JPH11330593A - Broadband spontaneous emission type optical source - Google Patents

Broadband spontaneous emission type optical source

Info

Publication number
JPH11330593A
JPH11330593A JP12630998A JP12630998A JPH11330593A JP H11330593 A JPH11330593 A JP H11330593A JP 12630998 A JP12630998 A JP 12630998A JP 12630998 A JP12630998 A JP 12630998A JP H11330593 A JPH11330593 A JP H11330593A
Authority
JP
Japan
Prior art keywords
light
spontaneous emission
fiber
optical amplification
emission light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12630998A
Other languages
Japanese (ja)
Inventor
Norio Tashiro
至男 田代
Shu Namiki
周 並木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP12630998A priority Critical patent/JPH11330593A/en
Publication of JPH11330593A publication Critical patent/JPH11330593A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a practical optical source allowing the band to broaden up to about 1530-1610 nm. SOLUTION: The optical source comprises an optical amplifier fiber 1 of Er doped fiber, etc., and exciting light input means disposed at the start and tail ends of the optical amplifier fiber 1 for inputting an exciting light. The optical amplifier fiber 1 has a length or absorption characteristic that mainly short wavelength components are absorbed and long wavelength components remain until a spontaneous emission light generated at the start end runs to the tail end and outputs from the tail end both the spontaneous emission light generated by the exciting light at the start end to propagate on the optical amplifier fiber 1 and that generated by the exciting light at the tail end.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は励起した光増幅ファ
イバから発生される自然放出光を光源とする広帯域自然
放出光光源に関するものであり、例えば広帯域で均一強
度の光を必要とする波長多重(WDM)光通信システム
の光源として使用するのに適するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a broadband spontaneous emission light source using a spontaneous emission light generated from an excited optical amplification fiber as a light source. (WDM) suitable for use as a light source in an optical communication system.

【0002】[0002]

【従来の技術】近年、通信容量の拡大に伴い、広い波長
帯域を用いて、異なる波長を持つ光信号を多重し、送受
信する波長多重(WDM)光ファイバ通信システムが盛
んに検討されている。このような背景のもと、現在、実
用化が進んでいるエルビウム添加光ファイバ増幅器(ED
FA : Erbium Doped fiber Amplifler )の自然放出光
(ASE : Amplified Spontaneous Emission)を用いた広
帯域自然放出光光源が、インコヒーレントなWDM用光
源として、またWDMシステム用光部品の試験用の光源
として使用されている。自然放出光を用いる光源として
は、例えば、特開平8−46297号公報や特開平9−
232661号公報に記載されているものがある。特開
平9−232661号公報では、1.5 μm 帯域のWDM
用に1.55μmを中心波長としたスペクトル幅38nmの広帯
域光源が報告されている。
2. Description of the Related Art In recent years, with the expansion of communication capacity, wavelength division multiplexing (WDM) optical fiber communication systems for multiplexing and transmitting and receiving optical signals having different wavelengths using a wide wavelength band have been actively studied. Against this background, erbium-doped optical fiber amplifiers (ED
Broadband spontaneous emission light source using ASE (Amplified Spontaneous Emission) of FA: Erbium Doped fiber Amplifler (ASE) is used as a light source for incoherent WDM and as a light source for testing optical components for WDM system. ing. As a light source using spontaneous emission light, for example, JP-A-8-46297 and JP-A-9-
There is one described in Japanese Patent No. 232661. Japanese Patent Application Laid-Open No. 9-232661 discloses a 1.5 μm band WDM.
For this purpose, a broadband light source with a spectral width of 38 nm centered at 1.55 μm has been reported.

