WO2001071790A1 - Method of manufacturing semiconductor device - Google Patents

Method of manufacturing semiconductor device Download PDF

Info

Publication number
WO2001071790A1
WO2001071790A1 PCT/JP2000/001647 JP0001647W WO0171790A1 WO 2001071790 A1 WO2001071790 A1 WO 2001071790A1 JP 0001647 W JP0001647 W JP 0001647W WO 0171790 A1 WO0171790 A1 WO 0171790A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
plasma
chamber
boron
etching
Prior art date
Application number
PCT/JP2000/001647
Other languages
French (fr)
Japanese (ja)
Inventor
Miyuki Yamane
Hiroki Kawada
Hiroyuki Kitsunai
Manubu Yamashita
Takayuki Hayashi
Original Assignee
Hitachi, Ltd.
Hitachi Tokyo Electronics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Tokyo Electronics Co., Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP2000/001647 priority Critical patent/WO2001071790A1/en
Publication of WO2001071790A1 publication Critical patent/WO2001071790A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32853Hygiene
    • H01J37/32862In situ cleaning of vessels and/or internal parts

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device.
  • a semiconductor device for example, in an electrode wiring forming process, various metal thin films are selectively etched. Etching is performed by reacting a gas used for the etching process with a substance to be etched.
  • the reaction products formed by this reaction cannot be exhausted by the exhaust system attached to the processing chamber, but adhere to and accumulate on the inner wall of the chamber and the component surface of the etching processing chamber.
  • the main reaction products are chlorine-based, bromine-based, and boron-based compounds used in the etching gas.
  • Metal-based compounds to be etched are used for masking portions that are not to be subjected to etching. Organic compounds such as photoresist.
  • Adhering reaction products in the processing chamber deposition (hereinafter referred to as the deposited film), the dust force therefrom? Occur. Also, if the etching process is repeated, the deposited film gradually becomes thicker, peels off from the adhered parts (such as the surface of components in the processing chamber), and drops on the wafer, causing device pattern defects.
  • the deposition film force s increases, a reaction occurs between the deposition film and the process gas, and the actual process becomes unstable, so that etching reproducibility cannot be obtained. As described above, if the sediment is left untreated, the yield strength s decreases, and the device production cost increases significantly. From this it is necessary to remove these when the deposited film reaches a certain amount.
  • Examples of the method include a wet cleaning method in which a semiconductor device manufacturing apparatus is opened to the atmosphere and a deposited film is wiped with a solvent such as alcohol or pure water.
  • a dry cleaning method that removes the deposited film by generating plasma using chlorine gas, boron-based gas, oxygen gas, or the like, as disclosed in Japanese Patent Application Laid-Open No. 10-261623. Disclosure of the invention
  • the pet cleaning method needs to periodically open the apparatus to the atmosphere and disassemble the semiconductor device manufacturing apparatus. Further, after the wet cleaning, the device must be evacuated to a predetermined vacuum again before the semiconductor device can be manufactured. Once the device has been released to the atmosphere, the process chamber must be evacuated for several hours before returning to the original vacuum: I dog state due to adsorption of moisture in the atmosphere. As described above, in the wet cleaning method, since it takes time to evacuate to a predetermined vacuum for each cleaning, a significant decrease in the operation rate of the apparatus and a decrease in throughput are caused.
  • An object of the present invention is to prevent a decrease in the yield of semiconductor devices due to a reaction product in a processing chamber in a semiconductor device manufacturing process, particularly in an etching process.
  • the conventional dry cleaning method can remove the deposited film formed during etching, but the reaction formed by the cleaning gas used at this time was not used.
  • Product in the device Dry cleaning force which is originally used to reduce the amount of deposited film that may cause foreign matter, is newly created as a cause of foreign matter, and reduces the cleaning effect in the equipment. And found the present invention.
  • An object of the present invention is a method of manufacturing a semiconductor device having an etching step of etching a film formed on a semiconductor wafer in a chamber, and the following steps are performed according to the state of a substance attached to the chamber. Will be resolved.
  • a plasma of a gas containing a boron-based gas is generated in the chamber, and then a plasma of hydrogen chloride gas is generated in the chamber.
  • a plasma of hydrogen gas is generated at the beginning.
  • Plasma of a gas containing a boron-based gas is effective for removing deposits, particularly when the deposit is an aluminum compound.
  • a gas containing a boron-based gas for example, a mixed gas of boron trichloride and chlorine gas is suitable, but it is also effective to use another boron-based gas such as BBr 3 .
  • a boron-based reaction product is generated by the plasma of the gas containing the boron-based gas.
  • hydrogen chloride gas plasma is performed to remove the boron-based reaction product, and chlorine gas adsorbed to the chamber during the hydrogen chloride plasma is removed.
  • a hydrogen plasma is generated for the purpose.
  • the boron-based reaction product is produced at high speed by hydrogen chloride plasma. Since processing can be performed, the entire tallying processing time can be shortened. Since the method (2) does not use highly corrosive hydrogen chloride gas, it is possible to prevent corrosion in the semiconductor device manufacturing equipment. Also, since two types of gas are used, process control is easy.
  • FIG. 1 is a structural view of a microwave etching apparatus according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of a wiring pattern according to the embodiment of the present invention.
  • FIG. 3 is a device manufacturing procedure according to the embodiment of the present invention.
  • FIG. 4 is an explanatory view of a method for monitoring a deposited film adhesion state according to the embodiment of the present invention.
  • FIG. 5 is an explanatory diagram of a method for monitoring a deposited film adhesion state according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION.
  • a first embodiment of the present invention will be described in detail with reference to the drawings.
  • the outline of the manufacturing process of semiconductor devices is as follows. 'The formation and removal of the oxide film and the nitride film are selectively repeated on the semiconductor wafer. Then, they are selectively removed, and boron and phosphorus are diffused in the part. After that, formation of gate electrode, formation of interlayer insulating film for multilayer wiring, formation of contact hole for wiring connection, deposition of aluminum thin film for wiring between elements, formation of wiring pattern by removing unnecessary aluminum, formation of protective film It is formed in the order of formation and pad opening.
  • FIG. 1 shows a configuration diagram of a microwave etching apparatus used in the above wiring pattern forming step.
  • 101 is an upper channel
  • 102 is a lower channel 105
  • a quartz window is formed therein, in which a vacuum atmosphere is created.
  • 103 is a waveguide and 104 is a microwave.
  • the microwave 104 passes through the quartz window 105 through the waveguide 103 and is introduced into the upper chamber 101.
  • 107 is a quartz tube which is installed inside the upper chamber 101. This is to prevent the surface of the upper chamber 101 from being etched by the plasma.
  • Reference numeral 108 denotes a table, which is provided in the upper chamber 101 so as to face the English window 105.
  • 109 is a silicon wafer (substrate) to be subjected to fine processing.
  • the silicon wafer 109 is detachably placed on the table 108 by means such as electrostatic attraction.
  • '110 is an electromagnetic coil, which is arranged concentrically outside the upper chamber 101. The state of plasma generation can be controlled by applying a current to the coil 110.
  • 111 is an exhaust gas, which is connected to the lower chamber 102, and gas used for etching and cleaning processing is exhausted from here ⁇ ).
  • FIG. 2 is a diagram showing a wiring pattern formed according to the present embodiment.
  • Figure 3 shows the manufacturing procedure.
  • the silicon wafer 109 is etched. ′
  • the upper chamber 101 and the lower chamber 102 are exhausted from the exhaust duct 111.
  • the introduction chamber (not shown) for introducing the silicon wafer 109 is also evacuated similarly.
  • the introduction chamber, mosquitoes? Silicon wafer 109 formed is conveyed (aluminum thin film 205 in this embodiment) the object to be etched , On the table 108.
  • a device structure as shown in FIG. 2 is formed.
  • An interlayer insulating film 204 is formed on the memory and structure including the bit line 201, the lead line 202, and the storage electrode 203.
  • An aluminum thin film 205 is already formed on the upper part, and the upper part is covered with a resist 206. Part of the aluminum thin film 205 is etched by an etching process. A portion of the resist 206 is vacant so that the removed portion is exposed for removal. Then, as an etching gas, a mixed gas of chlorine gas at a partial pressure of about 1.2 Pa and a boron trichloride gas at a partial pressure of about l.OPa is introduced into the upper chamber 101. An electric current 5 is supplied to the electromagnetic coil 110 outside the upper chamber 101.
  • a microwave 104 having a frequency of about 2.45 GHz and 800 W is introduced from the microwave waveguide 103, thereby generating a plasma in the upper chamber 101.
  • a high frequency of 2 MHz is applied to the lower surface side of the silicon wafer 109 at 60 W, and the etching target on the silicon wafer 109 is etched. That is, a portion of the surface of the aluminum thin film 205 that is not covered with the resist 206 is etched away, and the underlying interlayer insulating film 204 is exposed at that portion.
  • the introduction of microwaves, the application of high frequency, the introduction of coil current and etching gas is stopped, and the silicon wafer 109 is carried out from the upper chamber 101 to the introduction chamber. Is done.
  • the etching processing procedure 301 several silicon wafers to be processed are repeatedly performed.
  • the etching process causes a reaction generated by an etching reaction of the aluminum thin film 205, the resist 206, and the like on the inner surface of the upper chamber 101, the lower chamber 102, and the quartz tube 107, which is a constituent member of the chamber.
  • the material is attached to the deposited film 112 as in the deposited film 112 shown in FIG. 1 and has a certain thickness, dust and debris are generated from the deposited film 112 and are discharged into the upper chamber 101. If these adhere to the surface of the device part to be etched, defective etching will occur, resulting in defective device fabrication. Therefore, it is necessary to remove or reduce it in some way.
