WO2001071863A1 - Optical amplifier - Google Patents

Optical amplifier Download PDF

Info

Publication number
WO2001071863A1
WO2001071863A1 PCT/JP2001/002374 JP0102374W WO0171863A1 WO 2001071863 A1 WO2001071863 A1 WO 2001071863A1 JP 0102374 W JP0102374 W JP 0102374W WO 0171863 A1 WO0171863 A1 WO 0171863A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
excitation
light
signal
input
Prior art date
Application number
PCT/JP2001/002374
Other languages
French (fr)
Japanese (ja)
Inventor
Takamasa Yamashita
Hisashi Sawada
Minoru Yoshida
Original Assignee
Mitsubishi Cable Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Cable Industries, Ltd. filed Critical Mitsubishi Cable Industries, Ltd.
Publication of WO2001071863A1 publication Critical patent/WO2001071863A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1608Solid materials characterised by an active (lasing) ion rare earth erbium

Definitions

  • the present invention relates to an optical amplifier for amplifying an optical signal used for communication.
  • An amplifier that amplifies an optical signal using an optical fiber as an amplification medium is known.
  • the erbium-doped fiber (EDF) using the erbium-doped fiber (EDF) as the optical fiber shows excellent performance as an optical amplifier in the 1.55 m band. -doped fiber amplifier).
  • the wavelength 1. 48 m or 0. 98 / xm absorption is relatively large in c EDF the excitation light has been used for, 1. 55 mu m band (1 530 nm which has been used in the optical communication up to now (1560 nm), and the advantage that the absorption characteristics of the EDF are small with respect to the wavelength and the amplification characteristics do not change significantly even if the excitation wavelength shifts. m excitation light has often been used.
  • WDM wavelength division multiplexing
  • the present invention provides an optical amplifying device that efficiently amplifies L-band signal light and obtains a large gain by using excitation light having a wavelength around 1.53 / zm, which is the peak of the absorption spectrum of EDF.
  • the purpose is to do.
  • An optical amplifying device of the present invention includes: a pump light source that outputs pump light; an optical multiplexer that multiplexes and outputs the input signal light and the pump light; and an output of the optical multiplexer, An erbium-doped fiber for amplifying and outputting the signal light, wherein the wavelength of the pump light is 1.50 / im to 1.56 ⁇ m.
  • the EDF since a wavelength near the peak of the absorption spectrum of the EDF is used as the excitation light, even if the excitation light has the same intensity, the EDF is more effective than when the excitation light of another wavelength is used.
  • the number of erbium ions at the excitation level in F can be increased, and the amplification efficiency and gain of EDFA can be increased.
  • the wavelength of the signal light is 1560 ⁇ ! Preferably, it is 11610 nm.
  • the relationship between the concentration-length product CL of the erbium-doped fiber and the intensity PP of the pumping light is CL> (1 / ⁇ ) ⁇ In (P P / j3) and] 3. , A constant determined by the wavelength of the pump light and the intensity of the signal light).
  • another optical amplifying device comprises: an excitation light source for outputting excitation light; An optical multiplexer that multiplexes the obtained signal light and the pump light and outputs the multiplexed light, and an erbium-doped fiber that receives the output of the optical multiplexer as an input, amplifies the signal light, and outputs the amplified signal light.
  • Wavelength is 1.54 / 54! 1.1.55 ⁇ m
  • concentration product of the erbium-doped fiber is 6 O kp pm 'n! 9090 kp pm, m.
  • the present invention it is possible to obtain a large gain and to reduce the fluctuation of the gain with respect to a change in the signal wavelength, as compared with a case where pumping light having a wavelength of 1.48 ⁇ m is used.
  • still another optical amplifier includes: an excitation light source that outputs excitation light; an optical multiplexer that multiplexes and outputs an input signal light and the excitation light; and an optical multiplexer.
  • an erbium-doped fiber for amplifying the signal light and outputting the amplified signal light, wherein the intensity of the signal light is 10 dBm or more, and the wavelength of the pump light is 1.54 // m. 55 / xm, and the concentration length product of the erbium-doped fiber is 60 kp pm ⁇ ⁇ ! ⁇ 90 kppm ⁇ m.
  • the intensity of the signal light is relatively large, a larger gain can be obtained as compared with the case where the pumping light having the wavelength of 1.48 ⁇ is used.
  • the wavelength of EDFA is 1.50 ⁇ !
  • a pump light with a wavelength of ⁇ 1.56 ⁇ provides a larger gain when amplifying L-band signal light than using a pump light with a wavelength of 1.48 ⁇ m, and the wavelength of the signal light. Fluctuation of the gain with respect to the fluctuation of can be suppressed.
  • FIG. 1 is a block diagram illustrating a configuration of an optical amplifying device according to an embodiment of the present invention.
  • FIG. 2 is a graph showing the gain of the EDFA (erbium-doped fiber amplifier) of FIG. 1 with respect to the concentration length product at a signal wavelength of 1600 nm.
  • EDFA erbium-doped fiber amplifier
  • FIG. 2 is a diagram showing the gain of the EDFA of FIG.
  • FIG. 4 is a diagram showing the gain of the EDF A of FIG. 1 versus the concentration-length product when the signal wavelength is 1600 nm and the signal input is 40 dBm.
  • FIG. 5 is a diagram illustrating an example of the power conversion efficiency of the EDFA of FIG. 1 with respect to the concentration length product when the signal input is 10 dBm and the signal wavelength is 1600 nm.
  • FIG. 6 is a diagram showing the power conversion efficiency of the EDF A of FIG. 1 with respect to the excitation wavelength at the concentration-length product at which the highest power conversion efficiency was obtained at each excitation wavelength.
  • FIG. 7 is a diagram showing the power conversion efficiency of the EDF A of FIG. 1 with respect to the excitation input.
  • Fig. 8 shows the combination of the concentration-length product and the pump input in the EDFA of Fig. 1 such that the gain is larger at the pump wavelength of 1.54 ⁇ m than at the pump wavelength of 1.48 ⁇ . It is a figure for obtaining.
  • FIG. 9 is a diagram showing a condition where the gain is larger at an excitation wavelength of 1.5 X ⁇ m than at an excitation wavelength of 1.48 when the signal input is 10 dBm.
  • FIG. 10 is a diagram showing a condition where the gain is larger at an excitation wavelength of 1.5 x / m than at an excitation wavelength of 1.48 / zm when the signal input is 40 dBm.
  • FIG. 11 is a diagram showing the gain of the EDFA of FIG. 1 with respect to the signal wavelength when the signal input is 10 dBm, the pump input is 9 OmW, and the pump wavelength is 1.48 m.
  • FIG. 12 is a diagram showing the gain of the EDF A of FIG. 1 with respect to the signal wavelength when the signal input is 10 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.535 ⁇ m.
  • Fig. 13 is a diagram showing the gain of the EDFA in Fig. 1 with respect to the signal wavelength when the signal input is 10 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.54 ⁇ m.
  • Fig. 14 is a diagram showing the gain of the EDFA of Fig. 1 with respect to the signal wavelength when the signal input is 10 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.554 ⁇ m.
  • FIG. 15 is a diagram illustrating the gain of the EDFA of FIG. 1 with respect to the signal wavelength when the signal input is ⁇ 10 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.55 ⁇ m.
  • FIG. 16 is a diagram illustrating the gain of the EDF A of FIG. 1 with respect to the signal wavelength when the signal input is 40 dBm, the pump input is 90 mW, and the pump wavelength is 1.48 / zm.
  • Figure 17 shows the gain of the EDFA of Figure 1 versus signal wavelength when the signal input is 40 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.535 ⁇ m.
  • Fig. 18 is a diagram showing the gain of the EDFA of Fig. 1 with respect to the signal wavelength when the signal input is 40 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.54 ⁇ m.
  • Fig. 19 is a diagram showing the gain of the EDF A of Fig. 1 with respect to the signal wavelength when the signal input is 40 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.554 ⁇ m.
  • FIG. 20 shows the gain of the EDFA of FIG. 1 with respect to the signal wavelength when the signal input is 40 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.55 ⁇ m.
  • Fig. 21 is a diagram showing the gain of the EDF A of Fig. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 90 mW, and the pump wavelength is 1.48 ⁇ m.
  • Fig. 22 shows the gain of the EDF A of Fig. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 85.5 mW, and the pump wavelength is 1.535 ⁇ m.
  • FIG. 23 is a diagram showing the gain of the EDFA of FIG. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 85.5 mW, and the pump wavelength is 1.54 ⁇ m.
  • FIG. 24 is a diagram showing the gain of the EDF of FIG. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 85.5 mW, and the pump wavelength is 1.554 ⁇ .
  • FIG. 25 is a diagram showing the gain of the EDFA of FIG. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 85.5 mW, and the pump wavelength is 1.55 ⁇ m.
  • FIG. 1 is a block diagram showing a configuration of an optical amplifying device according to an embodiment of the present invention.
  • the optical amplifier (hereinafter referred to as EDFA) in FIG. 1 includes isolators 12 and 15, an optical multiplexer 13, an EDF 14, and a 1.5 X xm pump light source 21.
  • EDFA optical amplifier
  • 1.5 x / nil.50 / zm to l.56 .mu.m will be expressed.
  • the isolator 12 receives the signal light as an input to its input terminal, and outputs this signal light from its output terminal to the optical multiplexer 13.
  • Optical multiplexer 13 outputs isolator 12
  • the signal light to be applied and the 1.5 ⁇ m pump light having a wavelength of 1.50 m to 1.56 ⁇ m output from the 1.5 X m pump light source 21 are multiplexed and output to the EDF 14.
  • the EDF 14 amplifies the signal light by the stimulated emission phenomenon of erbium ions excited by the excitation light, and outputs the amplified signal light to the isolator 15.
  • the isolator 15 receives the amplified signal light as an input to its input terminal, and outputs this signal light from its output terminal as the output of the EDF A in FIG.
  • the isolators 12 and 15 do not allow signal transmission from the output terminal to the input terminal.
  • the EDFA shown in Fig. 1 has isolators 12 and 15 to remove laser oscillation and reflected return light from the EDF 14. However, even if there are no isolators 12 and 15, the optical amplifying device is not required. Is possible.
  • the EDFA shown in Fig. 1 has a configuration in which pumping light and signal light enter the EDF 14 in the same direction by forward pumping, but the pumping light and signal light enter the EDF 14 from the opposite direction. It is also possible to use backward pumping or bidirectional pumping in which pump light is incident from both ends of the EDF14.