【0003】[0003]

【発明が解決しようとする課題】ところが、Optical Fi
ber Communication Conference98のPostdeadline Paper
で、使用波長帯域を1530〜1610nm程度とする光増幅器及
び光通信システムが報告されると(A.K.Srivastava et
al. "1Tb/s Transmission of 100 WDM 10Gb/s Channels
Over 400km of True Wave Fiber.", PD10, "S.Aisawa,
et al." Ultra-wide band, long distance WDM transm
ission demonstration: 1Tb/s(50x20Gb/s).600km trans
mission using 1550 and 1580nm wavelength bands.",
PD11)、光源も、それまでの1530〜1565nm程度のものか
ら、1530〜1610nm程度まで広帯域化が図られるものが求
められるようになった。現在、このような広帯域光源が
実用化に向けて研究されているが、構造が簡潔で実用に
適したものはまだ見られない。
[Problems to be Solved by the Invention] However, Optical Fi
ber Communication Conference 98 Postdeadline Paper
An optical amplifier and an optical communication system with a wavelength band of about 1530 to 1610 nm have been reported (AKSrivastava et al.
al. "1Tb / s Transmission of 100 WDM 10Gb / s Channels
Over 400km of True Wave Fiber. ", PD10," S. Aisawa,
et al. "Ultra-wide band, long distance WDM transm
ission demonstration: 1Tb / s (50x20Gb / s) .600km trans
mission using 1550 and 1580nm wavelength bands. ",
PD11), light sources have been required to have a broadband from about 1530 to 1565 nm to about 1530 to 1610 nm. At present, such broadband light sources are being studied for practical use, but none of them has a simple structure and is suitable for practical use.

【0004】[0004]

【課題を解決するための手段】本発明のうち請求項1記
載の広帯域自然放出光光源は、エルビウムドープファイ
バ等の光増幅ファイバと、同光増幅ファイバの始端及び
終端に励起光を入力する励起光入力手段とを備え、光増
幅ファイバは始端側で発生された自然放出光が終端側に
至るまでに主に短波長成分が吸収されて長波長成分が残
る長さ或いは吸収特性のものとし、この始端側からの励
起光で発生されて光増幅ファイバを伝播される自然放出
光と、終端側からの励起光で発生される自然放出光とを
共に光増幅ファイバの終端側から出力するようにしたこ
とを特徴とするものである。
According to a first aspect of the present invention, there is provided a broadband spontaneous emission light source, comprising: an optical amplification fiber such as an erbium-doped fiber; and an excitation light input to a start end and an end of the optical amplification fiber. Light input means, and the optical amplification fiber has a length or absorption characteristic in which short wavelength components are mainly absorbed and long wavelength components remain until spontaneous emission light generated on the start side reaches the end side, The spontaneous emission light generated by the pump light from the start end and propagated through the optical amplification fiber and the spontaneous emission light generated by the excitation light from the end side are both output from the end side of the optical amplification fiber. It is characterized by having done.

【0005】本発明のうち請求項2記載の広帯域自然放
出光光源は、光増幅ファイバの終端側から出力される自
然放出光のうち、始端側の励起光によるものは主に1570
nm以上の長波長帯域光であり、終端側の励起光によるも
のは主に1530〜1570nmの短波長帯域光であることを特徴
とするものである。
In the broadband spontaneous emission light source according to the second aspect of the present invention, of the spontaneous emission light output from the terminal end of the optical amplification fiber, the light emitted mainly by the excitation light at the start end is mainly 1570.
It is a long wavelength band light of nm or more, and the light by the excitation light on the terminal side is mainly a short wavelength band light of 1530 to 1570 nm.

【0006】本発明のうち請求項3記載の広帯域自然放
出光光源は、光増幅ファイバの始端に入力する励起光と
終端に入力する励起光の光強度比を1:3 以上としたこと
を特徴とするものである。
According to a third aspect of the present invention, there is provided the broadband spontaneous emission light source, wherein the light intensity ratio between the pump light input to the starting end of the optical amplification fiber and the pump light input to the terminal end is 1: 3 or more. It is assumed that.

【0007】本発明のうち請求項4記載の広帯域自然放
出光光源は、光増幅ファイバの1.53μm での吸収ロスを
800dB 以上としたことを特徴とするものである。
The broadband spontaneous emission light source according to claim 4 of the present invention reduces the absorption loss at 1.53 μm of the optical amplification fiber.
It is characterized by being set to 800 dB or more.