  • the material of the deposited film 112 adhered to the inner surface of the stone tube 107 or the like is monitored. And clarified its cleaning method.
  • Fig. 4 shows an embodiment of the method for monitoring the adhesion state of the deposited film 112 on the inner surface of the quartz cylinder 107.
  • An incident gas analyzer 401 is attached to the side surface of the upper chamber 101 so that gas ions and the like incident on the wall surface of the upper chamber 101 can be sampled.
  • a sample 402 for examining the adhesion state of the deposited film 112 is provided in the upper chamber 101, and the sample is irradiated with infrared light introduced from an infrared light introduction window 403 to reflect and reflect the light.
  • the state of the deposited film 112 adhering in the upper chamber 101 can be monitored by measuring.
  • the method of monitoring the surface state in the upper chamber 101 by the reflection-absorption vector of the infrared light has a structure as shown in the plan sectional view of FIG.
  • the infrared light 501 is incident from an infrared light introduction window 403.
  • a material called KRS-5 which has high transmittance of infrared light, is used.
  • the absorption spectrum can be obtained by polarizing the infrared light with the polarizer '502 and subjecting the infrared light 501 to spectroscopy. .
  • the infrared light 501 reflected on the sample 402 is detected by the detector 503.
  • the state of the deposited film 112 adhering to the upper chamber 101 may be determined by examining the behavior on the quartz. Therefore, the sample 402 has a force using an aluminum-evaporated mirror with high reflection efficiency, and its surface has a thickness of about
  • a quartz film of about 0.6 / m was deposited. Since the infrared light of a specific wavelength is absorbed by the bonding state of the atoms of the deposited film 112 attached to the surface of the sample 402, by examining the absorption spectrum of the infrared light detected by the detector This makes it possible to monitor the adhesion state of the deposited film 112.
  • the deposited film 112 adhering to the inner surface of the quartz tube 107 in the upper chamber 101 was examined in the etching treatment procedure 301, and as a result, the chlorine atom used as the etching gas and the aluminum-based compound used as the object of the etching treatment were determined.
  • a B0-based compound force in which a boron atom and an oxygen atom were bonded, was formed. It is considered that boron atoms are supplied from the etching gas, and oxygen atoms are supplied from the quartz cylinder 107 in the upper chamber of the photoresist.
  • a dry cleaning method in which the B0-based compound remaining in the upper chamber 101 during the repeated etching treatment procedure 301 is removed and the by-product B0-based compound is not formed by the cleaning gas is performed. developed.
  • Figure 3 shows the specific method.
  • a plasma cleaning process (a) 302 is performed.
  • the purpose of this treatment is to remove the metal compounds in the aluminum thin film that has been etched.
  • the inside of the upper chamber 101 and the lower chamber 102 is evacuated from the exhaust duct 111. After subsequent pressure in the upper chamber 101 reaches about 10- 6 Torr, and conveys the silicon Kon'weha 109, placed on the platform 108.
  • the silicon wafer 109 in the case of the dry cleaning process does not need to be a product wafer, and a dummy wafer or the like coated with an oxidation film is used.
  • a boron-based gas is used to remove aluminum-based compounds in the deposit 112.
  • Aluminum compounds can be removed by chlorine gas alone, but by introducing boron-based gas, aluminum oxide is decomposed in the aluminum-based compound, so the reaction between chlorine atoms and aluminum It is known that the effect of promoting the removal of aluminum compounds is enhanced. Therefore, using boron trichloride as a boron-based gas, a partial pressure of about l.OPa is introduced to decompose the aluminum oxide. At this time, chlorine gas is introduced at a partial pressure of about 1.2 Pa to promote the reaction between decomposed aluminum and chlorine atoms, and to produce aluminum chloride with high vapor pressure, thereby efficiently producing aluminum-based compounds. Is removed.
  • a predetermined current is supplied to the coil 110 outside the upper chamber 101, and the coil used in this embodiment is divided into four stages, and 18A, 17A, 12A, and 16A flow from above.
  • Microwave introduction tube 103? Plasma is generated in the upper chamber 101 by introducing a microwave 104 having a frequency of about 2.45 GHz and 1000 W. The high frequency was applied to the silicon wafer 109 during the etching process, but is not required during the plasma cleaning process. By not applying a high frequency to the silicon wafer 109, the plasma and the reaction product deposited on the upper chamber 101 are apt to react with each other, and the effect of removing the deposited film 112 is improved.
  • the generated plasma of boron trichloride gas promotes the decomposing power s of aluminum oxide, and generates aluminum chloride having a higher vapor pressure when introducing chlorine gas, is discharged into the upper chamber 101, and is exhausted. Exhausted and removed from duct 111. After the plasma is generated for a time necessary to remove the aluminum-based compound, the introduction of the microwave 104 and the introduction of the current and the cleaning gas to the coil 110 are stopped.
  • a new cleaning process (b) 303 is performed. This is intended to remove the boron-based reaction product formed by the cleaning treatment (a) 302.
  • the introduction of the microphone mouth wave 104 is a force for temporarily stopping the current and the like to the coil 110, and the silicon wafer 109 is put on as it is without being carried out. deep.
  • the cleaning gas is switched to hydrogen chloride gas and introduced into the upper chamber 101.
  • About 1.5Pa of hydrogen chloride gas is introduced at a partial pressure.
  • the plasma is generated in the same manner as in the cleaning process (a) 302.
  • the generated hydrogen chloride plasma changes the boron compound into a BH compound, for example, BH 3 , B 2 H 6, etc.
  • the gas is discharged into the upper chamber 101 and exhausted and removed from the exhaust duct 111.
  • the introduction of the microwave 104, the current to the coil 110, and the introduction of the cleaning gas are stopped.
  • hydrogen chloride gas is used, the silicon wafer 109 is not carried out, but is left as it is, and the silicon wafer 109 is subjected to the taring process (c) 304-.
  • the cleaning process (c) 304 is performed. This is intended to remove the chlorine gas adsorbed in the upper chamber 101 when performing the cleaning process using hydrogen chloride in the cleaning process (b) 303.
  • the cleaning gas uses hydrogen gas.
  • hydrogen plasma By the generation of hydrogen plasma,
  • the reaction of H-C1 is caused to be released into the upper chamber 101 and exhausted and removed from the exhaust duct 111.
  • the plasma may be generated in the same manner as in the cleaning process (a) 302. As a result, even if the processing chamber is opened to the atmosphere after the plasma cleaning process, safety for workers is ensured because the toxic gas is removed.
  • plasma is generated by mixing ⁇ in argon gas instead of hydrogen gas, water molecules dissociate and hydrogen atoms are generated, and the H-C1 reaction described above occurs. It is possible to remove toxic gas from the upper chamber 101.
  • the cleaning process ( a ) 302 after generating the plasma for a predetermined time, introduction of the microphone mouth wave 104 and current to the coil 110 are temporarily stopped, but the silicon wafer 109 is not carried out. Leave it on. Then, the cleaning gas is switched to hydrogen gas and introduced into the upper chamber 101. Hydrogen gas is introduced at a partial pressure of about 1.5Pa.
  • the plasma may be generated in the same manner as in the cleaning process (a) 302.
  • the boron-based compound is converted into a BH compound, for example, BH 3 , B 2 H 6, etc., released into the upper chamber 101, and exhausted and removed from the exhaust duct 111.
  • the introduction of the mark mouth wave 104 and the introduction of the current and the cleaning gas to the coil 110 are stopped. Then, the silicon wafer 109 is carried out to the introduction chamber.
  • the cleaning treatment (b) 303 if hydrogen gas is used instead of hydrogen chloride gas, the number of treatment steps can be reduced by one, so that process control becomes easy.
  • highly corrosive hydrogen chloride gas is not used, damage to semiconductor device manufacturing equipment is small.
  • plasma generation time is more than twice as long as when hydrogen chloride gas is introduced. However, although one process is increased, the entire cleaning processing time is shortened. Therefore, when considering the production efficiency of semiconductor devices, it is more advantageous to use hydrogen chloride gas.
  • reaction products deposited in the upper chamber 101 and the like during the etching process are removed, and by-products due to the cleaning gas are also removed. can do.
  • the etching process 301 is repeatedly performed.
  • the metal thin film 205 is also effective when it is a thin film of an alloy containing aluminum in addition to the aluminum single-layer film. .
  • This embodiment relates to an etching process when the aluminum thin film 205 in FIG. 2 is a tungsten-silicon oxide film.
  • a fluorine-based gas force is used for the etching of these materials.
  • a compound containing fluorine, an organic substance from a photoresist, tungsten, silicon, and the like adheres to the upper chamber 101, the quartz tube 107, and the like.
  • a fluorocarbon-based gas is used as an etching gas
  • the alumina component forming the upper chamber 101 is hit with plasma, and fluorine atoms of the etching gas and aluminum of the alumina component combine to form a fluoride gas. Lumi is formed and adheres.
  • This aluminum fluoride is very difficult to remove by the conventional dry cleaning method, and remains in the upper chamber 101 or the like, and increases the generation of dust, which is a major factor in lowering the yield.
  • the force in the first embodiment and the second embodiment is described as an example of dry Etsu quenching process?
  • CVD processes and sputtering process by performing dry cleaning in the procedure of FIG. 3, the same effect can get.
  • the inventor of the present application conducted a search of known examples based on the results of the present invention, but found no known examples suggesting the present invention.

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

To prevent the decrease in the yield of a semiconductor device due to reaction products deposited during etching in a process chamber, the chamber is cleaned by generating boron-base plasma, hydrogen chloride plasma and hydrogen plasma in sequence depending on the amount of deposition of reaction products in the process chamber.