  • the erbium ions are excited by the excitation light, and stimulated emission amplifies the input signal light. Therefore, the gain can be increased as the number of erbium ions in the excitation level increases.
  • the absorption in EDF 14 is 1.50 ⁇ near the peak of the absorption spectrum! Since the light of ⁇ 1.56 / zm is larger than the light of wavelength 1.48 ⁇ m, even if the excitation light has the same intensity, the wavelength is 1.50) um ⁇ l.56 jum Can increase the number of erbium ions in the excitation level compared to when the wavelength is 1.48 ⁇ m, and can increase the amplification efficiency and gain of the EDFA in Fig. 1.
  • the wavelength 1.50 ⁇ ! Using a pump light of ⁇ 1.56 m has the same effect as increasing the intensity of the pump light at a wavelength of 1.48 / m, and also requires a pump input ( Excitation light intensity) can be reduced. Further, the excitation light having a wavelength of 1.50 / m to l.56 / im is absorbed by EDF14. EDF 14 can be shortened.
  • the characteristics of the EDFA in FIG. 1 under various conditions are shown below.
  • a 1.48 ⁇ m excitation light source (not shown) was used to provide 1.48 ⁇ excitation light to the optical multiplexer 13 instead of the 1.5 X ⁇ m excitation light source 21.
  • the characteristics in the case of the above are also shown.
  • the product of the erbium concentration [p pm] of EDF 14 and its fiber length [m] is referred to as the concentration strip product.
  • the unit of the concentration product is p pm ⁇ m, and 1000 p pm-m is expressed as 1 k p pm ⁇ m.
  • the erbium concentration of EDF 14 is about 900 ppm.
  • FIG. 2 is a diagram showing the gain of the EDF A of FIG. 1 with respect to the concentration length product when the signal wavelength (wavelength of the signal light) is 1600 nm.
  • indicates the excitation wavelength (wavelength of the excitation light) 1.53 ⁇
  • signal input intensity of the signal light
  • the image indicates the excitation wavelength 1.53 ⁇ m
  • signal input 1 4 0 d Bm and ⁇ show the case of the pump wavelength 1.48 / zm
  • the mouth shows the case of the pump wavelength 1.48 ⁇ , signal input—40 dBm.
  • the excitation input is 31.8 mW.
  • the excitation wavelength is 1.53 ⁇ more than 1.48 tm regardless of the signal input size. It can be seen that a large gain can be obtained.
  • FIGS. 3 and 4 are graphs showing the gain of the EDFA of FIG. 1 with respect to the concentration length product at a signal wavelength of 160 nm.
  • FIG. 3 shows the signal input—10 dBm
  • FIG. 4 shows the gain.
  • Figures 3 and 4 show that the excitation wavelength is 1.48 zm, 1.535 ⁇ m, 1.54 m, 1.
  • Excitation input 9 OmW for excitation wavelength 1.48 ⁇ m, excitation wavelength 1.535 m to 85.5 mW for 1.55 m, excitation wavelength 1.48 ⁇ m
  • the excitation input is about 0.2 dB larger than in the other cases, but it is considered that there is almost no problem if this difference in the excitation input is ignored.
  • the excitation input shall be simply indicated as 85.5 mW.
  • the excitation wavelength is 1.48 ⁇ m when the excitation wavelength is 1.553 ⁇ to 1.55 m. It can be seen that a larger gain is obtained than in the case of m.
  • the wavelength of the pump light is 1.50DF ⁇ !
  • the wavelength of the pump light is 1.50DF ⁇ !
  • FIG. 5 is a diagram illustrating an example of the power conversion efficiency of the EDFA of FIG. 1 with respect to the concentration length product when the signal input is 10 dBm and the signal wavelength is 1600 nm.
  • the power conversion efficiency is represented by (signal output / excitation input from EDF) XI00. The larger this value is, the more efficiently the pump light can be used for amplifying the signal light.
  • FIG. 5 shows data for the excitation wavelengths of 1.48 ⁇ m, 1.535 / zm, 1.54m, 1.545545111 and 1.55 ⁇ m.
  • the excitation input is 85.5 mW for an excitation wavelength of 1.535; um to 1.55111, and 9 OmW for an excitation wavelength of 1.48 ⁇ m.
  • FIG. 6 is a diagram showing the power conversion efficiency of the EDF A of FIG. 1 with respect to the excitation wavelength at the concentration strip product at which the highest power conversion efficiency was obtained at each excitation wavelength.
  • the signal wavelength is 1600 nm and the signal input is 10 dBm.
  • the concentration length product is smaller than 30 kppmm for the excitation wavelength of 1.48 ⁇ , and 60 kppmm for the excitation wavelength of 1.535 ⁇ m. It is possible that the highest power conversion efficiency can be obtained at the concentration product with the largest concentration.
  • the power conversion efficiency obtained at an excitation wavelength of 1.48 m is up to about 10%, whereas the excitation wavelength is 1.54 / ⁇ !
  • the power conversion efficiency obtained at ⁇ 1.55 ⁇ m is up to about 20%. Also, even at an excitation wavelength of 1.535 ⁇ , the maximum power conversion efficiency is about 15%.
  • the wavelength of the pump light is set to 1.50 ⁇ !
  • the wavelength of the pump light is set to 1.50 ⁇ !
  • FIG. 7 is a diagram showing the power conversion efficiency of the EDF of FIG. 1 with respect to the excitation input.
  • the concentration length product at each excitation wavelength is the same as in Fig. 6, the signal wavelength is 1600 ⁇ m, and the signal input is 10 dBm.
  • Excitation input is 1.53 5 ⁇ ! 85.5 mW for ⁇ 1.55 / xm, 90 mW for an excitation wavelength of 1.48 ⁇ m.
  • the power conversion efficiency at an excitation wavelength of 1.48 m is up to about 10%, while the power conversion efficiency at an excitation wavelength of 1.54; im to 1.5 m is up to about 10%.
  • an excitation wavelength of 1.54 / zm to 1.55 ⁇ m it can be expected that the power conversion efficiency will be further increased by making the excitation input larger than 85.5 mW.
  • Figure 8 shows the combination of the concentration-length product and the excitation input in the EDFA of Fig. 1 so that the gain is greater at the excitation wavelength of 1.54 m than at the excitation wavelength of 1.48 ⁇ m. It is an example of a diagram for obtaining.
  • the signal input is one 10 dBm and the signal wavelength is 1600 nm.
  • the gain at an excitation wavelength of 1.48 ⁇ m and the gain at an excitation wavelength of 1.54 ⁇ m are approximately 34 It is the same when mW is set, and it can be seen that when the pump input is smaller than this, the gain is larger at the pump wavelength of 1.54 ⁇ m. Similarly, for other pump wavelengths (1.535 jum, 1.545 m, 1.55 ⁇ m), the pump gain becomes larger than when the pump wavelength is 1.48 / m.
  • the range of the input can be determined.
  • FIGS. 9 and 10 are diagrams showing the conditions thus obtained in which the gain is larger at the excitation wavelength of 1.5 x / im than at the excitation wavelength of 1.48 ⁇ .
  • FIG. 9 shows the case where the signal input is 10 dBm
  • FIG. 10 shows the case where the signal input is 40 dBm.
  • the region where the excitation input is smaller than the data points shown in FIGS. 9 and 10, that is, the region where the concentration product is larger than these data points, is closer to the excitation wavelength of 1-5 X ⁇ . Is the region where the gain is larger and the characteristics are better than when the pump wavelength is 1.48 ⁇ m.
  • the excitation wavelengths are 1.535 ⁇ m, 1.54 ⁇ m, 1, 545 ⁇ m, and 1.55 ⁇ m, respectively.
  • the excitation wavelengths are 1.535 ⁇ m, 1.54 ⁇ m, 1, 545 m and 1.55 ⁇ m.
  • the excitation wavelengths
  • a and ⁇ can be constants determined by the excitation wavelength and the magnitude of the signal input. it can.
  • the value of ⁇ increases as the magnitude of the signal input increases.
  • the signal input is _10 dBm and the signal input is in the range of 0.08 to 0.13 and 0.2 to 1.0, respectively, and the signal input is 14 dBm , Respectively, in the range of 0.05 to 0.06 and 2.2 to 2.6.
  • FIGS. 11 to 15 are diagrams showing the gain of the EDFA in FIG. 1 with respect to the signal wavelength when the signal input is 10 dBm and the excitation input is 85.5 mW (FIG. 11 is 90 mW).
  • FIG. 11 To 15 are for the excitation wavelengths of 1.48 ⁇ , 1.535 m, 1.554 m, 1.545 ⁇ and 1.55 ⁇ m, respectively.
  • Figure 1 From ⁇ 15, signal input-10 dBm, excitation input 85.5 mW (9 O mW for excitation wavelength 1.48 ⁇ ): I understand. That is, the signal wavelength is 1578 nm to 1615 nm, the concentration product is 60 kppm ⁇ n! In the case of 990 kppm ⁇ m, the gain is larger when the excitation wavelength is 1.535 ⁇ 11.55 ⁇ m than when the excitation wavelength is 1.48 ⁇ m. In addition, when the signal wavelength is 157 nm to 160 nm and the concentration is 70 kppmm to 90 kppmm, the excitation wavelength is 1.54 than when the excitation wavelength is 1.48 m.
  • FIG. 2 is a diagram illustrating a gain of the EDFA of FIG. 1 with respect to a signal wavelength at the time of 0 mW).
  • Figures 16 to 20 show the cases where the excitation wavelength is 1.48 ⁇ , 1.535 jum, 1.554 ⁇ m, 1.545 / zm and 1.55 ⁇ m, respectively.
  • the excitation wavelength is 1 more than when the excitation wavelength is 1.48 ⁇ m. . 5 4 ⁇ !
  • the gain flatness is better at ⁇ 1.55 ⁇ .
  • the excitation wavelength 1. 5 4 / im ⁇ :. I 5 when 5 ⁇ ⁇ , especially if the concentration length product is 8 0 kppm ⁇ m
  • the gain variation is about 2 dB.
  • FIG. 21 to 25 show the gain of the EDFA of Figure 1 with respect to the signal input when the signal wavelength is 1600 nm and the excitation input is 85.5 mW ( Figure 21 is 9 O mW). .
  • Figures 21 to 25 show the cases where the excitation wavelength is 1.48 ⁇ , 1.535 ⁇ m, 1.554 ⁇ m, 1.545111 and 1.55 ⁇ m, respectively.
  • FIG. 21 shows the cases where the excitation wavelength is 1.48 ⁇ , 1.535 ⁇ m, 1.554 ⁇ m, 1.545111 and 1.55 ⁇ m, respectively.
  • the concentration product is 70 k ⁇ ⁇ m ⁇ ⁇ !
  • the gain is larger than when the excitation wavelength is 1.48.
  • the concentration product is 60 kppm ⁇ ⁇ ! ⁇ 90 kppm In the case of m, the gain is larger when the excitation wavelength is 1.54 / im to 1.55 m than when the excitation wavelength is 1.48 ⁇ m.
  • the signal wavelength is 1600 nm
  • the pump input is 85.5 mW (9 O mW for the pump wavelength of 1.48 / im). Under the condition), the following can be seen.
  • the excitation wavelength when the signal input is 10 dBm and the concentration product is 55 kppmm or more, the excitation wavelength is 1.535 ⁇ to 1.55 / Xm, and the excitation wavelength is 1.4.
  • the gain is larger than at 8 ⁇ .
  • the excitation wavelength is 1.535 ⁇ ! At 1.55 ⁇ , the gain is larger than at the excitation wavelength of 1.48 / im.
  • the optical amplifying device according to the present invention is useful for amplifying an optical signal used for communication, and is particularly suitable for amplifying an L-band optical signal.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

An optical amplifier amplifies signal light in L band (wavelength of 1560 nm to 1610 nm) efficiently with a large gain. The optical amplifier comprises a source of exciting radiation, an optical multiplexer for multiplexing incident signal light and exciting radiation to produce output, and an erbium-doped fiber connected to the output of the optical multiplexer to produce amplified signal light. The wavelength of exciting radiation is 1.50 microns to 1.56 microns, and the wavelength of signal light to be amplified is 1560 nm to 1610 nm. The product of erbium concentration and fiber length is selected to provide a large gain.

