TW493305B - Amplitude increasing device for light - Google Patents
Amplitude increasing device for light Download PDFInfo
- Publication number
- TW493305B TW493305B TW90106799A TW90106799A TW493305B TW 493305 B TW493305 B TW 493305B TW 90106799 A TW90106799 A TW 90106799A TW 90106799 A TW90106799 A TW 90106799A TW 493305 B TW493305 B TW 493305B
- Authority
- TW
- Taiwan
- Prior art keywords
- wavelength
- excitation
- excitation light
- light
- input
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/06—Construction or shape of active medium
- H01S3/063—Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
- H01S3/067—Fibre lasers
- H01S3/06754—Fibre amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/16—Solid materials
- H01S3/1601—Solid materials characterised by an active (lasing) ion
- H01S3/1603—Solid materials characterised by an active (lasing) ion rare earth
- H01S3/1608—Solid materials characterised by an active (lasing) ion rare earth erbium
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optics & Photonics (AREA)
- Lasers (AREA)
Abstract
Description
493305 A7 B7 五、發明説明(1 ) 【發明所屬技術領域】 本發明係相關通訊上所採用之光信號予以放大的光增 幅裝置。 (請先閱讀背面之注意事項寫本頁) 【習知技術】 按,以光纖爲放大媒介,而將光信號放大的光增福裝 置’已屬眾所週知。而光纖採用添加餌之光纖(EDF: erbium-doped fiber )者,顯示出1 · 5 5 // m頻帶之光增 幅裝置的優越性能,通稱爲餌添加光纖放大裝置( E D F A : erbium-doped fiber amplifier ) 〇 在EDFA中採用波長1 . 48//m或0 · 9 8//m 的激發光。因爲具有E D F中的吸收比較大,而接近截至 目前光通訊中所採用之1 · 55//m頻帶(.1 5 3 0nm 〜1 5 6 0 n m )信號光的波長,與對E D F吸收程度波 長的變動較小,即便偏移激發波長,放大特性亦不致有太 大改變的優點,尤其是波長1 · 4 4 8 # m的激發光更被 廣泛的使用。 經濟部智慧財產局Μ工消費合作社印製 此外,將複數波長的光以一條光纖傳播的通稱波長多 路(WDM : wavelength deivsion multipluxing )傳播的方 式,頗引人注目。在W D Μ傳播中,藉由增加光纖中所傳 播不同波長的信號光數目,便可增大傳播容量。因此,便 形成可使用截至目前尙未採用之通稱L帶寬或1·58 //m帶寬的信號波長(156〇nm〜1610nm)。 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) · 4 - 493305 A7 B7 五、發明説明(2 ) 【發明欲解決之課題】 請 先 閲 讀 背 冬 i 事 項 再 填 寫 本 頁 惟,E D F之吸收光譜的峰値係在1 · 5 3 // m附近 ,而1 · 4 8 // m並非吸收光譜的峰値。所以,在 EDFA中若採用波長1 . 48//m的激發光,則L帶寬 的信號光便無法有效率的放大,另,相較於放大1 . 5 5 // m帶寬信號光之情況下,便必須非常長的E D F。 本發明之課題,便提供一種藉由採用屬E D F吸收光 譜峰値之波長1 · 5 3 // m附近的激發光,而有效率的放 大L帶寬信號光,並獲得較大增益之光增幅裝置。 【解決課題之手段】 經濟部智慧財產局員工消費合作社印製 緣是,爲解決上述課題,申請專利範圍第1項所述的 機構,係光增幅裝置乃具備有激發光源、光合波器及餌添 加光纖;該激發光源係輸出激發光的激發光源;該光合波 器係將所輸入之信號光與該激發光,並予以輸出者;該餌 添加光纖係以該光合波器的輸出爲輸入,並將該信號光予 以放大而輸出者;其中,該激發光波長在1 · 50 //m〜 1 . 5 6 // m。 依照申請專利範圍第1項的發明,因爲採用接近 E D F吸收光譜峰値的波長作爲激發光,即便相同強度的 激發光,亦較採用其他波長之激發光的情況,更可增加 E D F中之激發級餌離子數目,藉此可獲大幅提昇 E D F A的放大效率及增加增益之功效。 再者,申請專利範圍第2項的發明,乃在申請專利範 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)-5 - 493305 ΑΊ ___ Β7 五、發明説明(3 ) 圍第1項所述的光增幅裝置中,該信號光的波長爲 156〇nm 〜1610nm。 依照申請專利範圍第2項的發明,相較於採用波長 1 · 4 8 A m之激發光的情況下,可獲得較大的增益及功 率轉換效率。 再者,申請專利範圍第3項的發明,乃在申請專利範 圍第1項所述的光增幅裝置中,該餌添加光纖的濃度線長 積C L與該激發光強度P p間的關係,爲C L ( 1 / α ) ·493305 A7 B7 V. Description of the invention (1) [Technical field to which the invention belongs] The present invention is an optical amplifier device for amplifying optical signals used in related communications. (Please read the notes on the back first to write this page) [Know-how] Pressing, using optical fiber as amplifying medium, and a light-enhancing device that amplifies the optical signal is already well known. And the optical fiber adopts erbium-doped fiber (EDF: erbium-doped fiber amplifier), which shows the superior performance of 1 · 5 5 // m-band optical amplifiers. It is generally called EDFA: erbium-doped fiber amplifier. ) 〇 Excitation light having a wavelength of 1.48 // m or 0.98 // m is used in the EDFA. Because it has relatively large absorption in EDF, it is close to the wavelength of signal light in the 1.55 // m band (.1530 nm to 1560 nm) used so far in optical communications, and the wavelength of the degree of absorption of EDF The variation of the value is small. Even if the excitation wavelength is shifted, the amplification characteristics will not change much, especially the excitation light with a wavelength of 1 · 4 4 8 # m is more widely used. Printed by the Intellectual Property Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs In addition, the method of transmitting light of a plurality of wavelengths through a fiber called the wavelength deivsion multipluxing (WDM) is quite remarkable. In W D M propagation, by increasing the number of signal lights of different wavelengths transmitted in the optical fiber, the propagation capacity can be increased. Therefore, it is possible to use a signal wavelength (15660 to 1610nm) which has not been adopted so far, which is commonly referred to as L bandwidth or 1.58 // m bandwidth. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) · 4-493305 A7 B7 V. Description of the invention (2) [Questions to be solved by the invention] Please read the subject of winter and then fill out this page. The peak ridge of the absorption spectrum of EDF is near 1 · 5 3 // m, and 1 · 4 8 // m is not the peak 値 of the absorption spectrum. Therefore, if an excitation light with a wavelength of 1.48 // m is used in the EDFA, the signal light of the L bandwidth cannot be efficiently amplified. In addition, compared with the case of amplifying the signal light of the 1.55 // m bandwidth, , It must be a very long EDF. The subject of the present invention is to provide a light amplification device that efficiently amplifies the L-band signal light and obtains a larger gain by using excitation light near the wavelength 1 · 5 3 // m that is a peak of the EDF absorption spectrum. . [Methods to solve the problem] The printed matter of the Employee Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs is for the purpose of solving the above-mentioned problems. The organization described in the first patent application scope is an optical amplifier device with an excitation light source, optical multiplexer, and bait. Added optical fiber; the excitation light source is an excitation light source that outputs excitation light; the optical multiplexer is an input signal light and the excitation light and outputs it; the bait addition optical fiber is based on the output of the optical multiplexer as an input, The signal light is amplified and output; wherein the wavelength of the excitation light is in the range of 1.50 // m to 1. 5 6 // m. According to the invention in the first scope of the patent application, because the wavelength near the peak of the EDF absorption spectrum is used as the excitation light, even the excitation light of the same intensity can increase the excitation level in the EDF compared to the case of using other wavelengths. The number of bait ions can greatly improve the amplification efficiency and gain of EDFA. In addition, the invention in item 2 of the scope of patent application applies the Chinese National Standard (CNS) A4 specification (210X297 mm)-5-493305 in the paper size of the patent application model. 5. Description of the invention (3) In the optical amplifier device according to the item 1, the wavelength of the signal light is from 1560 nm to 1610 nm. According to the invention in the second scope of the patent application, a larger gain and power conversion efficiency can be obtained compared with the case of using excitation light with a wavelength of 1 · 48 A m. In addition, the invention of the third scope of the patent application is the relationship between the concentration line long product CL of the bait-added optical fiber and the excitation light intensity P p in the optical amplification device described in the first scope of the patent application. CL (1 / α)