Description

明 細 書  Specification
半導体デバイスの製造方法  Method for manufacturing semiconductor device
技術分野 Technical field
本発明は、 半導体デバイスの製造方法に関するものである。 背景技術  The present invention relates to a method for manufacturing a semiconductor device. Background art
半導体デバイスの、 例えば電極配線形成工程において、 種々の金属薄膜の 選択的エッチングが行われている。 エッチングは、 エッチング処理に使用す るガスとエッチングされる物質とを反応させることにより行っている。 しか し、 この反応で形成された反応生成物は処理室に取り付けられた排気系で排 気'し切れずに、 エツチング処理室のチヤンバ内壁や部品表面に付着し堆積し てしまう。 主な反応生成物は、 エッチングガスに使用されている塩素系、 臭 素系、 硼素系の化合物ゃェッチング対象となる金属系の化合物ゃェツチング 処理を施したくない部分をマスクするために使用するフォ トレジスト等の 有機物系の化合物である。  2. Description of the Related Art In a semiconductor device, for example, in an electrode wiring forming process, various metal thin films are selectively etched. Etching is performed by reacting a gas used for the etching process with a substance to be etched. However, the reaction products formed by this reaction cannot be exhausted by the exhaust system attached to the processing chamber, but adhere to and accumulate on the inner wall of the chamber and the component surface of the etching processing chamber. The main reaction products are chlorine-based, bromine-based, and boron-based compounds used in the etching gas. Metal-based compounds to be etched are used for masking portions that are not to be subjected to etching. Organic compounds such as photoresist.
処理室内に反応生成物が付着し堆積 (以下堆積膜と称する) すると、 そこ から塵埃力 ?発生する。 またエッチング処理を繰り返し行うと、 堆積膜は徐々' に厚くなり、 付着していた部分 (処理室内にある部品表面等) から剥離し、 ウェハ上に脱落するとデバイスのパターン欠陥の原因となる。 また、 堆積膜 力 s増加すると、 堆積膜とプロセスガスとの間でも反応が起き、 実際のプロセ スが不安定になり、 エッチングの再現性がとれなくなる。 このように、 堆積 物を放置しておくと、 歩留まり力 s低下し、 デバイス生産コストカ 曽大する。 このことから堆積膜がある程度の量に達すると、 これらを除まする必要が める。 Adhering reaction products in the processing chamber deposition (hereinafter referred to as the deposited film), the dust force therefrom? Occur. Also, if the etching process is repeated, the deposited film gradually becomes thicker, peels off from the adhered parts (such as the surface of components in the processing chamber), and drops on the wafer, causing device pattern defects. In addition, when the deposition film force s increases, a reaction occurs between the deposition film and the process gas, and the actual process becomes unstable, so that etching reproducibility cannot be obtained. As described above, if the sediment is left untreated, the yield strength s decreases, and the device production cost increases significantly. From this it is necessary to remove these when the deposited film reaches a certain amount.
その方法として、 例えば半導体デバイス製造装置を大気に開放して、 アル コールや純水等の溶媒で堆積膜をふき取るゥヱッ トクリーニング法や、 特開 平 10-261623号公報に開示されているような、 塩素ガス、 硼素系ガスや酸素 ガス等を用いてプラズマを発生させ、 堆積膜'を除去するドライクリーニング 法等がある。 発明の 開示 Examples of the method include a wet cleaning method in which a semiconductor device manufacturing apparatus is opened to the atmosphere and a deposited film is wiped with a solvent such as alcohol or pure water. There is a dry cleaning method that removes the deposited film by generating plasma using chlorine gas, boron-based gas, oxygen gas, or the like, as disclosed in Japanese Patent Application Laid-Open No. 10-261623. Disclosure of the invention
しかしながら、 ゥヱットクリーニング法は、 定期的に装置を大気に開放し、 半導体デバイス製造装置を分解する必要がある。 さらにゥェットクリーニン グ後、 装置を再度所定の真空に排気しなければ、 半導体デバイスの製造に着 手することができない。 一度装置を大気に開放してしまうと、 大気中の水分 の吸着などによって、 処理室をもとの真空: I犬態に戻すまでには、 数時間程度 真空排気を続けねばならない。 このように、 ウエットクリーニング法では、 クリーニング毎に所定の真空まで排気する時間を要するため、 著しい装置稼 働率の低下、 スループッ トの低下が引き起こる。  However, the pet cleaning method needs to periodically open the apparatus to the atmosphere and disassemble the semiconductor device manufacturing apparatus. Further, after the wet cleaning, the device must be evacuated to a predetermined vacuum again before the semiconductor device can be manufactured. Once the device has been released to the atmosphere, the process chamber must be evacuated for several hours before returning to the original vacuum: I dog state due to adsorption of moisture in the atmosphere. As described above, in the wet cleaning method, since it takes time to evacuate to a predetermined vacuum for each cleaning, a significant decrease in the operation rate of the apparatus and a decrease in throughput are caused.
また特開平 10-261623号公報の開示例に代表される従来のドライクリー二 ング法では、 エツチング対象となる材料やマスク材料であるフォトレジスト とプロセスガスとの反応生成物による堆積膜、 プラズマによつて装置内の部 材が叩かれ形成されたィオンスパッタ物、 また装置内の部材とプロセスガス との反応生成物による堆積膜を除去することが可能である。  In the conventional dry cleaning method represented by the example disclosed in Japanese Patent Application Laid-Open No. Hei 10-261623, a material to be etched or a deposited film or plasma due to a reaction product between a photoresist as a mask material and a process gas is used. Accordingly, it is possible to remove ion sputters formed by hitting members in the apparatus, and deposited films formed by reaction products between members in the apparatus and process gases.
しかしな力 s 'ら、 実際にこの従来のドライクリーニング法を用いてクリ一二 ングを行ってもエッチング工程における処理室内の反応生成物に起因する 半導体デバイスの歩留まり低下を防止することはできなかった。 But force s' et al, can not be prevented actually this decrease in yield of the conventional semiconductor device due to the reaction product of a process chamber in the dry cleaning method etching process be conducted chestnut-learning using Was.
本発明の課題は、 半導体デバイスの製造工程、 特にエッチング工程におけ る処理室内の反応生成物に起因する半導体デバイスの歩留まり低下を防止 することにある。  An object of the present invention is to prevent a decrease in the yield of semiconductor devices due to a reaction product in a processing chamber in a semiconductor device manufacturing process, particularly in an etching process.
本願発明者は上記の課題を解決すべく研究を行った結果、 従来のドライク リーニング法では、 エッチング中に形成された堆積膜は除去できるものの、 このときに'用いたクリーニングガスにより形成された反応生成物が装置内 に堆積し残つてしまうため、 本来異物発生の原因となる堆積膜を低減する目 的で行われているドライクリーニング力 異物発生の原因を新たに生み出し ており、 装置内のクリーニング効果を低下させていることを見出し、 本願発 明に至った。 As a result of research conducted by the present inventor to solve the above-described problems, the conventional dry cleaning method can remove the deposited film formed during etching, but the reaction formed by the cleaning gas used at this time was not used. Product in the device Dry cleaning force, which is originally used to reduce the amount of deposited film that may cause foreign matter, is newly created as a cause of foreign matter, and reduces the cleaning effect in the equipment. And found the present invention.
本発明の課題は、 チャンバ内で半導体ウェハに形成された膜のエッチング を行うエツチング工程を有する半導体デバイスの製造方法であって、 前記チ ャンバに付着した付着物の状態に応じて以下の工程を行なうことにより解 決される。  An object of the present invention is a method of manufacturing a semiconductor device having an etching step of etching a film formed on a semiconductor wafer in a chamber, and the following steps are performed according to the state of a substance attached to the chamber. Will be resolved.
( 1. ) 前記チャンバ内にウェハを供給した後、 前記チャンバ内に硼素系ガス を含むガスのプラズマを発生させ、 その後、 前記チャンバ内に塩化水素ガス のプラズマを発生させ、 さらに、 前記チャンバ内に水素ガスのプラズマを発 生させる。  (1) After supplying a wafer into the chamber, a plasma of a gas containing a boron-based gas is generated in the chamber, and then a plasma of hydrogen chloride gas is generated in the chamber. A plasma of hydrogen gas is generated at the beginning.
( 2 ) 前記チャンバ内にウェハを供給した後、 前記チャンバ内に硼素系ガス を含むガスのプラズマを発生させ、 その後、 前記チャンバ水素ガスのプラズ マを発生させる。 '  (2) After supplying a wafer into the chamber, a plasma of a gas containing a boron-based gas is generated in the chamber, and then plasma of the chamber hydrogen gas is generated. '
硼素系ガスを含むガスのプラズマは付着物の除去に有効であり、 特に、 付 着物がアルミ化合物の場合その除去効果が高い。 硼素系ガスを含むガスとし ては、 例えば三塩ィヒ硼素と塩素ガスとの混合ガスが適しているが、 BBr3等の 別の硼素系のガスを使用しても有効である。 Plasma of a gas containing a boron-based gas is effective for removing deposits, particularly when the deposit is an aluminum compound. As a gas containing a boron-based gas, for example, a mixed gas of boron trichloride and chlorine gas is suitable, but it is also effective to use another boron-based gas such as BBr 3 .
