divided into three parts.
  • the convective cover of the recombinant (1) is located in the outer protective cover of the recombinant (6), among which there is a 10-20 mm gap.
  • the space between the inner and outer convective protective covers is filled with heat insulating material or substance (7), for example air.
  • the upper and lower separations of the recombinant protective cover have wire net nozzles (8).
  • control detector "B” In the recombinant "A” inside the bottom between the cartridge with catalytic solid (2 and 3) and the wire net nozzle (8), the control detector “B” is placed.
  • the "B” control detector has two operating variants - indoor and outdoor -, which differ in the presence of safety screens and wire networks (outdoor).
  • the control detector "B” as a whole consists of solid catalytic (12) as a disk located at the bottom of the vertical duct with a double wall.
  • the walls are made of a material tested against corrosion, for example, stainless steel (convective cover).
  • the convective cover is intended for the organization of the convective natural flow of an analysable mixture through the sensitive element of the detector.
  • the total dimensions of the detector are: 100 mm high and 30 mm in diameter.
  • the convective cover of the detector has inlet and outlet openings in the lateral area next to the end faces closed by a wire net (22). Between the walls of the inner (9) and outer (10) detector cover there is a space, which is filled with heat insulating material or with air (11).
  • the solid catalyst (12), like the disk, is installed perpendicular to the flow inlet in the metal cartridge cover (13) somewhat distanced from the walls.
  • the electric heating element (18) is located between the inner wall of the detector cover and the cartridge cover (13).
  • the wire-shield-heat exchanger networks (14 and 17) are installed.
  • the thermocouple connection in operation (16) measures the temperature of the incoming gas flow and is installed in the central axes of the construction under the heat exchanger screen (14).
  • the thermocouple (16) measures the temperature of the solid catalyst (12) or the temperature of the outgoing gas flow.
  • thermocouple connection in operation (16) is installed between the solid catalytic converter and the heat exchanger screen (17) on an axis with the thermocouple (15).
  • the cold thermocouple connections 15 and 16 are removed in the tight zone of the thermostat (19).
  • the outputs of the thermocouples and both outputs of the heater are fed through an airtight socket.
  • the thermocouple (20) is used to measure the temperature of the hermetic zone of the thermostat.
  • the thermocouple (20) is included in the structure of the cable carriers.
  • the thermocouple (21) can be included in the construction of the detector.
  • the thermocouple connection in operation (21) is installed in the solid catalyst (2), and the cold connection is installed in the zone (19).
  • FIG. 3 The flow diagram for a joint arrangement of the elements of the invention is shown in Figure 3.
  • the recombinant "A” consisting of an internal variant of a “B A " control detector is installed in the indicated place.
  • the use of a significant amount of "Bj-B n " outdoor control detectors that are located in areas of probable hydrogen leakage is allowed.
  • the Power supplies of detector heaters are carried out on lines not connected to the measurement channels.
  • thermocouple 20 and 21 placed on the reception of signals and operating block which can be, for example, a system based on ADC and personal computer or local business networks.
  • the "recombinant control" coupling allows, with the appropriate use of thermocouple 21, the control of the hydrogen content in an emergency situation (hydrogen concentration greater than 2% by volume), only due to the heating of the recombinant catalyst (2) No additional power supply.
  • the coupling "recombinant control” is also a useful passive correction element of the recombinant, that is, in the observations of hydrogen concentration greater than 1% by volume in the detectors "0B A , B ⁇ B-," the thermocouple

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Emergency Management (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

El sistema está previsto para control y eliminación de hidrógeno y gases combustibles en el aire, con ayuda de catalizadores, materializándose en un dispositivo consistente en recombinador de hidrógeno pasivo y un detector de control, en los que se usa la alimentación libre convectiva de una mezcla gaseosa de componentes registrada y eliminada, teniendo los componentes una construcción del mismo tipo, pudiéndose situar el detector tanto dentro como fuera del recombinador.