Description

光増幅装置 技術分野 Optical amplification equipment
本発明は、 通信に用いられる光信号を増幅する光増幅装置に関する。 背景技術 明  The present invention relates to an optical amplifier for amplifying an optical signal used for communication. Background art
光ファイバを増幅媒体として光信号を増田幅する増幅器が知られている。 光ファ ィバとしてエルビウム添加ファイノく (EDF : erbium-doped fiber) を用いたも のは、 1. 55 m帯の光増幅器として優れた性能を示し、 エルビウム添加ファ ィバ増幅装置 (EDFA : erbium-doped fiber amplifier) と呼ばれる。  2. Description of the Related Art An amplifier that amplifies an optical signal using an optical fiber as an amplification medium is known. The erbium-doped fiber (EDF) using the erbium-doped fiber (EDF) as the optical fiber shows excellent performance as an optical amplifier in the 1.55 m band. -doped fiber amplifier).
EDFAでは、 波長 1. 48 m又は 0. 98 /x mの励起光が用いられてきた c EDFにおける吸収が比較的大きく、 これまで光通信に用いられてきた 1. 55 μ m帯 ( 1 530 nm〜 1 560 n m) の信号光の波長に近いことと、 EDFの 吸収の程度の波長に対する変動が小さく、 励起波長がずれても増幅特性が大きく 変わらない利点があることから、 特に波長 1. 48 mの励起光がよく用いられ てきた。 In EDFA, the wavelength 1. 48 m or 0. 98 / xm absorption is relatively large in c EDF the excitation light has been used for, 1. 55 mu m band (1 530 nm which has been used in the optical communication up to now (1560 nm), and the advantage that the absorption characteristics of the EDF are small with respect to the wavelength and the amplification characteristics do not change significantly even if the excitation wavelength shifts. m excitation light has often been used.
一方、 複数の波長の光を 1本の光ファイバで伝送する、 波長多重 (WDM: wa velength division multiplexing) 伝送と呼ばれる方式が注目されている。 WD M伝送では、 光ファイバ中を伝搬させる波長が異なる信号光の数を増やすことに より、 伝送容量を大きくすることができる。 このため、 これまでは用いられてい なかった Lバンド又は 1. 58 m帯と呼ばれる信号波長 (1 560 η π!〜 1 6 1 0 nm) が使用されるようになってきた。  On the other hand, a method called wavelength division multiplexing (WDM) transmission, in which light of multiple wavelengths is transmitted through a single optical fiber, has attracted attention. In WDM transmission, the transmission capacity can be increased by increasing the number of signal lights having different wavelengths that propagate in an optical fiber. For this reason, a signal wavelength (1560 ηπ! ~ 1610 nm) called L band or 1.58 m band, which has not been used until now, has come to be used.
一解決課題一  Solution 1
しかし、 ED Fの吸収スペク トルのピークは 1. 53 μπι付近にあり、 1. 4 8 μ mは吸収スペク トルのピークではない。 このため、 £0?八にぉぃて波長1. 48 /i mの励起光を用いると、 Lバンドの信号光をあまり効率よく增幅すること ができず、 また、 1. 5 5 / m帯の信号光を増幅する場合に比べて非常に長い E D Fが必要であった。 発明の開示 However, the peak of the absorption spectrum of EDF is around 1.53 μπι, and 1.48 μm is not the peak of the absorption spectrum. For this reason, the wavelength 1. When the pump light of 48 / im is used, the L-band signal light cannot be spread very efficiently, and the EDF, which is much longer than when amplifying the 1.55 / m band signal light, cannot be obtained. Was needed. Disclosure of the invention
本発明は、 EDFの吸収スペク トルのピークである波長 1. 53 /zm付近の励 起光を用いることにより、 Lバンドの信号光を効率よく増幅し、 大きな利得が得 られる光増幅装置を提供することを目的とする。  The present invention provides an optical amplifying device that efficiently amplifies L-band signal light and obtains a large gain by using excitation light having a wavelength around 1.53 / zm, which is the peak of the absorption spectrum of EDF. The purpose is to do.
本発明の光増幅装置は、 励起光を出力する励起光源と、 入力された信号光と前 記励起光とを合波して出力する光合波器と、 前記光合波器の出力を入力とし、 前 記信号光を増幅して出力するエルビウム添加ファイバとを備え、 前記励起光の波 長カ 1. 50 /im〜l . 56 μ mであるものである。  An optical amplifying device of the present invention includes: a pump light source that outputs pump light; an optical multiplexer that multiplexes and outputs the input signal light and the pump light; and an output of the optical multiplexer, An erbium-doped fiber for amplifying and outputting the signal light, wherein the wavelength of the pump light is 1.50 / im to 1.56 μm.
この発明によると、 ED Fの吸収スぺク トルのピークに近い波長を励起光とし て用いるため、 同じ強度の励起光であっても、 他の波長の励起光を用いた場合よ りも ED F中の励起準位のエルビウムイオンの数を増やすことができ、 ED F A の増幅効率及び利得を大きくすることができる。  According to the present invention, since a wavelength near the peak of the absorption spectrum of the EDF is used as the excitation light, even if the excitation light has the same intensity, the EDF is more effective than when the excitation light of another wavelength is used. The number of erbium ions at the excitation level in F can be increased, and the amplification efficiency and gain of EDFA can be increased.
また、 前記光増幅装置において、 前記信号光の波長が 1 560 ηπ!〜 1 6 1 0 nmであることが好ましい。  In the optical amplifying device, the wavelength of the signal light is 1560 ηπ! Preferably, it is 11610 nm.
これによると、 波長 48 ^umの励起光を用いた場合に比べて大きな利得及 ぴパワー変換効率を得ることができる。  According to this, a larger gain and a higher power conversion efficiency can be obtained as compared with the case where the pumping light with a wavelength of 48 ^ um is used.
さらに、 この光増幅装置において、 前記エルビウム添加ファイバの濃度条長積 C Lと前記励起光の強度 PPとの関係が、 CL> ( 1/α) · I n (P P/j3) 及び ]3は、 前記励起光の波長及び前記信号光の強度によって定まる定数) で 表されることが好ましい。 Further, in this optical amplifying device, the relationship between the concentration-length product CL of the erbium-doped fiber and the intensity PP of the pumping light is CL> (1 / α) · In (P P / j3) and] 3. , A constant determined by the wavelength of the pump light and the intensity of the signal light).
これによると、 波長 1. 48 の励起光を用いた場合に比べて大きな利得を 得ることが確実にできる。  According to this, it is possible to surely obtain a large gain as compared with the case where the pumping light having the wavelength of 1.48 is used.
また、 本発明に係る他の光増幅装置は、 励起光を出力する励起光源と、 入力さ れた信号光と前記励起光とを合波して出力する光合波器と、 前記光合波器の出力 を入力とし、 前記信号光を増幅して出力するエルビウム添加ファイバとを備え、 前記励起光の波長が 1. 54 / Π!〜 1. 55 μ mであり、 前記エルビウム添加フ アイバの濃度条長積が 6 O k p pm ' n!〜 90 k p pm, mであることを特徴と する。 Further, another optical amplifying device according to the present invention comprises: an excitation light source for outputting excitation light; An optical multiplexer that multiplexes the obtained signal light and the pump light and outputs the multiplexed light, and an erbium-doped fiber that receives the output of the optical multiplexer as an input, amplifies the signal light, and outputs the amplified signal light. Wavelength is 1.54 / 54! 1.1.55 μm, and the concentration product of the erbium-doped fiber is 6 O kp pm 'n! 9090 kp pm, m.
この発明によると、 波長 1. 48 μ mの励起光を用いた場合に比べて、 大きな 利得を得るとともに信号波長の変化に対する利得の変動を小さくすることができ る。  According to the present invention, it is possible to obtain a large gain and to reduce the fluctuation of the gain with respect to a change in the signal wavelength, as compared with a case where pumping light having a wavelength of 1.48 μm is used.
また、 本発明に係る更に他の光増幅装置は、 励起光を出力する励起光源と、 入 力された信号光と前記励起光とを合波して出力する光合波器と、 前記光合波器の 出力を入力とし、 前記信号光を増幅して出力するエルビウム添加ファイバとを備 え、 前記信号光の強度が一 1 0 d Bm以上であり、 前記励起光の波長が 1. 54 //m〜l . 55 /xmであり、 前記エルビウム添加ファイバの濃度条長積が 60 k p pm · π!〜 90 k p p m · mであることを特徴とする。  Further, still another optical amplifier according to the present invention includes: an excitation light source that outputs excitation light; an optical multiplexer that multiplexes and outputs an input signal light and the excitation light; and an optical multiplexer. And an erbium-doped fiber for amplifying the signal light and outputting the amplified signal light, wherein the intensity of the signal light is 10 dBm or more, and the wavelength of the pump light is 1.54 // m. 55 / xm, and the concentration length product of the erbium-doped fiber is 60 kp pm · π! ~ 90 kppm · m.
この発明によると、 信号光の強度が比較的大きいときに、 波長 1. 48 μπιの 励起光を用いた場合に比べて大きな利得を得ることができる。  According to the present invention, when the intensity of the signal light is relatively large, a larger gain can be obtained as compared with the case where the pumping light having the wavelength of 1.48 μπι is used.
一発明の効果一  Effect of one invention
以上のように、 本発明によると、 EDFAにおいて波長 1. 50 μπ!〜 1. 5 6 μπιの励起光を用いることにより、 波長 1. 48 μ mの励起光を用いるときよ りも、 Lバンドの信号光の増幅の際に大きな利得を得るとともに、 信号光の波長 の変動に対する利得の変動を抑えることができる。 図面の簡単な説明  As described above, according to the present invention, the wavelength of EDFA is 1.50 μπ! Using a pump light with a wavelength of ~ 1.56 μπι provides a larger gain when amplifying L-band signal light than using a pump light with a wavelength of 1.48 μm, and the wavelength of the signal light. Fluctuation of the gain with respect to the fluctuation of can be suppressed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施形態に係る光増幅装置の構成を示すプロック図である。 図 2は、 信号波長 1 600 nmのときの濃度条長積に対する図 1の EDFA (エルビウム添加ファイバ増幅装置) の利得を示す図である。  FIG. 1 is a block diagram illustrating a configuration of an optical amplifying device according to an embodiment of the present invention. FIG. 2 is a graph showing the gain of the EDFA (erbium-doped fiber amplifier) of FIG. 1 with respect to the concentration length product at a signal wavelength of 1600 nm.