In ( P p / ^ )(其中,α及/3係分別指依照該激發光波 長與該信號光強度所決定的常數)。 依照申請專利範圍第3項的發明,相較於採用波長 1 · 4 8 // m激發光之情況下,可確實獲得較大的增益。 再者,申請專利範圍第4項的發明的光增幅裝置係具 備有激發光源、光合波器及餌添加光纖;該激發光源係輸 出激發光的激發光源;該光合波器係將所輸入之信號光與 該激發光,並予以輸出者;該餌添加光纖係以該光合波器 的輸出爲輸入,並將該信號光予以放大而輸出者;其中, 該激發光波長在1 · 54//m〜1 · 56//m,而該餌添 加光纖的濃度線長積爲6〇k p pm · m〜9 0 k p Pm • m ° 依照申請專利範圍第4項的發明,相較於採用波長 1 · 4 8 // m激發光之情況下,可獲得較大的增益,同時 亦可減小對信號波長變化的增益變動。 再者,申請專利範圍第5項的發明的光增幅裝置係具 本纸張尺度適用中國國家標準(CNS) A4規格(210x297公釐) (請先閱讀背面之注意事項再填寫本頁) -裝· 、11 經濟部智慧財產局員工消費合作社印製 493305 A7 __B7____ 五、發明説明(4 ) 備有激發光源、光合波器及餌添加光纖;該激發光源係_ 出激發光的激發光源;該光合波器係將所輸入之信號光與 該激發光,並予以輸出者;該餌添加光纖係以該光合波器 的輸出爲輸入,並將該信號光予以放大而輸出者;其中, 該信號光強度在- 1 0 d Bm以上,且該激發光波長在 1 · 5 4 // m〜1 · 5 5 // m,而該餌添加光纖的濃度線 長積爲6〇kppm*m〜9〇kppm*m。 依照申請專利範圍第5項的發明,當信號光強度較大 時,相較於採用波長1 · 4 8 // m激發光之情況下,可獲 得較大的增益。 【發明實施態樣】 以下,請參閱圖示,針對本發明之一實施態樣進行詳 細說明。 置構造 器 的輸入 中。光 X // m # m激 1 4乃 經濟部智慧財產局員工消費合作社印製 第1圖所示係相關本發明實施態樣之光增幅裝 的方塊圖。第1圖所示的光增幅裝置(以下通稱「 DEFA」)係具備有單向器12 ,15、光合波 、EDF14、與15x//m激發光源21。以下 x//m 係指 1 . 50//m 〜1 · 56//m。In (P p / ^) (where α and / 3 refer to constants determined according to the wavelength of the excitation light and the intensity of the signal light, respectively). According to the invention in the third scope of the patent application, a larger gain can be surely obtained compared with the case where the excitation light with a wavelength of 1 · 4 8 // m is used. Furthermore, the optical amplification device of the invention in the fourth item of the patent application is provided with an excitation light source, an optical multiplexer, and a bait-added optical fiber; the excitation light source is an excitation light source that outputs the excitation light; The light and the excitation light are outputted; the bait-added optical fiber takes the output of the optical multiplexer as input and amplifies the signal light to output; wherein the wavelength of the excitation light is 1.54 // m ~ 1 · 56 // m, and the concentration line long product of the added fiber of the bait is 60kp pm · m ~ 9 0 kp Pm • m ° According to the invention in the fourth item of the patent application, compared with the wavelength of 1 · In the case of 4 8 // m excitation light, a larger gain can be obtained, and at the same time, the gain variation to the signal wavelength change can be reduced. In addition, the optical amplifier device of the invention in the scope of patent application No. 5 applies to the Chinese paper standard (CNS) A4 (210x297 mm). (Please read the precautions on the back before filling this page)- · , 11 Printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs 493305 A7 __B7____ V. Description of the invention (4) Equipped with excitation light source, optical multiplexer and bait-added optical fiber; the excitation light source is the excitation light source that emits the excitation light; the photosynthesis The waver is an input signal light and the excitation light, and outputs it; the bait addition optical fiber is the one that takes the output of the optical multiplexer as an input and amplifies the signal light to output; among which, the signal light The intensity is above-1 0 d Bm, and the wavelength of the excitation light is 1 · 5 4 // m ~ 1 · 5 5 // m, and the concentration line length product of the added fiber of the bait is 60kppm * m ~ 9〇 kppm * m. According to the invention of claim 5 in the scope of patent application, when the signal light intensity is large, a larger gain can be obtained compared with the case of using the wavelength of 1 · 4 8 // m excitation light. [Implementation Mode of the Invention] Hereinafter, an implementation mode of the present invention will be described in detail with reference to the drawings. Set the input of the constructor. Light X // m # m 激 1 4 is a block diagram printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 1 is a block diagram of a light booster related to the implementation of the present invention. The optical amplifier device (hereinafter referred to as "DEFA") shown in FIG. 1 is provided with unidirectional devices 12, 15, optical multiplexers, EDF 14, and 15x // m excitation light source 21. The following x // m means 1.50 // m to 1.56 // m.
單向器1 2 ,1 5係將信號光作爲其輸入端子 ,並由其輸出端子將此信號光輸出於光合波器1 3 合波器1 3係將單向器1 2的輸出信號光、與1 5 激發光源2 1之輸出波長1 · 50//m〜1 . 56 發光,予以合波,並輸出於EDF14中。EDF -7- 請 先 閱 讀 背 5 意 事 項 再 填 寫 本 頁 本紙張尺度適用中國國家標準(CNS ) A4規格(210X 297公釐) 493305 A7 B7 經濟部智慧財產苟員工消費合作社印製 五、發明説明(5) 藉由激發光所激發起之餌離子的誘發釋 予以放大,並輸出於單向器1 5中。單 大過的信號光,作爲其輸入端子的輸入 將此信號光作爲第1圖所示E D F A的 器1 2 ,1 5係不允許由輸出端子朝向 號傳播。 另’在弟1圖所不的EDF A,雖 中的雷射震盪或反射返光,而具備有單 但即便未設置單向器1 2,1 5 ,亦可 動作。 此外,第1圖所示的E D F A雖採 ,由EDF 1 4相同方向射入的前方向 可採用將激發光與信號光,由E D F 1 後方向激發之構造,或將激發光由E D 雙方向激發。 在E D F 1 4中,餌離子利用激發 利用誘發釋出,而放大所輸入的信號光 離子越多的話,便可獲得越大的增益。 吸收,因爲接近吸收光譜峰値之波長1 . 1 . 56//m的光,大於波長1 . 48 便相同強度的激發光,波長1 . 5 0 // 的光,亦可較波長1 · 4 8 // m之情況 級餌離子的數目,而可增大第1圖之E 與增益。 出現象, 向器1 5 ,而由此 輸出而輸 輸入端子 將信號光 係將經放 輸出端子 出。單向 方向的信 爲去除E D F 1 4 向器1 2 ,1 5 , 進行光增幅裝置的 將激發光與信號光 激發之構造,但亦 4相反方向射入的 F 1 4二端射入的 光而被激發起,並 。所以,激發級餌 在E D F 1 4中的 5 0 // m 〜 // m的光,所以即 m 〜1 . 5 6 // m 下,更能增加激發 D F A的放大效率 請 閲 讀 背 面 之 意 事 項 再 填 寫 本 頁 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -8 - 493305 A7 B7 經濟部智慧財產局員工消費合作社印製 五、發明説明(6 ) 換句話說,在第1圖所示的EDFA中,藉由取 知所採用的波長1 · 4 8 // m之激發光,而改用波長 1 · 5〇//m〜1 · 56//m的光,便可獲得與增加 1 · 4 8 // m之激發光強度相同的效果,此外,亦可 爲獲得相同大小增益上所必須的激發輸入(激發光強 。甚者,波長1 · 5 0 // m〜1 · 5 6 // m的激.發光 較容易被E D F 1 4所吸收,所以便可縮短E D F 1 長度。 以下,顯示各種條件下的第1圖之E D F A特性 合比較上,取代1 5 X // m激發光源2 1 ,而顯示改 波長1 · 4 8 // m激發光源(未圖示),將波長1 · # m激發光供給於光合波器」3之情況時的特性。另 EDF 1 4的餌濃度〔p pm〕與其光纖長度〔m〕 ’稱之爲濃度線長積。濃度線長積的單位爲p p m · 1 0 00p pm · m 便以 1 kppm · m 表示。 E D F 1 4之餌濃度約爲9 〇 〇 p p m。 第2圖所示係第1圖所示E D F A相對於信號波 信號光的波長)1 6 0 0 n m時之濃度線長積的增益 第2圖中,▲係表激發波長(激發光的波長)1 · 5 3 # m,信號輸入(信號光強度)—1 〇 d b m,係 發波長1 · 53//m,信號輸入一 4〇dBm,△係 發波長1 · 48/zm,信號輸入一 10dBm,□係 激發波長1 · 4 8 // m,信號輸入—4 0 d B m之情 激發輸入爲3l.8rnW。 代習 波長 減小 度) 因爲 4的 。配 用由 4 8 ,將 之積 長( 。在 表激 表激 表表 況。 (請先閱讀背面之注意事項*<填寫本頁) $ 平 个 ί ί - •y Μ I、 1 一 493305 A7 B7 五、發明説明(7 ) (請先閲讀背面之注意事項再填寫本頁) 由第2圖得知,濃度線長積在最佳情況時,不管輸入 信號的大小,激發波長在1 · 5 3 // m時,較1 . 4 8 V m時可獲得更大的增益。 第3圖與第4圖所示係第1圖所示E D F A相對於信 號波長(信號光的波長)1 6 0 0 n m時之濃度線長積的 增益,其中第3圖係相關信號輸入一 1 〇 d B m之情況的 圖示,而第4圖係相關信號輸入一 4 0 d Bm之情況的圖 示。 第3圖與第4圖係相關激發波長1 · 48//m、 1 . 