Description

SISTEMA. DE CONTROL Y DE ELIMINACIÓN DE HIDROGENO
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN
La invención se refiere a un sistema en base al cual es posible controlar la acumulación de hidrógeno en el aire, asi como prevenir la acumulación de hidrógeno en ese mismo medio por encima de su limite inferior de inflamabilidad del 4% en volumen. El proceso se lleva a cabo a expensas de parámetros máximos del proceso de recombinación del hidrógeno, esto es, mayor eficacia de servicio a menores dimensiones globales y uso del mínimo material catalítico posible. La seguridad del proceso de recombinación del hidrógeno se logra con un máximo de eficacia de oxidación del hidrógeno (prácticamente 100%) . La medida del contenido de hidrógeno se debe reducir rápidamente, con el objeto de caracterizar la estructura de una mezcla de gases en el volumen máximo, para que no dependa de condiciones exteriores y para utilizar para las medidas de concentración una cantidad mínima de los parámetros de trabajo medidos inmediatamente. Todos los componentes del dispositivo a distintos parámetros de mantenimiento e influencia del entorno no deberían ser fuentes de ignición o detonación de mezclas de gases inflamables o explosivas.
El sistema de control y de eliminación del hidrógeno en conjunto se materializa en un dispositivo complejo necesario para prevenir la acumulación e hidrógeno en el aire en varios lugares. El sistema se propone para la eliminación rápida de hidrógeno en una emergencia, producida por una gran concentración de hidrógeno en un lugar atmosférico, y como herramienta para un método rápido y seguro para la medida de la concentración de hidrógeno en un medio gaseoso que contenga oxígeno. El dispositivo expuesto se propone como una adición a los sistemas regulares de enfriamiento para instalaciones de hidrógeno en situaciones normales y como un dispositivo básico en una emergencia originada por una interrupción de suministro eléctrico, y en condiciones en las que es imposible usar de forma efectiva la refrigeración. El dispositivo consta constructivamente de dos componentes básicos:
Recombinador catalítico pasivo de hidrógeno (RCP) ; Detector de hidrógeno termocatalítico (DTC)
Los dispositivos DTC y RPC se basan en los principios conocidos de la combustión catalítica de hidrógeno con aire enriquecido, en el caso del DTC, y para la determinación de la concentración se usa la medida para el efecto térmico de una reacción catalítica.
El sistema es aplicable como medio de seguridad de explosión por fuego en varias ramas de la producción industrial, tales como en aquellas en las que se forman concentraciones explosivas de hidrógeno y gases combustibles, incluyendo las centrales nucleares que usan reactores refrigerados por agua, así como en la industria electroquímica, estaciones de bombeo de gases, etc. ANTECEDENTES DE LA INVENCIÓN
Se conocen sistemas de medición de detectores catalíticos WS-85 y recombinadores FR90-1500 de la firma SIEMENS, basándose en la Patente alemana DE 3727207 Al del año 1989.
La mayoría de los dispositivos catalíticos conocidos para la supresión de hidrógeno se llevan a cabo en un conducto con el sólido catalítico situado en el fondo interior (en particular en el FR90-1500) . Para indicar el transcurso de una reacción exotérmica de oxidación de hidrógeno en el catalizador, la mezcla gaseosa en el conducto se calienta. El gas calentado, al expandirse por el conducto permite una alimentación constante de mezcla de gas exterior al fondo del recombinador debido a la fuerza de Arquímedes .
Los recombinadores conocidos (patente DE 372707 Al, 1989) utilizan como catalizador módulos de metal plano y elementos de panel cerámicos. Para prevenir la influencia probable del entorno en el catalizador, las caras extremas de la cubierta se equipan con sistemas adicionales que abren el catalizador sólo en el momento del accidente (subida de la temperatura o de la presión) . Los sistemas de evacuación del calor se usan para prevenir una probable inflamación de la mezcla de gas de entrada que se origina con el sobrecalentamiento del catalizador. La cubierta del recombinador se utiliza como protección del catalizador sobrecalentado durante la oxidación del hidrógeno del entorno. De este modo, en el desarrollo de la construcción del recombinador de hidrógeno considerado, los autores aspiraron a lograr condiciones óptimas de oxidación de hidrógeno inmediatamente en la superficie del catalizador. Por tanto, no se tuvieron en cuenta todos los procesos que proporcionaban el transporte de hidrógeno a una superficie catalítica (difusión de hidrógeno a la superficie catalítica, flujos convectivos dentro de la cubierta del reco binador) .
La estructura geométrica de catalizador altamente regulado de los recombinadores de hidrógeno considerados, tiene como consecuencia la formación de una capa límite estable. Como resultado de la presencia de una capa límite hay una disminución esencial del transporte de hidrógeno a través de la capa límite y, como consecuencia, la reducción de la velocidad de combustión del hidrógeno, así como la combustión incompleta. La combustión incompleta de hidrógeno, puede dar lugar a la inflamación de la mezcla de hidrógeno y aire caliente en la salida, lo cual es potencialmente peligroso, en relación con la mezcla hidrógeno-aire inflamando en el extremo bajo de los módulos activos de los recombinadores considerados. Para una capa límite estable, la velocidad de transferencia de hidrógeno en este lugar alcanza magnitudes significativas y excede esencialmente la transferencia de calor. Este factor puede dar lugar también a la destrucción de los recubrimientos de catalizadores por el sobrecalentamiento local .