【0008】本発明のうち請求項5記載の広帯域自然放
出光光源は、光増幅ファイバの終端に、同終端から出力
される自然放出光の波長依存性を解消するための補償フ
ィルタを設けたことを特徴とするものである。
In the broadband spontaneous emission light source according to a fifth aspect of the present invention, a compensation filter is provided at an end of the optical amplification fiber to eliminate wavelength dependence of the spontaneous emission output from the end. It is characterized by the following.

【0009】[0009]

【発明の実施の形態】(実施形態1)図1は本発明の広
帯域自然放出光光源の実施形態の概略図であり、光増幅
ファイバ1、第1、第2の励起光源2a、2b、第1、
第2の波長多重合波器3a、3b、光出力ポート4、無
反射端5からなる。第1、第2の励起光源2a、2b及
び第1、第2の波長多重合波器3a、3bは光増幅ファ
イバ1の始端及び終端に励起光を入力するための励起光
入力手段を構成する。
(Embodiment 1) FIG. 1 is a schematic view of an embodiment of a broadband spontaneous emission light source according to the present invention. The optical amplification fiber 1, first and second excitation light sources 2a and 2b, and 1,
It comprises a second wavelength multi-wave device 3a, 3b, an optical output port 4, and a non-reflection end 5. The first and second pumping light sources 2a and 2b and the first and second multi-wavelength wavelength-multiplexing devices 3a and 3b constitute pumping light input means for inputting pumping light to the start and end of the optical amplification fiber 1. .

【0010】前記光増幅ファイバ1はエルビウムドープ
光ファイバであり、ファイバ長360m、波長1.5 μm での
吸収強度は936dB (EDFA吸収係数(@1.53 μm )2.6dB/
m )である。この光増幅ファイバ1は平均反転分布ηと
自然放出光スペクトルとの関係で図4に示す特性を持
ち、平均反転分布ηが0.5 以上の領域では1530〜1570nm
の帯域で自然放出光を発生し、平均反転分布ηが0.5 以
下の領域では1570nm以上の波長で自然放出光を発生する
ものである。また、短波長帯域の自然放出光は光増幅フ
ァイバ1中のエルビウムイオンに吸収されやすいため、
図1の光増幅ファイバ1においてその始端側で短波長の
自然放出光が発生されても終端側には殆ど到達せず、長
波長帯の自然放出光のみが到達するようになる。
The optical amplification fiber 1 is an erbium-doped optical fiber having an absorption intensity of 936 dB at a fiber length of 360 m and a wavelength of 1.5 μm (EDFA absorption coefficient (@ 1.53 μm) 2.6 dB /
m). This optical amplification fiber 1 has the characteristics shown in FIG. 4 in relation to the average inversion distribution η and the spontaneous emission light spectrum, and 1530 to 1570 nm in a region where the average inversion distribution η is 0.5 or more.
, The spontaneous emission light is generated at a wavelength of 1570 nm or more in a region where the average population inversion η is 0.5 or less. In addition, since spontaneous emission light in a short wavelength band is easily absorbed by erbium ions in the optical amplification fiber 1,
In the optical amplifying fiber 1 of FIG. 1, even if spontaneous emission light of a short wavelength is generated at the start end, it hardly reaches the end side, and only the spontaneous emission light of the long wavelength band reaches.

【0011】第1、第2の励起光源2a、2bは1480nm
帯域の半導体レーザダイオードを用いてある。なお、こ
の光源が使われる1.5 μm 帯光通信では980nm 帯域の発
振波長を持つレーザも使われるが、この波長のレーザを
用いても良い。
The first and second excitation light sources 2a and 2b have a wavelength of 1480 nm.
Bandwidth semiconductor laser diodes are used. In the 1.5 μm band optical communication using this light source, a laser having an oscillation wavelength in the 980 nm band is used, but a laser having this wavelength may be used.