535//m、1 · 54//m、及 1 · 545//m 時的Unidirectional devices 1 2 and 1 5 use signal light as their input terminals and output the signal light to the optical multiplexer 1 3 through their output terminals. The 3 multiplexer 1 3 outputs the signal light from the unidirectional device 1 2. It emits light with the output wavelength 1 · 50 // m ~ 1.56 of the excitation light source 21 of 1 5 and multiplexes it and outputs it to EDF14. EDF -7- Please read the 5 notes before filling in this page. The paper size is applicable to the Chinese National Standard (CNS) A4 specification (210X 297 mm) 493305 A7 B7 Printed by the Intellectual Property of the Ministry of Economic Affairs and the Consumer Cooperatives (5) The induced release of bait ions excited by the excitation light is amplified and output in the unidirectional device 15. The signal light that is too large is used as the input of its input terminal. This signal light is used as the E D F A device 1 2 and 1 5 shown in Figure 1. It is not allowed to propagate from the output terminal toward the signal. On the other hand, in EDF A, which is not shown in Figure 1, although the laser oscillates or reflects the reflected light, and it has a single unit, it can operate even if the unidirectional units 12 and 15 are not provided. In addition, although the EDFA shown in Figure 1 is adopted, the forward direction of the same direction of the EDF 1 4 can adopt a structure that excites the excitation light and the signal light from the rear direction of the EDF 1 or the excitation light is excited from both directions by the ED. . In E D F 1 4, the bait ions are released by excitation and induction, and the more signal light ions that are input are amplified, the larger the gain can be obtained. Absorption, because the light with a wavelength of 1.1.56 // m near the peak of the absorption spectrum is greater than the excitation light with a wavelength of 1.48, and the light with a wavelength of 1.50 / // can also be compared with a wavelength of 1. 4 The number of case-level bait ions at 8 // m can increase E and gain in Figure 1. An image appears, the director 15, and the output is input through the input terminal. The signal light is output through the output terminal. The letter in one direction is to remove the EDF 1 4 directors 1 2 and 1 5 and carry out the structure of the optical amplification device that excites the excitation light and the signal light, but also the light incident at the two ends of F 1 4 incident in the opposite direction. And was excited, and. Therefore, the light of the excitation level bait in EDF 1 4 5 0 // m ~ // m, so that m ~ 1. 5 6 // m, can increase the amplification efficiency of excited DFA, please read the meaning on the back Please fill in this page again. The paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -8-493305 A7 B7. Printed by the Consumers ’Cooperative of Intellectual Property Bureau of the Ministry of Economic Affairs. In the EDFA shown in Figure 1, by knowing the excitation light with a wavelength of 1 · 4 8 // m and using light with a wavelength of 1 · 50 // m ~ 1 · 56 // m, you can Get the same effect as increasing the excitation light intensity of 1 · 4 8 // m. In addition, you can also obtain the necessary excitation input (excitation light intensity) for the same size gain. In addition, the wavelength is 1 · 5 0 // m ~ 1 · 5 6 // m. The luminescence is easily absorbed by EDF 1 4 so the length of EDF 1 can be shortened. Below, the EDFA characteristics of the first figure under various conditions are compared, instead of 1 5 X / / m excitation light source 2 1, and the display changes to a wavelength of 1 · 4 8 // m excitation light source (not shown), which excites the wavelength 1 · # m The characteristics when light is supplied to the optical multiplexer "3. In addition, the bait concentration [p pm] of EDF 1 4 and its optical fiber length [m] 'are called the concentration line long product. The unit of the concentration line long product is ppm · 1 0 00p pm · m is expressed as 1 kppm · m. The bait concentration of EDF 14 is about 9,000 ppm. Figure 2 shows the wavelength of EDFA relative to signal wave signal light shown in Figure 1) 1 6 0 Gain of the concentration line long product at 0 nm. In the second figure, ▲ indicates the excitation wavelength (wavelength of the excitation light) 1 · 5 3 # m, signal input (signal light intensity)-1 〇dbm, and the system emits wavelength 1 · 53 // m, signal input-40 dBm, △ system emission wavelength 1 · 48 / zm, signal input-10 dBm, □ system excitation wavelength 1 · 4 8 // m, signal input-4 0 d B m The input is 3l.8rnW. Substitute wavelength reduction) because of 4. The matching number is 4 8, which will be accumulated for a long time. (Please refer to the table of the exciter table. (Please read the precautions on the back * < fill out this page). $ 平 个 ί ί-• y Μ I, 1 493305 A7 B7 V. Description of the invention (7) (Please read the precautions on the back before filling in this page) As shown in Figure 2, when the concentration line length product is optimal, regardless of the size of the input signal, the excitation wavelength is 1 · At 5 3 // m, a larger gain can be obtained than at 1. 8 V m. Figures 3 and 4 show the EDFA relative to the signal wavelength (wavelength of signal light) shown in Figure 1. 1 6 Gain of concentration line long product at 0 0 nm, where Figure 3 is a diagram of the case where the relevant signal is input to 10 d B m, and Figure 4 is a diagram of the case where the relevant signal is input to 4 0 d Bm Figures 3 and 4 are related to the excitation wavelengths at 1.48 // m, 1.535 // m, 1.54 // m, and 1.545 // m.
數據。激發輸入係當激發波長1 · 4 8 # m時爲9 0 m W ,而當激發波長1 · 535〜1 · 55//m時則爲85 · 5 m W,激發輸入雖在激發波長1 · 4 8 // m之情況,較 其他情況的大約0 · 2 d B,但可判斷即便忽視此激發輸 入差亦無妨。在以下圖示中,將激發波長1 · 4 8 // m、 激發輸入9 0 m W時的數據,與激發波長1 · 5 0 // m〜 1 · 5 6 // m、激發輸入8 5 · 5 m W時的數據,顯示於 同一圖中時,則僅表示激發輸出8 5 · 5 m W。 經濟部智慧財產局員工消費合作社印製 由第3圖與第4圖得知,濃度線長積在最佳情況時, 不管輸入信號的大小,激發波長在1 · 5 3 5 // m〜 1 . 55//m時,較1 · 48//m時可獲得更大的增益。 所以,當信號光的波長在L帶寬(1 5 6 0 n m〜 1 6 1 〇nm)時,在第1圖的EDFA中,藉由將激發 光的波長設定爲1 · 50//m〜1 · 56//m,最好設定 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) :1〇 . ~ 493305 A7 _B7 五、發明説明(8 ) 爲 1 · 53ym 〜1 · 55//m,而可較 1 · 48#m 時 可獲得更大的增益。 第5圖所示係第1圖所示E D F A相對於信號輸入 一 1 〇 d B m、信號波長1 6 0 〇 n m時之濃度線長積的 功率轉換效率之一例示意圖。功率轉換效率係以(來自 EDF的信號輸出/激發輸出)X 1 〇 〇表示,此値越大 的話,越可效率佳的將激發光利用於信號光放大。 第5圖所示係相關激發波長1 . 4 8 // m、 1 · 535//m、1 · 54#m、1 · 545//m 及 1 · 5 5 // m時的數據。激發輸入係當激發波長 1 · 535〜1 · 55//m時爲85 · 5mW,而當激發 波長1 · 4 8 # m時則爲9 0 m W。 由第5圖中得知,隨激發波長,功率轉換效率最高的 濃度線長積將有所不同。將激發輸入在9 · 5 m W〜 8 5 · 5 m W間變化,並描繪出如同第5圖的圖形,針對 各激發波長,求取在所獲得數據中可獲得最高功率轉換效 率時的濃度線長積,結果當激發波長1 · 4 8 // m時爲 30kppm.m,當激發波長1 · 535//m時爲60 kppm,m,當激發波長1 · 54//m時爲80 kppm·!!!,當激發波長1 · 545//m時爲7〇 kppm·!!!,當激發波長1 · 55//m時爲70 k p p m ·ιη。 