Por otra parte, la formación de una capa límite estable en las paredes del catalizador da lugar al desplazamiento del flujo de hidrógeno-aire al núcleo, que da lugar al aumento de la resistencia dinámica gaseosa del sistema en su conjunto. La magnitud de una resistencia dinámica gaseosa para los sistemas convectivos naturales determina la eficacia en la velocidad del flujo hidrógeno- aire a través del catalizador y la eficacia del recombinador.
Como resultado, .los recombinadores de hidrógeno desarrollados no son óptimos en una velocidad de combustión específica.
Los detectores termocatalíticos de hidrógeno conocidos se utilizan recubiertos por la termorresistencia del catalizador, o alambre de un material de catalizador calentado por una corriente e incluido en el dispositivo de medida. En presencia de una mezcla analizable de gases combustibles y oxígeno, en una superficie de sensores hay una reacción catalítica que predice su calentamiento. Una señal característica de la presencia de hidrógeno es el cambio en las resistencias eléctricas de los sensores, debido al aumento de la temperatura del catalizador y al cambio del balance del dispositivo de medición. A exceso de oxígeno, la velocidad de reacción depende linealmente de la concentración de los gases combustibles. Sin embargo, los filamentos abiertos calentados no son seguros en una relación de hidrógeno de inflamación. Asimismo, la presencia de alambres abiertos con electricidad, generalmente no son deseable. Por eso son normales los sensores de un detector de hidrógeno aislado de un medio analizable y las mediciones se llevarán a cabo en un flujo especialmente organizado de gas analizable (alimento de gas con una velocidad constante) . Para este propósito se usan inductores externos (ventiladores, etc.) o cubiertas especiales de un material poroso para la alimentación por difusión del gas analizado a los sensores.
El uso de tales detectores directamente en un medio gaseoso analizable, representa dificultades concretas relacionadas con que la respuesta del detector a la generación de una cantidad definida de calor se determina por las propiedades térmicas de un medio. Asimismo, el tiempo de respuesta del detector a la aparición de hidrógeno puede ser muy largo, especialmente para los detectores de difusión basados en la difusión a través del material poroso. Una señal característica de la presencia de hidrógeno es el cambio en una resistencia eléctrica del sensor relacionado con una resistencia eléctrica del elemento de comparación producida por el aumento de la temperatura del catalizador.
Los detectores de hidrógeno indicados tienen una serie de inconvenientes:
La concentración de hidrógeno no se mide directamente en un medio analizable, y en una sonda especialmente preparada.
El tiempo de respuesta depende de la velocidad de difusión del hidrógeno, o de la velocidad de preparación de una sonda, y es suficientemente grande. El uso de sensores, trabajando en condiciones extremas (un filamento de platino y termorresistencias bajo corriente eléctrica alta) .
Alto coste.
DESCRIPCIÓN DE LA INVENCIÓN
El sistema que se reivindica, ha sido concebido para resolver la problemática anteriormente expuesta, basándose en unos medios que permiten aumentar la velocidad de combustión del hidrógeno, la seguridad, así como disminuir el coste del correspondiente recombinador de hidrógeno, con un aumento en la seguridad, confianza y ausencia de tomas de los elementos de pruebas para un detector de hidrógeno.
El resultado técnico del recombinador de hidrógeno se logra gracias a los materiales celulares de alta potencia activados (HPCM) utilizados como elementos catalíticos, teniendo éstos una estructura espacial tridimensional irregular, que básicamente no permiten la generación de una capa límite estable para flujos de gases dinámicos, lo cual da lugar al aumento sustancial de los parámetros de transferencia de calor y materia en el uso de catalizadores de HPCM, incluso de pequeños tamaños. La selección del catalizador permite el desarrollo de un recombinador, óptimo en la velocidad de combustión del hidrógeno.
La seguridad de los recombinadores se logra por la elección del metal como material para un catalítico poroso sólido. La alta conductividad térmica del material catalítico permite la ausencia de puntos específicos de sobrecalentamiento, que pueden ser fuente de ignición del hidrógeno.
La alta velocidad de combustión del hidrógeno se logra en particular por la construcción de una cubierta convectiva del recombinador, que consta de dos paredes verticales -interior y exterior-. El espacio entre ellas se rellena con un material termo-aislante. La velocidad de combustión de hidrógeno se determina por la velocidad de la mezcla hidrógeno-aire a través del catalizador, que resulta en un balance de la resistencia dinámica gaseosa del recombinador y una elevación de la fuerza de Arquímedes. Esta última se determina por la temperatura del gas en la cubierta convectiva. Si hay una pérdida apreciable de calor de la cubierta convectiva del recombinador, la velocidad de combustión de hidrógeno disminuye. El recombinador se aisla para evitar las pérdidas térmicas en la cubierta convectiva del recombinador .