図 3は、 信号波長 1 600 nm、 信号入力一 1 0 d Bmのときの濃度条長積に 対する図 1の ED FAの利得を示す図である。 Figure 3 shows the concentration profile product at a signal wavelength of 1600 nm and a signal input of 10 dBm. FIG. 2 is a diagram showing the gain of the EDFA of FIG.
図 4は、 信号波長 1 600 nm、 信号入力一 40 d B mのときの濃度条長積に 対する図 1の EDF Aの利得を示す図である。  FIG. 4 is a diagram showing the gain of the EDF A of FIG. 1 versus the concentration-length product when the signal wavelength is 1600 nm and the signal input is 40 dBm.
図 5は、 信号入力一 1 0 d Bm、 信号波長 1 600 nmのときの濃度条長積に 対する図 1の ED F Aのパワー変換効率の一例を示す図である。  FIG. 5 is a diagram illustrating an example of the power conversion efficiency of the EDFA of FIG. 1 with respect to the concentration length product when the signal input is 10 dBm and the signal wavelength is 1600 nm.
図 6は、 各励起波長において最も高いパワー変換効率が得られた濃度条長積に おける、 励起波長に対する図 1の EDF Aのパワー変換効率を示す図である。 図 7は、 励起入力に対する図 1の EDF Aのパワー変換効率を示す図である。 図 8は、 図 1の EDFAにおいて、 励起波長 1. 48 μπιの場合よりも励起波 長 1. 54 μ mの場合の方が利得が大きくなるような濃度条長積と励起入力との 組み合わせを求めるための図である。  FIG. 6 is a diagram showing the power conversion efficiency of the EDF A of FIG. 1 with respect to the excitation wavelength at the concentration-length product at which the highest power conversion efficiency was obtained at each excitation wavelength. FIG. 7 is a diagram showing the power conversion efficiency of the EDF A of FIG. 1 with respect to the excitation input. Fig. 8 shows the combination of the concentration-length product and the pump input in the EDFA of Fig. 1 such that the gain is larger at the pump wavelength of 1.54 μm than at the pump wavelength of 1.48 μπι. It is a figure for obtaining.
図 9は、 信号入力一 1 0 d Bmの場合に、 励起波長 1. 5 X μ mのときの方が 励起波長 1. 48 のときよりも利得が大きくなる条件を示す図である。  FIG. 9 is a diagram showing a condition where the gain is larger at an excitation wavelength of 1.5 X μm than at an excitation wavelength of 1.48 when the signal input is 10 dBm.
図 10は、 信号入力一 40 d Bmの場合に、 励起波長 1. 5 x / mのときの方 が励起波長 1. 48 /zmのときよりも利得が大きくなる条件を示す図である。 図 1 1は、 信号入力一 10 d Bm、 励起入力 9 OmW、 励起波長 1. 48 m のときの信号波長に対する図 1の ED F Aの利得を示す図である。  FIG. 10 is a diagram showing a condition where the gain is larger at an excitation wavelength of 1.5 x / m than at an excitation wavelength of 1.48 / zm when the signal input is 40 dBm. FIG. 11 is a diagram showing the gain of the EDFA of FIG. 1 with respect to the signal wavelength when the signal input is 10 dBm, the pump input is 9 OmW, and the pump wavelength is 1.48 m.
図 1 2は、 信号入力一 1 0 d Bm、 励起入力 85. 5 mW、 励起波長 1. 53 5 μ mのときの信号波長に対する図 1の EDF Aの利得を示す図である。  FIG. 12 is a diagram showing the gain of the EDF A of FIG. 1 with respect to the signal wavelength when the signal input is 10 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.535 μm.
図 1 3は、 信号入力一 1 0 d Bm、 励起入力 85. 5 mW、 励起波長 1. 54 μ mのときの信号波長に対する図 1の ED FAの利得を示す図である。  Fig. 13 is a diagram showing the gain of the EDFA in Fig. 1 with respect to the signal wavelength when the signal input is 10 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.54 µm.
図 1 4は、 信号入力一 1 0 d Bm、 励起入力 8 5. 5 mW、 励起波長 1. 54 5 μ mのときの信号波長に対する図 1の ED FAの利得を示す図である。  Fig. 14 is a diagram showing the gain of the EDFA of Fig. 1 with respect to the signal wavelength when the signal input is 10 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.554 µm.
図 1 5は、 信号入力 _ 1 0 d Bm、 励起入力 85. 5 mW、 励起波長 1. 55 μ mのときの信号波長に対する図 1の ED F Aの利得を示す図である。  FIG. 15 is a diagram illustrating the gain of the EDFA of FIG. 1 with respect to the signal wavelength when the signal input is −10 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.55 μm.
図 1 6は、 信号入力一 40 d B m、 励起入力 90 mW、 励起波長 1. 48 /z m のときの信号波長に対する図 1の EDF Aの利得を示す図である。 図 1 7は、 信号入力— 40 d Bm、 励起入力 8 5. 5 mW、 励起波長 1. 53 5 μ mのときの信号波長に対する図 1の E D F Aの利得を示す図である。 FIG. 16 is a diagram illustrating the gain of the EDF A of FIG. 1 with respect to the signal wavelength when the signal input is 40 dBm, the pump input is 90 mW, and the pump wavelength is 1.48 / zm. Figure 17 shows the gain of the EDFA of Figure 1 versus signal wavelength when the signal input is 40 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.535 μm.
図 1 8は、 信号入力— 40 d Bm、 励起入力 8 5. 5 mW、 励起波長 1. 54 μ mのときの信号波長に対する図 1の ED F Aの利得を示す図である。  Fig. 18 is a diagram showing the gain of the EDFA of Fig. 1 with respect to the signal wavelength when the signal input is 40 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.54 µm.
図 1 9は、 信号入力一 40 d Bm、 励起入力 85. 5 mW、 励起波長 1. 54 5 μ mのときの信号波長に対する図 1の EDF Aの利得を示す図である。  Fig. 19 is a diagram showing the gain of the EDF A of Fig. 1 with respect to the signal wavelength when the signal input is 40 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.554 µm.
図 20は、 信号入力一 40 d Bm、 励起入力 85. 5 mW、 励起波長 1. 55 μ mのときの信号波長に対する図 1の ED F Aの利得を示す図である。  FIG. 20 shows the gain of the EDFA of FIG. 1 with respect to the signal wavelength when the signal input is 40 dBm, the pump input is 85.5 mW, and the pump wavelength is 1.55 μm.
図 2 1は、 信号波長 1 600 n m、 励起入力 90 mW、 励起波長 1. 48 μ m のときの信号入力に対する図 1の EDF Aの利得を示す図である。  Fig. 21 is a diagram showing the gain of the EDF A of Fig. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 90 mW, and the pump wavelength is 1.48 µm.
図 22は、 信号波長 1 600 nm、 励起入力 85. 5 mW、 励起波長 1. 53 5 μ mのときの信号入力に対する図 1の EDF Aの利得を示す図である。  Fig. 22 shows the gain of the EDF A of Fig. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 85.5 mW, and the pump wavelength is 1.535 µm.
図 23は、 信号波長 1 600 nm、 励起入力 8 5. 5 mW、 励起波長 1. 54 μ mのときの信号入力に対する図 1の ED F Aの利得を示す図である。  FIG. 23 is a diagram showing the gain of the EDFA of FIG. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 85.5 mW, and the pump wavelength is 1.54 μm.
図 24は、 信号波長 1 600 nm、 励起入力 85. 5 mW、 励起波長 1. 54 5 μπιのときの信号入力に対する図 1の EDF Αの利得を示す図である。  FIG. 24 is a diagram showing the gain of the EDF of FIG. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 85.5 mW, and the pump wavelength is 1.554 μπι.
図 25は、 信号波長 1 600 nm、 励起入力 85. 5 mW、 励起波長 1. 55 μ mのときの信号入力に対する図 1の ED F Aの利得を示す図である。 発明を実施するための最良の形態  FIG. 25 is a diagram showing the gain of the EDFA of FIG. 1 with respect to the signal input when the signal wavelength is 1600 nm, the pump input is 85.5 mW, and the pump wavelength is 1.55 μm. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施形態について、 図面を参照しながら説明する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
図 1は本発明の実施形態に係る光増幅装置の構成を示すプロック図である。 図 1の光増幅装置 (以下では、 EDFAと称する) は、 アイソレータ 1 2, 1 5と、 光合波器 1 3と、 EDF 14と、 1. 5 X xm励起光源 2 1とを備えている。 以 下では、 1. 5 x / n il . 50 /zm〜l . 56 μ mを表すこととする。  FIG. 1 is a block diagram showing a configuration of an optical amplifying device according to an embodiment of the present invention. The optical amplifier (hereinafter referred to as EDFA) in FIG. 1 includes isolators 12 and 15, an optical multiplexer 13, an EDF 14, and a 1.5 X xm pump light source 21. In the following, 1.5 x / nil.50 / zm to l.56 .mu.m will be expressed.
アイソレータ 1 2は、 信号光をその入力端子への入力とし、 この信号光をその 出力端子から光合波器 1 3に出力する。 光合波器 1 3は、 アイソレータ 1 2が出 力する信号光と 1. 5 X m励起光源 2 1が出力する波長 1. 50 m〜l . 5 6 μ mの励起光とを合波して、 EDF 1 4に出力する。 EDF 1 4は、 励起光に よって励起されたエルビウムイオンの誘導放出現象により、 信号光を増幅し、 ァ イソレータ 1 5に出力する。 アイソレータ 1 5は、 増幅された信号光をその入力 端子への入力とし、 この信号光をその出力端子から図 1の EDF Aの出力として 出力する。 アイソレータ 1 2, 1 5は、 出力端子から入力端子の方向への信号伝 搬を許さない。 The isolator 12 receives the signal light as an input to its input terminal, and outputs this signal light from its output terminal to the optical multiplexer 13. Optical multiplexer 13 outputs isolator 12 The signal light to be applied and the 1.5 × m pump light having a wavelength of 1.50 m to 1.56 μm output from the 1.5 X m pump light source 21 are multiplexed and output to the EDF 14. The EDF 14 amplifies the signal light by the stimulated emission phenomenon of erbium ions excited by the excitation light, and outputs the amplified signal light to the isolator 15. The isolator 15 receives the amplified signal light as an input to its input terminal, and outputs this signal light from its output terminal as the output of the EDF A in FIG. The isolators 12 and 15 do not allow signal transmission from the output terminal to the input terminal.
なお、 図 1の EDFAは、 EDF 14中のレーザ発振や反射戻り光を除去する ために、 アイソレータ 1 2, 1 5を備えているが、 アイソレータ 1 2 , 1 5がな くても光増幅装置としての動作は可能である。  The EDFA shown in Fig. 1 has isolators 12 and 15 to remove laser oscillation and reflected return light from the EDF 14. However, even if there are no isolators 12 and 15, the optical amplifying device is not required. Is possible.