そして、 本発明により、 上記の硼素系ガスを含むガスのプラズマにより硼 素系反応生成物が生成されることが明らかになつたため、  According to the present invention, it has been found that a boron-based reaction product is generated by the plasma of the gas containing the boron-based gas.
上記 (1 ) の方法では引き続き、 この硼素系反応生成物を除去するため、' 塩化水素ガスプラズマを行い、 さらに、 塩ィヒ水素プラズマ時にチャンバに吸 '着された塩素ガスを除ますることを目的に水素プラズマを発生させる。  In the above method (1), hydrogen chloride gas plasma is performed to remove the boron-based reaction product, and chlorine gas adsorbed to the chamber during the hydrogen chloride plasma is removed. A hydrogen plasma is generated for the purpose.
また、 上記 (2 ) の方法では引き続き、 この硼素系反応生成物を除去する ため、 水素プラズマを発生させる。  In the above method (2), hydrogen plasma is continuously generated in order to remove the boron-based reaction product.
上記 (1 ) の方法は、 塩化水素プラズマにより硼素系反応生成物が高速で 処理できるため、 全体のタリーニング処理時間を短くすることができる。 上記 (2 ) の方法は腐食性の高い塩化水素ガスを使用しないため、 半導体 デバイス製造 ¾置の腐食防止を図ることができる。 また、 使用するガスが 2 種類となるため、,プロセス制御が容易である。 図面の簡単な説明 In the above method (1), the boron-based reaction product is produced at high speed by hydrogen chloride plasma. Since processing can be performed, the entire tallying processing time can be shortened. Since the method (2) does not use highly corrosive hydrogen chloride gas, it is possible to prevent corrosion in the semiconductor device manufacturing equipment. Also, since two types of gas are used, process control is easy. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本願発明の実施例に係るマイクロ波ェッチング装置の'構造図。 第 '2図は、 本願発明の実施例に係る配線パタ一ンの断面図。  FIG. 1 is a structural view of a microwave etching apparatus according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of a wiring pattern according to the embodiment of the present invention.
第 3図は、 本願発明の実施例に係るデバィス製作手順。  FIG. 3 is a device manufacturing procedure according to the embodiment of the present invention.
第 4図は、 本願発明の実施例に係る堆積膜付着状態のモニタ法の説明図。 第 5図は、 本願発明の実施例に係る堆積膜付着状態のモニタ法の説明図。 発明を実施する ための最良の形態 .  FIG. 4 is an explanatory view of a method for monitoring a deposited film adhesion state according to the embodiment of the present invention. FIG. 5 is an explanatory diagram of a method for monitoring a deposited film adhesion state according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION.
本発明の第 1の実施例について、 図に従って詳細に説明する。 半導体デバ イスの製造工程の概要は下記の通りである。 ' 半導体ウェハ上に、 選択的に酸化膜ゃ窒化膜の形成及び除去が繰り返し行 われる。 そして選択的にそれらは除去され、 その部分に硼素やリンなどが拡 散される。 その後、 ゲート電極の形成、 多層配線するための層間絶縁膜形成、 ■配線接続のためのコンタクトホール形成、 素子間配線用のアルミニゥム薄膜 蒸着、 不要なアルミニウムを除去して配線パターン形成、 保護膜の形成、 パ ッ ドの開孔の順で形成される。  A first embodiment of the present invention will be described in detail with reference to the drawings. The outline of the manufacturing process of semiconductor devices is as follows. 'The formation and removal of the oxide film and the nitride film are selectively repeated on the semiconductor wafer. Then, they are selectively removed, and boron and phosphorus are diffused in the part. After that, formation of gate electrode, formation of interlayer insulating film for multilayer wiring, formation of contact hole for wiring connection, deposition of aluminum thin film for wiring between elements, formation of wiring pattern by removing unnecessary aluminum, formation of protective film It is formed in the order of formation and pad opening.
半導体デバイスは種類によ りウェハ上に形成される膜や拡散される物質 力 ?異なるものの、 ゲート電極、 層間絶縁膜、 コンタク トホール、 電極配線用 膜形成、 配線パターン形成、 保護膜形成、 パッド開孔の工程を経て製造され る Although semiconductor devices are substances forces are film and diffused is formed on the wafer Ri on the type? Different, the gate electrode, an interlayer insulating film, contactors Tohoru, the electrode wiring film formation, wiring pattern formation, the protective film formation, the pad opening Manufactured through a hole process
第 1図は、 上記の配線パターン形成工程で使用するマイクロ波ェッチング 装置の構成図を示す。 図において、 101は上部チャンノ 、 102は下部チャンノ^ 105は石英窓であ り、 この内部に真空雰囲気が作られる。 103 は導波管で、 104 はマイクロ波 • である。 マイクロ波 104は、 導波管 103を通って石英窓 105を透過して、 上 部チャンバ 101内へ導入される。 107は石英筒で、 上部チヤンバ 101の内側 に設置されている。 これは、 上部チャンバ 101表面がプラズマによりエッチ ングされないようにするためである。 108は台で、 上部チャンバ 101内に石 英窓 105に対向して配設されている。 109は微細加工を施すシリコンウェハ (基板) である。 シリコンウェハ 109は、 台 108上に静電吸着等の手段にて 着脱可能に置かれる。' 110は電磁コイルで、 上部チャンバ 101の外側に同心 状に配置してある。 このコイル 110への電流のかけ方によりプラズマの発生 状態が制御できる。 一方、 111は排気ダり. トで下部チヤンバ 102に接続され ており、 エッチングやクリーニング処理に使用するガスが、 ここから排出さ れ^ ) FIG. 1 shows a configuration diagram of a microwave etching apparatus used in the above wiring pattern forming step. In the figure, 101 is an upper channel, 102 is a lower channel 105, and a quartz window is formed therein, in which a vacuum atmosphere is created. 103 is a waveguide and 104 is a microwave. The microwave 104 passes through the quartz window 105 through the waveguide 103 and is introduced into the upper chamber 101. 107 is a quartz tube which is installed inside the upper chamber 101. This is to prevent the surface of the upper chamber 101 from being etched by the plasma. Reference numeral 108 denotes a table, which is provided in the upper chamber 101 so as to face the English window 105. 109 is a silicon wafer (substrate) to be subjected to fine processing. The silicon wafer 109 is detachably placed on the table 108 by means such as electrostatic attraction. '110 is an electromagnetic coil, which is arranged concentrically outside the upper chamber 101. The state of plasma generation can be controlled by applying a current to the coil 110. On the other hand, 111 is an exhaust gas, which is connected to the lower chamber 102, and gas used for etching and cleaning processing is exhausted from here ^).
筚 2図は本実施例により形成した配線パターンを示す図である。 第 3図に その製造手順を示す。  FIG. 2 is a diagram showing a wiring pattern formed according to the present embodiment. Figure 3 shows the manufacturing procedure.
' まずェッチング処理手順 301に従つて、 シリコンゥェハ 109がェッチング される。 ' 上部チャンバ 101及ぴ下部チャンバ 102内が排気ダクト 111から排気され る。 またシリコンウェハ 109を導入するための導入室内 (図示しない) も同 様に真空に排気される。上部チャンバ 101及び下部チャンバ 102内が 10-6Torr 程度まで真空排気されると、 導入室から、 エッチングされる対象物 (本実施 例ではアルミ薄膜 205)カ?形成されたシリコンウェハ 109が搬送され、台 108 上に載せられる。 搬送されたシリコンウェハ 109の表面には、 第 2図に示す ようなデバイス構造が作られている。 ビッ ト線 201、 ヮード線 202、 蓄積電 極 203を含むメモリ,構造の上に、 層間絶縁膜 204が形成されている。 その上 部には、 すでにアルミ薄膜 205が形成されており、 その上がレジスト 206に よつて被覆されている。 アルミ薄膜 205の一部分をェッチングプロセスによ つて除去するため、 除ま部分が露出されるようにレジスト 206の一部,分が空 いている。 そして、 エッチングガスとして、 塩素ガスが分圧にして約 1. 2Pa と三塩化硼素ガスが分圧にして約 l . OPaの混合ガスが上部チャンバ 101内に 導入される。 上部チャンバ 101の外側の電磁コィル 110に電流力5流される。 マイクロ波導波管 103から周波数が約 2. 45 G Hzで 800Wのマイクロ波 104が 導入され、 これによりプラズマを上部チャンバ 101内に発生させる。 シリコ ンゥェハ 109の下面側に周波数が 2 MHzの高周波が 60W印加され、シリコン ゥェハ 109上のエツチング対象物のエツチングが行われる。 つまり、 アルミ 薄膜 205の表面のレジスト 206に覆われていない部分がエッチング除去され、 その部分は下地の層間絶縁膜 204が露出される。所定の時間プラズマを発生 させ、 アルミ薄膜 205のエッチング処理が終了すると、 マイクロ波の導入、 高周波の印加、 コィル電流及ぴェッチングガスの導入が停止され、 シリコン ゥェハ 109が上部チヤンバ 101から導入室へ搬出される。 