El catalítico sólido se sitúa en un soporte de suspensión termo-aislado relativo a la cubierta convectiva del recombinador para minimizar las pérdidas de calor y facilitar la iniciación de la combustión catalítica del hidrógeno en el momento de aparición del hidrógeno.
El espacio dentro de la cubierta convectiva del recombinador se divide en divisiones verticales en dos o más partes para prevenir la no uniformidad de la combustión catalítica bajo la sección de paso y la disminución de la eficacia del recombinador.
Se tiene constancia de que la eficacia de combustión del hidrógeno para el recombinador FR -90/1500 SIEMENS, la variante más cercana a la patente DE 3727207 Al, no excede de 0,4 nl/s en una concentración de hidrógeno de aproximadamente 3% en volumen y sección de paso de la cubierta convectiva de aproximadamente 300 cm2. En las mismas condiciones la eficacia de combustión del hidrógeno para el recombinador de la invención alcanza los 0,8 nl/s.
El resultado técnico para un detector de hidrógeno se logra por el uso de un flujo convectivo natural para alimentar un aire analizable a los sensores de un detector (el catalítico sólido poroso) . Dentro de la cubierta, el elemento de calentamiento eléctrico de prueba de explosión se sitúa para la organización de un flujo natural convectivo de un aire analizable a través de una sensor de detector.
El uso de materiales celulares altamente porosos (HPCM) con parámetros especialmente seleccionados, permite la velocidad necesaria de un flujo de convección.
La cubierta convectiva consta de dos paredes verticales -interior y exterior-, en donde el espacio intermedio esta relleno de un material termo-aislante con el propósito de minimizar las pérdidas de calor y la potencia eléctrica requerida para el calentamiento preliminar del flujo de gas entrante y del catalizador.
La seguridad del detector se logra por la elección del metal como material para un catalizador poroso. La alta conductividad térmica del material catalítico permite la ausencia de puntos locales de sobrecalentamiento, que pueden ser fuente de inflamación de hidrógeno. Con el mismo propósito, el catalizador se sitúa en un soporte de suspensión termo-aislante relativo a la cubierta del detector de hidrógeno.
La diferencia de temperaturas entre el flujo de aire previamente calentado y el catalizador, y el flujo saliente de aire después del catalizador, se mide para la determinación de la concentración de hidrógeno en el aire.
En la oxidación completa de hidrógeno en un flujo de aire convectivo, que tiene lugar a través del catalizador, hay una dependencia lineal simple entre la diferencia de temperaturas y la concentración: AT
C H2 = (3&.%F2)
83,5
donde, AT=diferencia medida de temperaturas, CH2= concentración volumétrica de hidrógeno.
Los detectores de hidrógeno se pueden situar tanto fuera como dentro de la cubierta convectiva del recombinador, • en esta última alternativa el flujo convectivo caliente del detector acelera el inicio del proceso del recombinador en presencia de hidrógeno. En presencia de hidrógeno y con el recombinador funcionando, se amplía esencialmente el intervalo operativo del detector, si el flujo convectivo del recombinador es más potente, se suministra aire en mayor volumen.
Los bloques de conmutación contienen amplificadores de señales de termopares y microprocesadores para el manejo, almacenamiento y visualización de la señal de los detectores, que se puede usar para una toma de la medida de un detector completo de hidrógeno del sistema.
Como elemento activo del detector de hidrógeno se usan materiales celulares de alta porosidad (HPCM) .
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características del invento, de acuerdo con un ejemplo preferente de realización práctica del mismo, se acompaña como parte integrante de dicha descripción, unos dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
La figura 1.- Muestra una representación en corte por un plano vertical del dispositivo de la invención.
La figura 2.- Muestra una imagen detallada para construcción de un detector de control, representado en corte, y realizado de acuerdo con el sistema de la invención. La figura 3.- Muestra, el diagrama de flujo básico para la conexión del detector al sistema de control de datos .
REALIZACIÓN PREFERENTE DE LA INVENCIÓN
En las figuras referidas, puede observarse como el sistema de control y eliminación de hidrógeno, materializado en el dispositivo, incluye dos componentes básicos, uno correspondiente al denominado recombinador A y otro correspondiente al detector D del recombinador.
El recombinador A, de acuerdo con la invención, representa el conducto situado verticalmente con paredes dobles que están fabricadas de un material probado contra la corrosión, por ejemplo acero inoxidable. Las paredes interiores de ese recombinador son cubiertas convectivas (1), con lo que las dimensiones totales de la cubierta convectiva se calculan con vistas a alcanzar la eficacia del dispositivo necesario y medida de una localización, por ejemplo, la sección de paso de 180250 mm2 y peso de 1500.
El catalítico sólido (2), como módulo situado perpendicular al flujo entrante se sitúa en el fondo de la cubierta convectiva. El catalítico sólido se instala en el cartucho (3) para prevenir la transferencia de calor a las paredes de la cubierta convectiva. El cartucho (3) representa dos estructuras simétricas, en cada una de las cuales hay series alargadas de alambre (4) . El corte del paso transversal del cartucho es menor que el área geométrica del catalítico sólido. El catalítico sólido se instala entre las estructuras superior e inferior del cartucho, que juntas se estrechan entre ellas. El cartucho (3) con catalítico sólido (2) superpone completamente la sección de paso de la cubierta convectiva, de modo que impide que el flujo gaseoso directo pase fuera del catalizador.