また、 図 1の EDFAは、 励起光と信号光とが EDF 1 4に同方向から入射す る前方向励起による構成となっているが、 励起光と信号光とが EDF 14に逆方 向から入射する後方向励起や、 励起光が EDF 1 4の両端から入射する双方向励 起としてもよレ、。  The EDFA shown in Fig. 1 has a configuration in which pumping light and signal light enter the EDF 14 in the same direction by forward pumping, but the pumping light and signal light enter the EDF 14 from the opposite direction. It is also possible to use backward pumping or bidirectional pumping in which pump light is incident from both ends of the EDF14.
EDF 14では、 エルビウムイオンが励起光によって励起され、 誘導放出をす ることにより、 入力された信号光を増幅する。 したがって、 励起準位にあるエル ビゥムイオンが多いほど利得を大きくすることができる。 EDF 14における吸 収は、 吸収スペク トルのピークに近い波長 1. 50 μπ!〜 1. 56 /zmの光の方 が波長 1. 48 μ mの光よりも大きいため、 同じ強度の励起光であっても、 波長 1. 50 )um〜l. 56 ju mの場合の方が波長 1. 48 μ mの場合よりも励起準 位のエルビウムイオンの数を増やすことができ、 図 1の ED F Aの増幅効率及び 利得を大きくすることができる。  In the EDF 14, the erbium ions are excited by the excitation light, and stimulated emission amplifies the input signal light. Therefore, the gain can be increased as the number of erbium ions in the excitation level increases. The absorption in EDF 14 is 1.50 μπ near the peak of the absorption spectrum! Since the light of ~ 1.56 / zm is larger than the light of wavelength 1.48 μm, even if the excitation light has the same intensity, the wavelength is 1.50) um ~ l.56 jum Can increase the number of erbium ions in the excitation level compared to when the wavelength is 1.48 μm, and can increase the amplification efficiency and gain of the EDFA in Fig. 1.
すなわち、 図 1の EDFAにおいて、 従来用いられていた波長 1. 48 /i mの 励起光に代えて波長 1. 50 μπ!〜 1. 56 mの励起光を用いることにより、 波長 1. 48 / mの励起光の強度を増すのと同じ効果が得られ、 また、 同じ大き さの利得を得るために必要な励起入力 (励起光の強度) を小さくすることができ る。 さらに、 波長 1. 50 / m〜l . 56 /i mの励起光は ED F 14に吸収され やすいので、 EDF 1 4の長さを短くすることができる。 In other words, in the EDFA of Fig. 1, the wavelength 1.50 μπ! Using a pump light of ~ 1.56 m has the same effect as increasing the intensity of the pump light at a wavelength of 1.48 / m, and also requires a pump input ( Excitation light intensity) can be reduced. Further, the excitation light having a wavelength of 1.50 / m to l.56 / im is absorbed by EDF14. EDF 14 can be shortened.
以下に、 各種の条件下における図 1の ED F Aの特性を示す。 比較のために、 1. 5 X μ m励起光源 2 1に代えて 1. 4 8 /x m励起光源 (図示せず) から波長 1. 4 8 μ πιの励起光を光合波器 1 3に与えた場合の特性も示す。 また、 EDF 1 4のエルビウム濃度 [p pm] とそのファイバ長 [m] との積を、 濃度条長積 ということとする。 濃度条長積の単位は p pm · mであり、 1 0 0 0 p pm - m を 1 k p p m · mと表記することとする。 ED F 1 4のエルビウム濃度は約 9 0 0 p p mである。  The characteristics of the EDFA in FIG. 1 under various conditions are shown below. For comparison, a 1.48 μm excitation light source (not shown) was used to provide 1.48 μππ excitation light to the optical multiplexer 13 instead of the 1.5 X μm excitation light source 21. The characteristics in the case of the above are also shown. The product of the erbium concentration [p pm] of EDF 14 and its fiber length [m] is referred to as the concentration strip product. The unit of the concentration product is p pm · m, and 1000 p pm-m is expressed as 1 k p pm · m. The erbium concentration of EDF 14 is about 900 ppm.
図 2は、 信号波長 (信号光の波長) 1 6 00 nmのときの濃度条長積に対する 図 1の EDF Aの利得を示す図である。 図 2において、 ▲は励起波長 (励起光の 波長) 1. 5 3 μ πι, 信号入力 (信号光の強度) 一 1 0 d Bm、 画は励起波長 1. 5 3 ^ m, 信号入力一 4 0 d Bm、 △は励起波長 1. 4 8 /z m, 信号入力— 1 0 d Bm、 口は励起波長 1. 4 8 μ ηι, 信号入力— 4 0 d B mの場合について示し ている。 励起入力は 3 1. 8 mWである。  FIG. 2 is a diagram showing the gain of the EDF A of FIG. 1 with respect to the concentration length product when the signal wavelength (wavelength of the signal light) is 1600 nm. In Fig. 2, ▲ indicates the excitation wavelength (wavelength of the excitation light) 1.53 μπι, signal input (intensity of the signal light)-10 dBm, and the image indicates the excitation wavelength 1.53 ^ m, signal input 1 4 0 d Bm and △ show the case of the pump wavelength 1.48 / zm, signal input—10 dBm, and the mouth shows the case of the pump wavelength 1.48 μηι, signal input—40 dBm. The excitation input is 31.8 mW.
図 2によると、 濃度条長積を最適なものとした場合、 信号入力の大きさにかか わらず、 励起波長が 1. 5 3 μπιのときの方が 1. 4 8 t mのときよりも大きな 利得が得られることがわかる。  According to Fig. 2, when the concentration-length product is optimized, the excitation wavelength is 1.53 μπι more than 1.48 tm regardless of the signal input size. It can be seen that a large gain can be obtained.
図 3及ぴ 4は、 信号波長 1 6 0 0 nmのときの濃度条長積に対する図 1の ED F Aの利得を示す図であって、 図 3は信号入力— 1 0 d Bm、 図 4は信号入力一 FIGS. 3 and 4 are graphs showing the gain of the EDFA of FIG. 1 with respect to the concentration length product at a signal wavelength of 160 nm. FIG. 3 shows the signal input—10 dBm, and FIG. 4 shows the gain. Signal input
4 0 d Bmの場合についての図である。 It is a figure about the case of 40 dBm.
図 3及び 4は、 励起波長が 1. 4 8 z m, 1. 5 3 5 μ m, 1. 5 4 m, 1. Figures 3 and 4 show that the excitation wavelength is 1.48 zm, 1.535 μm, 1.54 m, 1.
5 4 5 111及び1. 5 5 μ mの場合についてのデータを示している。 励起入力は、 励起波長 1. 4 8 μ mの場合は 9 OmW、 励起波長 1. 5 3 5 m〜; 1. 5 5 mの場合は 8 5. 5mWであり、 励起波長 1. 4 8 μ mの場合の方がその他の場 合よりも励起入力が約 0. 2 d B大きいが、 この励起入力の差は無視してもほと んど差し支えがないと考えられる。 以下の図では、 励起波長 1. 4 8 μ πι、 励起 入力 9 0 mWの場合のデータと、 励起波長 1. 5 0 X m〜: I . 5 6 μ m、 励起入 力 85. 5 mWの場合のデータとを同一の図において示す場合は、 単に励起入力 85. 5 mWと表示することとする。 The data for the cases of 5 4 5 111 and 1.55 μm are shown. Excitation input: 9 OmW for excitation wavelength 1.48 μm, excitation wavelength 1.535 m to 85.5 mW for 1.55 m, excitation wavelength 1.48 μm In the case of m, the excitation input is about 0.2 dB larger than in the other cases, but it is considered that there is almost no problem if this difference in the excitation input is ignored. In the following figure, the excitation wavelength 1. 4 8 μ πι, and data in the case of the excitation input 9 0 mW, excitation wavelength 1. 5 0 X m~:. I 5 6 μ m, the excitation input When the data for the case of power 85.5 mW is shown in the same figure, the excitation input shall be simply indicated as 85.5 mW.
図 3及び 4によると、 濃度条長積を最適なものとした場合、 信号入力の大きさ にかかわらず、 励起波長が 1. 53 5 μπι〜1. 55 mのときの方が 1. 48 μ mのときよりも大きな利得が得られることがわかる。  According to Figures 3 and 4, when the concentration-length product is optimized, regardless of the size of the signal input, the excitation wavelength is 1.48 μm when the excitation wavelength is 1.553 μπι to 1.55 m. It can be seen that a larger gain is obtained than in the case of m.
したがって、 信号光の波長が Lバンド (1 560 nm〜 1 6 1 0 n m) にある とき、 図 1の EDF Aにおいて、 励起光の波長を 1. 50〃π!〜 1. 56 μ m、 好ましくは 1. 53 / m〜l . 55 μ mとすることによって、 励起光の波長が 1. 48 μπιの場合よりも大きな利得を得ることができる。  Therefore, when the wavelength of the signal light is in the L band (1560 nm to 1610 nm), the wavelength of the pump light is 1.50DFπ! By setting the wavelength to 1.56 μm, preferably 1.53 / m to 1.55 μm, a larger gain can be obtained than when the wavelength of the pump light is 1.48 μπι.
図 5は、 信号入力一 1 0 d Bm、 信号波長 1 600 nmのときの濃度条長積に 対する図 1の ED F Aのパワー変換効率の一例を示す図である。 パワー変換効率 は、 (EDFからの信号出力/励起入力) X I 00で表され、 この値が大きいほ ど効率よく励起光を信号光の増幅に利用できる。  FIG. 5 is a diagram illustrating an example of the power conversion efficiency of the EDFA of FIG. 1 with respect to the concentration length product when the signal input is 10 dBm and the signal wavelength is 1600 nm. The power conversion efficiency is represented by (signal output / excitation input from EDF) XI00. The larger this value is, the more efficiently the pump light can be used for amplifying the signal light.
図 5は、 励起波長 1. 48 ^ m, 1. 535 /z m, 1. 54 m, 1. 545 〃 111及び1. 55 μ mの場合についてのデータを示している。 励起入力は、 励起 波長 1. 535 ;um〜l . 5 5 111の場合は85. 5 mW、 励起波長 1. 48 μ mの場合は 9 OmWである。  FIG. 5 shows data for the excitation wavelengths of 1.48 ^ m, 1.535 / zm, 1.54m, 1.545545111 and 1.55 μm. The excitation input is 85.5 mW for an excitation wavelength of 1.535; um to 1.55111, and 9 OmW for an excitation wavelength of 1.48 μm.
図 5から、 励起波長によって最もパワー変換効率が高い濃度条長積が異なるこ とがわかる。 励起入力を 9. 5mW〜85. 5 mWまで変化させて、 図 5と同様 のグラフを描き、 各励起波長について、 得られたデータの中で最も高いパワー変 換効率が得られた場合の濃度条長積を求めると、 励起波長 1. 48 / mのときは From Fig. 5, it can be seen that the concentration length product having the highest power conversion efficiency differs depending on the excitation wavelength. The excitation input was varied from 9.5 mW to 85.5 mW, and a graph similar to Fig. 5 was drawn.For each excitation wavelength, the concentration at which the highest power conversion efficiency was obtained from the data obtained When the product of the strip length is obtained, when the excitation wavelength is 1.48 / m,