第6圖所示係在如上述於各激發波長中,可獲得最高 功率轉換效率之濃度線長積中,相對激發波長之第1圖 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐)-11 - (請先閱讀背面之注意事項再填寫本頁) •裝· 、-口 經濟部智慧財產局員工消費合作社印製 493305 A7 B7_ 五、發明説明(9 ) E D F A的功率轉換效率圖。信號波長爲1 6 〇 0 n m ’ (請先閲讀背面之注意事項再填寫本頁) 信號輸入爲一 1 〇 d B m。但’因爲受限於測量所獲得的 數據,在激發波長1 · 4 8 // m時小於3 0 k p p m · m 的濃度線長積,而在激發波長1 · 5 3 5 # m時大於6 0 k p p m · m的濃度線長積之情況下,便有獲得最高功率轉 換效率的可能性。 第6圖所不係在激發波長1 · 4 8 # πί時所獲得之功 率轉換效率,最大約1 〇 %,相對於此,在激發波長 1 · 5 4 // m〜1 · 5 5 // m時所獲得之功率轉換效率則 最大約有2 0 %。另,即便激發波長1 · 5 3 5 // m之情 況時,功率轉換效率最大約有1 5 %。 所以,當信號光波長屬L帶寬時,在第1圖的 E D F A中,利用將激發光的波長設定爲1 · 5 0 // m〜 1 · 56#m,最好設定爲 1 · 535//m 〜1 · 55 // m,便可獲得較激發光的波長爲1 · 4 8 // m之情況時 更大的功率轉換效率。 經濟部智慧財產局員工消費合作社印製 第7圖所示係相對激發輸入之第1圖E D F A的功率 轉換效率圖。各激發波長中的濃度線長積,與第6圖相同 的設定,信號波長爲1 6 0 0 n m,而信號輸入爲一 1 〇 dBm。激發輸入係當激發波長1 · 535〜1 · 55 //m時爲8 5 ♦ 5mW,而當激發波長1 · 48//m時則 爲 9 0 ni W。 由第7圖中,當激發波長1 · 4 8 β m時的功率轉換 效率最大約1 〇 %,而激發波長1 · 5 3 5〜1 · 5 5 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -12 - — 493305 A7 B7 五、發明説明(1Q) // m時功率轉換效率最大約2 0 %,利用在激發波長 1 · 535〜1 · 55//m時,將激發輸入設定爲大於 8 5 . 5 m W的話,便可預測可獲得更大的功率轉換效率 請 先 閱 讀 背 之 注 意 事 項 再 填 寫 本 頁 〇 第8圖所示係在第1圖的E D F A中,求取使激發波 長1 · 5 4 // m之情況,較激發波長1 · 4 8 // m之情況 可獲得更大增益的濃度線長積與激發輸入之組合的圖例之 一。信號輸入—10dBm,信號波長1600nm。 由第8圖得知^譬如在濃度線長積爲4 0 k p pm · m時,激發波長1 · 4 8 // m時的增益與激發波長 1 · 5 4 g m時的增益,與激發輸入約3 4 m W時相同, 而激發輸入若低於此値的話,激發波長1 . 5 4 // m者的 增益便較大。同樣的,即便相關其他激發波長( 1.535//m、1.545//m、1.55//m),亦 可渠得增益大於激發波長1 · 4 8 // m時的激發輸入範圍 經濟部智慧財產局員工消費合作社印製 第9圖與第1 0圖所示,係依此所求得,激發波長 1 · 5 X // m時較激發波長1 · 4 8 // m時獲得更大增益 之條件的圖示。第9圖係相關信號輸入—1 0 d B m,而 第1 0圖係相關信號輸入一 4 0 d B m時的情形。在較第 9圖與第1 〇圖中所示數據點更小的激發輸入區域,即較 此等數據點更大濃度線長積的區域,激發波長1 · 5 X //m較激發波長1 · 4 8 //m時可獲得更大的增益,而 具有較佳特性的區域。 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -13 - ^305 ^305 c L > (1/0 A7 B7 五、發明説明(11 ) 相關激發波長1 · 5 X # m之各情況,將較激發波長 1 · 48 //Π1時更大增益的區域,根據第9圖所示數據, 求取近似式的話,若將濃度線長積設爲C L,而將激發輸 入設爲Pp的話,在激發波長1 · 535//m、1 . 54 β m、1 · 5 4 5 // m、及1 · 5 5 // m之情況時,分別 如下式: CL> (1/0 . 088)·1η (ΡΡ/〇· 935 ), CL> (1/0 · 1 0 8 ) · 1 η (PP/〇 · 447 2 2 ) · 1 η ( Ρ ρ / 〇 . 2 CL> (1/0 . 097)·1η ( Ρ Ρ / 〇 . 6 0 8 另,根據第1 0圖所不數據,求取同樣的式子,在激 發波長 1 · 535//m、1 · 54//m、1 · 545//m 、及1 · 5 5 // m之情況時,分別如下式: 請 先 閲 讀 背 τέ 之 注 意 事 項 再 填 寫 本 頁 經濟部智慧財產局員工消費合作社印製data. The excitation input is 90 m W when the excitation wavelength is 1 · 4 8 # m, and 85 · 5 m W when the excitation wavelength is 1 · 535 ~ 1 · 55 // m. Although the excitation input is at the excitation wavelength 1 · In the case of 4 8 // m, it is about 0 · 2 d B compared with other cases, but it can be judged that even if the excitation input difference is ignored. In the following figure, the data at the excitation wavelength of 1 · 4 8 // m and the excitation input of 90 m W are compared with the excitation wavelength of 1 · 5 0 // m to 1 · 5 6 // m and the excitation input of 8 5 · The data at 5 m W are shown in the same figure, which shows only the excitation output of 8 5 · 5 m W. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs from Figures 3 and 4, when the longest product of concentration lines is optimal, regardless of the size of the input signal, the excitation wavelength is 1 · 5 3 5 // m ~ 1 At 55 // m, a larger gain can be obtained than at 1.48 // m. Therefore, when the wavelength of the signal light is in the L bandwidth (1560 nm to 1610 nm), in the EDFA shown in FIG. 1, the wavelength of the excitation light is set to 1.50 // m to 1. 56 // m, it is best to set the paper size to the Chinese National Standard (CNS) A4 specification (210X297 mm): 10.30 ~ 493305 A7 _B7 V. Description of the invention (8) is 1 · 53ym ~ 1 · 55 / / m, and can obtain greater gain than 1 · 48 # m. Figure 5 shows an example of the power conversion efficiency of E D F A shown in Figure 1 with respect to the signal input-10 d B m and the concentration line length product at a signal wavelength of 16 00 nm. The power conversion efficiency is expressed by (signal output / excitation output from EDF) X 1 〇 〇, the larger this value is, the more efficiently the excitation light can be used for signal light amplification. Figure 5 shows the data at the relevant excitation wavelengths 1. 4 8 // m, 1 · 535 // m, 1 · 54 # m, 1 · 545 // m and 1 · 5 5 // m. The excitation input is 85 · 5mW when the excitation wavelength is 1 · 535 ~ 1 · 55 // m, and it is 90mW when the excitation wavelength is 1 · 4 8 # m. It can be seen from Fig. 5 that, depending on the excitation wavelength, the length product of the concentration line with the highest power conversion efficiency will be different. Change the excitation input from 9 · 5 m W to 8 5 · 5 m W, and draw a graph as shown in Figure 5. For each excitation wavelength, find the concentration at which the highest power conversion efficiency can be obtained from the obtained data Line length product, the result is 30kppm.m when the excitation wavelength is 1 · 4 8 // m, 60 kppm when the excitation wavelength is 1 · 535 // m, m, and 80 kppm when the excitation wavelength is 1 · 54 // m · !!!, 70 kppm · !!! when the excitation wavelength is 1.545 // m, and 70 kppm · ιη when the excitation wavelength is 1.55 // m. Figure 6 shows the longest product of the concentration line that can obtain the highest power conversion efficiency at each excitation wavelength as described above. Figure 1 of the relative excitation wavelength This paper size applies the Chinese National Standard (CNS) A4 specification (210X297) Li) -11-(Please read the precautions on the back before filling out this page) • Installed · Printed by the Intellectual Property Bureau of the Ministry of Economic Affairs and Consumer Cooperatives 493305 A7 B7_ V. Description of the invention (9) EDFA power conversion efficiency chart . The signal wavelength is 16 〇 0 n m ′ (Please read the precautions on the back before filling this page) The signal input is 1 〇 d B m. But 'Because it is limited by the data obtained from the measurement, the concentration line length product is less than 30 kppm · m at the excitation wavelength 1 · 4 8 // m, and greater than 6 0 at the excitation wavelength 1 · 5 3 5 # m When the concentration line of kppm · m is long product, there is a possibility of obtaining the highest power conversion efficiency. Figure 6 does not refer to the power conversion efficiency obtained at the excitation wavelength of 1 · 4 8 # πί, at most about 10%. In contrast, at the excitation wavelength of 1 · 5 4 // m ~ 1 · 5 5 // The power conversion efficiency obtained at m is at most about 20%. In addition, even when the excitation wavelength is 1 · 5 3 5 // m, the power conversion efficiency is about 15% at most. Therefore, when the wavelength of the signal light belongs to the L bandwidth, in the EDFA shown in FIG. 1, the wavelength of the excitation light is set to 1 · 5 0 // m ~ 