Sobre el catalítico sólido (2), y por encima de la separación de la cubierta convectiva superior hay divisiones metálicas estrechamente cercadas (5) , que se sitúan a lo largo de los ejes de la cubierta convectiva (1) de forma paralela al flujo de la mezcla gaseosa. Las divisiones (5) dividen el volumen interior de la cubierta convectiva en dos o más partes en una asociación del área de corte de la cubierta convectiva. Por ejemplo, para un recombinador de muestra en la figura 1, la sección de paso de la cubierta convectiva se divide en tres partes.
La cubierta convectiva del recombinador (1) se sitúa en la cubierta protectora exterior del recombinador (6), entre los que hay un espacio de 10-20 mm. El espacio entre las cubiertas protectoras convectiva interior y exterior se llena con material o sustancia aislante de calor (7) , por ejemplo de aire. Las separaciones superior e inferior de la cubierta protectora del recombinador tienen boquillas de red de alambre (8) .
En el recombinador "A" dentro del fondo entre el cartucho con sólido catalítico (2 y 3) y la boquilla de red de alambre (8), se sitúa el detector de control "B" . El detector de control "B" tiene dos variantes de funcionamiento -interior y exterior-, que difieren en la presencia de pantallas de seguridad y redes de alambre (exterior) .
El detector de control "B" en conjunto consta de catalítico sólido (12) como un disco situado en el fondo del conducto vertical con una pared doble. Las paredes están fabricadas de un material probado contra la corrosión, por ejemplo, acero inoxidable (cubierta convectiva) . La cubierta convectiva está destinada a la organización del flujo natural convectivo de una mezcla analizable a través del elemento sensible del detector. Como el ejemplo, en la figura 2, las dimensiones totales del detector son: 100 mm de altura y 30 mm de diámetro.
La cubierta convectiva del detector posee aberturas de entrada y de salida en el área lateral junto a las caras finales cerradas por una red de alambre (22) . Entre las paredes de la cubierta del detector interior (9) y exterior (10) hay un espacio, que se llena con material aislante de calor o con aire (11) .
El catalítico sólido (12) , como el disco, se instala perpendicular a la entrada de flujo en la cubierta- cartucho metálico (13) algo distanciado de las paredes. El elemento calentador eléctrico (18) se sitúa entre la pared interior de la cubierta del detector y la cubierta- cartucho (13) . En el fondo y en la cabeza del sólido catalítico se instalan las redes de alambre-pantallas- cambiadores de calor (14 y 17) . La conexión del termopar en funcionamiento (16) mide la temperatura del flujo gaseoso de entrada y se instala en los ejes centrales de la construcción bajo la pantalla del cambiador de calor (14) . El termopar (16) mide la temperatura del catalítico sólido (12) o la temperatura del flujo gaseoso saliente. La conexión del termopar en funcionamiento (16) se instala entre el catalítico sólido y la pantalla-cambiador de calor (17) en un eje con el termopar (15) . Las conexiones frías de termopar 15 y 16 se sacan en la zona hermética del termostato (19) . Las salidas de los termopares y ambas salidas del calentador se alimentan a través de un enchufe hermético. En la construcción del detector, el termopar (20) se utiliza para medir la temperatura de la zona hermética del termostato. El termopar (20) se incluye en la estructura de los conductores de cable portadores. Para examinar un catalizador de recombinador útilmente y para una medida de la concentración de hidrógeno de altos valores mayores a 2% en volumen, el termopar (21) se puede incluir en la construcción del detector. La conexión del termopar en funcionamiento (21) se instala en el catalítico sólido (2), y la conexión fría se instala en la zona (19).
En la figura 3 se representa el diagrama de flujo para una disposición conjunta de los elementos de la invención. En el lugar indicado se instala el recombinador "A" que consta de una variante interior de un detector de control "BA" . En el dispositivo, de acuerdo con la invención, se permite el uso de una cantidad significativa de detectores de control exteriores "Bj-Bn" que se sitúan en zonas de probable escape de hidrógeno. Los abastecimientos de potencia de los calentadores de los detectores se llevan a cabo en líneas no conectadas a los canales de medición. Las señales de los termopares 15, 16,
20 y 21 (variante interior "BA") puesta en la recepción de señales y bloque de manejo que puede ser, por ejemplo, un sistema basado en ADC y ordenador personal o redes locales de empresa. El acoplamiento "control recombinador" permite, con el uso apropiado del termopar 21, el control del contenido de hidrógeno en situación de emergencia (concentración de hidrógeno mayor de 2% en volumen) , tan solo debida al calentamiento del catalizador del recombinador (2) sin alimentación de energía adicional. El acoplamiento "control recombinador" es también un elemento de corrección útil pasiva del recombinador, esto es, en las observaciones de concentración de hidrógeno mayor al 1% en volumen en los detectores "0BA, B^B-,", el termopar
21 debería fijar un aumento de la temperatura del sólido catalítico (2) en el recombinador.

Claims

RE I V I N D I C AC I O N E S
1.- Sistema de control y eliminación de hidrógeno, previsto para poder controlar la acumulación de hidrógeno en el aire, así como prevenir esa acumulación por encima de su límite inferior de inflamabilidad, así como eliminar dicho hidrógeno y gases combustibles en el aire, se caracteriza porque comprende dos componentes básicos, uno de ellos es un recombinador catalítico pasivo de hidrógeno, y el otro es un detector de hidrógeno termocatalítico, incluyendo el recombinador un conducto vertical determinante de una cubierta convectiva (1) cuya sección de paso se superpone completamente con un catalítico sólido contenido en el propio detector termocatalítico (12), constituido dicho catalítico sólido a partir de materiales celulares altamente porosos.
2.- Sistema de control y eliminación de hidrógeno, según reivindicación 1, caracterizado porque el catalítico sólido tiene unos parámetros característico correspondientes a un tamaño de malla no menor a 2 mm, un tamaño de piezas de paso no mayor a l, y una anchura de las porciones no menores a tres tamaños de malla.
3.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 1 y 2, caracterizado porque el catalítico sólido está contenido en metal esponjoso.
4.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 1 a 3, caracterizado porque el catalítico sólido está construido y cubierto por una capa de catalizador y componentes activadores.
5.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 1 a 4, caracterizado porque la cubierta convectiva del recombinador consta de dos paredes verticales, una interior y otra exterior, rellenándose el espacio entre ellas con un material aislante térmico.
6.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 1 a 5, caracterizado porque el catalítico sólido se sitúa en un soporte de suspensión aislante de calor relativo a la cubierta convectiva.
1 . - Sistema de control y eliminación de hidrógeno, según reivindicaciones 1 a 6, caracterizado porque el espacio dentro de la cubierta convectiva del recombinador cuenta con una serie de divisiones verticales situadas en dos o más partes.
8.- Sistema de control y eliminación de hidrógeno, según reivindicación 1, caracterizado porque el detector catalítico para controlar y eliminar los gases combustibles, contiene un catalítico sólido calentado, en forma de módulos y superpuesto a la sección de paso de la cubierta convectiva.
9.- Sistema de control y eliminación de hidrógeno, según reivindicación 8, caracterizado porque el catalítico sólido está hecho de materiales celulares altamente porosos.
10.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 y 9, caracterizado porque el catalítico sólido está hecho de metal alveolar.
11.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 y 10, caracterizado porque el catalítico sólido está aleado y cubierto por una capa de catalizador y componentes activadores.
12.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 a 11, caracterizado porque el catalítico sólido incluye parámetros característicos con un tamaño de malla no menor a 2 mm., un tamaño de piezas de paso no mayor a 1 y una anchura de los módulos no menores a tres tamaños de malla.
13.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 a 12, caracterizado porque se incluye un elemento de calentamiento eléctrico, situado en el interior de la cubierta convectiva, destinado al calentamiento preliminar de un flujo de gas de entrada y láminas de catalizador.
14.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 a 13, caracterizado porque el espacio intermedio determinado entre las paredes verticales interior y exterior de la cubierta convectiva, se llena con un material aislante de calor.
15.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 a 14, caracterizado porque el catalítico sólido se sitúa en un soporte de suspensión aislante de calor relativo a las cubiertas.
16.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 a 15, caracterizado porque el catalítico sólido se sitúa en un soporte de suspensión aislante de calor relativo a la cubierta convectiva.
17.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 a 16, caracterizado porque como señal primaria en el sector de control se usan termopares de tensión, de acuerdo con la temperatura del flujo de aire calentado entrante y el sólido catalítico.
18.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 a 17, caracterizado porque como señal primaria en el detector de control se usan termopares de tensión, de acuerdo con la temperatura del flujo de aire calentado entrante y el flujo de gas saliente.
19.- Sistema de control y eliminación de hidrógeno, según reivindicaciones 8 a 18, caracterizado porque en el detector de control se utilizan conexiones de termostato de termopar frío.
PCT/ES2000/000117 2000-03-31 2000-03-31 Sistema de control y de eliminacion de hydrogeno WO2001072633A1 (es)