30 k p p m · m、 励起波長 1 · 535 μ のときは 60 k p pm * m、 励起波 長 1. 54 μ mのときは 80 k p p m · m、 励起波長 1. 54 5 ;umのときは 7 0 k p ρ m · m、 励起波長 1. 55 のときは 70 k p pm ' mであった。 30 kppmm, 60 kp pm * m for an excitation wavelength of 1 535 μm, 80 kppmm for an excitation wavelength of 1.54 μm, 70 kp for an excitation wavelength of 1.545 μm It was 70 kp pm 'm when ρ m · m and the excitation wavelength was 1.55.
図 6は、 このような、 各励起波長において最も高いパワー変換効率が得られた 濃度条長積における、 励起波長に対する図 1の EDF Aのパワー変換効率を示す 図である。 信号波長は 1 600 nm、 信号入力は一 1 0 d B mである。 ただし、 測定で得られたデータは限られているため、 励起波長 1. 48 μπιの場合は 30 k p p m · mよりも小さい濃度条長積、 励起波長 1. 535 μ mの場合は 6 0 k p p m · mよりも大きい濃度条長積において、 最も高いパワー変換効率が得られ る可能性がある。 FIG. 6 is a diagram showing the power conversion efficiency of the EDF A of FIG. 1 with respect to the excitation wavelength at the concentration strip product at which the highest power conversion efficiency was obtained at each excitation wavelength. The signal wavelength is 1600 nm and the signal input is 10 dBm. However, Due to the limited data obtained in the measurement, the concentration length product is smaller than 30 kppmm for the excitation wavelength of 1.48 μπι, and 60 kppmm for the excitation wavelength of 1.535 μm. It is possible that the highest power conversion efficiency can be obtained at the concentration product with the largest concentration.
図 6から、 励起波長 1. 48 mの場合に得られるパワー変換効率は最大約 1 0%であるのに対し、 励起波長 1. 54 /ζπ!〜 1. 55 μ mの場合に得られるパ ヮー変換効率は最大約 20%である。 また、 励起波長 1. 535 μπιの場合でも、 パワー変換効率は最大約 1 5 %である。  From Fig. 6, the power conversion efficiency obtained at an excitation wavelength of 1.48 m is up to about 10%, whereas the excitation wavelength is 1.54 / ζπ! The power conversion efficiency obtained at ~ 1.55 µm is up to about 20%. Also, even at an excitation wavelength of 1.535 μπι, the maximum power conversion efficiency is about 15%.
したがって、 信号光の波長が Lバンドのものであるとき、 図 1の EDFAにお いて、 励起光の波長を 1. 50 μπ!〜 1. 56 μ m、 好ましくは 1. 535 μπι 〜1. 55 μπιとすることによって、 励起光の波長が 1. 48 μπιの場合よりも 大きなパワー変換効率を得ることができる。  Therefore, when the wavelength of the signal light is that of the L band, the wavelength of the pump light is set to 1.50 μπ! By setting the wavelength to 光 1.56 μm, preferably 1.535 μπι to 1.55 μπι, a greater power conversion efficiency can be obtained than when the wavelength of the pump light is 1.48 μπι.
図 7は、 励起入力に対する図 1の EDF Αのパワー変換効率を示す図である。 各励起波長における濃度条長積を図 6と同じとしており、 信号波長は 1 600 η m、 信号入力は一 1 0 d Bmである。 励起入力は、 励起波長 1. 53 5 μ π!〜 1. 55 /xmの場合は 85. 5 mW、 励起波長 1. 48 μ mの場合は 90 mWである。 図 7から、 励起波長 1. 48 mの場合のパワー変換効率は最大約 1 0%であ るのに対し、 励起波長 1. 54 ;im〜l . 55 mの場合のパワー変換効率は最 大約 20%であり、 励起波長 1. 54 /zm〜l . 55 μ mの場合は励起入力を 8 5. 5mWよりも大きくすることによって、 さらにパワー変換効率が大きくなる ことが予想できる。  FIG. 7 is a diagram showing the power conversion efficiency of the EDF of FIG. 1 with respect to the excitation input. The concentration length product at each excitation wavelength is the same as in Fig. 6, the signal wavelength is 1600 ηm, and the signal input is 10 dBm. Excitation input is 1.53 5 μπ! 85.5 mW for ~ 1.55 / xm, 90 mW for an excitation wavelength of 1.48 µm. From Fig. 7, the power conversion efficiency at an excitation wavelength of 1.48 m is up to about 10%, while the power conversion efficiency at an excitation wavelength of 1.54; im to 1.5 m is up to about 10%. In the case of an excitation wavelength of 1.54 / zm to 1.55 μm, it can be expected that the power conversion efficiency will be further increased by making the excitation input larger than 85.5 mW.
図 8は、 図 1の EDFAにおいて、 励起波長 1. 48 μ mの場合よりも励起波 長 1. 54 mの場合の方が利得が大きくなるような濃度条長積と励起入力との 組み合わせを求めるための図の一例である。 信号入力は一 10 d Bm、 信号波長 は 1 600 n mである。  Figure 8 shows the combination of the concentration-length product and the excitation input in the EDFA of Fig. 1 so that the gain is greater at the excitation wavelength of 1.54 m than at the excitation wavelength of 1.48 μm. It is an example of a diagram for obtaining. The signal input is one 10 dBm and the signal wavelength is 1600 nm.
図 8から、 例えば濃度条長積が 40 k p p m · mの場合は、 励起波長 1. 48 μ mのときの利得と励起波長 1. 54 μ mのときの利得とは、 励起入力を約 34 mWとしたときに同じになり、 励起入力がこれよりも小さいときには励起波長 1. 5 4 μ mの方が利得が大きいことがわかる。 同様にして、 他の励起波長 (1. 5 3 5 ju m, 1. 5 4 5 m, 1. 5 5 μ m) についても励起波長 1. 4 8 / mの ときよりも利得が大きくなる励起入力の範囲を求めることができる。 From Fig. 8, for example, when the concentration-length product is 40 kppm · m, the gain at an excitation wavelength of 1.48 μm and the gain at an excitation wavelength of 1.54 μm are approximately 34 It is the same when mW is set, and it can be seen that when the pump input is smaller than this, the gain is larger at the pump wavelength of 1.54 μm. Similarly, for other pump wavelengths (1.535 jum, 1.545 m, 1.55 μm), the pump gain becomes larger than when the pump wavelength is 1.48 / m. The range of the input can be determined.
図 9及び 1 0は、 このようにして求めた、 励起波長 1. 5 x /i mのときの方が 励起波長 1. 4 8 μ πιのときよりも利得が大きくなる条件を示す図である。 図 9 は信号入力一 1 0 d Bm、 図 1 0は信号入力一 4 0 d Bmの場合について示して いる。 図 9及び 1 0中に示されたデータ点よりも励起入力が小さいような領域、 すなわち、 これらのデータ点よりも濃度条長積が大きいような領域は、 励起波長 1 - 5 X μπιの方が励起波長 1. 4 8 μ mの場合よりも利得が大きく、 特性が優 れる領域である。  FIGS. 9 and 10 are diagrams showing the conditions thus obtained in which the gain is larger at the excitation wavelength of 1.5 x / im than at the excitation wavelength of 1.48 μπι. FIG. 9 shows the case where the signal input is 10 dBm, and FIG. 10 shows the case where the signal input is 40 dBm. The region where the excitation input is smaller than the data points shown in FIGS. 9 and 10, that is, the region where the concentration product is larger than these data points, is closer to the excitation wavelength of 1-5 X μππι. Is the region where the gain is larger and the characteristics are better than when the pump wavelength is 1.48 μm.
ここで、 励起波長 1. 5 X mの各場合について、 励起波長 1. 4 8 /z mの場 合よりも利得が大きくなる領域を図 9に示されたデータに基づいて近似式により 求めると、 E D Fの濃度条長積を C L、 励起入力を P Pとして、 励起波長 1 . 5 3 5 μ m, 1. 5 4 μ m, 1, 5 4 5 μ m及び 1. 5 5 μ mの場合、 それぞれ、 Here, for each case of the excitation wavelength of 1.5 X m, the area where the gain is larger than that of the case of the excitation wavelength of 1.48 / zm is obtained by an approximate expression based on the data shown in Fig. 9. When the concentration length product of EDF is CL and the excitation input is PP, the excitation wavelengths are 1.535 μm, 1.54 μm, 1, 545 μm, and 1.55 μm, respectively. ,
C L > ( 1/0. 0 8 8) - 1 n (P P/0. 9 3 5) , C L> (1/0. 0 8 8)-1 n (P P / 0.93 5),
C L > (1/0. 1 0 8) · 1 η (P P/0. 44 7) ,  C L> (1/0. 1 0 8) 1 η (P P / 0.44 7),
C L > ( 1 / 0. 1 2 2) - 1 n ( P P/ 0. 2 6 1) ,  C L> (1 / 0. 1 2 2)-1 n (P P / 0.26 1),
C L > ( 1 /0. 0 9 7) · 1 η (ΡΡ Ό. 6 0 8) CL> (1 /0.0 9 7) 1 η (Ρ Ρ Ό. 6 0 8)
となる。 また、 同様の式を図 1 0に示されたデータに基づいて求めると、 励起波 長 1. 5 3 5 μ m, 1. 5 4 ^ m, 1 , 5 4 5 m及び 1. 5 5 μ ιηの場合 そ れぞれ、 Becomes When the same equation is calculated based on the data shown in Fig. 10, the excitation wavelengths are 1.535 μm, 1.54 ^ m, 1, 545 m and 1.55 μm. In the case of ιη,
C L > (1 /0. 0 5 5) 1 η (Ρ Ρ/ 2. 4 4 4) ,  C L> (1/0. 0 5 5) 1 η (Ρ Ρ / 2.44 4),
C L > ( 1 /0. 0 5 5) 1 η (Ρ Ρ/ 2. 5 4 3) ,  C L> (1/0. 0 5 5) 1 η (Ρ Ρ / 2.5 4 3),
C L > ( 1 / 0. 0 5 8) 1 η (Ρ Ρ/ 2. 2 5 1) ,  C L> (1 / 0.05 8) 1 η (Ρ Ρ / 2.25 1),
C L > ( 1 / 0 . 0 5 8) 1 η (Ρ ρ/ 2. 2 4 6 )  C L> (1/0 .0 5 8) 1 η (Ρ ρ / 2.24 6)
となる。 したがって、 このような領域の条件を C L〉 ( 1ズ α) · I n (P β ) と表 記したとき、 a及ぴ βは、 励起波長及び信号入力の大きさによって定まる定数と することができる。 αの値は信号入力の大きさが増加すると大きくなる。 ひ及び の値はおおよそ、 信号入力が _ 1 0 d Bmのとき、 それぞれ 0. 0 8〜0. 1 3及び 0. 2〜1. 0の範囲に、 信号入力が一 4 0 d Bmのとき、 それぞれ 0. 0 5〜0. 0 6及び 2. 2〜2. 6の範囲にある。 Becomes Therefore, when the conditions in such a region are expressed as CL〉 (1s α) · In (Pβ), a and β can be constants determined by the excitation wavelength and the magnitude of the signal input. it can. The value of α increases as the magnitude of the signal input increases. When the signal input is _10 dBm and the signal input is in the range of 0.08 to 0.13 and 0.2 to 1.0, respectively, and the signal input is 14 dBm , Respectively, in the range of 0.05 to 0.06 and 2.2 to 2.6.
図 1 1〜1 5は、 信号入力一 1 0 d Bm、 励起入力 8 5. 5 mW (図 1 1は 9 0 mW) のときの信号波長に対する図 1の E D F Aの利得を示す図である。 図 1 :!〜 1 5は、 それぞれ励起波長が 1. 4 8 μ πι, 1. 5 3 5 m, 1. 5 4 m , 1. 5 4 5 μ ιη及び 1. 5 5 μ mの場合について示す図である。  FIGS. 11 to 15 are diagrams showing the gain of the EDFA in FIG. 1 with respect to the signal wavelength when the signal input is 10 dBm and the excitation input is 85.5 mW (FIG. 11 is 90 mW). Figure 1:! To 15 are for the excitation wavelengths of 1.48 μπι, 1.535 m, 1.554 m, 1.545 μιη and 1.55 μm, respectively. FIG.