'First, according to the etching procedure 301, the silicon wafer 109 is etched. ′ The upper chamber 101 and the lower chamber 102 are exhausted from the exhaust duct 111. The introduction chamber (not shown) for introducing the silicon wafer 109 is also evacuated similarly. When the upper chamber 101 and lower chamber 102 is evacuated to about 10- 6 Torr, the introduction chamber, mosquitoes? Silicon wafer 109 formed is conveyed (aluminum thin film 205 in this embodiment) the object to be etched , On the table 108. On the surface of the transferred silicon wafer 109, a device structure as shown in FIG. 2 is formed. An interlayer insulating film 204 is formed on the memory and structure including the bit line 201, the lead line 202, and the storage electrode 203. An aluminum thin film 205 is already formed on the upper part, and the upper part is covered with a resist 206. Part of the aluminum thin film 205 is etched by an etching process. A portion of the resist 206 is vacant so that the removed portion is exposed for removal. Then, as an etching gas, a mixed gas of chlorine gas at a partial pressure of about 1.2 Pa and a boron trichloride gas at a partial pressure of about l.OPa is introduced into the upper chamber 101. An electric current 5 is supplied to the electromagnetic coil 110 outside the upper chamber 101. A microwave 104 having a frequency of about 2.45 GHz and 800 W is introduced from the microwave waveguide 103, thereby generating a plasma in the upper chamber 101. A high frequency of 2 MHz is applied to the lower surface side of the silicon wafer 109 at 60 W, and the etching target on the silicon wafer 109 is etched. That is, a portion of the surface of the aluminum thin film 205 that is not covered with the resist 206 is etched away, and the underlying interlayer insulating film 204 is exposed at that portion. When plasma is generated for a predetermined period of time and the etching of the aluminum thin film 205 is completed, the introduction of microwaves, the application of high frequency, the introduction of coil current and etching gas is stopped, and the silicon wafer 109 is carried out from the upper chamber 101 to the introduction chamber. Is done.
このエツチング処理手順 301に従つて、 処理されるシリコンゥエノ、の数枚 分、 繰り返し行われる。 エツチング処理が繰り返し行われると、 エツチング 処理により上部チャンバ 101、 下部チャンバ 102やチャンバ.内の構成部材で ある石英筒 107等の内面に、 アルミ薄膜 205やレジスト 206等のエッチング 反応により発生した反応生成物が第, 1図の堆積膜 112のように付着してくる c 堆積膜 112がある程度の厚みを持つと、 そこから塵埃や剥離物などが発生し、 上部チャンバ 101内に放出される。 これらがェッチング対象であるデバイス 部分の表面に付着すると、 エツチング不良が生じてデバイス製作不良を引き 起こしてしまうため、 何らかの方法で除去または低減する必要がある。  According to the etching processing procedure 301, several silicon wafers to be processed are repeatedly performed. When the etching process is repeatedly performed, the etching process causes a reaction generated by an etching reaction of the aluminum thin film 205, the resist 206, and the like on the inner surface of the upper chamber 101, the lower chamber 102, and the quartz tube 107, which is a constituent member of the chamber. When the material is attached to the deposited film 112 as in the deposited film 112 shown in FIG. 1 and has a certain thickness, dust and debris are generated from the deposited film 112 and are discharged into the upper chamber 101. If these adhere to the surface of the device part to be etched, defective etching will occur, resulting in defective device fabrication. Therefore, it is necessary to remove or reduce it in some way.
そこで、 上部チャンバ 101内の石英筒 107内面における堆積膜の付着状態 を、 エッチング装置を大気開放することなく、 モニタすることによって、 石 英筒 107等の内面に付着している堆積膜 112の物質を明確し、 そのクリ一二 ング方法を検討した。  Therefore, by monitoring the adhesion state of the deposited film on the inner surface of the quartz tube 107 in the upper chamber 101 without opening the etching apparatus to the atmosphere, the material of the deposited film 112 adhered to the inner surface of the stone tube 107 or the like is monitored. And clarified its cleaning method.
第 4図に、 石英筒 107の内面の堆積膜 112の付着状態モニタ法の実施例を 示す。 上部チャンバ 101の側面に、 入射ガス分析装置 401を取り付け、 上部 チャンバ 101の壁面に入射するガスゃィォンなどをサンプリングできるよう にしてある。 また、 上部チャンバ 101内には、 堆積膜 112の付着状態を調べ るための試料 402が設置されており、 赤外光導入窓 403から導入した赤外光 を当てて、 その反射吸収スぺクトルを測定することによって、 上部チヤンバ 101内に付着した堆積膜 112の状態をモニタできるようにしてある。 赤外光 の反射-吸权スベクトルによる上部チャンバ 101内の表面状態のモニタリング 方法は、 第 5図の平断面図のような構造にしている。 赤外光 501は、 赤外光 導入窓 403から入射させる。 この窓には、 KRS- 5 と呼ばれる赤外光の透過性 の高い材質を用いている。 また、 窓の曇りによる測定値のばらつきを抑える ため、 赤外光を偏光子' 502によって偏光させて偏光変調をかけ、 赤外光 501 を分光することによって、 吸収スぺクトルを得ることができる。 試料 402上 で反射した赤外光 501は検出器 503により検出されている。上部チャンバ 101 の内面は石英筒 107に覆われているので、 上部チャンバ 101内に付着する堆 積膜 112の状態は、 石英上の挙動を調べればよい。 そこで、 試料 402は、 反 射効率の高いアルミ蒸着ミラーなどを用いている力、 その表面には厚さ約Fig. 4 shows an embodiment of the method for monitoring the adhesion state of the deposited film 112 on the inner surface of the quartz cylinder 107. Show. An incident gas analyzer 401 is attached to the side surface of the upper chamber 101 so that gas ions and the like incident on the wall surface of the upper chamber 101 can be sampled. In addition, a sample 402 for examining the adhesion state of the deposited film 112 is provided in the upper chamber 101, and the sample is irradiated with infrared light introduced from an infrared light introduction window 403 to reflect and reflect the light. The state of the deposited film 112 adhering in the upper chamber 101 can be monitored by measuring. The method of monitoring the surface state in the upper chamber 101 by the reflection-absorption vector of the infrared light has a structure as shown in the plan sectional view of FIG. The infrared light 501 is incident from an infrared light introduction window 403. For this window, a material called KRS-5, which has high transmittance of infrared light, is used. In addition, in order to suppress the dispersion of the measured values due to the fogging of the window, the absorption spectrum can be obtained by polarizing the infrared light with the polarizer '502 and subjecting the infrared light 501 to spectroscopy. . The infrared light 501 reflected on the sample 402 is detected by the detector 503. Since the inner surface of the upper chamber 101 is covered with the quartz cylinder 107, the state of the deposited film 112 adhering to the upper chamber 101 may be determined by examining the behavior on the quartz. Therefore, the sample 402 has a force using an aluminum-evaporated mirror with high reflection efficiency, and its surface has a thickness of about
0. 6 / m程度の石英膜を蒸着した。 試料 402の表面の付着した堆積膜 112の 原子の結合^態によって、 ある特定波長の赤外光が吸収されるので ·、 検出器 で検出された赤外光の吸収スぺクトルを調べることによって、 堆積膜 112の 付着状態をモニタすることが可能となる。 A quartz film of about 0.6 / m was deposited. Since the infrared light of a specific wavelength is absorbed by the bonding state of the atoms of the deposited film 112 attached to the surface of the sample 402, by examining the absorption spectrum of the infrared light detected by the detector This makes it possible to monitor the adhesion state of the deposited film 112.
本方法により、 エツチング処理手順 301中で、 上部チャンバ 101内の石英 筒 107内面に付着した堆積膜 112を調べた結果、 エッチングガスとして使用 した塩素原子とエツチング処理対象物であつたアルミ系の化合物、 フオトレ ジストからの有機系化合物の他に、 硼素原子と酸素原子が結合した B0系化 合物力 '形成されていること力初めて明らかになった。硼素原子はエッチング ガスから供給されるものであり、 酸素原子はフォトレジストゃ上部チャンバ 内の石英筒 107から供給されるものと考えられる。 さらに酸素ガスと塩素ガ ス及び硼素原子を含むガスを用いた従来のドライクリーニング中に上部チ ャンバ 101内の石英筒 107内面に付着する堆積膜 112を同様に調べた結果、 エッチング処理手順 301中に付着した B0系化合物が除去し切れず、 さらに クリーニング処理中にも形成されてしまうことがわかった。 これは、 クリー 二ング処理に使用された硼素原子を含むガスが供給源であると考えられる。 以上のことから、 繰り返し行われるエツチング処理手順 301中に上部チャ ンバ 101内に残存してしまう B0系化合物を除去し、 クリーニングガスによ る副生成物 B0系化合物が形成されないドライクリ一ユング方法を開発した。 その具体的方法を、 索 3図に示す。 According to this method, the deposited film 112 adhering to the inner surface of the quartz tube 107 in the upper chamber 101 was examined in the etching treatment procedure 301, and as a result, the chlorine atom used as the etching gas and the aluminum-based compound used as the object of the etching treatment were determined. For the first time, it was revealed that, besides the organic compounds from the photoresist, a B0-based compound force, in which a boron atom and an oxygen atom were bonded, was formed. It is considered that boron atoms are supplied from the etching gas, and oxygen atoms are supplied from the quartz cylinder 107 in the upper chamber of the photoresist. Oxygen gas and chlorine gas Of the deposited film 112 adhering to the inner surface of the quartz tube 107 in the upper chamber 101 during the conventional dry cleaning using a gas containing boron and boron atoms. Was not completely removed, and was also formed during the cleaning process. This is considered to be the source of gas containing boron atoms used in the cleaning process. From the above, a dry cleaning method in which the B0-based compound remaining in the upper chamber 101 during the repeated etching treatment procedure 301 is removed and the by-product B0-based compound is not formed by the cleaning gas is performed. developed. Figure 3 shows the specific method.
最初にプラズマクリ一二ング処理(a) 302を行う。この処理ではエッチング 対象となったアルミ薄膜の金属化合物を除去することを目的としている。 まず上部チャンバ 101及ぴ下部チャンバ 102内を排気ダク ト 111から真空 排気する。 その後上部チャンバ 101の圧力が 10—6Torr程度に達したら、 シリ コンウェハ 109を搬送し、 台 108上に載せる。 ドライクリーニング処理の場 合のシリコンウ^ハ 109は、 生産物となるウェハである必要はなく、 酸ィ匕膜 をコーティングしたダミーウェハ等を用いる。 First, a plasma cleaning process (a) 302 is performed. The purpose of this treatment is to remove the metal compounds in the aluminum thin film that has been etched. First, the inside of the upper chamber 101 and the lower chamber 102 is evacuated from the exhaust duct 111. After subsequent pressure in the upper chamber 101 reaches about 10- 6 Torr, and conveys the silicon Kon'weha 109, placed on the platform 108. The silicon wafer 109 in the case of the dry cleaning process does not need to be a product wafer, and a dummy wafer or the like coated with an oxidation film is used.
堆積物 112中のアルミ系化合物を除まするために、 クリーユングガスは硼 素系ガスを使用する。 アルミ系化合物は、 塩素ガス単独でも除ますることは 可能であるが、 硼素系ガスを導入することにより、 アルミ系化合物の中でァ ルミ酸化物力分解されるため、 塩素原子とアルミニウムの反応が促進され、 . アルミ化合物の除去効果が高くなることが知られている。 そこで、 硼素系ガ スとして三塩化硼素を用いて、 分圧にして約 l. OPa程度導入し、 アルミ酸ィ匕 物を分解する。 このとき塩素ガスを分圧にして約 1. 2Pa程度導入し、 分解さ れたアルミニウムと塩素原子の反応を.促進させ、 蒸気圧の高いアルミ塩化物 を生成させることにより、 効率良くアルミ系化合物を除去する。 上部チャン バ 101の外側のコィル 110に所定の電流、 本実施例で用いたコイルは 4段に 分れており、 上から 18A、 17A、 12A、 16Aを流す。 マイクロ波導入管 103か ら周波数が約 2. 45 GHzで 1000Wのマイクロ波 104を導入することによって プラズマを上部チャンバ 101内に発生させる。 エッチング処理時はシリコン ウェハ 109に高周波'を印加していたが、 プラズマク'リ一二ング処理時はその 必要はない。 シリコンウェハ 109に高周波を印加しないことにより、 プラズ マと上部チャンバ 101に堆積した反応生成物が反応し易くなり、 堆積膜 112 の除去効果が上がるのである。発生させた三塩化硼素ガスのプラズマにより アルミ酸ィヒ物の分解力 s促進され、 塩素ガスの導入に'より蒸気圧の ¾いアルミ 塩化物が生成され、 上部チャンバ 101内に放出され、 排気ダクト 111から排 気、 除去される。 アルミ系化合物を除去するのに必要な時間プラズマを発生 させた後、 マイクロ波 104の導入、 コイル 110への電流及ぴクリーニングガ スの導入を停止させる。 As a cleaning gas, a boron-based gas is used to remove aluminum-based compounds in the deposit 112. Aluminum compounds can be removed by chlorine gas alone, but by introducing boron-based gas, aluminum oxide is decomposed in the aluminum-based compound, so the reaction between chlorine atoms and aluminum It is known that the effect of promoting the removal of aluminum compounds is enhanced. Therefore, using boron trichloride as a boron-based gas, a partial pressure of about l.OPa is introduced to decompose the aluminum oxide. At this time, chlorine gas is introduced at a partial pressure of about 1.2 Pa to promote the reaction between decomposed aluminum and chlorine atoms, and to produce aluminum chloride with high vapor pressure, thereby efficiently producing aluminum-based compounds. Is removed. A predetermined current is supplied to the coil 110 outside the upper chamber 101, and the coil used in this embodiment is divided into four stages, and 18A, 17A, 12A, and 16A flow from above. Microwave introduction tube 103? Plasma is generated in the upper chamber 101 by introducing a microwave 104 having a frequency of about 2.45 GHz and 1000 W. The high frequency was applied to the silicon wafer 109 during the etching process, but is not required during the plasma cleaning process. By not applying a high frequency to the silicon wafer 109, the plasma and the reaction product deposited on the upper chamber 101 are apt to react with each other, and the effect of removing the deposited film 112 is improved. The generated plasma of boron trichloride gas promotes the decomposing power s of aluminum oxide, and generates aluminum chloride having a higher vapor pressure when introducing chlorine gas, is discharged into the upper chamber 101, and is exhausted. Exhausted and removed from duct 111. After the plasma is generated for a time necessary to remove the aluminum-based compound, the introduction of the microwave 104 and the introduction of the current and the cleaning gas to the coil 110 are stopped.
しかし上述した堆積膜の付着状態をモニタする方法により、 このクリ一二 ング処理 302では、 硼素系のガスを使用していることから硼素系反応生成物 が上部チャンバ 101内に残存していることが確認できる。  However, according to the above-described method of monitoring the adhesion state of the deposited film, in the cleaning process 302, since a boron-based gas is used, a boron-based reaction product remains in the upper chamber 101. Can be confirmed.
そこで、 新たにクリーニング処理 (b) 303を行う。 これは、 クリーニング処 理 (a) 302 により形成された硼素系反応生成物を除去することを目的として いる。  Therefore, a new cleaning process (b) 303 is performed. This is intended to remove the boron-based reaction product formed by the cleaning treatment (a) 302.
前クリーニング処理(a) 302において、所定の時間プラズマを発生させた後 マイク口波 104の導入ゃコィル 110への電流等は一旦停止する力'、 シリコン ウェハ 109は搬出せずに、 そのまま載せておく。 そして、 クリーニングガス を塩ィヒ水素ガスに切り替えて、 上部チャンバ 101に導入する。 塩化水素ガス を分圧にして約 1. 5Pa程度導入する。 プラズマの発生方法はクリーニング処 理(a) 302と同様に行えばょレ 発生した塩化水素プラズマにより、硼素系化 合物は B-Hの化合物、,例えば BH3、 B2H6等に変化し、 上部チャンバ 101内に放 出され、 排気ダクト 111から排気、 除去される。 所定の時間プラズマを発生 させた後、 マイクロ波 104の導入、' コイル 110への電流及びクリーニングガ スの導入を停止させる。 . しかし塩化水素ガスを用いた場合は、 シリコンウェハ 109 .は搬出せずに、 そのまま載せておき、 タリ一二ング処理 (c) 304-を行う。 In the pre-cleaning process ( a ) 302, after the plasma is generated for a predetermined time, the introduction of the microphone mouth wave 104 is a force for temporarily stopping the current and the like to the coil 110, and the silicon wafer 109 is put on as it is without being carried out. deep. Then, the cleaning gas is switched to hydrogen chloride gas and introduced into the upper chamber 101. About 1.5Pa of hydrogen chloride gas is introduced at a partial pressure. The plasma is generated in the same manner as in the cleaning process (a) 302. The generated hydrogen chloride plasma changes the boron compound into a BH compound, for example, BH 3 , B 2 H 6, etc. The gas is discharged into the upper chamber 101 and exhausted and removed from the exhaust duct 111. After the plasma is generated for a predetermined time, the introduction of the microwave 104, the current to the coil 110, and the introduction of the cleaning gas are stopped. . However, when hydrogen chloride gas is used, the silicon wafer 109 is not carried out, but is left as it is, and the silicon wafer 109 is subjected to the taring process (c) 304-.
最後にクリーニング処理 (c) 304を行う。 これは、 クリーニング処理 (b) 303 • において塩化水素を用いてクリーニング処理を行った時に、 上部チャンバ 101内に吸着された塩素ガスを除去することを目的としている。  Finally, the cleaning process (c) 304 is performed. This is intended to remove the chlorine gas adsorbed in the upper chamber 101 when performing the cleaning process using hydrogen chloride in the cleaning process (b) 303.
クリーニングガスは水素ガスを使用する。 水素プラズマの発生により、 The cleaning gas uses hydrogen gas. By the generation of hydrogen plasma,
H-C1の反応を起こさせ、上部チャンバ 101内に放出させ、排気ダクト 111か ら排気、 除去される。 プラズマの発生方法はクリーニング処理 (a) 302と同様 に行えばよい。 これにより、 プラズマクリーニング処理後、 万が一処理室を 大気開放する場合においても、 有毒ガスが除去されているため作業者への安 全性が確保されることになる。 また水素ガスの代わりに、 アルゴンガスの中 に^を混合させてプラズマを発生させれば、 水分子が解離し水素原子が生成 されるため、 上記に述べたような H- C1 の反応を起こさせることが可能であ り、 上部チャンバ 101内から有毒ガスを除去することができる。 The reaction of H-C1 is caused to be released into the upper chamber 101 and exhausted and removed from the exhaust duct 111. The plasma may be generated in the same manner as in the cleaning process (a) 302. As a result, even if the processing chamber is opened to the atmosphere after the plasma cleaning process, safety for workers is ensured because the toxic gas is removed. In addition, if plasma is generated by mixing ^ in argon gas instead of hydrogen gas, water molecules dissociate and hydrogen atoms are generated, and the H-C1 reaction described above occurs. It is possible to remove toxic gas from the upper chamber 101.
また、 クリ一二ング処理 (b) 303において塩化水素ガスを用いたが、替りに 水素ガスを導入しても塩化水素ガスを導入した場合と同じような効果が得 られる。  In addition, although hydrogen chloride gas was used in the cleaning treatment (b) 303, the same effect can be obtained by introducing hydrogen gas instead of introducing hydrogen chloride gas.
クリ一ニング処理 (a) 302において、所定の.時間プラズマを発生させた後マ イク口波 104の導入やコイル 110への電流等は一旦停止するが、 シリコンゥ ェハ 109は搬出せずに、 そのまま載せておく。 そして、 クリーニングガスを 水素ガスに切り替えて、 上部チャンバ 101に導入する。 水素ガスを分圧にし て約 1. 5Pa程度導入する。 プラズマの発生方法はクリーニング処理(a) 302 と同様に行えばよい。 発生した水素プラズマにより、 硼素系化合物は B-Hの 化合物、 例えば BH3、 B2H6等に変ィ匕し、 上部チャンバ 101内に放出され、 排気 ダクト 111から排気、 除去される。 所定の時間プラズマを発生させた後、 マ ィク口波 104の導入、 コイル 110への電流及ぴクリ一二ングガスの導入を停 止させる。 そして、 シリコンウェハ 109を導入室に搬出する。 クリ一二ング処理 (b) 303において、塩化水素ガスの替りに水素ガスを用い ると、 処理工程を一つ少なくすることができるため、 プロセス制御が容易と - なる。 また、 腐食性の高い塩化水素ガスを使用しないので、 半導体デバイス 製造装置に与えるダメージは少ない。 ' なお、 硼素系化合物を除去するためには、 塩化水素ガスを導入した場合に 比べ、 プラズマの発生時間が 2倍以上必要になってしまうことから、 塩化水 素ガスを導入した場合の方が、 一つ工程が多くなるものの、 全体のクリ一二 ング処理時間は短くなるため、 半導体デバイスの生産効率を考えた場合には、 塩化水素ガスを用いた方が有利である。 In the cleaning process ( a ) 302, after generating the plasma for a predetermined time, introduction of the microphone mouth wave 104 and current to the coil 110 are temporarily stopped, but the silicon wafer 109 is not carried out. Leave it on. Then, the cleaning gas is switched to hydrogen gas and introduced into the upper chamber 101. Hydrogen gas is introduced at a partial pressure of about 1.5Pa. The plasma may be generated in the same manner as in the cleaning process (a) 302. By the generated hydrogen plasma, the boron-based compound is converted into a BH compound, for example, BH 3 , B 2 H 6, etc., released into the upper chamber 101, and exhausted and removed from the exhaust duct 111. After generating the plasma for a predetermined time, the introduction of the mark mouth wave 104 and the introduction of the current and the cleaning gas to the coil 110 are stopped. Then, the silicon wafer 109 is carried out to the introduction chamber. In the cleaning treatment (b) 303, if hydrogen gas is used instead of hydrogen chloride gas, the number of treatment steps can be reduced by one, so that process control becomes easy. In addition, since highly corrosive hydrogen chloride gas is not used, damage to semiconductor device manufacturing equipment is small. '' In order to remove boron-based compounds, plasma generation time is more than twice as long as when hydrogen chloride gas is introduced. However, although one process is increased, the entire cleaning processing time is shortened. Therefore, when considering the production efficiency of semiconductor devices, it is more advantageous to use hydrogen chloride gas.
このようなクリーニング処理(a), (b) , (c)を順次行うことにより、 エッチ ング処理時に上部チャンバ 101等に堆積した反応生成物を除去し、 しかも、 クリーニングガスによる副生成物も除去することができる。 そして、 エッチ ング処理 301が繰り返し行われる。  By sequentially performing such cleaning processes (a), (b), and (c), reaction products deposited in the upper chamber 101 and the like during the etching process are removed, and by-products due to the cleaning gas are also removed. can do. Then, the etching process 301 is repeatedly performed.
本実施例に述べたドライクリ一二ング方法は、 エッチング処理 301におい てェッチングガスとして塩素と三塩化硼素を用いた場合について説明した が、その他に BBr3等の別の硼素系のガスを使用した場合においても有効であ る。 また第 2図に示した半導体デバイスにおいて、 金属薄膜 205がアルミ単 層膜の他に、 アルミを含む合金の薄膜の場合でも有効である。 . In the dry cleaning method described in this embodiment, the case where chlorine and boron trichloride are used as the etching gas in the etching process 301 has been described.However, when another boron-based gas such as BBr 3 is used. It is also effective in In the semiconductor device shown in FIG. 2, the metal thin film 205 is also effective when it is a thin film of an alloy containing aluminum in addition to the aluminum single-layer film. .
次に、 本発明の第 2の実施例について、 図に従って詳細に説明する。 本実 施例は第 2図のアルミ薄膜 205がタングステンゃシリコン酸化膜の場合のェ ッチング処理に関するものである。  Next, a second embodiment of the present invention will be described in detail with reference to the drawings. This embodiment relates to an etching process when the aluminum thin film 205 in FIG. 2 is a tungsten-silicon oxide film.
これらの材料のェッチング処理にはフッ素系のガス力 s使用される。 そして この場合のエッチング処理においては、 弗素、 フォトレジストからの有機物、 タングステン、 シリコン等を含む化合物が上部チャンバ 101や石英筒 107な どに付着する。 また、 エッチングガスにフルォロカーボン系のガスを用いる と.、 上部チャンバ 101を構成しているアルミナ部品がプラズマで叩かれ、 ェ ッチングガスの弗素原子とアルミナ部品のアルミニウムが化合して弗化ァ ルミが形成され、 付着する。 この弗化アルミは、 従来のドライクリーニング 法では非常にとれにくいものであり、 上部チャンバ 101内などに残存し塵埃 の発生が多くなり、 歩留まり低下の大きな要因になってしまう。 A fluorine-based gas force is used for the etching of these materials. In the etching process in this case, a compound containing fluorine, an organic substance from a photoresist, tungsten, silicon, and the like adheres to the upper chamber 101, the quartz tube 107, and the like. When a fluorocarbon-based gas is used as an etching gas, the alumina component forming the upper chamber 101 is hit with plasma, and fluorine atoms of the etching gas and aluminum of the alumina component combine to form a fluoride gas. Lumi is formed and adheres. This aluminum fluoride is very difficult to remove by the conventional dry cleaning method, and remains in the upper chamber 101 or the like, and increases the generation of dust, which is a major factor in lowering the yield.
しかしながらこのような堆積膜に関しても、 第 3図に示したドライクリー ニング方法の手順で同様に行うことにより除去されることを、 第 5図に示し たモニタ方法によって確認した。 すなわち、 クリーニングガスによる副生成 物は形成されず、 かつ、 上部チャンバ 101等に堆積した反応生成物を除去す ることができる。  However, it was confirmed by the monitoring method shown in FIG. 5 that such a deposited film was also removed by performing the same procedure in the dry cleaning method shown in FIG. That is, no by-products are formed by the cleaning gas, and the reaction products deposited in the upper chamber 101 and the like can be removed.
第 1の実施例や第 2の実施例ではェッチングの対象物が、 アルミニウム、 タングステン、 シリコン酸ィ匕膜について説明した力 ?、 他にも白金ゃルテニゥ ム等の場合にも、 エッチングプロセスによりチャンバ一内にアルミの化合物 が付着するものであれば第 3図の手順でドライクリ一二ングを行うことに より、 同様の効果カ?得られる。 Object Etchingu in the first embodiment and the second embodiment, aluminum, tungsten, force? Described for silicon Sani匕膜, in each case as platinum Ya Ruteniu beam to other, the chamber by the etching process more performing the Doraikuri-learning the procedure of FIG. 3 as long as the compound of aluminum is deposited in one, the same effect mosquito? obtained.
また、 第 1の実施例や第 2の実施例ではドライエツチングプロセスを例に 説明している力 ?、 C V Dプロセス及びスパッタリングプロセスでも、 図 3の 手順でドライクリーニングを行うことにより、 同様の効果が得られる。 本願発明者は本願発明の結果に基づき公知例調査を行ったが、 本願発明を 示唆する公知例は見当たらなかった。 Further, the force in the first embodiment and the second embodiment is described as an example of dry Etsu quenching process?, In CVD processes and sputtering process, by performing dry cleaning in the procedure of FIG. 3, the same effect can get. The inventor of the present application conducted a search of known examples based on the results of the present invention, but found no known examples suggesting the present invention.
プラズマクリ一ニング法として、 水素ガスや塩化水素ガスを使用すること は特開平 6-302565号公報、 特開平 3-62520号公報、 特開平 10-74732号公報 等に記載されていたが、 これは、 エッチングプロセスで形成された堆積膜を 除去する技術であり、 本願のようにプラズマクリーニングにより形成された 堆積膜を除去するための方法ではない。 また硼素系ガスと組み合わせること に関しては示唆する記載もなかった。  The use of hydrogen gas or hydrogen chloride gas as the plasma cleaning method has been described in JP-A-6-302565, JP-A-3-62520, JP-A-10-74732, etc. Is a technique for removing a deposited film formed by an etching process, and is not a method for removing a deposited film formed by plasma cleaning as in the present application. There was no suggestion about combining with a boron-based gas.
本発明によれば、 エッチング工程における処理室内の反応生成物に起因す る半導体素子の歩留まり低下を防止することができる。  According to the present invention, it is possible to prevent a decrease in the yield of semiconductor elements due to a reaction product in a processing chamber in an etching step.

Claims

請求の範囲 The scope of the claims
1 . チヤンバ内で半導体ゥェハに形成された膜のェツチングを行うエツチン グ工程を有する半導体デバイスの製造方法であって、 前記チャンバに付着し た付着物の状態に応じて ' . ' 前記チャンバ内にウェハを供給する工程と、 1. A method for manufacturing a semiconductor device having an etching step of etching a film formed on a semiconductor wafer in a chamber, wherein the method includes the steps of: Supplying a wafer;
前記ウェハを供給した後、 前記チャンバ内に硼素系ガスを含むガスを導入す る工程と、 ' Introducing a gas containing a boron-based gas into the chamber after supplying the wafer;
前記硼素系ガスを含むガスのプラズマを発生させる工程と、 Generating a plasma of a gas containing the boron-based gas;
前記硼素系ガスを含むガスのプラズマを発生させた後、 前記チャンバ内に塩 化水素ガスを導入する工程と、 Introducing a hydrogen chloride gas into the chamber after generating a plasma of a gas containing the boron-based gas;
前記塩化水素ガスのプラズマを発生させる工程と、 Generating a plasma of the hydrogen chloride gas;
前記塩化水素ガスのプラズマを発生させた後、 前記チャンバ内に水素ガスを 導入する工程と、 Introducing a hydrogen gas into the chamber after generating the plasma of the hydrogen chloride gas;
前記水素ガスのプラズマを発生させる工程と Generating a plasma of the hydrogen gas;
を行なう半導体デバイスの製造方法。 For manufacturing a semiconductor device.
2 . チャンバ内で半導体ウェハに形成された膜のエッチングを行うエツチン グ工程を有する半導体デバィスの製造方法であって、 前記チャンバに付着し た付着物の状態に応じて '  2. A method for manufacturing a semiconductor device having an etching step of etching a film formed on a semiconductor wafer in a chamber, the method comprising the steps of:
前記チャンバ内にウェハを供給する工程と、 ' 前記ウェハを供給した後、 前記チャンバ内に硼素系ガスを含むガスを導入す る工程と、 Supplying a wafer into the chamber; and introducing a gas containing a boron-based gas into the chamber after supplying the wafer.
前記硼素系ガスを含むガスのプラズマを発生させる工程と、 Generating a plasma of a gas containing the boron-based gas;
前記硼素系ガスを含むガスのプラズマを発生させた後、 前記チャンバ内に水 素ガスを導入する工程と、 Introducing a hydrogen gas into the chamber after generating a plasma of the gas containing the boron-based gas;
前記水素ガスのプラズマを発生させる工程と ' を行なう半導体デバイスの製造方法。 A method of manufacturing a semiconductor device, comprising the steps of: generating a hydrogen gas plasma.
3 . 請求項 1または 2において、 前記膜がアルミ薄膜であり、 前記エツチン グ工程で使用するガスが塩素原子を含むガスである半導体デバイスの製造 方法。 3. The method according to claim 1, wherein the film is an aluminum thin film, and a gas used in the etching step is a gas containing a chlorine atom.
4 . 請求項 1または 2において、 前記ウェハには高周波を印加しない半導体 デバイスの製造方法。  4. The method of manufacturing a semiconductor device according to claim 1, wherein a high frequency is not applied to the wafer.
5 . 請求項 1または 2において、 前記エッチング工程で使用するガスがフル ォロカーボン系のガスを,含むガスであり、 前記チャンバがァルミナ部品を備 えている半導体デバイスの製造方法。  5. The method for manufacturing a semiconductor device according to claim 1, wherein the gas used in the etching step is a gas containing a fluorocarbon-based gas, and the chamber is provided with an alumina component.
6 . チャンバ内で半導体ウェハに形成された膜のエッチングを行うエツチン グ装置のクリーニング方法であって、  6. A method for cleaning an etching apparatus for etching a film formed on a semiconductor wafer in a chamber, the method comprising:
前記ェッチング工程にて前記チヤンバに付着したアルミ系化合物を硼素系 ガスのプラズマを用いて 1 去する工程と、 A step of removing the aluminum-based compound attached to the chamber in the etching step by using a plasma of a boron-based gas;
前記硼素系ガスのプラズマを用いて除去する工程で前記チャンバに付着し た硼素系反応生成物を塩化水素ガスのプラズマを用いて除去する工程と、 前記塩化水素ガスのプラズマを用いて除去する工程で前記チャンバに吸着 された塩素ガスを水素ガスのプラズマを用いて除去する工程と Removing the boron-based reaction product adhered to the chamber using the plasma of hydrogen chloride gas in the step of removing using the plasma of boron-based gas; and removing the reaction product using the plasma of hydrogen chloride gas. Removing the chlorine gas adsorbed in the chamber using a plasma of hydrogen gas in
を備えたエッチシグ装置のクリーニング方法。 A cleaning method for an etch sig device provided with:
7 . チャンバ内で半導体ウェハに形成された膜のエッチングを行うエツチン グ装置のクリーニング方法であって、  7. A method for cleaning an etching apparatus for etching a film formed on a semiconductor wafer in a chamber, the method comprising:
前記ェッチング工程にて前記チヤンバに付着したアルミ系化合物を硼素系 ガスのプラズマを用いて除去する工程と、 Removing the aluminum-based compound attached to the chamber in the etching step using a plasma of a boron-based gas;
前記硼素系ガスのプラズマを用いて除去する工程で前記チヤンバに付着し た硼素系反応生成物を水素ガスのプラズマを用いて除去する工程と を備えたエツチング装置のクリーニング方法。 Removing the boron-based reaction product attached to the chamber using hydrogen gas plasma in the step of removing using the boron-based gas plasma.
PCT/JP2000/001647 2000-03-17 2000-03-17 Method of manufacturing semiconductor device WO2001071790A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001647 WO2001071790A1 (en) 2000-03-17 2000-03-17 Method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/001647 WO2001071790A1 (en) 2000-03-17 2000-03-17 Method of manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
WO2001071790A1 true WO2001071790A1 (en) 2001-09-27

Family

ID=11735804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/001647 WO2001071790A1 (en) 2000-03-17 2000-03-17 Method of manufacturing semiconductor device

Country Status (1)

Country Link
WO (1) WO2001071790A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026687A (en) * 2003-07-01 2005-01-27 Ips Ltd Vapor disposition method for thin film
JP2006032790A (en) * 2004-07-20 2006-02-02 Hitachi High-Technologies Corp Plasma processing apparatus, and processing chamber inner wall surface stabilizing processing method
JP2008538127A (en) * 2005-03-21 2008-10-09 東京エレクトロン株式会社 System and method for plasma accelerated atomic layer deposition
JP2009033202A (en) * 2003-11-25 2009-02-12 Air Products & Chemicals Inc Method of removing high dielectric constant material from deposition chamber
JP2018046216A (en) * 2016-09-16 2018-03-22 株式会社日立ハイテクノロジーズ Plasma processing method
CN113663988A (en) * 2018-10-18 2021-11-19 汉辰科技股份有限公司 Method and apparatus for cleaning fluorinated surfaces within an ion implanter

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241869A (en) * 1996-02-23 1996-09-17 Semiconductor Energy Lab Co Ltd Plasma treatment method
JP2000012515A (en) * 1998-06-22 2000-01-14 Hitachi Ltd Plasma cleaning method for microwave plasma etching apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08241869A (en) * 1996-02-23 1996-09-17 Semiconductor Energy Lab Co Ltd Plasma treatment method
JP2000012515A (en) * 1998-06-22 2000-01-14 Hitachi Ltd Plasma cleaning method for microwave plasma etching apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005026687A (en) * 2003-07-01 2005-01-27 Ips Ltd Vapor disposition method for thin film
JP2009033202A (en) * 2003-11-25 2009-02-12 Air Products & Chemicals Inc Method of removing high dielectric constant material from deposition chamber
JP2006032790A (en) * 2004-07-20 2006-02-02 Hitachi High-Technologies Corp Plasma processing apparatus, and processing chamber inner wall surface stabilizing processing method
JP4647253B2 (en) * 2004-07-20 2011-03-09 株式会社日立ハイテクノロジーズ Method for stabilizing wall surface of processing chamber of plasma processing apparatus
JP2008538127A (en) * 2005-03-21 2008-10-09 東京エレクトロン株式会社 System and method for plasma accelerated atomic layer deposition
JP2018046216A (en) * 2016-09-16 2018-03-22 株式会社日立ハイテクノロジーズ Plasma processing method
CN113663988A (en) * 2018-10-18 2021-11-19 汉辰科技股份有限公司 Method and apparatus for cleaning fluorinated surfaces within an ion implanter

Similar Documents

Publication Publication Date Title
JP2674488B2 (en) Dry etching chamber cleaning method
JP3400293B2 (en) CVD apparatus and cleaning method thereof
EP0416774B1 (en) A method of treating a sample of aluminium-containing material
JP3594759B2 (en) Plasma processing method
JP2008078678A (en) Method for processing plasma
JP3798491B2 (en) Dry etching method
KR101238086B1 (en) A method of processing substrates
US6566269B1 (en) Removal of post etch residuals on wafer surface
WO2001071790A1 (en) Method of manufacturing semiconductor device
JP3801366B2 (en) Cleaning method for plasma etching apparatus
JPH10189550A (en) Manufacture of semiconductor device
JP3381407B2 (en) Plasma monitoring device and plasma monitoring method
US6545245B2 (en) Method for dry cleaning metal etching chamber
JPH1140502A (en) Method for dry-cleaning semiconductor manufacturing apparatus
US7055532B2 (en) Method to remove fluorine residue from bond pads
JP3338123B2 (en) Semiconductor manufacturing apparatus cleaning method and semiconductor device manufacturing method
JP3566522B2 (en) Plasma cleaning method in plasma processing apparatus
JPH01231322A (en) Plasma processing device
JP2004031970A (en) Manufacturing method of semiconductor device
JPH06302565A (en) Plasma cleaning method for chamber
JP2003068705A (en) Manufacturing method of semiconductor element
JP3727312B2 (en) Plasma processing method for plasma processing apparatus
JP3104840B2 (en) Sample post-treatment method
JPH1050656A (en) Cleaning semiconductor manufacturing apparatus and semiconductor wafer and manufacturing semiconductor device
JP4127370B2 (en) Plasma processing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 569871

Kind code of ref document: A

Format of ref document f/p: F