Priority Applications (9)

Application Number Priority Date Filing Date Title
EP00912675A EP1279640A1 (en) 2000-03-31 2000-03-31 System for controlling and eliminating hydrogen
MXPA02009701A MXPA02009701A (es) 2000-03-31 2000-03-31 Sistema de control y de eliminacion de hidrogeno.
PCT/ES2000/000117 WO2001072633A1 (es) 2000-03-31 2000-03-31 Sistema de control y de eliminacion de hydrogeno
CN00819387A CN1452591A (zh) 2000-03-31 2000-03-31 监测和消除氢气的系统
AU2000234340A AU2000234340A1 (en) 2000-03-31 2000-03-31 System for controlling and eliminating hydrogen
BR0017205-7A BR0017205A (pt) 2000-03-31 2000-03-31 Sistema para o monitoramento e a eliminação de hidrogênio
JP2001570555A JP2004500577A (ja) 2000-03-31 2000-03-31 水素監視及び除去システム
CA002402966A CA2402966A1 (en) 2000-03-31 2000-03-31 System for controlling and eliminating hydrogen
US10/262,512 US20030077202A1 (en) 2000-03-31 2002-09-30 System for monitoring and elimination of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2000/000117 WO2001072633A1 (es) 2000-03-31 2000-03-31 Sistema de control y de eliminacion de hydrogeno

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/262,512 Continuation US20030077202A1 (en) 2000-03-31 2002-09-30 System for monitoring and elimination of hydrogen

Publications (1)

Publication Number Publication Date
WO2001072633A1 true WO2001072633A1 (es) 2001-10-04

Family

ID=8244223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2000/000117 WO2001072633A1 (es) 2000-03-31 2000-03-31 Sistema de control y de eliminacion de hydrogeno

Country Status (9)

Country Link
US (1) US20030077202A1 (es)
EP (1) EP1279640A1 (es)
JP (1) JP2004500577A (es)
CN (1) CN1452591A (es)
AU (1) AU2000234340A1 (es)
BR (1) BR0017205A (es)
CA (1) CA2402966A1 (es)
MX (1) MXPA02009701A (es)
WO (1) WO2001072633A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380430A (zh) * 2021-06-03 2021-09-10 哈尔滨工程大学 一种氢气复合器催化剂装载盒

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2024074B1 (de) * 2006-05-14 2010-03-03 Christ Water Technology AG Umsetzung explosionsfähiger gasgemische
DE102007059827B3 (de) * 2007-12-11 2008-11-20 Areva Np Gmbh Sicherheitssystem ein kerntechnischen Anlage
JP5545967B2 (ja) * 2010-03-02 2014-07-09 日立Geニュークリア・エナジー株式会社 排ガス再結合器
CN103219054B (zh) * 2010-07-22 2016-08-24 中广核研究院有限公司 可燃气体监测系统及方法
CN101915786B (zh) * 2010-07-22 2013-05-08 中科华核电技术研究院有限公司 可燃气体监测系统及方法
FR2971614A1 (fr) * 2011-02-11 2012-08-17 Tn Int Dispositif de piegeage de gaz inflammables produits par radiolyse ou thermolyse dans une enceinte de confinement
KR200464123Y1 (ko) * 2011-05-04 2012-12-12 한국원자력기술 주식회사 피동형 자동촉매 재결합기
CN102682860B (zh) * 2012-06-05 2015-04-22 四川材料与工艺研究所 非能动氢气复合器测试系统的测试方法
CN102750995A (zh) * 2012-07-12 2012-10-24 中国核动力研究设计院 核电厂非能动氢复合器催化板在役检查方法
KR101389840B1 (ko) 2012-08-29 2014-04-29 한국과학기술원 전기생산을 위한 고유안전 수냉각형 원자로 계통
CN102997961B (zh) * 2012-12-10 2015-02-18 中国船舶重工集团公司第七一八研究所 一种具有实时检测性能的消氢试验装置
CN103035305B (zh) * 2012-12-10 2015-04-15 中国船舶重工集团公司第七一八研究所 一种消氢试验装置
CN106094908B (zh) * 2016-06-14 2018-11-27 中国工程物理研究院材料研究所 一种分布式非能动氢安全防护系统
CN106297911B (zh) * 2016-10-20 2023-10-17 中国船舶集团有限公司第七一八研究所 一种具有可自动开启的密封结构的氢复合器
US10839966B2 (en) * 2017-05-10 2020-11-17 Westinghouse Electric Company Llc Vortex driven passive hydrogen recombiner and igniter
CN110136398A (zh) * 2019-06-17 2019-08-16 徐州恒宝安全设备有限公司 一种基于物联网技术的甲醛报警装置
CN112973805B (zh) * 2021-02-02 2022-11-08 广西防城港核电有限公司 预防非能动氢复合器催化板失效的方法
KR102546664B1 (ko) * 2023-02-01 2023-06-23 (주)세라컴 수소가스제거기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078893A (en) * 1976-06-30 1978-03-14 The United States Of America As Represented By The Secretary Of The Army Catalyst system for the detection and elimination of hydrogen gas
EP0089183A2 (en) * 1982-03-12 1983-09-21 Cjb Developments Limited Process for the removal of hydrogen from gases
EP0980705A2 (en) * 1998-07-23 2000-02-23 Kabushiki Kaisha Toshiba Apparatus for removing flammable gas

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4015228A1 (de) * 1990-05-11 1991-11-14 Siemens Ag Vorrichtung fuer die rekombination von wasserstoff und sauerstoff sowie verwendung der vorrichtung
DE19801618C2 (de) * 1998-01-17 2001-05-10 Forschungszentrum Juelich Gmbh Vorrichtung zur katalytischen Umsetzung von Wasserstoff
UA57854C2 (uk) * 1998-09-30 2003-07-15 Фраматоме Анп Гмбх Пристрій і спосіб рекомбінації водню і кисню у газовій суміші
DE19846058C1 (de) * 1998-10-07 2000-05-31 Forschungszentrum Juelich Gmbh Vorrichtung zum Beseitigen von Wasserstoff

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078893A (en) * 1976-06-30 1978-03-14 The United States Of America As Represented By The Secretary Of The Army Catalyst system for the detection and elimination of hydrogen gas
EP0089183A2 (en) * 1982-03-12 1983-09-21 Cjb Developments Limited Process for the removal of hydrogen from gases
EP0980705A2 (en) * 1998-07-23 2000-02-23 Kabushiki Kaisha Toshiba Apparatus for removing flammable gas

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113380430A (zh) * 2021-06-03 2021-09-10 哈尔滨工程大学 一种氢气复合器催化剂装载盒

Also Published As

Publication number Publication date
US20030077202A1 (en) 2003-04-24
CN1452591A (zh) 2003-10-29
EP1279640A1 (en) 2003-01-29
MXPA02009701A (es) 2003-03-27
CA2402966A1 (en) 2001-10-04
JP2004500577A (ja) 2004-01-08
BR0017205A (pt) 2003-04-08
AU2000234340A1 (en) 2001-10-08

Similar Documents

Publication Publication Date Title
WO2001072633A1 (es) Sistema de control y de eliminacion de hydrogeno
JP6103887B2 (ja) 電力貯蔵システム
CN107589217A (zh) 一种具有合金防护结构的氢气传感器
JP6356228B2 (ja) ガス混合物の組成の定量分析方法およびその関連の測定装置
CZ307004B6 (cs) Způsob výroby tepelné energie, zařízení k tomu určená a systémy tepelné generace
GB2506755A (en) Density Profiler
CN114674584A (zh) 一种用于模拟有限空间内池火灾的大尺度移动式实验装置
Shukla et al. Development and validation of CFD model for catalytic recombiner against experimental results
CA2338612C (en) Device for measuring the concentration of hydrogen in a gaseous mixture
US20030082428A1 (en) Fuel cell system with recombiner
CN107561117B (zh) 一种基于热导原理的氢气传感器
CN102967627A (zh) 催化式氢气传感器
Sylvia et al. Development of sodium leak detectors for PFBR
KR20030034056A (ko) 수소를 감시하고 제거하기 위한 시스템
Lisowski et al. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)
RU2599145C1 (ru) Рекомбинатор и способ рекомбинации водорода или метана и кислорода в газовой смеси
JPS6042647A (ja) 高温、高圧水蒸気中の水素濃度を測定する装置
JP6526587B2 (ja) 水素センサシステム
CN218481876U (zh) 一种储能系统锂离子电池火灾预警装置
RU114219U1 (ru) Сжигатель пожаро- и взрывоопасного газа с каталитическим поджигающим устройством
ES2249480T3 (es) Recombinador con temperatura de reaccion estabilizada.
JP2013178188A (ja) 原子力プラントの水素処理設備
Blanchat et al. LNG Ship Insulation Experiments Using Large LNG Pool Fire Boundary Conditions.
Ungut et al. Autoignition of gaseous fuel-air mixtures near a hot surface
JP6608687B2 (ja) ガス検出器

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2001 570555

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2402966

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027012948

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 008193878

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10262512

Country of ref document: US

Ref document number: PA/a/2002/009701

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2000234340

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2000912675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/1348/KOL

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2002 2002129113

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2000912675

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020027012948

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2000912675

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1020027012948

Country of ref document: KR