【0012】第1の波長多重合波器3aは、第1の励起
光源2aで発生される励起光を光増幅ファイバ1の始端
に入射可能とするものであり、第2の波長多重合波器3
bは第2の励起光源3bで発生される励起光を光増幅フ
ァイバ1の終端に入射可能とするものである。これら波
長多重合波器3a、3bとしては、フィルタ型、溶融型
等のものから所望のものを用いることができるが、広帯
域で損失特性の波長依存性が少ないフィルタ型が望まし
い。
The first wavelength multiplexing device 3a enables the excitation light generated by the first pumping light source 2a to be incident on the starting end of the optical amplification fiber 1, and the second wavelength multiplexing device 3a. 3
“b” allows the excitation light generated by the second excitation light source 3b to be incident on the end of the optical amplification fiber 1. As these wavelength-multiplexed wave devices 3a and 3b, desired ones can be used from among a filter type, a fusion type and the like, but a filter type having a wide band and little wavelength dependence of loss characteristics is desirable.

【0013】無反射端5は出力ポート4と反対側に伝搬
する光が外部に漏洩しないようにするためのものであ
り、光アイソレータで置き換えることもできる。
The non-reflection end 5 is for preventing light propagating to the side opposite to the output port 4 from leaking outside, and can be replaced by an optical isolator.

【0014】以上の構成において、第1の励起光源2a
は光強度を170mW に、第2の励起光源2bは光強度を34
mWに夫々設定し(両光源の光強度比は1:5 となる)、両
光源2a、2bを動作して光増幅ファイバ1の両端に励
起光を入力すると、図1に示す区間1aでは平均反転分
布ηが0.5 以上となって1520〜1570nmの短波長を主とす
る自然放出光が発生され、区間1bでは平均反転分布η
が0.5 以下となって1570nm以上の長波長の自然放出光が
発生され、光増幅ファイバ1の終端からは図3(c)に
曲線X で示すような1530〜1610nmの帯域で概ね均一な強
度の自然放出光が得られ、この光が出力ポート4より出
力される。
In the above configuration, the first excitation light source 2a
Has a light intensity of 170 mW, and the second excitation light source 2b has a light intensity of 34 mW.
mW (the light intensity ratio of both light sources is 1: 5), and when both light sources 2a and 2b are operated to input pump light to both ends of the optical amplification fiber 1, an average is obtained in the section 1a shown in FIG. When the population inversion η becomes 0.5 or more, spontaneous emission light mainly having a short wavelength of 1520 to 1570 nm is generated.
Is 0.5 or less, spontaneous emission light having a long wavelength of 1570 nm or more is generated. Spontaneous emission light is obtained, and this light is output from the output port 4.

【0015】なお、図1の装置において、第1の励起光
源2aのみを動作すると、出力ポート4から図3(a)
に示す様な長波長のみの自然放出光が出力され、第2の
励起光源2bのみを動作すると、図3(b)に示す様な
主に短波長の自然放出光が出力され、単にこれらを合成
したものは図3(c)において曲線Y にしからなず、実
際に得られる曲線X よりも平坦化が悪い(広帯域化され
ない)。これは2つの励起光源2a、2bを動作する
と、光増幅ファイバ1の終端側からの励起光により発生
される自然放出光で短波長のものが図1の区間1aにも
入り込み、両光源2a、2bの相乗効果で区間1aの光
増幅ファイバ1が励起されて、より効果的に長波長帯の
自然放出光が発生されるためである。
When only the first excitation light source 2a is operated in the apparatus shown in FIG.
When only the second excitation light source 2b is operated, only the short-wavelength spontaneous emission light as shown in FIG. 3 (b) is output. In FIG. 3 (c), the composite does not have a curve Y, but has a lower flatness than the actually obtained curve X (the band is not broadened). This is because when the two pump light sources 2a and 2b are operated, spontaneous emission light generated by the pump light from the terminal side of the optical amplification fiber 1 and having a short wavelength enters the section 1a of FIG. This is because the optical amplification fiber 1 in the section 1a is excited by the synergistic effect of 2b, and spontaneous emission light in a long wavelength band is generated more effectively.