図 1 :!〜 1 5より、 信号入力— 1 0 d Bm、 励起入力 8 5. 5 mW (励起波長 1. 4 8 μ πιの場合は 9 O mW) という条件下で、 次のようなことがわかる。 すなわち、 信号波長 1 5 7 8 nm〜 1 6 1 5 n m、 濃度条長積 6 0 k p p m · n!〜 9 0 k p p m · mの場合に、 励起波長 1. 4 8 μ mのときよりも励起波長 1. 5 3 5 μ ΐη〜1. 5 5 μ mのときの方が利得が大きい。 また、 信号波長 1 5 7 6 nm〜1 6 0 5 n m、 濃度条 7 0 k p p m · m~ 9 0 k p p m · mの場合に、 励起波長 1. 4 8 mのときよりも励起波長 1. 5 4 μ πι〜1. 5 5 μ πιのとき の方が利得が大きく、 利得平坦性にも優れる。 つまり、 利得の信号波長に対する 依存性が小さく、 利得変動が小さい。 信号波長 1 5 7 6 nm〜 1 6 0 5 nmの範 囲内で、 励起波長 1. 5 4 μ π!〜 1. 5 5 μ mのときの利得変動は約 1 d Βであ る。  Figure 1: From ~ 15, signal input-10 dBm, excitation input 85.5 mW (9 O mW for excitation wavelength 1.48 μππι): I understand. That is, the signal wavelength is 1578 nm to 1615 nm, the concentration product is 60 kppm · n! In the case of 990 kppm · m, the gain is larger when the excitation wavelength is 1.535 μΐη11.55 μm than when the excitation wavelength is 1.48 μm. In addition, when the signal wavelength is 157 nm to 160 nm and the concentration is 70 kppmm to 90 kppmm, the excitation wavelength is 1.54 than when the excitation wavelength is 1.48 m. When μ πι ~ 1.55 μ πι, the gain is larger and the gain flatness is better. In other words, the dependence of the gain on the signal wavelength is small, and the gain fluctuation is small. Excitation wavelength 1.55 μπ within the signal wavelength range of 1756 nm to 1605 nm! The gain variation at ~ 1.55 μm is about 1 dΒ.
これと同程度の小さな利得変動を持った特性を、 励起波長 1. 4 8 /z mの場合 に得るためには、 濃度条長積 1 0 0 k p p m · m以上の ED Fが必要であること ゝ、 文献、 H. Sawada, et. al. , Broadband and gain-flattened erbium- doped f i ber amplifier with +20dBra output power for 1580nra band amplification, " P roc. EC0C 99, Nice, France, Sep.1999, TuD3.に示されている。  In order to obtain a characteristic with the same small gain fluctuation at an excitation wavelength of 1.48 / zm, an EDF with a concentration-length product of 100 kppmm or more is required. , Literature, H. Sawada, et.al., Broadband and gain-flattened erbium- doped fiber amplifier with + 20dBra output power for 1580nra band amplification, "Proc.EC0C 99, Nice, France, Sep. 1999, TuD3. Is shown in
図 1 6〜 2 0は、 信号入力一 4 0 d B m、 励起入力 8 5. 5 mW (図 1 6は 9 0 mW) のときの信号波長に対する図 1の E D F Aの利得を示す図である。 図 1 6〜 2 0は、 それぞれ励起波長が 1. 4 8 μ πι, 1. 5 3 5 ju m, 1 . 5 4 μ m , 1. 5 4 5 /z m及び 1. 5 5 μ mの場合について示す図である。 Figures 16 to 20 show signal input of 40 dBm, excitation input of 85.5 mW (Figure 16 shows 9 FIG. 2 is a diagram illustrating a gain of the EDFA of FIG. 1 with respect to a signal wavelength at the time of 0 mW). Figures 16 to 20 show the cases where the excitation wavelength is 1.48 μπι, 1.535 jum, 1.554 μm, 1.545 / zm and 1.55 μm, respectively. FIG.
図 1 6〜2 0より、 信号入力— 4 0 d Bm、 励起入力 8 5. 5 mW (励起波長 1. 4 8 μ mの場合は 9 0 mW) という条件下で、 次のようなことがわかる。 すなわち、 信号波長 1 5 7 0 η π!〜 1 6 2 0 n m、 濃度条長積 7 0 k p p m · n!〜 9 0 k p p m · mの場合に、 励起波長 1. 4 8 mのときよりも励起波長 1. 5 4 /z rn〜l . 5 5 mのときの方が利得が大きい。 また、 信号波長 1 5 7 O n m〜 1 6 0 0 nm、 濃度条長積 7 0 k p p m · m〜 9 0 k p p m · mの場合に、 励起波長 1. 4 8 μ mのときよりも励起波長 1. 5 4 μ π!〜 1. 5 5 μ ηιのとき の方が利得平坦性に優れる。 信号波長 1 5 7 0 nm〜 1 6 0 0 nmの範囲内で、 励起波長 1. 5 4 /i m〜: I . 5 5 μ πιのとき、 特に濃度条長積が 8 0 k p p m · mの場合の利得変動は約 2 d Bである。 From Figures 16 to 20, from the signal input of 40 dBm and the excitation input of 85.5 mW (90 mW for an excitation wavelength of 1.48 μm), Understand. That is, the signal wavelength 1 5 7 0 η π! ~ 1620 nm, concentration length product 70 kppm · n! In the case of · 90 kppm · m, the gain is larger when the excitation wavelength is 1.54 / z rn to 1.55 m than when the excitation wavelength is 1.48 m. In addition, when the signal wavelength is 157 nm to 160 nm, and the concentration-length product is 70 kppmm to 90 kppmm, the excitation wavelength is 1 more than when the excitation wavelength is 1.48 μm. . 5 4 μπ! The gain flatness is better at ~ 1.55 μηι. Within the scope of signal wavelengths 1 5 7 0 nm~ 1 6 0 0 nm, the excitation wavelength 1. 5 4 / im~:. I 5 when 5 μ πι, especially if the concentration length product is 8 0 kppm · m The gain variation is about 2 dB.
利得平坦性に優れると、 ED F Aが出力する信号の各波長間におけるレベル差 を小さくすることができるため、 伝送中に生じる波形歪みの影響や受信機での受 信特性が改善される。 利得平坦性をよくするためには、 利得等化器を用いる方法 もあるが、 利得等化器により生ずる損失があるため、 ED F Aの性能が劣化する。 図 2 1〜 2 5は、 信号波長 1 6 0 0 n m、 励起入力 8 5. 5 mW (図 2 1は 9 O mW) のときの信号入力に対する図 1の ED F Aの利得を示す図である。 図 2 1〜2 5は、 それぞれ励起波長が 1. 4 8 μ πι, 1. 5 3 5 m, 1. 5 4 μ m , 1. 5 4 5 111及ぴ1. 5 5 μ mの場合について示す図である。  If the gain flatness is excellent, the level difference between the wavelengths of the signal output by the EDFA can be reduced, so that the effects of waveform distortion occurring during transmission and the reception characteristics at the receiver are improved. To improve the gain flatness, there is a method using a gain equalizer, but the loss caused by the gain equalizer degrades the performance of the EDFA. Figures 21 to 25 show the gain of the EDFA of Figure 1 with respect to the signal input when the signal wavelength is 1600 nm and the excitation input is 85.5 mW (Figure 21 is 9 O mW). . Figures 21 to 25 show the cases where the excitation wavelength is 1.48 μπι, 1.535 μm, 1.554 μm, 1.545111 and 1.55 μm, respectively. FIG.
図 2 1〜 2 5より、 信号波長 1 6 0 0 n m、 励起入力 8 5. 5 mW (励起波長 1. 4 8 /x mの場合は 9 O mW) という条件下で、 次のようなことがわかる。  From Figures 21 to 25, under the conditions of a signal wavelength of 160 nm and an excitation input of 85.5 mW (9 O mW for an excitation wavelength of 1.48 / xm), Understand.
すなわち、 信号入力が— 4 0 d Bm〜一 2 0 d Bmであれば、 濃度条長積 7 0 k ρ ρ m · π!〜 9 0 k p p m · mの場合、 励起波長 1. 5 4 μ m〜 1. 5 5 μ m のときの方が、 励起波長 1. 4 8 のときよりも利得が大きレ、。 また、 信号入 力が一 1 0 d Bm以上であれば、 濃度条長積 6 0 k p p m · π!〜 9 0 k p p m · mの場合、 励起波長 1. 5 4 /i m〜l . 5 5 mのときの方が、 励起波長 1. 4 8 μ mのときよりも利得が大きい。 That is, if the signal input is between −40 dBm and 20 dBm, the concentration product is 70 k ρ ρ m · π! When the excitation wavelength is 1.54 μm to 1.55 μm, the gain is larger than when the excitation wavelength is 1.48. If the signal input is greater than 10 dBm, the concentration product is 60 kppm · π! ~ 90 kppm In the case of m, the gain is larger when the excitation wavelength is 1.54 / im to 1.55 m than when the excitation wavelength is 1.48 μm.
図 2 3〜2 5の傾向から、 濃度条長積が 9 0 k p p m · mよりも大きい場合で あっても、 励起波長 1. 5 4 z m〜l . 5 5 μ mのときの方が、 励起波長 1. 4 8 / mのときよりも利得が大きいことが予想できる。 また、 図 2 1〜2 5から、 3 0 k p p m · π!〜 6 0 k p p m · mの場合に、 励起波長 1. 5 3 5 μ m〜 1. 5 5 μ mのときは信号入力が _ 4 0 d Bm〜一 1 0 d B mの範囲において信号入 力の増大による利得の低下が少ないことがわかるため、 信号入力が一 1 0 d Bm 以上であっても励起波長 1. 4 8 μ πιのときよりも大きな利得が得られると予想 できる。  From the trends in Figs. 23 to 25, even when the concentration-length product is greater than 90 kppmm, the excitation is more pronounced when the excitation wavelength is 1.54 zm to 1.55 μm. It can be expected that the gain is greater than at a wavelength of 1.48 / m. Also, from Figs. 21 to 25, 30 kppm · π! Up to 60 kppmm, when the excitation wavelength is 1.535 μm to 1.55 μm, the signal input is in the range of _40 dBm to 110 dBm. It can be seen that there is little decrease in the gain due to the increase in the wavelength, so that even if the signal input is more than 10 dBm, a larger gain can be expected than when the pump wavelength is 1.48 μπι.
また、 図 2 1〜2 5の他に図 3及び 4をも参照すると、 信号波長 1 6 0 0 nm、 励起入力 8 5. 5 mW (励起波長 1. 4 8 /i mの場合は 9 O mW) という条件下 で、 次のようなことがわかる。  Referring to FIGS. 3 and 4 in addition to FIGS. 21 to 25, the signal wavelength is 1600 nm, the pump input is 85.5 mW (9 O mW for the pump wavelength of 1.48 / im). Under the condition), the following can be seen.
すなわち、 信号入力一 1 0 d Bm、 濃度条長積 5 5 k p p m · m以上の場合、 励起波長 1. 5 3 5 μ πι〜1. 5 5 /X mのときの方が励起波長 1. 4 8 μ πιのと きよりも利得が大きい。 信号入力一 4 0 d Bm〜一 2 0 d Bm、 濃度条長積 6 5 k p p m · m以上の場合、 励起波長 1. 5 3 5 μ π!〜 1. 5 5 πιのときの方が 励起波長 1. 4 8 /i mのときよりも利得が大きレ、。 産業上の利用可能性  In other words, when the signal input is 10 dBm and the concentration product is 55 kppmm or more, the excitation wavelength is 1.535 μπι to 1.55 / Xm, and the excitation wavelength is 1.4. The gain is larger than at 8 μπι. When the signal input is between 40 dBm and 20 dBm and the concentration product is 65 kppm · m or more, the excitation wavelength is 1.535 μπ! At 1.55 πι, the gain is larger than at the excitation wavelength of 1.48 / im. Industrial applicability
以上のように、 本発明に係る光増幅装置は、 通信に用いられる光信号の増幅に 有用であり、 特に Lバンドの光信号の増幅に適している。  As described above, the optical amplifying device according to the present invention is useful for amplifying an optical signal used for communication, and is particularly suitable for amplifying an L-band optical signal.