1 · 56 # m, and preferably 1 · 535 // m ~ 1 · 55 // m, it can obtain greater power conversion efficiency than when the wavelength of the excitation light is 1 · 4 8 // m. Printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 7 shows the power conversion efficiency chart of Figure 1 E D F A relative to the excitation input. The length product of the concentration lines in each excitation wavelength has the same settings as in Fig. 6. The signal wavelength is 16 00 nm and the signal input is-10 dBm. The excitation input is 8 5 ♦ 5mW when the excitation wavelength is 1 · 535 ~ 1 · 55 // m, and 90 ni W when the excitation wavelength is 1 · 48 // m. From Fig. 7, the power conversion efficiency at the excitation wavelength of 1 · 4 8 β m is about 10% at most, and the excitation wavelength of 1 · 5 3 5 ~ 1 · 5 5 is applicable to the Chinese National Standard (CNS) A4. Specifications (210X297 mm) -12-— 493305 A7 B7 V. Description of the invention (1Q) // The power conversion efficiency is at most 20% at m, and when the excitation wavelength is 1 · 535 ~ 1 · 55 // m, the If the excitation input is set to greater than 85.5 mW, you can predict that greater power conversion efficiency can be obtained. Please read the precautions before filling in this page. Figure 8 shows the EDFA in Figure 1, One of the examples of the combination of the concentration line long product and the excitation input that can obtain a greater gain than the case where the excitation wavelength is 1 · 5 4 // m is obtained. Signal input—10dBm, signal wavelength is 1600nm. Figure 8 shows that, for example, when the length product of the concentration line is 40 kp pm · m, the gain at the excitation wavelength 1 · 4 8 // m and the gain at the excitation wavelength 1 · 5 4 gm are about the same as the excitation input. It is the same at 3 4 m W, and if the excitation input is lower than this, the gain of the excitation wavelength 1.5 4 // m will be larger. Similarly, even for other excitation wavelengths (1.535 // m, 1.545 // m, 1.55 // m), the excitation input range when the gain is greater than the excitation wavelength 1 · 4 8 // m can be obtained. Figures 9 and 10 printed by the employee consumer cooperative are obtained according to this condition. The conditions for obtaining a greater gain at the excitation wavelength of 1 · 5 X // m than at the excitation wavelength of 1 · 4 8 // m Icon. Figure 9 shows the situation when the relevant signal input is 1 0 d B m, while Figure 10 shows the situation when the relevant signal is input 4 0 d B m. In a smaller excitation input area than the data points shown in Figures 9 and 10, that is, a region with a larger concentration line product than these data points, the excitation wavelength is 1 · 5 X // m is greater than the excitation wavelength. · 4 8 // m can obtain greater gain, and have better characteristics of the area. This paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) -13-^ 305 ^ 305 c L > (1/0 A7 B7 V. Description of the invention (11) Relevant excitation wavelength 1 · 5 X # m In each case, set the area with greater gain than when the excitation wavelength is 1 · 48 // Π1. According to the data shown in Figure 9, to obtain an approximate formula, if the concentration line length product is set to CL, the excitation input is set to For Pp, when the excitation wavelength is 1.535 // m, 1.54 βm, 1.55 4 5 // m, and 1 · 5 5 // m, the following formulas are used: CL > (1 / 0. 088) · 1η (PP / 〇 · 935), CL > (1/0 · 1 0 8) · 1 η (PP / 〇 · 447 2 2) · 1 η (ρ ρ / 〇. 2 CL > ( 1/0. 097) · 1η (Ρ Ρ / 〇 0.60 8 In addition, according to the data not shown in Fig. 10, the same formula was obtained, and the excitation wavelengths were 1.535 / m and 1.54 // m, 1 · 545 // m, and 1 · 5 5 // m, respectively, are as follows: Please read the precautions before filling in this page and then print it on the page printed by the employee's consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs
> L C 〇 8 8 ο P P χί\ η 2 4 4 4> L C 〇 8 8 ο P P χί \ η 2 4 4 4
> L C> L C
IX > L CIX > L C
> L C ο ο ο 5 5 ο 8 5 ο 8 5 ο ρ ρ η ρ ρ Γ\ η η 2 2 2 3 4 5 IX 5 2 6 4 2 本紙張尺度適用中國國家標準(CNS ) Α4規格(210X297公釐) -14 _ 493305 A7 B7 五、發明説明(12) ) 所以,若將此類區域的條件’依C L > ( 1 / α ) · (請先閱讀背面之注意事項再填寫本頁) 1 η ( Ρ ρ / /3 )表示時,^與/5便可設定爲依照激發光波 長與信號輸入之大小而所決定的常數° α値係隨信號輸入 大小的增加而變大。α與yS的値’在信號輸入爲 —lOdBm時,大約爲0·08〜0·13及0·2〜 1 · 0範圍,而當信號輸入爲—4 0 dBm時,則大約爲 0·05〜0.06及2.2〜2.6範圍。 第1 1〜1 5圖所示係相對信號輸入一 1 〇 dBm、 激發輸入8 5 · 5mW (第1 1圖係9 OmW)時之信號 波長的第1圖EDFA之增益的圖示。第1 1〜1 5圖所 示係分別爲激發波長1 · 4 8 // m、1 · 5 3 5 // m、 1 · 54//m、1 · 545//m、及 1 · 55/ζτη 之情況 時的圖示。 由第1 1〜1 5圖中,在信號輸入一1 0 dBm、激 發輸入85 · 5mW (激發波長1 · 48//m時爲90 m W )的條件下,便可得知如下所述。 即,信號波長1 5 7 8 n m〜1 6 1 5 n m、濃度線 經濟部智慧財產局員工消費合作社印製 長積6 0 k p p m · m〜9 0 k ρ p m · m之情況時,激 發波長1 · 535//m〜1 · 55//m,較激發波長 1 · 4 8 // m時可獲得較大的增益。另,在信號波長 1576nm〜1605nm、濃度線長積70kppm • m〜9 0 k p p m · m之情況時,激發波長1 · 5 4 #m〜l · 5 5//m,較激發波長1 · 4 8em時可獲得 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)-15 - 493305 A7 B7 五、發明説明(13) 較大的增益’同時增益平坦性亦佳。即,相對增益之信號 波長的依存性較小,且減小增益變動。在信號波長 1576nm〜16〇5nm範圍內,激發波長1·54 //m〜1 · 5 5#πί時的增益變動約iciB。 在爲擁有與此相同程度的小增益變動特性上,於激發 波長1 · 4 8 // m時,遍必須濃度線長積1 〇 〇 k p p m •m以上的EDF,此乃在文獻Η · Sawada, et . al . ,”Broadband and gain-flattened erbium-soped fiber amplifier with +20dBm output power for 15 8Onm band amplification, MProc . ECOC599,Nice,France,Sep . 1999,TuD3 ·中有記載 第1 6〜2 0圖所示係信號輸入一 4 0 d B m、激發 輸入8 5 · 5mW (第1 6圖係9 OmW)時之信號波長 的第1圖EDFA之增益的圖示。第1 6〜2 0圖所示係 分別爲激發波長1 · 48//m、1 · 535//m、 1 · 54//m、1 · 545//m、及 1 · 55#m 之情況 時的圖示。 由第1 6〜20圖中,在信號輸入一 40 dBm、·激 發輸入85 · 5mW (激發波長1 · 48//m時爲90 m W )的條件下,便可得知如下所述。 即,信號波長1 5 7 0 n m〜1 6 2 0 n m、濃度線 長積7 Okppm ·πι〜9〇kppm ·γπ之情況時,激 發波長1 · 54//m〜1 · 5 5/im,較激發波長 1 · 48//m時可獲得較大的增益。另,在信號波長 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -16 - 請 先 閱 讀 背 面 5 i 事 I 寫 經濟部智慧財產局員工消費合作社印製 493305 A7 _B7 五、發明説明(14) (請先閱讀背面之注意事項^填寫本頁) 1 5 7〇nm〜1 6〇〇nm、濃度線長積70kppni • m〜9 0 k p p m · m之情況時,激發波長1 · 5 4 y m〜1 · 5 5 " m,較激發波長1 · 4 8 // m時可獲得 較大的增益,同時增益平坦性亦佳。在信號波長1 5 7 〇 nm〜16〇0nm範圍內,激發波長1 · 54/^ni〜 1 · 5 5 // m時,特別在濃度線長積爲8 0 k p p m · m 時的增益變動約2 d B。 若增益平坦性較佳的話,因爲E D F A所輸出信號的 各波長間之位準差便可縮小,便可改善傳播中所產生波形 失真影響、或接收機的接收特性。在爲使增益平坦性變得 更優越的方法上,雖亦有採用增益等化器的方法,但因爲 隨增益等化器將產生損耗,所以將造成E D F A性能的劣 化。 第2 1〜2 5圖所示係信號波長1 6 0 0 n m、激發 輸入85·5mW(第21圖係90mW)時之信號波長 的第1圖EDFA之增益的圖示。第1 6〜2 0圖所示係 分別爲激發波長1 . 4 8 // m、1 . 5 3 5 // m、 經濟部智慧財產局8工消費合作社印製 1 · 54//m、1 . 545//m、及 1 · 55#πί 之情況 時的圖示。 由第2 1〜2 5圖中,在信號波長1 6 0 0 nm、激 發輸入85 · 5mW (激發波長1 · 48//m時爲9〇 m W )的條件下,便可得知如下所述。 即,輸入信號若在一 4 0 dBm〜一 2 0 d Bm的話 ,當濃度線長積7 Okppm · m〜9 Okp pm · m時 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -17 - 493305 經濟部智慧財產局員工消費合作社印製 A7 B7五、發明説明(15) ,激發波長1 · 5 4 // m〜1 · 5 5 /i m,較激發波長 1·48#m時可獲得較大的增益。另’若輸入信號在一 1 0 d B m以上的話,當濃度線長積6 0 k p p m · m〜 90kppm.m 時,激發波長 1 · 54#m 〜1 · 55 ,較激發波長1 · 48vm時可獲得較大的增益。 由第2 3〜2 5圖的趨勢’可預測即便在濃度線長積 大於9〇kppm·!!!時,激發波長1 · 54//m〜 1 . 5 5 // m,亦可較激發波長1 · 4 8 // m時獲得較大 的增益。另,由第2 1〜2 5圖的趨勢’可預測在3 0 kppm·!!!〜6〇kppm·!!!時,當激發波長 1 · 535"m〜1 · 55//m時’信號輸入在 —4 0 dBm〜一 2 0 dBm範圍中,因爲得知隨信號輸 入增大的增益降低較少’所以即便信號輸入在 - 1 〇 d B m以上的話,亦可預測可獲得較激發波長 1 · 48#πί時較大的增益。 另,除第2 1〜2 5圖之外,亦請參閱第3圖與第4 圖,在信號波長1600nm、激發輸入85· 5mW( 激發波長1 · 4 8 # m時爲9 0 m W )的條件下’便可得 知如下所述。 即,當信號輸入一 1 0 d B m、而濃度線長積在5 5 k ρ p m · m以上時,激發波長1 · 5 3 5 // m〜 1 . 55//m,可較激發波長1 · 48//m時獲得較大的 請 先 閱 讀 背 S 事 項 再 填 寫 本 頁 增益。而當信號輸入一 4 0 d Bm 濃度線長積在6 5 k p p 2 0 dBm 而 m以上時,激發波長 本紙張尺度適用中國國家標準(CNS) A4規格(2丨〇x 297公釐) -18 - 493305 A7 B7 五、發明説明(16) 1 · 535/ini〜1 · 可較激發波長1 · 48 "m時獲得較大的增益。 (請先閱讀背面之注意事項㈣填寫本頁) 【發明之功效】 綜上所述’依照本發明的話’在E D F A中’藉由採 用波長1 5〇#πί〜1 · 56#πί的激發光’便可較採 用波長1 · 4 8 Α πι之激發光時’於L帶寬的信號光放大 之際獲得較大的增益’同時亦可抑制相對信號光波長變動 的增益變動。 【圖式簡單說明】 第1圖係相關本發明實施態樣之光增幅裝置構造的方 塊圖。 第2圖係相對於信號波長1 6 〇 〇 n m時之濃度線長 積的第1圖所示E D F A (餌添加光纖放大裝置)之增益 圖示。 第3圖係相對於信號波長1 6 0 0 n m、信號輸入 一 1 0 d B m時之濃度線長積的第1圖所示E D F A之增 經濟部智慈財產局員工消費合作社印製 益圖示。 第4圖係相對於信號波長1 6 0 0 n m、信號輸入 一 40 dBm時之濃度線長積的第1圖所示EDFA之增 益圖示。 第5圖係相對於信號輸入一 1 0 d B m、信號波長 1 6 0 0 n m時之濃度線長積的第1圖所示E D F A之功 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297^^1 :19- 493305 A7 B7 五、發明説明(17) 率轉換效率之一例的圖示。 (請先閱讀背面之注意事項 ^填寫本頁) 第6圖係在各激發波長中,可獲得最高功率轉換效率 之濃度線長積中,相對激發波長之第1圖E D F A的功率 轉換效率圖。 第7圖係係相對激發輸入之第1圖E D F A的功率轉 換效率圖。 第8圖係係在第1圖的E D F A中,求取使激發波長 1 · 5 4 // m之情況,較激發波長1 · 4 8 // m之情況可 獲得更大增益的濃度線長積與激發輸入之組合的圖例之一 〇 弟9圖係在丨目號輸入一 1 〇 d Β πι時,激發波長 1 · 5 X // m時較激發波長1 · 4 8 V m時獲得更大增益 之條件的圖不。 第1 0圖係在信號輸入一 4 0 d Bm時,激發波長 1 · 5 X // m時較激發波長1 · 4 8 # πι時獲得更大增益 之條件的圖不。 第1 1圖係相對信號輸入一 1 0 d B m、激發輸入 經濟部智慧財產局員工消費合作社印製 90mW、激發波長1 · 48//m時之第1圖£:1:)^^八之 增益的圖示。 第1 2圖係相對信號輸入一 1 0 d B m、激發輸入 85 · 5mW、激發波長1 · 535Am時之第1圖 E D F A之增益的圖示。 第1 3圖係相對信號輸入一 1 0 d B m、激發輸入 8 5 · 5 m W、激發波長1 · 5 4 # m時之第1圖 本纸張尺度適用中國國家標準(CNS ) A4規格(210X297公釐) -2〇 _ 493305 A7 B7_____—— 五、發明説明(18) EDFA之增益的圖示。 第1 4圖係相對信號輸入—1 0 d Bm、激發輸入 85·5mW、激發波長1·545Am時之第1圖 EDFA之增益的圖示。 第1 5圖係相對信號輸入一 1 0 d B m、激發輸入 85 · 5mW、激發波長1 · 時之第1圖 EDFA之增益的圖示。> LC ο ο 5 (Mm) -14 _ 493305 A7 B7 V. Description of the invention (12)) So, if the conditions of such areas' according to CL > (1 / α) · (Please read the precautions on the back before filling this page) When expressed by 1 η (ρ ρ / / 3), ^ and / 5 can be set to constants determined according to the wavelength of the excitation light and the size of the signal input ° α 値 is larger as the size of the signal input increases.与 'of α and yS is approximately 0 · 08 ~ 0 · 13 and 0 · 2 ~ 1 · 0 when the signal input is -10OdBm, and approximately 0 · 05 when the signal input is -4 0 dBm ~ 0.06 and 2.2 ~ 2.6 range. Figures 1 to 15 show the gain of the EDFA in the first figure of the signal wavelength when the input signal is 10 dBm and the excitation input is 8 5 · 5mW (Figure 11 is 9 OmW). Figures 1 1 to 1 5 show the excitation wavelengths 1 · 4 8 // m, 1 · 5 3 5 // m, 1 · 54 // m, 1 · 545 // m, and 1 · 55 / This figure shows the case of ζτη. From Figures 11 to 15, under the conditions of a signal input of 10 dBm and an excitation input of 85 · 5mW (90 mW at an excitation wavelength of 1.48 // m), the following can be obtained. In other words, when the signal wavelength is 1 5 7 8 nm to 1 6 1 5 nm, and the long-term product of 60 kppm · m ~ 9 0 k ρ pm · m is printed by the Consumer Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, the excitation wavelength is 1 · 535 // m ~ 1 · 55 // m, a larger gain can be obtained when the excitation wavelength is 1 · 4 8 // m. When the signal wavelength is 1576nm ~ 1605nm and the concentration line length product is 70kppm • m ~ 90kppm · m, the excitation wavelength is 1 · 5 4 # m ~ l · 5 5 // m, which is 1 · 4 8em more than the excitation wavelength. This paper size can be obtained when the Chinese national standard (CNS) A4 specification (210X297 mm) -15-493305 A7 B7 is available. 5. Description of the invention (13) Larger gains and good gain flatness. That is, the signal wavelength dependence of the relative gain is small, and the gain variation is reduced. In the signal wavelength range of 1576nm ~ 1605nm, the gain fluctuation at the excitation wavelength of 1.54 // m ~ 1 · 5 5 # πί is about iciB. In order to have the same small gain fluctuation characteristics, when the excitation wavelength is 1 · 4 8 // m, the EDF of the concentration line length product must be more than 100kppm • m, which is described in the document Η · Sawada, et. al., "Broadband and gain-flattened erbium-soped fiber amplifier with + 20dBm output power for 15 8Onm band amplification, MProc. ECOC599, Nice, France, Sep. 1999, TuD3 · There are records in 16 ~ 20 The figure shows the gain of the EDFA in the first figure of the signal wavelength when the signal input is 40 d B m and the excitation input is 8 5 · 5mW (Figure 16 is 9 OmW). Figures 16 to 20 The figures shown are the diagrams when the excitation wavelengths are 1 · 48 // m, 1 · 535 // m, 1 · 54 // m, 1 · 545 // m, and 1 · 55 # m. In the graphs of 16 to 20, under the conditions of a signal input of 40 dBm and an excitation input of 85 · 5mW (90 mW at an excitation wavelength of 1 · 48 // m), the following can be obtained. That is, the signal In the case of a wavelength of 1570 nm to 1620nm and a concentration line length product of 7 Okppm · π ~ 90kppm · γπ, the excitation wavelength is 1 · 54 // m ~ 1 · 5 5 / im, which is higher than the excitation wavelength. 1 48 // m A larger gain can be obtained. In addition, the paper size of the signal applies to the Chinese National Standard (CNS) A4 specification (210X297 mm) -16-Please read 5 on the back first. I write the stamp of the employee ’s consumer cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. System 493305 A7 _B7 V. Description of the invention (14) (Please read the precautions on the back ^ fill in this page first) 1 5 70nm ~ 1600nm, concentration line long product 70kppni • m ~ 9 0 kppm · m In the case, the excitation wavelength is 1 · 5 4 ym ~ 1 · 5 5 " m, which can obtain a larger gain than the excitation wavelength of 1 · 4 8 // m, and the gain flatness is also good. At the signal wavelength of 1 5 7 In the range of 〇nm ~ 1600nm, when the excitation wavelength is 1 · 54 / ^ ni ~ 1 · 5 5 // m, the gain change is about 2 d B especially when the concentration line length product is 80 kppm · m. If the gain If the flatness is better, the difference in level between the wavelengths of the signals output by the EDFA can be reduced, which can improve the effect of waveform distortion during propagation or the receiving characteristics of the receiver. In order to make the gain flatness superior, there is also a method using a gain equalizer, but since the gain equalizer generates a loss, the performance of the E D F A is deteriorated. Figures 2 to 2-5 show the gain of the EDFA in the first figure of the signal wavelength when the signal wavelength is 16 0 0 m and the excitation input is 85.5mW (Figure 21 is 90mW). Figures 16 to 20 show the excitation wavelengths of 1. 4 8 // m, 1.5 3 5 // m, printed by the 8th Industrial Cooperative Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs, 1 54 // m, 1 . 545 // m, and 1 · 55 # πί the case. From Figures 21 to 25, the following conditions can be obtained under the conditions of a signal wavelength of 1660 nm and an excitation input of 85 · 5mW (90mW at an excitation wavelength of 1.48 // m). Described. That is, if the input signal is between 40 dBm and 20 d Bm, when the concentration line length product is 7 Okppm · m ~ 9 Okp pm · m, the paper size applies the Chinese National Standard (CNS) A4 specification (210X297 mm) ) -17-493305 A7 B7 printed by the Consumer Cooperatives of the Intellectual Property Bureau of the Ministry of Economic Affairs V. Description of the invention (15), excitation wavelength 1 · 5 4 // m ~ 1 · 5 5 / im, compared with excitation wavelength 1 · 48 # m When gaining a larger gain. In addition, if the input signal is above 10 d B m, when the concentration line length product is 60 kppm · m ~ 90kppm.m, the excitation wavelength is 1 · 54 # m ~ 1 · 55, which is longer than the excitation wavelength of 1 · 48 vm. A large gain can be obtained. From the trends in the graphs 2 3 to 25, it can be predicted that even when the concentration line length product is greater than 90 kppm · !!!, the excitation wavelength is 1.54 // m to 1. 5 5 // m, which can be more exciting. A larger gain is obtained at a wavelength of 1 · 4 8 // m. In addition, from the trends shown in Figures 21 to 25, 'it can be predicted that at 30 kppm · !!! ~ 60kppm · !!!, when the excitation wavelength is 1 · 535 " m ~ 1 · 55 // m' The signal input is in the range of -40 dBm ~ -20 dBm, because it is learned that the gain decreases with the increase of the signal input ', so even if the signal input is above-10 d B m, it can be predicted that more exciting Large gain when the wavelength is 1 · 48 # πί. In addition to Figures 2 1 to 25, please also refer to Figures 3 and 4 for a signal wavelength of 1600 nm and an excitation input of 85.5 mW (90 m W at an excitation wavelength of 1 · 4 8 # m) Under the conditions' you can learn as follows. That is, when the signal input is 10 d B m and the product of the concentration line length is more than 5 5 k ρ pm · m, the excitation wavelength is 1 · 5 3 5 // m ~ 1. 55 // m, which can be compared with the excitation wavelength. 1 · 48 // m to obtain a larger, please read the back S items before filling in this page gain. When the signal input is a 40 d Bm concentration line length product at 65 kpp 2 0 dBm and above m, the excitation wavelength of this paper applies the Chinese National Standard (CNS) A4 specification (2 丨 〇x 297 mm) -18 -493305 A7 B7 V. Description of the invention (16) 1 · 535 / ini ~ 1 · It can obtain a larger gain than the excitation wavelength 1 · 48 " m. (Please read the precautions on the back and fill in this page first) [Effects of the invention] In summary, the words 'in the EDFA' according to the present invention, by using the excitation light with a wavelength of 1 5〇 # πί ~ 1 · 56 # πί 'It is possible to obtain a larger gain when the signal light of the L bandwidth is amplified' compared with when the excitation light with a wavelength of 1 · 4 8 A π is used. At the same time, it is possible to suppress the gain change relative to the fluctuation of the signal light wavelength. [Brief Description of the Drawings] Fig. 1 is a block diagram showing the structure of a light amplifier according to an embodiment of the present invention. Fig. 2 is a graph showing the gain of E D F A (bait addition fiber amplifier) shown in Fig. 1 with respect to the concentration line length product at a signal wavelength of 16 00 nm. Figure 3 is a plot of the EDFA increase with respect to the length of the concentration line at a signal wavelength of 16 0 nm and a signal input of 10 d B m. Show. Figure 4 is a graph of the gain of EDFA shown in Figure 1 with respect to the length of the concentration line at the signal input of 16 0 nm and a signal input of 40 dBm. Figure 5 is the EDFA work shown in Figure 1 relative to the signal input at 10 d B m and the concentration line length product at a signal wavelength of 16 0 nm. The paper dimensions are in accordance with the Chinese National Standard (CNS) A4 specifications. (210X297 ^^ 1: 19- 493305 A7 B7 V. Explanation of the invention (17) An example of the rate conversion efficiency. (Please read the precautions on the back first ^ fill out this page) Figure 6 shows the excitation wavelengths. Figure 1 shows the power conversion efficiency graph of EDFA relative to the excitation wavelength in the long product of concentration line that can obtain the highest power conversion efficiency. Figure 7 is the power conversion efficiency graph of Figure 1 EDFA relative to the excitation input. Figure 8 In the EDFA shown in Figure 1, when the excitation wavelength is 1 · 5 4 // m, the length of the concentration line product and the excitation input can be obtained with greater gain than the excitation wavelength of 1 · 4 8 // m. One of the combined legends: Figure 9 is a condition for obtaining a larger gain when the excitation wavelength is 1 · 5 X // m when the number is entered as a 10 d π π than when the excitation wavelength is 1 · 4 8 V m. Figure No. Figure 10 is when the signal input-40 d Bm, the excitation wavelength 1 · 5 X // m is more exciting Figure 1 shows the conditions for obtaining a larger gain when the length is 1 · 4 8 #. Figure 11 shows the relative signal input of 1 0 d B m and the excitation input to the Intellectual Property Bureau Staff Consumer Cooperative of the Ministry of Economic Affairs printed 90mW and the excitation wavelength 1 · Figure 1 at 48 // m £: 1:) ^^ Eight gain diagram. Fig. 12 is a graph of the gain of E D F A in Fig. 1 when the relative signal input is 1 0 d B m, the excitation input is 85 · 5mW, and the excitation wavelength is 1. · 535 Am. Figure 13 shows the relative signal input-1 0 d B m, excitation input 8 5 · 5 m W, and excitation wavelength 1 · 5 4 # m. Figure 1 This paper size applies Chinese National Standard (CNS) A4 specifications (210X297 mm) -2〇_ 493305 A7 B7 _____—— V. Description of the invention (18) Graphic of the gain of EDFA. Figure 14 is a graph of the gain of EDFA when the relative signal input is 1 0 d Bm, the excitation input is 85 · 5mW, and the excitation wavelength is 1.545Am. Figure 15 shows the gain of EDFA in Figure 1 when the relative signal input is 1 0 d B m, the excitation input is 85 · 5mW, and the excitation wavelength is 1 ·.
第1 6圖係相對信號輸入一 4 0 d B m、激發輸入 9 0mW、激發波長1 · 48#m時之第1®EDFA 增益的圖示。 第1 7圖係相對信號輸入一 4 0 d B m、激發輸入 85 · 5mW、激發波長1 · 535#m時之第1圖 EDFA之增益的圖示。 第1 8圖係相對信號輸入—4 0 d B m、激發輸入 85 . 5mW、激發波長1 · 54//Π1時之第1圖 EDFA之增益的圖示。 經濟部智慈財產局員工消費合作社印製 第1 9圖係相對信號輸入一 4 0 d Bm、激發輸入 85 · 5mW、激發波長1 · 545em時之第1圖 EDFA之增益的圖示。 第2 0圖係相對信號輸入一 4 0 d B m、激發輸入 85 · 5mW、激發波長1 . 時之第1圖 E D F A之增益的圖示。Figure 16 is a graph of the first EDFA gain at a signal input of 40 d B m, an excitation input of 90 mW, and an excitation wavelength of 1 · 48 # m. Figure 17 is a graph of the gain of EDFA when the relative signal input is 40 d B m, the excitation input is 85 · 5mW, and the excitation wavelength is 1 · 535 # m. Fig. 18 is a graph of the gain of EDFA in Fig. 1 when the relative signal input is -4 0 d B m, the excitation input is 85.5 mW, and the excitation wavelength is 1.54 // Π1. Printed by the Employees' Cooperative of the Intellectual Property Bureau of the Ministry of Economic Affairs. Figure 19 is a graph showing the gain of EDFA when the relative signal input is 40 d Bm, the excitation input is 85 · 5mW, and the excitation wavelength is 1.545em. Figure 20 shows the gain of E D F A in Figure 1 when the relative signal input is 40 d B m, the excitation input is 85 · 5 mW, and the excitation wavelength is 1.
第2 1圖係相對信號波長1 6 0 〇 n m、激發輸Λ 9 0mW、激發波長1 · 48//m時之第1圖EDFA 本紙張尺度適用中國國家標準(CNS ) A4規格(210父297公釐) -21 - 493305 A7 —-__— 五、發明説明(19 ) 增益的圖示。 第2 2圖係相對信號波長1 6 0 0 nm、激發輸入 (請先閲讀背面之注意事項相填寫本頁) 85 · 5mw、激發波長1 · 535//m時之第1圖Figure 21 is the relative signal wavelength of 1 600 nm, excitation output Λ 9 0 mW, and excitation wavelength of 1. 48 // m. Figure 1 EDFA This paper size applies Chinese National Standard (CNS) A4 specification (210 parent 297) (Mm) -21-493305 A7 —-__— 5. Description of the invention (19) Graphic of gain. Figure 2 2 is the relative signal wavelength of 16 0 nm, excitation input (please read the notes on the back to fill in this page) 85 · 5mw, excitation wavelength 1 · 535 // m Figure 1
EdFA之增益的圖示。 第2 3圖係相對信號波長1 6 〇 〇 n m、激發輸入 85 · 5mW、激發波長1 · 54"m時之第1圖 EDFA之增益的圖示。 第2 4圖係相對信號波長1 6 0 0 π m、激發輸入 85 · 5mW、激發波長1 · 545#m時之第1圖Graphic of EdFA's gain. Fig. 23 is a graph showing the gain of EDFA in Fig. 1 at a relative signal wavelength of 1600 nm, an excitation input of 85 · 5mW, and an excitation wavelength of 1.54 " m. Fig. 24 is the first picture when the relative signal wavelength is 16 0 0 π m, the excitation input is 85 · 5mW, and the excitation wavelength is 1 · 545 # m.
EdFA之增益的圖示。 第2 5圖係相對信號波長1 6 0 0 n m、激發輸入 8 5 . 5 m W、激發波長1 · 5 5 // ηι時之第1圖 EDFA之增益的圖示。 元件對照表 12 單向器 1 3 光合波器 經濟部智慧財產局員工消費合作社印製 4 1 1 2 源 光 發 激 m F X D 5 El 本紙張尺度適用中國國家標準(CNS ) A4規格(210X297公釐)Graphic of EdFA's gain. Figure 25 is a graph showing the gain of EDFA when the relative signal wavelength is 16 00 nm, the excitation input is 85.5 mW, and the excitation wavelength is 1 · 5 5 // ηι. Component comparison table 12 Unidirectional device 1 3 Printed by the Consumer Property Cooperative of the Intellectual Property Bureau of the Ministry of Economics of the Optical Multiplexer 4 1 1 2 Source light excitation m FXD 5 El This paper size is applicable to China National Standard (CNS) A4 specification (210X297 mm) )
Claims (1)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000083669A JP2001274494A (en) | 2000-03-24 | 2000-03-24 | Optical amplification device |
Publications (1)
Publication Number | Publication Date |
---|---|
TW493305B true TW493305B (en) | 2002-07-01 |
Family
ID=18600265
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW90106799A TW493305B (en) | 2000-03-24 | 2001-03-22 | Amplitude increasing device for light |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2001274494A (en) |
TW (1) | TW493305B (en) |
WO (1) | WO2001071863A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2939974A1 (en) * | 2008-12-17 | 2010-06-18 | Centre Nat Rech Scient | IMPULSIVE FIBER OPTICAL LASER FOR HIGH ENERGY SUB PICOSECOND PULSES IN L-BAND AND LASER TOOL FOR OPHTHALMIC SURGERY |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2796553B2 (en) * | 1989-08-18 | 1998-09-10 | 日本電信電話株式会社 | Optical fiber amplifier |
GB9016181D0 (en) * | 1990-07-24 | 1990-09-05 | British Telecomm | Optical waveguide amplifier |
JP2742133B2 (en) * | 1990-08-06 | 1998-04-22 | 日本電信電話株式会社 | Optical amplifier |
JP3752002B2 (en) * | 1995-10-31 | 2006-03-08 | 古河電気工業株式会社 | Optical fiber amplifier |
JP3403288B2 (en) * | 1996-02-23 | 2003-05-06 | 古河電気工業株式会社 | Optical amplifier |
US6172803B1 (en) * | 1997-02-18 | 2001-01-09 | Nippon Telegraph And Telephone Corporation | Optical amplifier and transmission system using the same |
JPH11145533A (en) * | 1997-11-12 | 1999-05-28 | Furukawa Electric Co Ltd:The | Light-amplifying device |
JP3808632B2 (en) * | 1998-06-18 | 2006-08-16 | 富士通株式会社 | Optical amplifier and optical amplification method |
-
2000
- 2000-03-24 JP JP2000083669A patent/JP2001274494A/en active Pending
-
2001
- 2001-03-22 TW TW90106799A patent/TW493305B/en not_active IP Right Cessation
- 2001-03-26 WO PCT/JP2001/002374 patent/WO2001071863A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2001071863A1 (en) | 2001-09-27 |
JP2001274494A (en) | 2001-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3403288B2 (en) | Optical amplifier | |
TW392077B (en) | A multi-wavelength optical pump | |
GB2340297A (en) | Long-wavelength optical fibre amplifier | |
TW533630B (en) | Composite optical amplifier | |
TW496019B (en) | Mutli-stage optical fiber amplifier | |
TW466809B (en) | Pump power control for optical fiber amplifier | |
US6507679B1 (en) | Long distance, all-optical telemetry for fiber optic sensor using remote optically pumped EDFAs | |
JPH06152034A (en) | Dummy light input controlled optical fiber amplification | |
TW201228160A (en) | Fiber ring laser system and the operation method thereof | |
TW493305B (en) | Amplitude increasing device for light | |
US7319707B2 (en) | L-band light source | |
JPH04312988A (en) | Optical amplifier having doped active optical fiber | |
US5894488A (en) | Light source with stabilized broadband and associated optical fiber gyroscope | |
JP3240302B2 (en) | Optical amplifier | |
JP3607497B2 (en) | Optical equalizer with gain equalizer and gain equalization function | |
JP4105707B2 (en) | Semiconductor optical amplifier and optical amplifier using the same | |
JP2004004815A (en) | Raman optical fiber amplifier using erbium-doped optical fiber | |
JP2004193611A (en) | Wide-band amplifier using erbium-doped optical fiber | |
JP2626588B2 (en) | Light source | |
JP2002252399A (en) | Optical amplifier | |
JP4469795B2 (en) | Optical amplifier | |
CN111404612A (en) | Optical signal amplifying device and transmission system | |
JP2003270684A (en) | Dispersion-compensated raman optical fiber amplifier | |
JPH11307844A (en) | Active optical fiber and optical fiber amplifier | |
JP3752002B2 (en) | Optical fiber amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MM4A | Annulment or lapse of patent due to non-payment of fees |