【0016】(実施形態2)図2は本発明の広帯域自然
放出光光源の他の実施形態であり、図1と同様に構成し
た装置で、その出力ポート4の手前に補償フィルタ6を
挿入したものである。補償フィルタ(スペクトル等価フ
ィルタ)6はマッハツェンダー型フィルタを2個使用し
てなるもので、夫々のFSR (フリースペクトラルレン
ジ)は100nm 、中心波長は夫々1560nm、1593nmである。
この補償フィルタ6を挿入することにより、図5に示す
様に3dB 帯域として82nmの広帯域で平坦な自然放出光が
得られた。
(Embodiment 2) FIG. 2 shows another embodiment of the broadband spontaneous emission light source according to the present invention, which has the same configuration as that of FIG. 1 and has a compensation filter 6 inserted before the output port 4 thereof. Things. The compensating filter (spectral equivalent filter) 6 uses two Mach-Zehnder filters, each having an FSR (free spectral range) of 100 nm and a center wavelength of 1560 nm and 1593 nm, respectively.
By inserting the compensation filter 6, as shown in FIG. 5, flat spontaneous emission light in a wide band of 82 nm as a 3 dB band was obtained.

【0017】本件発明の広帯域自然放出光光源は、励起
光源を1つとし、この光源からの光を分配して光増幅フ
ァイバ1の始端と終端とに入力する構成も可能である。
この場合、始端側と終端側に入力する励起光の光強度に
差を付け、例えば実施形態1と同様に光強度を170mW と
34mWとする。但し、現在のところ出力が170+34mWの半導
体LDはないので、2つの半導体のLDの出力をカプラで合
成する構成のものを単一の励起光源とする。
The broadband spontaneous emission light source of the present invention may have a configuration in which a single excitation light source is used, and the light from this light source is distributed and input to the start and end of the optical amplification fiber 1.
In this case, a difference is made between the light intensities of the excitation lights input to the start end and the end, and for example, the light intensity is set to 170 mW as in the first embodiment.
34 mW. However, since there is no semiconductor LD with an output of 170 + 34 mW at present, a single pumping light source is configured to combine the outputs of two semiconductor LDs with a coupler.

【0018】本件発明において光増幅ファイバ1の始端
と終端とに入力する励起光は夫々の波長を違えることも
可能である。
In the present invention, the pumping light input to the start and end of the optical amplification fiber 1 can have different wavelengths.

【0019】[0019]

【発明の効果】本発明の広帯域自然放出光光源によれば
次のような効果がある。 .簡潔な構成であるにもかかわらず広帯域で均一な自
然放出光を発生することができ、ワイドバンドのWDM
に使うことができる。 .簡潔な構造のため、装置の信頼性が高く、コストも
低く抑えることができ、小型化、省メンテナンスを可能
とする。
According to the broadband spontaneous emission light source of the present invention, the following effects can be obtained. . Although it has a simple configuration, it can generate uniform spontaneous emission light in a wide band, and has a wide band WDM.
Can be used for . Because of the simple structure, the reliability of the device is high, the cost can be kept low, and miniaturization and maintenance can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の広帯域自然放出光光源の第1の実施形
態を示した概略図。
FIG. 1 is a schematic view showing a first embodiment of a broadband spontaneous emission light source according to the present invention.

【図2】本発明の広帯域自然放出光光源の第2の実施形
態を示した概略図。
FIG. 2 is a schematic diagram showing a second embodiment of the broadband spontaneous emission light source of the present invention.

【図3】出力ポートより出力される光のスペクトルを示
した説明図であり、(a)は始端側の励起光源を作動し
たときの出力を示したもの、(b)は終端側の励起光源
を作動したときの出力を示したもの、(c)は両励起光
源を作動したときの出力を示したもの。
3A and 3B are explanatory diagrams showing a spectrum of light output from an output port, where FIG. 3A shows an output when a starting end pumping light source is operated, and FIG. (C) shows the output when both pumping light sources are operated.

【図4】光増幅ファイバの平均反転分布と自然放出光ス
ペクトルとの関係を示した説明図。
FIG. 4 is an explanatory diagram showing the relationship between the average population inversion distribution of the optical amplification fiber and the spontaneous emission light spectrum.

【図5】図2の広帯域自然放出光光源で得られる自然放
出光のスペクトルを示した説明図。
FIG. 5 is an explanatory diagram showing a spectrum of spontaneous emission light obtained by the broadband spontaneous emission light source of FIG. 2;

【符号の説明】[Explanation of symbols]

1 光増幅ファイバ 1 Optical amplification fiber

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】エルビウムドープファイバ等の誘導放出に
より光を増幅する作用を持つ光増幅ファイバと、同光増
幅ファイバの始端及び終端に励起光を入力する励起光入
力手段とを備え、光増幅ファイバは始端側で発生された
自然放出光が終端側に至るまでに主に短波長成分が吸収
されて長波長成分が残る長さ或いは吸収特性のものと
し、この始端側からの励起光で発生されて光増幅ファイ
バを伝播される自然放出光と、終端側からの励起光で発
生される自然放出光とを共に光増幅ファイバの終端側か
ら出力するようにしたことを特徴とする広帯域自然放出
光光源。
An optical amplification fiber comprising: an optical amplification fiber having an action of amplifying light by stimulated emission of an erbium-doped fiber; and excitation light input means for inputting excitation light to a start end and an end of the optical amplification fiber. The length of the spontaneous emission light generated at the start end is of a length or absorption characteristic in which the short wavelength component is mainly absorbed and the long wavelength component remains until it reaches the end side, and is generated by the excitation light from the start end. The spontaneous emission light propagated through the optical amplification fiber and the spontaneous emission light generated by the excitation light from the terminal side are both output from the terminal side of the optical amplification fiber. light source.
【請求項2】光増幅ファイバの終端側から出力される自
然放出光のうち、始端側の励起光によるものは主に1570
nm以上の長波長帯域光であり、終端側の励起光によるも
のは主に1530〜1570nmの短波長帯域光であることを特徴
とする請求項1に記載の広帯域自然放出光光源。
2. Of the spontaneous emission light output from the terminal side of the optical amplifying fiber, one mainly due to the pumping light on the start side is 1570.
2. The broadband spontaneous emission light source according to claim 1, wherein the light is a long wavelength band light of at least nm and is mainly a short wavelength band light of 1530 to 1570 nm due to the excitation light on the terminal side.
【請求項3】光増幅ファイバの始端に入力する励起光と
終端に入力する励起光の光強度比を1:3 以上としたこと
を特徴とする請求項1又は請求項2に記載の広帯域自然
放出光光源。
3. The wide-band natural light according to claim 1, wherein a light intensity ratio between the pump light input to the start end of the optical amplification fiber and the pump light input to the terminal end is 1: 3 or more. Emission light source.
【請求項4】光増幅ファイバの1.53μm での吸収ロスを
800dB 以上としたことを特徴とする請求項1乃至請求項
3の夫々に記載の広帯域自然放出光光源。
4. The absorption loss of the optical amplification fiber at 1.53 μm.
4. The broadband spontaneous emission light source according to claim 1, wherein the power is 800 dB or more.
【請求項5】光増幅ファイバの終端に、同終端から出力
される自然放出光の波長依存性を解消するための補償フ
ィルタを設けたことを特徴とする請求項1乃至請求項4
の夫々に記載の広帯域自然放出光光源。
5. The optical amplifying fiber according to claim 1, further comprising a compensating filter provided at an end of said optical amplifying fiber for eliminating wavelength dependence of spontaneous emission light output from said end.
The broadband spontaneous emission light source according to any one of the above.
JP12630998A 1998-05-08 1998-05-08 Broadband spontaneous emission type optical source Pending JPH11330593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12630998A JPH11330593A (en) 1998-05-08 1998-05-08 Broadband spontaneous emission type optical source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12630998A JPH11330593A (en) 1998-05-08 1998-05-08 Broadband spontaneous emission type optical source

Publications (1)

Publication Number Publication Date
JPH11330593A true JPH11330593A (en) 1999-11-30

Family

ID=14932004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12630998A Pending JPH11330593A (en) 1998-05-08 1998-05-08 Broadband spontaneous emission type optical source

Country Status (1)

Country Link
JP (1) JPH11330593A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011338A1 (en) * 2000-07-31 2002-02-07 Mitsubishi Denki Kabushiki Kaisha Wavelength division multiplex optical transmitter
JP2002329907A (en) * 2001-04-26 2002-11-15 Kyocera Corp Wide-band ase light source
WO2002093698A1 (en) * 2001-05-16 2002-11-21 Mitsubishi Cable Industries, Ltd. Ase light source
WO2003028175A1 (en) * 2001-09-26 2003-04-03 Ntt Electronics Corporation Ase light source, optical amplifier and laser oscillator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002011338A1 (en) * 2000-07-31 2002-02-07 Mitsubishi Denki Kabushiki Kaisha Wavelength division multiplex optical transmitter
JP3875190B2 (en) * 2000-07-31 2007-01-31 三菱電機株式会社 Wavelength division multiplexing optical transmission equipment
JP2002329907A (en) * 2001-04-26 2002-11-15 Kyocera Corp Wide-band ase light source
JP4703026B2 (en) * 2001-04-26 2011-06-15 京セラ株式会社 Broadband ASE light source
WO2002093698A1 (en) * 2001-05-16 2002-11-21 Mitsubishi Cable Industries, Ltd. Ase light source
JP2002344045A (en) * 2001-05-16 2002-11-29 Mitsubishi Cable Ind Ltd Ase light source
WO2003028175A1 (en) * 2001-09-26 2003-04-03 Ntt Electronics Corporation Ase light source, optical amplifier and laser oscillator
US6912083B2 (en) 2001-09-26 2005-06-28 Ntt Electronics Corporation ASE light source, optical amplifier and laser oscillator

Similar Documents

Publication Publication Date Title
US6172803B1 (en) Optical amplifier and transmission system using the same
JP4115027B2 (en) Excitation light generation means, Raman amplifier and optical repeater using the same
US6700696B2 (en) High order fiber Raman amplifiers
US6411431B2 (en) Optical amplifier for amplifying light in a long wavelength band
EP1263096B1 (en) Improved wide band erbium-doped fiber amplifier (EDFA)
US6414787B2 (en) Optical fiber amplifier having a gain flattening filter
JPH11331094A (en) Wide band optical amplifier
WO2000005622A1 (en) Raman amplifier, optical repeater, and raman amplification method
US11652329B2 (en) Light source for Raman amplification, light source system for Raman amplification, Raman amplifier, and Raman amplifying system
US6031646A (en) Optical fiber telecommunication system
US20020191277A1 (en) Method and apparatus for amplifying an optical signal
JP2001313433A (en) Optical amplifier and method for optical amplification
CN107533270B (en) Raman amplification light source, Raman amplification light source system, Raman amplifier, and Raman amplification system
US20080152352A1 (en) Inline pump sharing architecture for remotely-pumped pre- and post-amplifiers
Sun et al. An 80 nm ultra wide band EDFA with low noise figure and high output power
WO2016182068A1 (en) Light source for raman amplification, light source system for raman amplification, raman amplifier, raman amplifying system
JPH11145533A (en) Light-amplifying device
JPH11330593A (en) Broadband spontaneous emission type optical source
US6504647B1 (en) Optical fiber amplifier, a method of amplifying optical signals, optical communications system
US20040184816A1 (en) Multiwavelength depolarized Raman pumps
JP4205651B2 (en) Optical repeater
US6624928B1 (en) Raman amplification
JPH1146167A (en) Optical repeater
JP3250473B2 (en) Optical amplifier
JP2000106544A (en) Optical amplifier and wavelength multiplex optical transmission system