Claims

請 求 の 範 囲 The scope of the claims
1. 励起光を出力する励起光源と、 1. an excitation light source that outputs excitation light;
入力された信号光と前記励起光とを合波して出力する光合波器と、  An optical multiplexer that multiplexes and outputs the input signal light and the pump light,
前記光合波器の出力を入力とし、 前記信号光を増幅して出力するエルビウム添 加ファイバとを備え、  An erbium-added fiber that receives an output of the optical multiplexer as an input, amplifies the signal light, and outputs the amplified signal light;
前記励起光の波長が 1. 5 0 μ πι〜1. 5 6 μ πιである  The wavelength of the excitation light is 1.50 μπι to 1.56 μπι
光増幅装置。 Optical amplifier.
2. 請求項 1に記載の光増幅装置において、 2. The optical amplifying device according to claim 1,
前記信号光の波長が 1 5 6 0 nm〜 1 6 1 0 nmである  The wavelength of the signal light is 1560 nm to 1610 nm
ことを特徴とする光増幅装置。 An optical amplifying device characterized by the above-mentioned.
3. 請求項 2に記載の光増幅装置において、 3. In the optical amplifying device according to claim 2,
前記エルビゥム添加ファイバの濃度条長積 C Lと前記励起光の強度 P Pとの関係 が、 The relationship between the concentration-length product CL of the erbium-doped fiber and the intensity P P of the pump light is
C L > ( 1 /a) · I n (PP/i3 ) CL> (1 / a) In (P P / i3)
(α及び )3は、 前記励起光の波長及び前記信号光の強度によって定まる定数) で 表される ( α and) 3 are constants determined by the wavelength of the pump light and the intensity of the signal light)
ことを特徴とする光増幅装置。 An optical amplifying device characterized by the above-mentioned.
4. 励起光を出力する励起光源と、 4. an excitation light source that outputs excitation light;
入力された信号光と前記励起光とを合波して出力する光合波器と、  An optical multiplexer that multiplexes and outputs the input signal light and the pump light,
前記光合波器の出力を入力とし、 前記信号光を増幅して出力するエルビウム添 加ファイバとを備え、  An erbium-added fiber that receives an output of the optical multiplexer as an input, amplifies the signal light, and outputs the amplified signal light;
前記励起光の波長が 1. 5 4 μ πι〜1. 5 5 μ πιであり、  The wavelength of the excitation light is 1.54 μπι to 1.55 μπι,
前記 ルビウム添加ファイバの濃度条長積が 6 0 k p p m · π!〜 9 0 k p p m • mである The concentration-length product of the rubidium-doped fiber is 60 kppm · π! ~ 90 kppm • m
ことを特徴とする光増幅装置。 An optical amplifying device characterized by the above-mentioned.
5. 励起光を出力する励起光源と、 5. an excitation light source that outputs the excitation light;
入力された信号光と前記励起光とを合波して出力する光合波器と、  An optical multiplexer that multiplexes and outputs the input signal light and the pump light,
前記光合波器の出力を入力とし、 前記信号光を増幅して出力するエルビウム添 加ファイバとを備え、  An erbium-added fiber that receives an output of the optical multiplexer as an input, amplifies the signal light, and outputs the amplified signal light;
前記信号光の強度が— 1 0 d Bm以上であり、  The intensity of the signal light is −10 dBm or more;
前記励起光の波長が 1. 5 4 m〜 l . 5 5 i mであり、  The excitation light has a wavelength of 1.54 m to l.55 im;
前記エルビウム添加ファイバの濃度条長積が 6 0 k p p m . m~ 9 0 k p p m The concentration-length product of the erbium-doped fiber is 60 kppm.m to 90 kppm.
♦ mである ♦ m
ことを特徴とする光増幅装置。 An optical amplifying device characterized by the above-mentioned.
PCT/JP2001/002374 2000-03-24 2001-03-26 Optical amplifier WO2001071863A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-83669 2000-03-24
JP2000083669A JP2001274494A (en) 2000-03-24 2000-03-24 Optical amplification device

Publications (1)

Publication Number Publication Date
WO2001071863A1 true WO2001071863A1 (en) 2001-09-27

Family

ID=18600265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002374 WO2001071863A1 (en) 2000-03-24 2001-03-26 Optical amplifier

Country Status (3)

Country Link
JP (1) JP2001274494A (en)
TW (1) TW493305B (en)
WO (1) WO2001071863A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939974A1 (en) * 2008-12-17 2010-06-18 Centre Nat Rech Scient IMPULSIVE FIBER OPTICAL LASER FOR HIGH ENERGY SUB PICOSECOND PULSES IN L-BAND AND LASER TOOL FOR OPHTHALMIC SURGERY

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375732A (en) * 1989-08-18 1991-03-29 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier
WO1992002061A1 (en) * 1990-07-24 1992-02-06 British Telecommunications Public Limited Company Optical waveguide amplifier
JPH0499080A (en) * 1990-08-06 1992-03-31 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JPH09129956A (en) * 1995-10-31 1997-05-16 Furukawa Electric Co Ltd:The Optical fiber amplifier
US5883736A (en) * 1996-02-23 1999-03-16 The Furukawa Electric Co., Ltd. Er-doped optical fiber amplifier
EP0911926A1 (en) * 1997-02-18 1999-04-28 Nippon Telegraph and Telephone Corporation Optical amplifier and transmission system using the same
JPH11145533A (en) * 1997-11-12 1999-05-28 Furukawa Electric Co Ltd:The Light-amplifying device
JP2000012937A (en) * 1998-06-18 2000-01-14 Fujitsu Ltd Optical amplifier and optical amplification method therefor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0375732A (en) * 1989-08-18 1991-03-29 Nippon Telegr & Teleph Corp <Ntt> Optical fiber amplifier
WO1992002061A1 (en) * 1990-07-24 1992-02-06 British Telecommunications Public Limited Company Optical waveguide amplifier
JPH0499080A (en) * 1990-08-06 1992-03-31 Nippon Telegr & Teleph Corp <Ntt> Optical amplifier
JPH09129956A (en) * 1995-10-31 1997-05-16 Furukawa Electric Co Ltd:The Optical fiber amplifier
US5883736A (en) * 1996-02-23 1999-03-16 The Furukawa Electric Co., Ltd. Er-doped optical fiber amplifier
EP0911926A1 (en) * 1997-02-18 1999-04-28 Nippon Telegraph and Telephone Corporation Optical amplifier and transmission system using the same
JPH11145533A (en) * 1997-11-12 1999-05-28 Furukawa Electric Co Ltd:The Light-amplifying device
JP2000012937A (en) * 1998-06-18 2000-01-14 Fujitsu Ltd Optical amplifier and optical amplification method therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASSICOTT, J.F. ET AL., ELECTRONIC LETTERS, vol. 26, no. 20, 27 September 1990 (1990-09-27), pages 1646 - 1646, XP002942218 *
MASSICOTT, J.F. ET AL., ELECTRONIC LETTERS, vol. 28, no. 20, 24 September 1992 (1992-09-24), pages 1924 - 1925, XP002942219 *

Also Published As

Publication number Publication date
JP2001274494A (en) 2001-10-05
TW493305B (en) 2002-07-01

Similar Documents

Publication Publication Date Title
JP3808632B2 (en) Optical amplifier and optical amplification method
US6181464B1 (en) Low noise Raman amplifier employing bidirectional pumping and an optical transmission system incorporating same
EP1263096B1 (en) Improved wide band erbium-doped fiber amplifier (EDFA)
US6529317B2 (en) L-band erbium-doped fiber amplifier pumped by 1530 nm-band pump
KR100415548B1 (en) Long-wavelength-band erbium-doped fiber amplifier
JP2002232044A (en) Optical fiber amplifier
US6781748B2 (en) Long wavelength optical amplifier
JPH1174597A (en) Optical amplifier with absorber
WO2001071863A1 (en) Optical amplifier
JP2002252399A (en) Optical amplifier
JP2011061009A (en) Optical amplifier
Bakar et al. Single-stage gain-clamped L-band EDFA with C-band ASE saturating tone
JP3936275B2 (en) Optical transmission system and optical transmission method
JP3794532B2 (en) Raman amplification method
JP4703026B2 (en) Broadband ASE light source
JP3273911B2 (en) Optical fiber amplifier, semiconductor laser module for excitation and optical signal transmission system
WO2004075364A1 (en) Optical amplifier employing delay phase matching fiber
JP2000261078A (en) Optical amplifier
JPH11317560A (en) Optical amplifier and laser oscillator
JPH11330593A (en) Broadband spontaneous emission type optical source
JP2000223762A (en) Optical amplifier
JPWO2007034563A1 (en) Optical amplifier
KR0183913B1 (en) Erbium doped fiber amplifier having flat gain and low noise-figure
JP2003209308A (en) Light amplifying system
JP2001127363A (en) Ase light source

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase