WO2001071094A1 - Corps durci et procede et dispositif de production dudit corps durci - Google Patents

Corps durci et procede et dispositif de production dudit corps durci Download PDF

Info

Publication number
WO2001071094A1
WO2001071094A1 PCT/JP2001/002245 JP0102245W WO0171094A1 WO 2001071094 A1 WO2001071094 A1 WO 2001071094A1 JP 0102245 W JP0102245 W JP 0102245W WO 0171094 A1 WO0171094 A1 WO 0171094A1
Authority
WO
WIPO (PCT)
Prior art keywords
papermaking
paper
papermaking sludge
sludge
cured product
Prior art date
Application number
PCT/JP2001/002245
Other languages
English (en)
French (fr)
Inventor
Yoshiya Matsuno
Kenji Sato
Satoshi Ogawa
Toshihiro Nomura
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000077722A external-priority patent/JP2001271297A/ja
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to EP01915673A priority Critical patent/EP1197597A1/en
Publication of WO2001071094A1 publication Critical patent/WO2001071094A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/06Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines of the cylinder type
    • D21F11/08Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines of the cylinder type paper or board consisting of two or more layers
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F13/00Making discontinuous sheets of paper, pulpboard or cardboard, or of wet web, for fibreboard production
    • D21F13/04Making discontinuous sheets of paper, pulpboard or cardboard, or of wet web, for fibreboard production on cylinder board machines
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F13/00Making discontinuous sheets of paper, pulpboard or cardboard, or of wet web, for fibreboard production
    • D21F13/04Making discontinuous sheets of paper, pulpboard or cardboard, or of wet web, for fibreboard production on cylinder board machines
    • D21F13/06Format rolls
    • D21F13/08Automatic cut-off rolls
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21JFIBREBOARD; MANUFACTURE OF ARTICLES FROM CELLULOSIC FIBROUS SUSPENSIONS OR FROM PAPIER-MACHE
    • D21J1/00Fibreboard

Definitions

  • Hardened body Description Hardened body, method for manufacturing hardened body, and apparatus for manufacturing hardened body
  • the present invention relates to a cured product, a method for producing a cured product, and a device for producing a cured product which can mass-produce a high-brightness cured product obtained by solidifying papermaking sludge into a plate shape.
  • the present inventors have disclosed a technology for producing a cured product that can be effectively used as a building panel or the like, after dewatering and pressing papermaking sludge generated after the production of paper, and then curing by drying. It is proposed as No. 3 5 2 5 8 6.
  • a cured product can be obtained by curing papermaking sludge, but it was not possible to produce a cured product that would be profitable.
  • papermaking sludge is colored by the influence of ink and pulp impurities.
  • impurities remain in the cured product as it is and the brightness of the cured product is reduced. There was a problem that could not be done.
  • the present invention has been made to solve the above-described problems, and a first object of the present invention is to provide a method and an apparatus for producing a cured body capable of efficiently mass-producing the cured body from papermaking sludge. To provide.
  • the first object is to provide a cured product having high brightness.
  • the dewatering press method is inferior in mass productivity.
  • Japanese Patent Laid-Open No. 49-114,628 discloses that a mixture of papermaking sludge and cement diluted to a solid content of 3% is formed on a rotating drum, and this drum surface is formed. Is transferred to a belt-like blanket, dewatered and pressed, and further increased in layer thickness by a take-up roll, then cut and conveyed.
  • Japanese Patent Application Laid-Open No. 59-1566956 discloses a paper making method using a round wire mesh, and discloses a technique of forming a mat one by one and forming a multilayer.
  • the present invention has been made to solve the above-described problems, and a second object is to provide a method for manufacturing a cured body that can efficiently mass-produce the cured body from papermaking sludge and reduce the variation in strength.
  • An object of the present invention is to provide an apparatus for manufacturing a cured body.
  • the inventor of the present invention has shown in Japanese Patent Application No. 10-35 25 86 that a hardened body can be obtained by hardening papermaking sludge, but the obtained hardened body has uneven density. Was big. In order to produce a cured product that can be used for industrial applications, it was necessary to establish technology for producing a highly dense and homogeneous cured product.
  • Japanese Patent Application Laid-Open No. Sho 49-1141462 discloses that an organic content of 200 mesh or less is preferable. However, with this technique, there was a problem that the brightness of the formed molded article was low.
  • Japanese Patent Application Laid-Open No. 59-1566956 discloses a papermaking method using a round wire mesh.Matsu is made one by one to form a multilayer, but the round wire mesh used is , From 250 to 10 mesh, which is also low in brightness.
  • the present invention has been made to solve the above-described problems, and a third object is to provide a method of manufacturing a cured body capable of efficiently mass-producing a high-density cured body from papermaking sludge, and a cured body.
  • a manufacturing apparatus In the above-mentioned Japanese Patent Application Laid-Open No. 49-11414628, the obtained product is not uniform, and problems such as peeling and warping have occurred.
  • Japanese Patent Application Laid-Open No. 59-1566956 discloses a papermaking method using a round wire mesh. However, it is a method in which mats are formed one by one and multilayered, resulting in poor efficiency.
  • the present invention has been made in order to solve the above-mentioned problems, and a fourth object is to provide a cured product that can efficiently mass-produce a uniform cured product in the thickness direction and in-plane from papermaking sludge.
  • An object of the present invention is to provide a manufacturing method and a device for manufacturing a cured body.
  • cutting with a take-up roll requires a cutting tool such as a power cutter, which is inferior in productivity and has problems with safety. .
  • a fifth object of the present invention is to solve the above-mentioned problems, and a fifth object of the present invention is to provide a method for producing a cured product capable of efficiently and safely mass-producing a cured product from papermaking sludge and a method for producing the cured product. It is to provide a device. Also, as in Japanese Patent Application Laid-Open Nos. 49-114, 1988 and 59-156, 566, when a paper is wound, stress remains inside and the paper is dried after lamination. As a result, there arises a problem that the cured product is warped and delaminated.
  • the present invention has been made to solve the above-mentioned problems, and a sixth object of the present invention is to provide a method and an apparatus for producing a cured body capable of producing a cured body without warpage from papermaking sludge. Is to provide.
  • the inventor of the present invention has disclosed in Japanese Patent Application No. 10-3255256 that a hardened product can be obtained by hardening papermaking sludge, but the obtained hardened product has a specific gravity and The variation in strength was large. In order to produce a cured product that can be used for industrial applications, it was necessary to establish a technology for producing a cured product with a uniform specific gravity.
  • the present invention has been made to solve the above-mentioned problems, and a seventh object of the present invention is to provide a method for producing a cured product capable of mass-producing a cured product having a uniform specific gravity from papermaking sludge. Further, in the above-mentioned Japanese Patent Application Laid-Open No. 49-114648, there was a problem that the formed molded article was cut off during transportation.
  • Japanese Patent Application Laid-Open No. 59-1566956 discloses a papermaking method using a round wire mesh, in which a mat is formed one by one and multilayered. Raising the mat caused a problem that the mat would break.
  • the present inventor further studied to actually mass-produce the cured product, and it became clear that it was difficult to handle a paper-made product made from papermaking sludge after forming it into a predetermined shape. It was. That is, after forming a paper-formed article formed from papermaking sludge into a predetermined shape for forming a cured product, the paper-shaped article contains a large amount of water, and thus it has been difficult to handle the paper-shaped article without breaking its shape.
  • the present invention has been made in order to solve the above-described problems, and an eighth object thereof is to provide a method for manufacturing a cured product which facilitates handling of a papermaking product and enables mass production of a cured product from papermaking sludge. It is in.
  • the inventor of the present invention has disclosed in Japanese Patent Application No. 10-3255256 that a hardened product can be obtained by hardening papermaking sludge, but can be widely used for industrial applications and practically. The strength could not be obtained.
  • As a method of increasing the strength of the present inventor S as a method of increasing the strength, the idea was to pressurize the paper made from papermaking sludge, and based on the results of the experiment, the strength of the cured body was increased by increasing the applied pressure. I was able to do it. However, it was found that as the pressure was increased, the papermaking body was easily broken at the time of pressurization, and the yield was reduced.
  • the present invention has been made to solve the above-mentioned problems, and a ninth object is to provide a method and an apparatus for producing a cured product capable of producing a high-strength cured product from papermaking sludge. To provide. Disclosure of the invention
  • the cured product according to claim 1 of the present invention is obtained by forming and curing papermaking sludge, and each oxide of Si, A1, and Ca
  • the lightness of this cured product is N5 or more as a value based on the provisions of JISZ8721.
  • papermaking sludge is formed and cured to form an inorganic amorphous material composed of oxides of Si, Al, and Ca.
  • an organic fibrous material and a cured body comprising a carbonate Karushiumu consisting polysaccharides, C a in the cured body, a 1, the amount of S i are respectively C a 0, a 1 2 0 3, the ratio of S i O 2 in terms of C a O / S i 0 2 ratio 0.2 from 7. 9, C a O / a 1 2 0 3 is adjusted from 0.2 to 1 2.5, It is characterized in that it contains a coagulant. With such a configuration, variations in specific gravity and strength can be improved, and warpage can be eliminated.
  • the raw material solution does not contain any cement or contains 30% by weight or less of cement in the solid content.
  • the inclusion of cement improves papermaking properties, but causes a decrease in strength and a decrease in lightness. 30% by weight is the upper limit.
  • a cured product comprising a force Rushiumu, C a in the cured product, the amount of a 1, S i, respectively in terms of C a 0, a 1 2 0 3, S i O 2 C a oZS i 0 2 from the ratio 0.2 7.9, the ratio of C a O / a 1 2 0 3 is a cured body that is adjusted from 0.2 to 1 2.5.
  • the lightness of this cured product is N5 or more as a value based on the provisions of JISZ8721.
  • the amount of these C a, A l, S i (C a 0, A 1 2 0 3, S i 0 2 equivalent amount) is located in a total amount of C a, A 1, S i in the composite cured body
  • it means the amount of calcium carbonate and the total amount of Ca in the inorganic amorphous material.
  • C a OZA 1 2 0 3 ratio exceeds the 0.2, 1 2. hardened body is adjusted to 5 or less It is best to have.
  • a papermaking sludge is formed and cured, and an inorganic amorphous material composed of oxides of Si, A1, and Ca is provided.
  • An organic fibrous material and a cured body comprising a carbonate force Rushiumu consisting polysaccharides in the amount of C a, A 1, S i in the cured product, respectively C a 0, A 1 2 0 3, are adjusted S i O 2 in terms of C a OZ S i 0 2 ratio 0.2 from 7. 9, C a / a 1 2 0 3 ratio to zero. 2 to the 1 2.5 Characterized by containing synthetic fibers. With such a configuration, the bending strength and the fracture toughness value can be improved.
  • the raw material solution does not contain any cement, or contains 30% by weight or less of cement in the solid content.
  • the inclusion of cement improves papermaking properties, but causes a decrease in strength and a decrease in lightness. 30% by weight is the upper limit.
  • a method for producing a cured product according to claim 7 includes the steps of: forming a raw material solution containing papermaking sludge by using a filter body; and attaching a papermaking sludge paper body to the surface of the filter body. At the same time, the paper is transferred to a conveyor belt after being transferred, cut into a predetermined size, and the paper is cured to obtain a cured papermaking sludge. For this reason, a hardened body can be efficiently mass-produced from papermaking sludge.
  • the method for producing a cured product according to claim 8 is characterized in that a raw material solution containing papermaking sludge is formed using a rotating drum having a rotation speed of 1 to 100 times, The papermaking sludge paper is adhered to the surface of the rotating drum, and the paper is transferred to a conveyor belt and then transferred and cut into a predetermined size.
  • the papermaking body is hardened to obtain a hardened papermaking sludge. . For this reason, the cured product can be efficiently mass-produced from papermaking sludge.
  • the paper is oriented in the thickness direction of the paper and the strength is varied. If the rotation speed exceeds 100 rotations, the fiber is oriented in the rotation direction and the strength is reduced. Vary.
  • the method for producing a cured product according to claim 9 is a method for producing a raw material solution containing paper sludge using a filter body having a network structure of # 40 to 150.
  • a papermaking sludge paperwork is attached to the surface of the drainage body, and the papermaking paper is transferred to a conveyor belt and then transferred, cut into a predetermined size, and the paperwork is hardened to obtain a hardened papermaking sludge.
  • the mesh is coarser than # 40, only the inorganic non-crystalline material is removed from the raw material solution, and the density and strength of the cured product are reduced.
  • the mesh is finer than # 150, the removal of water becomes worse, and it becomes impossible to make a papermaking product from the raw material solution with high efficiency.
  • voids reduce the density due to residual moisture.
  • a method for producing a cured product according to claim 10 uses a rotating drum made of a mesh of a raw material solution containing paper sludge having a solid content of 3.5 to 25% by weight.
  • the papermaking sludge is attached to a rotating drum made of the net-like body, and the papermaking body is transferred to a conveyor belt and then transferred, cut into a predetermined size, and the papermaking body is cured and hardened.
  • the papermaking property from papermaking sludge is improved, and the cured product can be efficiently mass-produced. That is, when the concentration is less than 3.5%, the concentration is too low, and it takes time to secure the thickness.
  • the concentration decreases, and the uniformity in the thickness direction decreases. If it exceeds 25%, the in-plane uniformity of the product decreases. For this reason, warpage occurs due to drying.
  • the method for producing a cured product according to claim 11 is characterized in that a raw material solution containing papermaking sludge is formed using a filter body, and papermaking sludge is formed on the surface of the filter body.
  • the paper is transferred to a conveyor belt at a speed of 5 to 8 OmZ and then transferred, cut into a predetermined size, and the paper is hardened to obtain a hardened papermaking sludge. Since the transport speed of the transport belt is 5 to 80 minutes, it is possible to efficiently produce a paper having an appropriate thickness from the raw material solution, and it is possible to mass-produce the cured product from paper sludge efficiently.
  • the paper can be made thicker, but the papermaking efficiency is low and the thickness becomes uneven.
  • the transport speed exceeds 8 OmZ, the paper body becomes thinner, making it difficult to obtain a uniform thickness, and the paper body may be cut off, and the thickness is uneven.
  • a method for producing a cured product according to claim 12 is characterized in that a raw material solution containing a papermaking sludge is made using a rotating drum made of a mesh, and papermaking sludge is made on the rotating drum surface. At the same time, the paper is transferred to a transport belt of a porous body having continuous pores, and water is removed from the paper while being transported by the transport belt, and then cut into a predetermined size. Hardened body and hardened paper sludge Get. Since the paper is dewatered while being conveyed by the conveyor belt, the moisture in the paper can be efficiently reduced, and the cured product can be mass-produced.
  • a hardened body is manufactured by making a paper using a mesh-shaped rotating drum, and impurities are dropped from the mesh, so that the impurities can be reduced and the brightness can be increased.
  • impurities and ink can be removed during dehydration while being conveyed by a conveyor belt, it is optimal for increasing brightness.
  • a cured product comprising calcium carbonate, C a in the cured product, the amount of A and S i is, their respective C a 0, A 1 2 0 3, the S i 0 2 C a O / S i 0 2 ratio 0 in terms. 2 or al 7. 9, C a OZA 1 ratio of 2 O 3 is 0.
  • the brightness of the cured product can be N5 or more as a value based on the provisions of JISZ8721.
  • JISZ8721 sets the ideal black lightness to 0 and the ideal white lightness to 10, and the perception of the brightness is equal between these black lightness and white lightness.
  • Each color is divided into 10 so as to obtain the rate, and the symbols are displayed with symbols from NO to N10.
  • the actual lightness measurement contrasts with the color chart corresponding to N0 to N10.
  • the first decimal place is 0 or 5.
  • the lightness of the cured product can be N5 or more based on the value of JIS Z8721, so that coloring and decoration can be performed.
  • the crystal habit of the calcium carbonate is at least one form selected from a spindle shape, a square shape, a thin table shape, a cubic shape, and a column shape. This is because the whiteness is high and the corners make it hard to get caught in the fiber and fall off, so that it can be incorporated into the cured product even in papermaking.
  • the papermaking sludge cement When the papermaking sludge cement is added, its content is desirably 30% by weight or less. This is because the lightness decreases as the content of papermaking sludge cement increases. Also, it is recognized that the strength is reduced by the addition of cement.
  • Japanese Patent Application Laid-Open No. 55-12853 discloses a technique in which papermaking sludge is wire-pressed, dewatered, and hot-pressed.
  • sludge is only about 2.6% by weight in terms of CaO, and its strength is not sufficient.
  • it since it is not a papermaking, it contains a large amount of impurities and eventually has low brightness.
  • JP-A-50-101604 discloses a board obtained by mixing papermaking sludge with hydrophobic fibers and adding a binder. However, as the time of the paper sludge, less C a Ingredients, The intensity is also bent 2. strength 5 k gZc m 2, also having a high strength and composite, there is only 1 5 k gZcm 2 about However, the present invention is far superior.
  • 52-90585 discloses a papermaking sludge whose surface is treated with paraffin.
  • the papermaking sludge at that time has little Ca component and is considered to have poor strength.
  • it since it is not a papermaking method, it contains a large amount of impurities, resulting in low brightness.
  • the cured product is manufactured by making a paper using a mesh-shaped rotating drum, impurities are dropped from the mesh, so that the impurities can be reduced and the brightness can be increased.
  • JP-A-49-114628 a 3% diluted mixture of papermaking sludge and cement is formed on a rotary drum, transferred from the drum surface onto a strip blanket, dewatered and pressed, and further wound.
  • a technique is disclosed in which a layer is thickened by a take-up roll, cut, and conveyed by a conveyor.
  • Japanese Patent Application Laid-Open No. 59-15656 discloses a papermaking method using a round wire mesh. However, it is a method in which a mat is formed one by one to form a multilayer, which is inefficient.
  • a method for producing a cured product according to claim 13 is characterized in that a raw material solution containing papermaking sludge is formed using a filter body, and papermaking sludge is formed on the surface of the filter body.
  • the paper is transferred to the conveyor belt after being transferred, and the paper on the conveyor belt is transferred to a cutting rotary drum having a cutting mechanism to be multilayered.
  • the specified size when the specified thickness is reached And the paper is cured to obtain a cured papermaking sludge.
  • the paper Since the paper is multi-layered by a cutting rotary drum with a cutting mechanism, it can be automated without cutting.
  • As the cutting mechanism there are a cutting mechanism having a blade 35 that comes into contact with the cutting rotary drum 30 almost vertically as shown in FIG. 20 and a groove 32 for retaining water as shown in FIG. It is desirable to have a mechanism 31 for pushing out the papermaking body 26 from the inside. In FIG. 20, a fixed length papermaking body can be mass-produced by pressing the blade 35 in synchronization with the rotary drum 30 for cutting.
  • a method for producing a cured product according to claim 14 is characterized in that a plurality of papermaking sludge papermaking bodies obtained by papermaking a raw material solution containing papermaking sludge using a drainage body are provided.
  • the layers are laminated and pressed with 10 to 25 O Kg m 2 . Since it is inefficient to obtain a thick paper by papermaking, a thin paper is efficiently made from papermaking sludge and laminated to produce a cured product of the required strength and thickness. For this reason, it becomes possible to efficiently mass-produce the cured product from the papermaking sludge. Since the layers are multi-layered and pressed under pressure, a cured product having a required thickness can be easily produced.
  • a pressure press is performed at 10 to 25 O kg m 2 . If the press is performed at less than 1 O Kg ra 2 , the required strength cannot be obtained. On the other hand, the strength cannot be increased even if the pressure is exceeded 250 Kg / cm 2 , resulting in an increase in the size and cost of the press. Further, if it is less than 10 kg Z cm 2 , voids are formed, the strength is low, and peeling and warping occur. Conversely, if it exceeds 250 kg Z cm 2 , the fibers will be oriented in the direction in which pressure is applied, and the strength will also decrease, causing peeling and warping. In papermaking, the fibers tend to be naturally oriented, and high pressures are rather inconvenient.
  • a method for producing a cured product according to claim 15 is characterized in that a papermaking sludge papermaking product obtained by papermaking a raw material solution containing papermaking sludge is laminated and hardened.
  • This is a method for producing a cured body to be converted into a cured product, wherein the laminates are alternately inverted while being laminated. That is, since the paper bodies are laminated while reversing the direction in which the warpage occurs, the cured body formed by laminating the paper bodies does not warp and delamination does not occur.
  • a method for producing a cured product according to claim 16 is characterized in that a raw material solution containing a papermaking sludge is formed using a filter body, and a papermaking sludge paperwork is attached to the surface of the filter body. At the same time, the papermaking product is transferred to a conveyor belt and then transferred. The papermaking sludge papermaking material on the conveyor belt is transferred to a cutting rotary drum to form a multilayer, which is cut into a predetermined size to obtain a sheet.
  • a method for producing a cured product in which a plurality of obtained papers are laminated and cured, wherein the papers are laminated while being alternately inverted when the papers are laminated.
  • a method for producing a cured product according to claim 17 is to form a raw material solution containing a papermaking sludge using a filter body, and attach a papermaking sludge paperwork to the surface of the filter body.
  • the papermaking product is transferred to a conveyor belt and then transferred.
  • the papermaking sludge papermaking material on the conveyor belt is transferred to a cutting rotary drum to form a multilayer, which is cut into a predetermined size to obtain a sheet.
  • a method for producing a cured product according to claim 18 is to form a raw material solution containing a papermaking sludge using a filter body, and to attach a papermaking sludge paperwork to the surface of the filter body. And transferring the paper to a conveyor belt, cutting the paper into a predetermined size, and laminating and curing a plurality of papers obtained. At this time, the layers are stacked so that the transfer direction to the conveyor belt is shifted. In the papermaking body, a strength difference occurs along the transfer direction to the conveyor belt, By laminating the papermaking bodies so that the transfer direction to the conveyor belt is shifted, a cured body having uniform strength can be produced.
  • a method for producing a cured product according to claim 19 is characterized in that a coagulant is added to a raw material solution containing papermaking sludge to cause coagulation, and the coagulated raw material solution is filtered into a filtrate To form a papermaking sludge to obtain a cured papermaking sludge.
  • a cured product having a uniform specific gravity can be mass-produced from papermaking sludge.
  • floc can be formed in the papermaking sludge by the coagulant, so that the papermaking efficiency can be improved.
  • a method for producing a cured product according to claim 20 is characterized in that a coagulant is added to a raw material solution containing a papermaking sludge to cause coagulation, and the coagulated raw material solution is formed using a filter body.
  • the papermaking sludge paperwork is adhered to the surface of the drainage body, and the papermaking body is transferred to a conveyor belt and then transferred, cut into a predetermined size, and the papermaking body is cured to obtain a cured papermaking sludge. obtain.
  • floc is formed in the papermaking sludge by the flocculant, so that the papermaking efficiency can be improved.
  • a binder is added to a raw material solution containing papermaking sludge, and the raw material solution is subjected to papermaking using a filter body.
  • the body is cured to obtain a hardened paper sludge.
  • the binder makes the paper body flexible, so that it is easy to handle and it is possible to mass-produce the cured body. Further, the strength and toughness of the cured product can be increased by the binder.
  • a method for producing a cured product according to claim 22 is characterized in that a binder is added to a raw material solution containing a papermaking sludge, and the raw material solution is formed using a filter body, and the surface of the filter body is formed.
  • the papermaking sludge is adhered to the paperboard, and the papermaking body is transferred to a conveyor belt and then transferred, cut into a predetermined size, and the papermaking body is cured to obtain a cured papermaking sludge. Since the paper is made flexible by the binder, it is easy to handle after cutting, and it is possible to mass-produce the cured body. Further, the strength and toughness of the cured product can be increased by the binder.
  • a method for producing a cured product according to claim 23 is characterized in that the raw material solution containing the papermaking sludge is formed from papermaking sludge obtained by papermaking using a drainage body. The paper is pressed in a mold to produce a hardened paper sludge. Since the process is performed in a mold, the papermaking machine does not break even when pressurized at a high pressure, and it is possible to produce a high-strength cured product from papermaking sludge at a high yield.
  • a method for producing a cured product according to claim 24, comprising laminating a plurality of papermaking sludge papermaking products obtained by papermaking a raw material solution containing papermaking sludge using a drainage body, Pressed to produce hardened paper sludge. Since the process is performed in a mold, the paper is not broken even when pressurized at a high pressure, and a high-strength cured product can be produced from papermaking sludge at a high yield. In addition, since the papers are laminated and pressed under pressure, a cured product having a required thickness can be easily produced.
  • the concentration of the raw material solution containing the papermaking sludge is 3.5 to 25% by weight, the papermaking property from the papermaking sludge is improved, and the curing is performed efficiently.
  • the body can be mass-produced. That is, if the concentration is less than 3.5%, it is not possible to efficiently make a paper from a raw material solution using a filtrate, and if it exceeds 25%, the uniformity of the product is reduced.
  • the paper-formed body on the conveyor belt is multilayered while being transferred to a rotary drum for cutting, and the multilayered paper-sheet is cut when it reaches a predetermined thickness. For this reason, it is possible to continuously form a sheet having a uniform thickness.
  • the cut sheet is further multi-layered and then subjected to pressure pressing. Therefore, a cured product having a required thickness can be easily produced.
  • the pressure press is performed at 10 to 250 Kg / cm 2 . If the pressing is performed at less than 10 Kg / cm 2 , the required strength cannot be obtained. On the other hand, it is not possible to increase the strength by press-pressing over 25 O kgm 2 , and the press machine becomes larger and more expensive.
  • Claim 30 contains no cement or contains 30% by weight or less of cement in the solid content.
  • the inclusion of cement improves the papermaking properties, but causes a decrease in strength and a decrease in lightness. 30% by weight is the upper limit.
  • the papermaking product is laminated with a raw material solution interposed. Therefore, it is possible to produce a multilayer cured body that does not cause peeling.
  • the papermaking sludge is efficiently formed by laminating the papermaking sludge to a thickness of 2 Oram or less, and the strength and thickness required by lamination are hardened. Manufacture the body. For this reason, it becomes possible to efficiently mass-produce the cured product from papermaking sludge.
  • the method for producing a cured product according to claim 33 wherein the coagulant is any one of aluminum sulfate, ferric chloride, polyaluminum chloride, sodium polyacrylate, polymethacrylate, polyacrylate, and polyacrylamide. Therefore, the raw material solution containing papermaking sludge can be efficiently aggregated.
  • the papermaking product can be made flexible.
  • an apparatus for producing a cured body according to claim 35 is characterized in that a raw material solution is formed, and a paper body made of paper sludge is adhered to the surface of the raw material solution; and a paper body attached to the surface of the filtrate body.
  • Belt that transfers and transports the paper a cutting device that cuts the paper that has been transported through the transport belt to a predetermined size, and a curing device that cures the cut paper to obtain a cured papermaking sludge And For this reason, the cured product can be efficiently mass-produced from papermaking sludge.
  • the apparatus for producing a cured product according to claim 36 is characterized in that the raw material solution containing the papermaking sludge is made into paper, and the number of rotations for attaching the papermaking sludge paperwork to the surface is 1 to 100.
  • a curing device for curing the body to obtain a cured papermaking sludge. For this reason, the cured product can be efficiently mass-produced from papermaking sludge.
  • the apparatus for producing a cured product according to claim 37 forms a raw material solution containing a papermaking sludge, and adheres a papermaking sludge paperwork to the surface.
  • a papermaking body can be formed from the raw material solution with high efficiency, It is possible to efficiently mass-produce a high-density cured product from papermaking sludge.
  • the mesh is coarser than # 40, only the inorganic amorphous material comes out of the raw material solution, and the density and strength of the cured product are reduced.
  • the mesh is finer than # 150, the removal of water will be poor, and it will not be possible to make paper from the raw material solution with high efficiency. In addition, moisture remains and voids are formed by drying, so that the density decreases.
  • the apparatus for producing a cured product according to claim 38 is to produce a raw material solution having a solid content of 3.5 to 25% by weight including a papermaking sludge, and to form a papermaking sludge on the surface.
  • a rotating drum composed of a mesh to which the paper is adhered, a transport belt for transferring and transporting the paper attached to the surface of the rotating drum composed of the mesh, and a paper transported by the transport belt to a predetermined size.
  • a cutting device for cutting and a hardening device for hardening the cut paper body to obtain a hardened body of papermaking sludge are provided. For this reason, the papermaking from papermaking sludge is improved, and the cured product can be efficiently mass-produced.
  • the concentration when the concentration is less than 3.5%, the concentration is low and the paper cannot be efficiently made from the raw material solution using a rotary drum, and the concentration decreases with time, and the thickness decreases. It will not be the best. If it exceeds 25%, the in-plane uniformity of the product will decrease. If uneven, drying causes peeling and warping.
  • an apparatus for producing a cured product according to claim 39 comprising: a raw material solution containing a papermaking sludge; and a filter body for adhering a papermaking sludge paperwork to a surface thereof; and a surface of the filtrate body.
  • Conveyor belt that transfers and transports the paper attached to the paper 5 to 80 m / min, a cutting device that cuts the paper transported on the transport belt to a predetermined size, and the cut paper And a curing device for curing the papermaking sludge to obtain a cured product of the papermaking sludge.
  • the transport speed of the transport belt is 5 to 8 Om / min, it is possible to efficiently produce a paper of appropriate thickness from the raw material solution, and it is possible to mass-produce the cured product from paper sludge efficiently. Become.
  • the transport speed is lower than 5 mZ, the paper can be made thicker, but the papermaking efficiency is low and the thickness uniformity is low.
  • the transport speed exceeds 8 OmZ, the paper becomes thinner, making it difficult to obtain a uniform thickness and cutting the paper.
  • a production device for a cured body comprising: a rotating drum made of a mesh that forms a raw material solution containing papermaking sludge and adheres a papermaking sludge paperwork to the surface; A transfer belt made of a porous material that transfers the paper body attached to the surface of the rotating drum and dewaters the paper body while it is being transported; And a curing device for curing the papermaking body to obtain a cured papermaking sludge. Since the paper is dewatered while being transported by the transport belt, the moisture in the paper can be efficiently reduced, and the cured product can be mass-produced.
  • a rotating drum composed of a mesh since a rotating drum composed of a mesh is used, a papermaking body can be continuously formed from a raw material solution, and a hardened body can be efficiently mass-produced from papermaking sludge.
  • the cured product is manufactured by making a paper using a mesh-shaped rotating drum, impurities are dropped from the mesh, so that the impurities can be reduced and the brightness can be increased.
  • the apparatus for producing a cured product according to claim 41 is characterized in that: a raw material solution containing a papermaking sludge is made into paper, and a papermaking body of papermaking sludge is attached to the surface; A conveyor belt that transfers and transports the paper body attached to the paper, a cutting rotary drum that transfers the paper body on the conveyor belt into multiple layers while transferring the paper body, and a groove for retaining water on the surface, and a vicinity of the groove.
  • an extrusion mechanism for extruding the paper body from the inside.
  • the extrusion mechanism is actuated, and at a position corresponding to the groove,
  • the cutting machine is provided with a rotary drum for cutting the paper, and a curing device for curing the cut paper to obtain a cured papermaking sludge. For this reason, a paper having a uniform thickness can be continuously formed, and the cured product can be efficiently mass-produced. In addition, safety is high without using knives or other blades.
  • FIGS. 21 (A) and (B) are explanatory views of the rotary drum for cutting
  • FIG. 21 (C) is a perspective view of the rotary drum for cutting.
  • the rotary drum 30 for cutting has a groove 32 on which water on the surface is retained, and this water is locally applied to the papermaking sludge papermaking body 26.
  • Position (W) the piano wire 31 is extruded, and the papermaking sludge papermaking body 26 is extruded from the inside. Then, the paper body breaks at the locally softened portion W, and cutting is achieved.
  • an apparatus for producing a cured product according to claim 42 wherein a raw material solution containing a papermaking sludge is made into paper, and a paper body for attaching a papermaking sludge paperwork to the surface; A conveyor belt that transfers and transports the paper body attached to the paper, a cutting device that cuts the paper body that has been transported through the conveyor belt to a predetermined size, and a paper solution of the cut paper sludge. And a laminating apparatus for laminating a plurality of layers by interposing the layers. Since it is inefficient to obtain a thick paper by papermaking, thin paper from papermaking sludge and efficient papermaking and lamination are used to produce the required strength and thickness of the cured product. . For this reason, it becomes possible to efficiently mass-produce the cured product from papermaking sludge. In addition, since the paper bodies are laminated with the raw material solution interposed therebetween, a multilayer cured body free of peeling can be produced.
  • an apparatus for producing a cured body according to claim 43 is characterized in that a raw material solution containing papermaking sludge is made into paper, and a papermaking body of papermaking sludge is attached to the surface; A conveyor belt that transfers and transports the paper body adhered to the paper, a cutting device that cuts the paper body that has been transported on the conveyor belt to a predetermined size, and a papermaking body of the cut paper sludge are alternately inverted. And a stacking device for stacking. That is, since the paper bodies are laminated while reversing the direction in which the warpage occurs, the cured body formed by laminating the paper bodies does not warp and delamination does not occur.
  • an apparatus for producing a cured product according to claim 44 comprising: a papermaking apparatus for producing a raw material solution containing papermaking sludge to produce a papermaking sludge papermaking article; and a papermaking sludge papermaking apparatus. And a pressurizing device for pressurizing the papermaking machine in a formwork, the pressurizing device having a through hole for removing water seeping out of the papermaking body. Since it is performed in a mold, the papermaking machine does not break even when pressurized at high pressure, and it is possible to produce a high-strength cured product from papermaking sludge at a high yield. In addition, since the mold is provided with a through hole for removing water seeping out of the papermaking body, dehydration is performed at the time of pressurization, and a curing process by drying is completed in a short time.
  • an apparatus for producing a cured body according to claim 45 is characterized in that a raw material solution containing a papermaking sludge is made into paper, and a papermaking body of papermaking sludge is adhered to the surface; A conveyor belt that transfers and transports the paper body attached to the paper, a cutting device that cuts the paper body that has been transported through the conveyor belt to a predetermined size, and a papermaking sludge paper body that has been cut into a mold. A pressurizing device for putting and pressurizing, wherein And a pressurizing device having a through-hole for removing moisture that oozes out.
  • the papermaking machine Since it is performed in a mold, the papermaking machine does not break even when pressurized at high pressure, and it is possible to produce a high-strength cured product from papermaking sludge at a high yield.
  • the mold since the mold is provided with a through hole for removing moisture oozing from the papermaking body, dehydration is performed at the time of pressurization, and the curing process by subsequent drying can be completed in a short time. Further, since the paper is laminated and then pressed under pressure, a cured product having a required thickness can be easily produced.
  • an apparatus for producing a cured product according to claim 46 is characterized in that a raw material solution containing papermaking sludge is made into paper, and a papermaking body of papermaking sludge is adhered to the surface; A conveyor belt for transferring and transporting the paper body adhering to the paper, a cutting device for cutting the paper body transported on the conveyor belt to a predetermined size, and a papermaking machine for the cut paper sludge. A pressurizing device for placing the laminated paper in a mold and pressurizing the paper, wherein the press is provided with a through hole for draining water oozing out from the paper. And.
  • the process is performed in a mold, the paper is not broken even when pressurized at a high pressure, and a high-strength cured product can be produced from papermaking sludge at a high yield.
  • the mold is provided with a through hole for removing water seeping from the papermaking body, dehydration is performed at the time of pressurization, and the curing process by subsequent drying can be completed in a short time. Further, since a plurality of papermaking sludge papermaking bodies are laminated with a raw material solution interposed therebetween, a multilayer cured body without peeling can be produced.
  • An apparatus for producing a cured body according to claim 47 is constituted by a rotating drum whose drainage body is formed of a mesh. For this reason, it is possible to continuously form a paper from the raw material solution, and it is possible to efficiently mass-produce the cured body from the papermaking sludge.
  • the rotating speed of the rotating drum is 1 to 100 times, a paper product can be formed from the raw material solution with high efficiency, and the cured product can be efficiently produced from papermaking sludge. Can be mass-produced.
  • the rotating drum is lower than one rotation, the papermaking efficiency is low.
  • the rotation speed exceeds 100 rotations, it becomes difficult to form a papermaking article with a uniform thickness.
  • a plurality of drainage bodies are provided along the conveyor belt, and the papermaking body is transferred to the conveyor belt while being multilayered. For this reason, paper can be formed from the raw material solution with high efficiency, and the mass can be efficiently produced from paper sludge. It becomes possible.
  • the drainage body has a mesh structure of # 40 to 150. For this reason, it is possible to make a papermaking product from the raw material solution with high efficiency, and it is possible to efficiently mass-produce a high-density cured product from papermaking sludge.
  • the mesh is coarser than # 40, only the inorganic non-crystalline material is removed from the raw material solution, and the density and strength of the cured product are reduced.
  • the mesh is finer than # 150, the removal of water will be poor, and it will not be possible to produce a paper from the raw material solution with high efficiency.
  • the transport speed of the transport belt is 5 to 80 minutes, a paper having an appropriate thickness can be formed from the raw material solution with high efficiency, and the papermaking sludge can be efficiently manufactured. This makes it possible to mass-produce the cured body.
  • the transport speed is lower than 5 m / min, a thick paper can be formed, but the paper forming efficiency is low.
  • the conveying speed exceeds 8 OmZ, the paper becomes thinner, making it difficult to obtain a uniform thickness and cutting the paper.
  • the transport belt is formed of a porous body having continuous pores, the paper can be dewatered while being transported by the transport belt. Moisture can be reduced.
  • An apparatus for producing a cured body according to claim 53 is configured such that the cutting device comprises a cutting rotary drum for forming a multilayer while transferring the paper body. Then, when the multilayered paper body on the surface of the rotary drum for cutting reaches a predetermined thickness, the extruding mechanism is operated to cut the paper body at a position corresponding to the groove. Therefore, it is possible to efficiently produce a paper having a uniform thickness.
  • the cutting device includes a blade for cutting the paper-sheet at one end by a cutting rotary drum at regular intervals. Therefore, it is possible to efficiently form a paper having a predetermined length.
  • the cutting device includes a blade that cuts the papermaking material having one end cut by the cutting rotary drum at regular intervals. Therefore, it is possible to efficiently form a paper having a predetermined length.
  • the laminating apparatus laminates a plurality of papermaking sludge papermaking products with a raw material solution interposed therebetween, it is possible to produce a multilayered cured product without peeling.
  • FIG. 1 is a schematic cross-sectional view of the composite cured product of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the composite cured product of the present invention.
  • FIG. 3 is a conceptual diagram of an apparatus for producing a cured body according to the first embodiment of the present invention.
  • 4 (A) and 4 (B) are conceptual diagrams of the raw material adjustment mechanism.
  • Fig. 5 is a conceptual diagram of the papermaking mechanism.
  • FIGS. 6 (A), (B) and (C) are explanatory diagrams of the operation of the cutting rotary drum.
  • FIGS. 7 (A), (B) and (C) are explanatory diagrams of the operation of the reversing device.
  • FIGS. 8 (A), (B) and (C) are illustrations of the operation of the press.
  • FIGS. 9 (A), (B) and (C) are explanatory diagrams of the operation of the press machine.
  • FIGS. 10 (A), (B), and (C) are explanatory views of the bonding direction of the paper body.
  • FIG. 11 is a chart showing the relationship between the direction of laminating the papermaking product and the occurrence of delamination, and the relationship between the pressure and the strength in a press machine.
  • FIG. 12 is an X-ray diffraction chart of the composite cured product according to Example 1.
  • FIG. 13 is an X-ray diffraction chart of the composite cured product according to Example 1.
  • FIG. 14 is a conceptual diagram of an apparatus for producing a cured body according to a second embodiment of the present invention.
  • the first 5 is a graph showing a relation between C a O / S i 0 2 and compressive strength.
  • FIG. 16 is a graph showing the relationship between C a / 1 2 0 3 and compressive strength.
  • FIG. 17 is a graph showing the relationship between the content of CaO and bending strength / compression strength.
  • FIG. 18 is a graph showing the relationship between the content of CaO and nail pull-out strength.
  • FIG. 19 is a schematic cross-sectional view of a composite building material using the composite cured product of the present invention.
  • FIG. 20 is an explanatory view of a rotary drum for cutting.
  • FIGS. 21 (A), (B) and (C) are explanatory views of the operation of the cutting rotary drum.
  • the composite cured body 1 includes an inorganic amorphous body 2 composed of two or more types of oxides, and is basically composed of the inorganic amorphous body 2 and an organic fibrous substance 3 mixed therein.
  • the term “inorganic amorphous material composed of two or more oxides” refers to an oxide (1) a monoxide (2) ⁇ an oxide (n) system (where n is a natural number, The oxide (1), the oxide (2), and the oxide (n) are different oxides).
  • the amorphous substance is an amorphous compound formed by a solid solution or hydration reaction of two or more oxides.
  • X-ray fluorescence analysis such inorganic amorphous compounds can be analyzed by analyzing the elements (Al, Si, Ca, Na, Mg, P, S, K :, Ti, Mn, F e, at least two types selected from Zn) were confirmed, and the analysis chart by X-ray diffraction showed 26:10.
  • Halo can be seen in the range of ⁇ 40 °. This halo is a gradual undulation of the intensity of X-rays, and is observed as a broad swell on the X-ray chart. The halo has a half width of 20: 2 ° or more.
  • the inorganic amorphous material 2 becomes a strength-expressing substance, and the organic fibrous material 3 is dispersed in the inorganic amorphous material 2 to improve the fracture toughness value.
  • Strength value ⁇ Impact resistance can be improved.
  • a homogeneous cured product having no anisotropy in strength can be obtained.
  • it since it is an amorphous body, there is an advantage that sufficient strength can be obtained at a low density.
  • amorphous material becomes a material exhibiting strength is not clear, but is presumed to be because the progress of cracks is inhibited as compared with the crystalline structure.
  • fibrous material is more uniformly dispersed and shrunk in the amorphous state than in the crystalline state, and hence the fracture toughness individual value is also improved. As a result, cracking does not occur even if a nail is driven or a through-hole is provided, making it optimal for materials that require processing, such as building materials.
  • oxides of metals and Roh or non can be used oxides of metals and Roh or non, A 1 2 0 3, S I_ ⁇ 2, C aO, Na 2 O , MgO, P 2 ⁇ 5, S_ ⁇ 3, K 2 0, T I_ ⁇ 2, MnO, is preferably selected from F e 2 0 3 and Z nO. Toriwa only, A 1 0 3 - S i 0 2 - Ca O system or A 1 2 0 3 - the C a O-amorphous body composed of oxide, or these amorphous bodies - S i 0 2 The complex is optimal.
  • Oxide in the latter amorphous body is A 1 2 0 3, 1 or more S i 0 2 and C a O metallic and / or oxide of nonmetal excluding.
  • soluble or hydration is a compound having an amorphous structure produced by. that, a l 2 0 3 and S I_ ⁇ 2, S i 0 2 and C a O, a 1 2 0 3 and C a It is thought to contain any of the compounds generated by solid solution or hydration reaction with a combination of O, and A120 hail, SiO 2 and CaO.
  • a 1 2 0 3, S i 0 2 and C a O at least one oxide of pressurized example was the system in addition to, i.e. A 1 2 0 3 _S i 0 2 -C a O- of oxide-based non Akirashitsutai, in addition to the combination of the above a 1 2 0 3 -S i 0 2 -C a O system, a 1 2 0 3 oxide, oxides and S i O 2, oxides and C a O , a 1 2 O 3 and S i O 2 and oxide, S I_ ⁇ 2 and C a O oxide, a 1 2 0 3 and C a O oxide, and a 1 2 0 3 and S I_ ⁇ It is considered to include any of the compounds formed by solid solution or hydration reaction of the combination of 2, CaO and oxide.
  • the oxide is 2 or more, i.e., A 1 2 0 3 - if amorphous body S i 0 2 _C a O- oxides (n) based (n is a natural number of 2 or more), these Oxides, for example, oxide (1), oxide (2) ⁇ oxide (n) (n is a natural number of 2 or more, and oxide (n) is a different oxide if the value of n is different means, and generates by a 1 2 ⁇ 3, S I_ ⁇ 2, C a O is obtained by excluding the) like the solid solution or hydration at least two combination selected from each compound, a 1 2 0 3, S i 0 2, C a have in solid solution with at least two combinations selected from O is produced by hydrating reaction or the like compound, further oxides (1), oxide (2) ⁇ Oxide (n) (n is a natural number of 2 or more) and at least one selected from the group consisting of A 1 2 ⁇ 3 , Si 0 2 , and CaO It is
  • such inorganic amorphous compounds can be analyzed in addition to A 1, S i, and C a, as well as the elements (Na, Mg, P, S, K, T i, Mn , Fe and Zn), and the above halo is observed in the range of 20: 10 ° to 40 ° in the chart of analysis by X-ray diffraction.
  • a 1 2 0 3, S i 0 2 and the oxide combined with the C a O is one or is 2 or more, metals excluding A 1 2 0 3, S i O C C a O available oxides of Oyopi or non, for example Na 2 0, MgO, P 2 0 5, S0 3, K 2 0, T i 0 2, MnO, be selected from F e 2 0 3 and Z nO Can be. This selection can be made based on the properties expected of the composite cured product.
  • Na 20 or K 20 can be removed with an alkali, etc.
  • the removal treatment is performed prior to the plating treatment, the surface of the composite hardened body will become rough and will act as an anchor for the plating. Can be.
  • MgO contributes to A 1 2 0 3, S i 0 2, C a O solid solution to strength development, greatly improve the bending strength Ya impact resistance.
  • so 3 has a bactericidal action and is suitable for antibacterial building materials.
  • T I_ ⁇ 2 together with a whitish coloring material, it either et acting as photooxidation catalysts, can be forcibly oxidize organic contaminants adhering, a self-cleaning power of Ru can be cleaned only by irradiation of light building It has a unique effect that it can be used as a material, various filters, and reaction catalysts.
  • MnO is dark color colorant, F e 0 3 coloring materials bright color, ZnO is useful as a colorant whitish.
  • These oxides may be present alone in the amorphous body.
  • the composition of the amorphous body respectively in terms of A 1 2 0 3, S i 0 2 and C a O, A 1 2 O 3: 3 ⁇ 51 % by weight relative to the total weight of the composite cured body , S i O 2: 6 ⁇ 53 wt% and C a O relative to the total weight of the double coupling cured product: 6-63% by weight relative to the total weight of the composite hardened product, preferably with 8-63 wt%, Further, it is preferable to contain them in a range where the total does not exceed 100% by weight.
  • the ratio of C a OZS i O is 0.2 to 7.9, C a
  • the ratio of O / A 1 2 0 3 is advantageous for obtaining a high cure of that force intensity is adjusted to 0 2 2.5.
  • the ratio of 3 is more than 0.2 and 12.5 or less is optimal.
  • C a, A 1 the amount of S i (C a 0, A 1 2 0 3, S i 0 2 equivalent amount) is the total amount of C a, A 1, S i in the composite cured body Yes, for example, Ca means the total amount of Ca in calcium carbonate and inorganic amorphous material.
  • a 1 2 0 3, S i 0 as oxides other than 2 and C a O, N a 2 0 , M g 0, P 2 0 5, S0 3, K 2 0, T I_ ⁇ 2, MnO, when it contains one or more of F e 2 ⁇ 3 and Z nO, preferred content of each component is as follows. It goes without saying that the total amount of these oxides does not exceed 100% by weight.
  • C a 0, N a 2 ⁇ , Mg O, P 2 0 5 , S0 3, K 2 0, T i ⁇ 2, MnO, oxides such as F e 2 ⁇ 3 and Z nO, and C a C_ ⁇ Crystals such as 3 (Calcite) may be mixed.
  • crystals are not considered to be strength-generating substances by themselves, but are considered to have effects such as improving the compressive strength by increasing the hardness and density, and suppressing the progress of cracks.
  • the content of the crystal is desirably 0.1 to 50% by weight based on the total weight of the composite cured product. If the crystal content is less than 0.1% by weight, effects such as increasing the hardness and density to improve the compressive strength and suppressing crack propagation cannot be sufficiently obtained, and conversely, the content exceeds 50% by weight. This causes a decrease in bending strength.
  • a 1 A O 3 -S i O navalbased crystalline compound is Hydrogen Aluminum Silicate, Kaolinite, Zeolite,
  • a 1 2 O 3 —C a O based crystalline compound is Calcium Aluminate, C a O- S i O Q based crystal tens raw i ⁇ product force Calcium Silicate, a 1 2 0 3 - S i 0 2 _C a O -based crystalline ⁇ Namai ⁇ product of Gehlenite, syn, is anorthite, the a 1 2 0 3 - S i 0 2 -C a O-M g O -based crystalline compound of Melitite, a Gehlenite-synthetic.
  • C a as the crystals, Gehlenite, syn (C a 2 A 1 "O 7), Melitite- synthetic (C a. (M g 0 5 A 1 0 5) (S ij 5 A 1 0 5 O 7)) , Whylenite-synthetic (C a 2 (M g 0 25 A 1 0. 75) (S ij "5 A 1 0 7 5 O 7)), anorthite, ordered (C a 2 A 1 2 S i 2 0 8) , may contain a calcium carbonate (Calcite).
  • halogen may be added to an amorphous material composed of at least two or more types of oxides.
  • This halogen acts as a catalyst for the solid solution and hydrate formation reactions, and also acts as a combustion inhibitor.
  • the content is desirably 0.1 to 1.2% by weight. Because 0. If it is less than 1, the strength is low, and if it exceeds 1.2% by weight, harmful substances are generated by combustion.
  • the halogen chlorine, bromine, and fluorine are preferable.
  • calcium carbonate (Calcite) may be added.
  • Calcium carbonate itself is not a strength-expressing substance, but it is thought that the amorphous body surrounding calcium carbonate contributes to the improvement of the strength by preventing cracks from developing.
  • the content of this calcium carbonate is desirably 48% by weight or less based on the total weight of the composite cured product. The reason for this is that if it exceeds 48% by weight, the flexural strength decreases. Further, the content is desirably 0.1% by weight or more. If the content is less than 0.1% by weight, it does not contribute to the improvement in strength.
  • the binder is desirably made of one or both of a thermosetting resin and an inorganic binder.
  • a thermosetting resin at least one resin selected from phenol resin, melamine resin, epoxy resin and urea resin is desirable.
  • the inorganic binder is preferably at least one selected from the group consisting of sodium silicate, silica gel and alumina sol.
  • an organic fibrous material composed of a polysaccharide is used as the organic fibrous material mixed in the inorganic amorphous material. This is because, the polysaccharide is present OH group, since easy bound to A 1 2 0 3, 3 1_Rei 2 or Rei_3_rei of various compounds by hydrogen bonds.
  • the polysaccharide is desirably at least one compound selected from the group consisting of amino sugars, peronic acid, starch, glycogen, inulin, lichenin, senorelose, chitin, chitosan, hemicenolerose and pectin.
  • pulp, pulp grounds, and ground paper of newspapers and magazines are advantageously used as the organic fibrous material composed of these polysaccharides.
  • the content of the fibrous material is desirably 2 to 75% by weight. The reason for this is that if the content is less than 2% by weight, the strength of the composite cured product may be reduced, while if it exceeds 75% by weight, fire protection performance, water resistance and dimensional stability may be reduced. Further, the average length of the fibrous material is desirably 10 to 100 ⁇ . If the average length is too short, no entanglement will occur, and if the average length is too long, voids will form and the strength of the composite cured product will increase. This is because the degree tends to decrease.
  • the above composite cured product 1 is optimally obtained by drying and coagulating and curing paper sludge (scum).
  • papermaking sludge is a pulp residue containing inorganic substances, contains organic fibrous materials, and is low-cost because it uses industrial waste as a raw material, contributing to solving environmental problems.
  • the paper sludge itself has a function as a binder, and has an advantage that it can be formed into a desired shape by itself or by kneading with other industrial waste. .
  • mixing the inorganic particles 4 in the composite cured body 1 improves the fire resistance or forms a strength-expressing substance by reacting with the amorphous body to form a strength-producing substance.
  • the specific gravity of the composite cured product can be adjusted by adjusting the amount of the inorganic particles.
  • At least one selected from calcium carbonate, calcium hydroxide, shirasu, shirasu balloon, perlite, aluminum hydroxide, silica, anoremina, tanolek, calcium carbonate, and industrial waste powder can be used. You. In particular, it is desirable to use at least one kind of industrial waste powder selected from calcined powder of papermaking sludge, grinding dust of glass, and grinding dust of silica sand as the industrial waste powder. This is because the use of these industrial waste powders can reduce costs and contribute to solving environmental problems.
  • the inorganic particles obtained by calcining the papermaking sludge can be obtained by heating the papermaking sludge at 300.degree.
  • the inorganic particles thus obtained are amorphous, have excellent strength and toughness, and have a low strength and density.
  • inorganic particles obtained by sintering papermaking sludge at 300 ° C or higher and lower than 800 ° C or by quenching after heat treatment at 300 ° C to 1500 ° C are advantageous because they surely contain an amorphous body.
  • the inorganic particles 4 have a specific surface area of 0.8 to 100 m 2 Z g.
  • the inorganic particles 4 contain at least one or more inorganic substances selected from silica, alumina, iron oxide, calcium oxide, magnesium oxide, potassium oxide, sodium oxidized sodium, and phosphorus pentoxide. . These are chemically stable, have excellent weather resistance, and have desirable characteristics as industrial materials such as building materials.
  • the average particle diameter of the inorganic particles 4 is too small or too large, sufficient strength cannot be obtained. Therefore, it is desirable that the average particle diameter be in the range of 1 to 100 ⁇ .
  • the content of the inorganic particles is desirably 10 to 90% by weight. That is, if the amount of the inorganic particles is too large, the strength is reduced, and if the amount of the inorganic particles is too large, the strength becomes brittle, and in any case, the strength is reduced.
  • the composite hardened body 1 produced by the method of the present invention is used in various industries, including new building materials replacing calcium silicate board, perlite board, plywood, gypsum board, etc., as well as artificial limbs, artificial bones and artificial roots. It can be used for medical materials, electronic substrates such as core boards for printed wiring boards and interlayer resin insulation layers.
  • papermaking sludge is used as a raw material for the composite cured product without kneading with other industrial waste.
  • the papermaking sludge used in the production method of the present invention includes printing and information paper, kraft paper, titanium paper, tissue paper, dust paper, toilet paper, sanitary products, towel paper, industrial hybrid paper and household hybrid paper.
  • the papermaking sludge discharged in the pulp manufacturing process, raw material processing process, papermaking process, etc. in the production of paper is desired. Papermaking sludge is handled by Maruto Kiln.
  • FIG. 3 shows the overall configuration of a cured body manufacturing apparatus.
  • the apparatus for producing a hardened body is a raw material adjusting mechanism 10 for adjusting papermaking sludge to generate a slurry 14, a papermaking mechanism 20 for forming a paper 26 from the slurry 14, and a papermaking machine 26.
  • the raw material adjusting mechanism 10 for adjusting the raw material will be described with reference to FIG. 4 (A).
  • the raw material 11 and water 12 are weighed into a mixer 13 by suction dehydration as described below so that the concentration becomes 0.5 to 25% by weight of a solid content, and the mixture is mixed with aluminum sulfate and chloride.
  • Flocculant consisting of ferric iron, polyaluminum chloride, sodium polyacrylate, polymethacrylate, polyacrylate, or polyacrylamide (floc agent: 0.01 to 5% added) and vinylon organic fibers such as fibers (binder: amount 0:.! ⁇ 1 0 weight 0/0) was added, and mixed in the mixer 1 3 adjusting the slurry 1 4.
  • organic fibers binder
  • synthetic fibers such as polyethylene, polypropylene, and vinylon
  • pulp recovered from pipes and waste paper pulp recovered from pipes and waste paper
  • fibrous industrial waste can be used.
  • raw materials various inorganic powders and resins can be added to papermaking sludge.
  • the slurry 14 is subjected to suction dehydration using a dehydration container 15 provided with a filter 16 at the bottom.
  • the concentration is adjusted to 0.5 to 25% by weight of solid content by suction dehydration.
  • the fibers of the papermaking sludge are not oriented, so that the resulting cured composite is less likely to warp or crack.
  • the bottom of the dehydration vessel 15 is connected to a vacuum pump 17, and the vacuum pump 17 is operated to suck moisture.
  • the filter 16 is not particularly limited, but may be a sintered metal, a perforated metal plate (a metal plate having a hole of 1 to 5 mm in diameter), a porous ceramic finale, a porous resin, a glass fiber plate, or the like.
  • the raw material 14 whose water content has been adjusted in the dehydration container 15 is temporarily stored in a chest tank 18 ⁇ .
  • the chest tank 18 is provided with a propeller for stirring, so that solids in the raw material do not settle.
  • a papermaking mechanism 26 is formed from the slurry 14 containing the papermaking sludge whose water content has been adjusted by the papermaking mechanism 20.
  • An organic binder such as an inorganic binder resin such as cement may be added to the slurry (raw material solution).
  • the papermaking mechanism 20 will be described with reference to FIG.
  • the papermaking mechanism 20 includes three bats 21, 218, 21 ⁇ that store the slurry 14, and a wire cylinder 22 A, which is disposed in the knot and papermaking the slurry 14, 22 B, 22 C and paper cylinders 26 formed by wire cylinders 22 A, 22 B, 22 C are transferred and transported by transport belts 23 and transport belts 23.
  • a cutting drum 30 for winding and cutting the formed paper 26 to a predetermined thickness, a cutter 36 for cutting the paper 26, and a belt conveyor 38 for conveying the paper 26. Is provided.
  • the wire cylinders 22A, 22B, and 22C have a diameter of 70 cm and a width of 1 mm.
  • the drainage body for draining papermaking
  • the papermaking body 26 can be continuously formed from the raw material solution 14 and the papermaking sludge can be formed. It is possible to efficiently mass-produce the cured product.
  • the water that has passed through the wire cylinders 22 A, 22 B, and 22 C is returned to the mixer 13 shown in FIG. 4A via the pipe 17 a and the vacuum pump 17.
  • the papermaking body 26 can be formed from the raw material solution 14 with high efficiency, and the hardened body can be efficiently mass-produced from the papermaking sludge.
  • the rotation number of the wire cylinder is set to 60 rotations. The number of rotations is preferably from 1 to: L00. This is because a papermaking product 26 can be produced from the raw material solution 14 with high efficiency, and a cured product can be efficiently mass-produced from papermaking sludge.
  • the rotating drum is lower than one rotation, the papermaking efficiency is low.
  • the meshes of the wire cylinders 22A, 22B and 22C are formed at # 60 (the number of meshes per inch is 60).
  • Wire cylinder 22 A, 22 B, The 2 2 C mesh is preferably # 40 to 150. This is because a papermaking product 26 can be produced from the raw material solution (slurry) 14 with high efficiency, and a high-density cured product can be efficiently mass-produced from papermaking sludge.
  • the mesh is coarser than # 40, only the inorganic non-crystalline material comes off from the raw material solution, and the density and strength of the cured product decrease.
  • the mesh is finer than # 150, the removal of water will be poor, and it will not be possible to produce a paper from the raw material solution with high efficiency. Since floc is formed in the papermaking sludge (raw material solution) by the coagulant, the papermaking can be performed efficiently.
  • the concentration of the raw material solution containing the papermaking sludge is desirably 3.5 to 25% by weight on a solid basis. This is because the papermaking property from papermaking sludge can be improved and the cured product can be efficiently mass-produced. That is, if the concentration is less than 3.5%, it is not possible to efficiently use a wire cylinder (filtration body) to make a paper from the raw material solution, and if it exceeds 25%, the uniformity of the product is reduced. .
  • the transfer belt 23 for transferring and transporting the paper formed by the wire cylinders 22 A, 22 B and 22 C is made of a 1 m wide felt, and is suspended by rollers 34.
  • a suction box 24 is provided on the back surface, and dehydration is performed while suction is performed by a vacuum pump 17. That is, the belt 23 adsorbs the moisture of the raw material 14 including the papermaking sludge into the pores of the felt, and the adsorbed moisture is adsorbed to the vacuum pump 17 through the suction box 24. It is returned to the mixer 13 shown in A).
  • the belt 23 is formed of a filter, but instead of this, a porous resin having continuous pores, a porous rubber, a material obtained by solidifying inorganic fibers with a binder or the like, a sintered metal A porous metal, a belt in which a block of a porous metal is fixed with a flexible binder such as rubber, or the like can be used.
  • the conveyor belt 23 since the conveyor belt 23 is formed of a porous body having continuous pores and is dewatered while being conveyed by the conveyor belt 23, the moisture in the papermaking body 26 can be efficiently reduced. .
  • the transport speed of the transport belt 23 is set to 48 in, and the wire cylinders 22 A, 22 B, 22 C, and the The rotating drum 30 and the belt conveyor 38 are driven by a motor (not shown). It is desirable that the conveying speed of the conveying belt 23 is 5 to 8 OmZ minutes. This is because a paper having an appropriate thickness can be formed from the raw material solution with high efficiency, and the cured body can be efficiently mass-produced. Where the transport speed is lower than 5 mZ If this is the case, the paper can be made thicker, but the papermaking efficiency is low. On the other hand, if the conveying speed exceeds 80 m, the paper becomes thin, it is difficult to make the thickness uniform, and the paper may be cut.
  • the cutting rotary drum 30, which winds and cuts the paper conveyed by the conveyor belt 23 to a predetermined thickness, is formed to have a diameter of 64 cm (outer circumference 2 m), and retains water on the surface. It has a storage groove 32 and a piano wire 31 housed in a housing groove 33 located near the groove 32.
  • the cutting rotary drum 30 winds the papermaking body 26 conveyed from the conveyor belt 23 on the surface thereof while making it into a multilayer.
  • the paper body on the conveyor belt 23 is multilayered while being transferred to the rotary drum 30 for cutting, and when the multilayered paper body 26 reaches a predetermined thickness, the paper body has a predetermined size. Disconnect. Since the paper drum 26 having a uniform thickness (1.5 cm) and a size (l mX 2 m) can be continuously formed by the rotary drum for cutting, it is possible to mass-produce the cured body efficiently. Will be possible.
  • a cutter 36 for cutting the papermaking body 26 having one end cut by the cutting rotary drum 30 at a constant interval is provided. Therefore, it is possible to efficiently form the papermaking body 26 having a predetermined length (2 m).
  • the thickness of the papermaking body 26 was set to 1.5 cm, but the thickness is desirably 2 cm or less. If the thickness is 2 cm or less, papermaking is easy, and handling is easy in transportation and the like.
  • the reversing device 40 for reversing the paper body will be described with reference to FIG. In the manufacturing apparatus of the present embodiment, as described later, the papermaking articles are stacked while being alternately inverted. Therefore, every other sheet 26 is inverted.
  • the reversing device 40 includes a transporting device 42 for sucking and transporting the papermaking body, a table 44, a reversing plate 46 and a force. As shown in FIG. 7 (A), the papermaking body 26 on the belt conveyor 38 is placed on the reversing plate 46 by the force transfer device 42. The reversing plate 46 is driven to reverse the paper body 46 (see FIG. 7 (B)). Then, as shown in FIG.
  • the inverted papermaking body 26 is transferred to the press machine 50 shown in FIG. 3 by the force transfer device 42.
  • the binder is added to the slurry 14 so that the papermaking body 26 is made flexible, thereby facilitating the cutting after cutting.
  • the press 50 for dehydrating the papermaking body by applying pressure will be described with reference to FIG. 8 and FIG.
  • the press machine 50 includes a female mold 54 having a concave portion 54A, and a female mold 52 fitted into the concave portion 54A.
  • fine through-holes 54a and 52a are formed in the Os type 52 for extracting water generated when the paper is pressed.
  • the press machine 50 is provided with a curtain coater 56 for applying the raw material solution 14 to the papermaking body 26 (see FIG. 8 (B)).
  • the concave portion 54A of the female mold 54 is inverted by the inverting device 40 described above with reference to FIG. 7 (C).
  • the papermaking body 26 having the contact surface side with the cutting rotary drum 30 turned downward is carried in by the carrier device 42.
  • the raw material solution 14 is applied by a curtain coater 56 to the upper surface of the papermaking body 26, that is, the bonding surface with the upper layer papermaking body.
  • the amount of the raw material solution is preferably 50 g / m 2 to 500 g Zm 2 in solid content per one layer of the papermaking body.
  • the curtain coater 56 is used, but various coating devices such as a roll coater can be used.
  • the paper 26 on the belt conveyor 38 is not inverted, and is transferred to the recess 54 A of the female mold 54 without being inverted. Will be carried in.
  • FIG. 9 (A) after applying the raw material solution 14, the inverted papermaking body 26 of the third layer is placed, and after applying the raw material solution 14, the four layers are formed.
  • the non-inverted paper 26 of the eye (top layer) is placed and the lamination is completed. This In this case, four layers are laminated, but any number of two or more may be used, and even one thin film can be used to produce a thin cured product.
  • the Os type 52 is depressed, and the press is performed with 6 O KgA ⁇ m 2 (see FIG. 9 (B)).
  • the water seeping out of the papermaking body 26 is led out through the holes 54a and 52a.
  • the female mold 52 is raised (see FIG. 9 (C)), and the composite cured body 1 formed by pressurization is taken out of the female mold and transported to the dryer 60.
  • the pressurization is performed in the mold (concave 54A), even if the pressurization is performed at a high pressure, the papermaking body 26 does not break apart, and the high-strength cured body 1 can be produced from papermaking sludge at a high yield. Can be manufactured.
  • the female mold 52 and the female side 54 have through holes 52 a and 54 a for draining water leaking from the papermaking body 26, dehydration is performed at the time of pressurization, and subsequent drying is performed. Curing process can be completed in a short time. Moreover, since a plurality of papermaking sludge papermaking products are laminated with the raw material solution 14 interposed therebetween, a multilayered cured product free of peeling can be produced.
  • Pressure press is Shi hoped that perform N 1 0 ⁇ 2 5 O Kg in m 2,. If the pressing is performed at less than 10 kg m 2 , the required strength cannot be obtained. On the other hand, the strength cannot be increased by press-pressing exceeding 25 O Kg m 2 , and the press machine becomes larger and more expensive.
  • a plurality of papermaking sludge papermaking products obtained by papermaking a raw material solution using a wire cylinder (filtration body) are laminated. Since it is inefficient to obtain a thick paper body by papermaking, a thin paper body is efficiently formed from papermaking sludge and a cured body having the required strength and thickness is produced by laminating the paper sheets. As a result, the cured product is efficiently mass-produced from papermaking sludge.
  • the papermaking sludge is formed into a thickness of 2 Omm or less, so that papermaking sludge is efficiently produced and laminated to produce a cured body having the required strength and thickness. I do. For this reason, it is possible to efficiently mass-produce the cured product from papermaking sludge.
  • the papermaking bodies 26 are laminated while alternately reversing the lamination surface. That is, since the papermaking body 26 is laminated while reversing the direction in which the warpage occurs, the cured body 1 obtained by laminating the papermaking body 26 does not warp and delamination does not occur.
  • the exposed surface of the uppermost and lowermost papermaking products shall be the surface in contact with the rotating drum, Since the uneven surface in contact with the transfer belt 32 made of felt is set inside, the surface of the laminated cured body can be smoothed.
  • the cured product 1 having a uniform specific gravity (range of 1.2 to 1.3) can be mass-produced from papermaking sludge. it can.
  • the lamination since the lamination is performed in the female mold 54, it is not necessary to transfer the laminated papermaking body, which is suitable for mass production. In the present embodiment, the layers are stacked in the mold 54, but it is also possible to transfer the sheets into the mold after the lamination.
  • the dryer 60 After dehydrating and drying under pressure with the above-mentioned press machine 50 to reduce the water content, it is then completely dehydrated with a dryer 60 shown in FIG. 3 to advance the curing reaction.
  • the dryer 60 includes an electric heater 62 and a fan 64, and performs drying at a temperature of 80 to 200 ° C.
  • the dryer 60 includes the electric heater 62, but an infrared heater, a steam, a solar dryer, or the like can be used instead.
  • the cured body 1 that has passed through the drying step is further conveyed and cut into a predetermined size by a cutting machine (not shown). Cutting is performed with a cutter or a saw placed on the conveyor. Finally, the cut composite cured body 1 is inspected for warpage or the like by an inspection machine (not shown). An X-ray sensor, infrared sensor, etc. can be used as the inspection machine. Also, the presence or absence of chipped cracks may be inspected by an image processing device or the like.
  • FIG. 10 (A) On the right side of FIG. 10 (A), a case is shown in which the papermaking body 26 is inverted and the felt contact surface side constituting the conveyor belt is adhered.
  • the papermaking body 26 retains stress when wound by the cutting rotary drum 30 shown in FIG. 3, and warps in the winding direction even after cutting.
  • the left side in the figure shows the cross section of the laminated papermaking body 26, and the irregularities in the figure show the felt contact surface.
  • the bonding direction shown in FIG. 10 (A) is adopted.
  • FIG. 10 (B) shows a case where the papermaking bodies 26 are laminated without being inverted. Further, FIG. 10 (C) shows a case where the papermaking body 26 is inverted and stuck on the cutting drum abutment surface side.
  • FIG. 11 is a chart showing the relationship between the direction of laminating the papermaking product and the occurrence of delamination, and the relationship between the pressure and the strength in a press machine.
  • the coating amount indicates the coating amount of the raw material solution 14 between the paper bodies
  • the pressure indicates the pressure in the press machine
  • the time indicates the pressing time
  • the density indicates the pressure before drying. This is the density of the cured product
  • the maximum load indicates the load that the cured product can withstand after drying, that is, the strength.
  • the water content is a value after pressurization.
  • the contraction rate thickness indicates the contraction rate in the thickness direction
  • the contraction rate length indicates the contraction rate in the length direction
  • the contraction rate width indicates the contraction rate in the width direction.
  • the number of peeled layers is the number of peeled layers in the five sheets
  • the number of peeled sides is the number of peels occurring in four corners
  • the peel length Indicates the total extension of the part where peeling has occurred.
  • the maximum load can be increased by increasing the pressure.
  • delamination can be completely prevented by adopting “A” shown in Fig. 10 (A) as the tension direction and applying a pressure of 6 OKg / cm 2 (see No. 9).
  • the shrinkage is large, and during drying, the stress remaining when wound on the rotary drum 30 for cutting acts to easily cause peeling.
  • Inverting and bonding the papermaking body can prevent peeling.
  • the papermaking product is inverted every other layer.
  • warping and delamination can be prevented by alternately inverting every third layer or every third layer. .
  • composition was as follows in terms of oxide.
  • the pulp was calcined at 1100 ° C and measured from the weight loss.
  • Pulp 51.4 Weight 0 SO 3: 0.5
  • the composition was analyzed using a fluorescent X-ray analyzer (Rigaku Corporation RIX2000). The oxide conversion values are shown below. The amount of pulp was calculated from the weight loss when firing at 1100 ° C. X-rays showed calcium carbonate peaks. Itokatsusei is the amount including carbonic acid ruthenium.
  • Unsintered paper sludge (Makito Paper Co., Ltd.'s Maki Paper Co., Ltd.'s papermaking sludge for high-quality paper for office automation equipment "raw sludge”: solid content 51% by weight, water content 49% by weight) 73 g of calcium (average diameter 2 m, Tamapearl TP-121, Okutama Kogyo Co., Ltd.) was added. This was made as in Example 1.
  • Example 13 Composition of Hardened Paper Sludge of 1-3
  • Unfired papermaking sludge (of OA Zelkova dexterity Maki papermaking Corporation Maruhigashikamazaisha handled fine paper Paper Sludge "raw sludge”: solids 51 weight 0/0, water 49 weight 0/0) 1 500 g
  • 219 g of columnar light calcium carbonate (average diameter 2 m, Okutama Kogyo Co., Ltd. Tamapearl TP-123) was added.
  • the composition was analyzed using an X-ray fluorescence analyzer (trade name: R1X2100, manufactured by Rigaku Corporation). The content of calcium carbonate was measured. As a result, it was about 30.8% by weight.
  • Example 1-1 103 parts by weight of a fired product of papermaking sludge (trade name: Cyclone Ash, manufactured by Maruto Kiln Co., Ltd.) and 1209 parts by weight of the unfired papermaking sludge of Example 1-1 were kneaded. Next, a composite cured product was produced in the same manner as in Example 1.
  • a fired product of papermaking sludge trade name: Cyclone Ash, manufactured by Maruto Kiln Co., Ltd.
  • composition of the calcined sludge was analyzed using a fluorescent X-ray analyzer (RIX2100 manufactured by Rigaku) and converted into each oxide as follows.
  • the specific gravity was 0.9.
  • Unfired papermaking sludge (Low quality paper for OA equipment of Nakamura Paper of Maruto Kiln Co., Ltd .: 34% by weight of solid content, 66% by weight of water) 3020 parts by weight were prepared. next, Using a 2N hydrochloric acid aqueous solution, acid washing was performed to almost completely remove the Ca component.
  • Pulp 5 2% by weight gO 6% by weight
  • the amount of calcium carbonate was 65% by weight Samples were prepared by appropriately mixing A, B, and C as described above, and a sheet was formed in the same manner as in Example 1 to produce a cured product, and the flexural strength, compressive strength, and nailability were measured.
  • Fig. 15 shows the relationship between Ca O / S i 0 2 and compressive strength.
  • the vertical axis shows the compressive strength (KgZcm 2 ), and the horizontal axis shows the ratio of Ca O / S i 0 2. It is.
  • the first 6 diagram shows the relationship between the compressive strength and C a O / A 1 2 0 3, compression strength in the vertical axis (KgZcm 2) on the horizontal axis are taking the ratio of C a OZA 1 2 0 3.
  • the first 7 figure shows the relationship between C a O content and the bending strength and compressive strength of the content of C a O on the horizontal axis to the vertical axis bending strength and compression strength (KgZcm 2) (percent) I have.
  • FIG. 18 shows the relationship between the content and the nail pull-out strength of the C a O, the content of C a O nail pull strength (Kg / cm 2) on the horizontal axis to the vertical axis (%) is connection preparative.
  • the cured bodies, C a, A l, the amount of S i is, respectively it C a 0, A 1 2 0 3, in terms of S i 0 2 C a O / S i when 0 2 ratio 0.2 of 7.9, exhibits a high compressive strength.
  • the ratio of C a OZA 1 2 0 3 exerts a higher compressive strength at the time of 0.2 Kakara 12.5. Comparative Example 11
  • Example 11 The papermaking sludge of Example 1 was washed with 1 N hydrochloric acid to remove calcium carbonate, and then 84 g of spherical calcium carbonate (average diameter 2 / m, Okutama Kogyo Co., Ltd. C-90) was added. About 11% by weight based on the solid content. However, in papermaking, calcium carbonate was hardly incorporated into the cured product. Comparative Example 1-3
  • Comparative Examples 1 to 4 the bending strength, compression strength, workability and nailing properties, and fracture toughness of the composite cured bodies obtained in Example 1 and Comparative Example 1 which were not dehydrated and suctioned with the conveyor belt and obtained in Example c and above were used.
  • a test was conducted for abrasion resistance. The results are shown in Table 1.
  • the test method was measured according to the method specified in JISA 6901 for flexural strength and the method specified in JISA 5416 for compressive strength.
  • the workability was determined by cutting with a circular saw for woodwork.
  • nailing properties nails with a diameter of 4 mm and a length of 50 mm were nailed and checked for cracks.
  • the fracture toughness value was calculated from the length of the crack generated by indenting the indenter using a Vickers hardness tester (MVK-D, Akashi Seisakusho). Young's modulus was calculated from the curve of the bend fracture test, 1. a 2. 7 kgf Zc m 2 to 4, using this value. Munsell color chart was used for lightness.
  • Husband 1 talli o ⁇ o ⁇ ⁇ U o O U no ⁇ ⁇ "5 ⁇
  • the lightness is higher as the amount of cement is smaller and the amount of CaO is larger.
  • the papermaking method has higher brightness than the press method.
  • calcium carbonate with horns is easier to take in by the papermaking method and can increase the brightness.
  • Example 2 If the rotation speed of the rotating drum is less than one time // minute, the paper is oriented in the thickness direction of the paper body, causing variation in strength.If it exceeds 100 times, the fiber is oriented in the rotation direction and the strength is reduced. Vary.
  • the synthetic fiber was incorporated by papermaking, and the improvement of the strength and the improvement of the fracture toughness more than simply mixing with the raw material and performing dehydration pressing were performed. realizable.
  • Example 2 The reason for this is that the synthetic fibers are taken into the cured body in an extended state.
  • the manufacturing conditions of Example 2 and Comparative Example 2 are as follows. Five papermaking bodies were stacked and turned over to form a multilayer.
  • Comparative Example 2-2 95% 0% 0% 5% 105 Comparative Example 2-2 was not multilayered and used was 2 Omm.
  • Example 2 The cured composites obtained in Example 2 and Comparative Example 2 were tested for flexural strength, compressive strength, workability and nailing, fracture toughness, and wear resistance. The results are shown in Table 3. For the amount of warpage, the maximum amount of warpage of the cured product having a length of lm was measured.
  • Example 2-4 308 800 Processing possible None 3 5 5
  • Example 2-5 310 800 Processing possible None 3 5 5
  • Example 2-6 330 850 Processing possible None 3 3 7
  • Example 2-7 3 1 0 800 Machinable None 3.3 3.5
  • the mesh of the rotating drum is coarser than # 40, only the inorganic amorphous material comes off from the raw material solution, and the density and strength of the cured product decrease.
  • the mesh is finer than # 150, the removal of water will be poor, and it will not be possible to produce a paper from the raw material solution with high efficiency. In addition, moisture is left and voids are formed by drying, so that the density is reduced. Also, if it is less than # 40 (that is, the eyes are coarse), calcium carbonate that imparts whiteness cannot be incorporated, and if it exceeds # 150 (that is, the eyes are fine), impurities will be removed. The brightness is reduced in any case.
  • composition of the solid content and the mesh of the network of Example 3 and Comparative Example 3 are as follows.
  • Comparative example 3-1 9 5% 3% 0% 0% 3% 1 0 Comparative example 3-295% 3% 0% 0% 3% 2 0 0 Comparative example 3-3 9 5% 3% 0% 0% 3% 2 5 0 Comparative Example 3-4 8 0% 0% 10% Gypsum 10% 5% 100 0 Flexural strength and pressure of the composite cured body obtained in Example 3 and Comparative Example 3 above. ⁇ U We conducted tests on shrink strength, workability and nailing, fracture toughness, and abrasion resistance.
  • Example 3-1 3 3 0 8 5 0 Processing possible None 3.3 7 1.2
  • Example 3-2 3 3 5 8 6 0 Processing possible None 3.3 7 1.2
  • Example 3-3 34 0 8 6 5 Processing possible None 3.3 7 1.2
  • Example 3-4 3 0 8 8 0 0 Processing possible None 3.1 1 5.5 1.1
  • Example 3-5 3 1 0 8 0 0 Processing Possible None 3.1 5.5 1.1 on
  • Example 4 in the case where the solid content in the raw material solution was changed is described below. If the concentration is less than 3.5%, the concentration is too low and it takes time to secure the thickness, and as the time elapses, the concentration decreases and the uniformity in the thickness direction decreases.
  • compositions of the solid components of Example 4 and Comparative Example 4 are as follows.
  • Example 4-5 70% 3% 20% 2% 5
  • Example 4-6 95% 3% 0% 2% 25
  • Comparative Example 4-4 80% 0% 10% Gypsum 10% 5 Regarding the composite cured product obtained in Example 4 and Comparative Example 4, bending strength, compressive strength, workability and nailing property, fracture toughness, A test was performed for abrasion. Table 7 shows the results. For the amount of warpage, the maximum amount of warpage of the cured product having a length of lm was measured.
  • Example 5 The manufacturing conditions of Example 5 and Comparative Example 5 are as follows.
  • Example 5-1 95% 3% 0% 2% 5
  • Example 5-2 90% 2% 5% 3% 10
  • Example 5-3 98% 0.1% 0% 1.9% 20
  • Example 5-4 80 % 0.02% 15% 4.98% 30
  • Example 5-5 70% 3% 25% 2% 50
  • Example 5-6 90% 2% 0% 8% 60
  • Example 5-7 65% 5% 28% 2 % 80
  • Comparative Example 5-1 95% 0% 0% 5% 3
  • the thickness variation is calculated by dividing the lm square plate by 100, measuring the thickness, calculating the average value, dividing the difference between the maximum value and the minimum value by the average value, and calculating the percentage (% ).
  • Example 5-7 310 800 Processing possible None 3.3 5 0 Comparative example 5-1 330 850 Processing possible None 3.07
  • the pressure press is performed at 10 to 250 Kg / cm 2 . If the pressing is performed at less than 10 kg / cm 2 , the required strength cannot be obtained. On the other hand, even if the pressure exceeds 250 kg / cm 2 , the strength cannot be increased even if the press is performed, and the press device becomes larger and more expensive. Further, if it is less than 10 kgZcm 2 , voids are formed, the strength is low, and peeling and warping occur. Conversely, if it exceeds 250 kgZcm 2 , the fibers will be oriented in the direction in which the pressure is applied, and the strength will also decrease, causing peeling and warping. In papermaking, the fibers are easily oriented by nature, and high pressure is rather inconvenient.
  • the manufacturing conditions of Example 6 and Comparative Example 6 are as follows. Five papermaking bodies were stacked and turned over to form a multilayer.
  • Kanrin — 1 Q c 70 U 70 U
  • Example 6-4 80% U./o 4, yo / o ⁇ U Example 6-5 70% 3% 25% 2% 100
  • Example 6-6 90% 2% 0% 8% 1 50
  • Example 6 -7 65% 5% 28% 2% 250
  • Comparative example 6-1 95% 0% 0% 5% 8
  • Comparative example 6- 2 95% 0% 0% 5% 255 Comparative example 6-2 And 20 secret ones.
  • Example 11 With respect to the composite cured product having a thickness of 20 mm obtained in Example 6 and Comparative Example 6 described above, tests were performed on bending strength, compressive strength, workability and nailing properties, fracture toughness, and abrasion resistance. Table 11 shows the results. The test method was measured in accordance with the method specified in JIS A 6901 for flexural strength and the method specified in JIS A 5416 in compressive strength. The amount of warpage was measured on a 1 m square plate with a thickness of 20 mm [Table 11]
  • Example 6-4 308 800 Processing possible None 3.15.5
  • Example 6-5 310 800 Processing possible None 3.15.5
  • Example 6-6 330 850 Processing possible None 3.3 7
  • Example 6-7 310 800 Machinable None 3.3 3.5 Comparative Example 6-1 270 850 Machinable None 3.07
  • Comparative Example 6-2 275 850 Machinable None 3.07 (7) The following describes Example 7 in which the layers are inverted and Comparative Example 7 in which the layers are sequentially stacked.
  • Example 7 The manufacturing conditions of Example 7 and Comparative Example 7 are as follows. Five papermaking bodies were laminated to form a multilayer.
  • Fiber Multilayer Example 7-1 95% 3% 0% 2% Inversion Example 7-2 90% 2% 5% 3% Inversion Example 7-3 98% 0.1% 0% 1.9% s Example 7-4 80% 0.02% 15% 4.98% Inversion Example 7-5 70% 3% 25% 2% Inversion Example 7-6 90% 2% 0% 8% Inversion Example 7-7 65% 5% 28% 2% Invert Comparative example 7-1 95% 0% 0% 5% Order Comparative example 7-2 95% 0% 0% 5%
  • Comparative Example 7-2 20 layers were used without multilayering.
  • Example 7 With respect to the composite hardened body having a thickness of 20 and obtained in Example 7 and Comparative Example 7 described above, tests were conducted on bending strength, compressive strength, workability and nailing properties, fracture toughness, and abrasion resistance. Table 13 shows the results. The amount of warpage was determined by measuring the maximum amount of warpage of the lm square hardened body having a thickness of 20 mm.
  • Example 8 in which the amount of the coagulant was changed will be described.
  • the amount of the coagulant is less than 0.01% by weight, there is no coagulation effect, and there is no effect of preventing warpage or equalizing the specific gravity and strength.
  • the content exceeds 5% by weight, the coagulant causes the cured product to be non-uniform, resulting in warpage, specific gravity, and non-uniform strength.
  • compositions of the solid components of Example 8 and Comparative Example 8 are as follows.
  • Example 8-1 95% 3% 0% 2% 4%
  • Example 8-2 90% 2% 5% 3% 5%
  • Example 8-3 98% 0.1% 0% 1.9% 10%
  • Example 8-4 80% 0.02% 15% 4.98% 1 5%
  • Example 8-5 70% 3% 25% 2% 5%
  • Example 8-6 90% 2% 0% 8% 25%
  • Example 8-7 65% 5% 28% 2% 25%
  • Comparative Example 8-1 95% 0% 0% 5% 5%
  • Example 8 and Comparative Example 8 were tested for flexural strength, compressive strength, workability and nailing properties, fracture toughness, and abrasion resistance.
  • amount of warpage the amount of warpage of a lm square plate was measured. The variation was measured by dividing the lm square plate into 100 parts, measuring the strength and specific gravity, calculating the average value, dividing the difference between the maximum value and the minimum value by the average value, and displaying the percentage (%).
  • Example 8-1 330 850 Processing possible None 3.3 7 2.0
  • Example 8-2 335 860 Processing possible None 3.3 7 2.0
  • Example 8-3 340 865 Processing possible None 3.3 7 2.
  • Example 8-4 308 800 Machinable None 3.1 5.5 5.3.0
  • Example 8-5 310 800 Machinable None 3.1 1 5.5 3.0
  • Example 8-6 330 850 Machinable None 3 3 7 2.0
  • Example 8-7 31 0 800 Machinable None 3.3 3.5.0 3.0
  • Comparative Example 8-2 330 850 Machinable None 3. 0 7 10.0 Specific gravity variation% Strength variation%
  • Example 8-7 3% 3% Comparative Example 8-1 7% 7%
  • the amount of the organic fiber is less than 0.1% by weight, there is no reinforcing effect and the molded article cannot be broken. On the other hand, if it exceeds 10% by weight, voids increase to increase the moisture content, and the beam breaks. Easy to occur.
  • compositions of the solid components of Example 9 and Comparative Example 9 are as follows.
  • Example 9-1 95% 3% 0% 0.5% 4%
  • Example 9-2 90% 2% 5% 3% 5%
  • Example 9-3 98% 0% 0% 2% 10%
  • Example 9-4 80% 0% 15% 5% 15%
  • Example 9-5 70% 3% 20% 2% 5%
  • Example 9-6 90% 2% 0% 8% 25%
  • Example 9-7 65% 3% 30% 2% 25%
  • Comparative Example 9-1 95% 3% 0% 0% 3% Comparative Example 9-2 95% 3% 0% 0.05% 20% Comparative Example 9-3 85 % 3% 0% 1 2% 15% Comparative Example 9-4 95% 3% 0% 2% 85% Comparative Example 9-5 80% 0% 10% Gypsum 10%
  • Example 9 The composite cured products obtained in Example 9 and Comparative Example 9 were tested for flexural strength, compressive strength, workability and nailability, fracture toughness, and abrasion resistance. The results are shown in Table 2. The molded body was examined to determine whether it would break when the paper body before drying was cut into lm squares and lifted.
  • Example 10 in which pressing was performed in a mold and Comparative Example 0 in which no mold was used will be described.
  • the manufacturing conditions of Example 10 and Comparative Example 10 are as follows. [Table 18]
  • Example 10-1 9 5% 3% 0% 2% 5%
  • Example 10-2 90% 2% 5% 3% 1 0%
  • Example 10-3 98% 0.1% 0% 1.9% 20%
  • Example 10-4 80% 0.02% 15% 4.98% 30%
  • Example 10-5 70% 3% 25% 2%
  • Example 10-6 90% 2% 0% 8% 60%
  • Example 10-7 5% 5% 28% 2%
  • Comparative example 10-1 9 5% 0% 0% 5% 3% Comparative example 10-2 90% 0% 0% 5% 3% Compare In Example 10-1, after papermaking, a press without a formwork was used. The composite cured products obtained in Example 10 and Comparative Example 10 were tested for bending strength, compressive strength, workability, nailing properties, fracture toughness, and abrasion resistance. The results are shown in Table 2.
  • Example 10-7 3 1 0 800 Machinable None 3.3 3.5 Comparative Example 10-1 3 30 8 50 Machinable None 3.07
  • the papermaking body 26 is placed on the reversing plate 46 of the reversing device 40 from the belt conveyor 38 by the transfer device 42, the papermaking body 26 is placed after being turned 90 degrees in the horizontal direction. That is, the transfer direction from the wire cylinders 22 A, 22 B, and 22 C to the transport belt 23 is shifted when the paper bodies are laminated.
  • the strength difference occurs in the papermaking body 26 along the transfer direction to the conveyor belt 23. Specifically, assuming that the strength when bending is performed along the transfer direction is 1, the strength in the direction perpendicular to the transfer direction is about 0.8.
  • the cured bodies having uniform strength are produced by laminating the paper bodies 26 so that the transfer direction to the conveyor belt 23 is shifted.
  • a composite building material will be described below. That is, as shown in FIG. 19, in a composite building material in which a reinforcing layer 6 is formed on at least one surface of the core material 5 and on both surfaces in the illustrated example, the composite material manufactured by the method of the present invention is applied to the core material 5. Apply cured product 1.
  • the core material 5 by forming the core material 5 into the composite cured body 1 manufactured by the method of the present invention, even when a tensile force is applied to the core material, the core material itself has excellent bending strength, and In addition to the fact that a reinforcing layer is provided on the surface, the structure is not easily broken. Also, even if pressure is locally applied to the surface, no dent or depression occurs.
  • a decorative layer such as a paint, a decorative board and a decorative veneer is provided on the reinforcing layer 6, so that the impact resistance is improved, and a dent or the like is formed. Scratches are less likely to occur, and the decorative surface is not distorted by the scratches and the design is not degraded.
  • the reinforcing layer 6 has a structure in which the fiber base material 6b is embedded in the resin 6a. It is particularly preferable to use a thermosetting resin for the essence 6a. That is, unlike a thermoplastic resin, a thermosetting resin has excellent fire resistance and does not soften even at a high temperature, and thus does not lose its function as a reinforcing layer.
  • a thermosetting resin phenol resin, memelamine resin, epoxy resin, polyimide resin, urea resin and the like are suitable. And give the reinforcing layer sufficient rigidity and impact resistance, and even higher fire resistance To achieve this, it is desirable that the content of the thermosetting resin in the reinforcing layer be in the range of 10% by weight to 65% by weight.
  • inorganic fibers for the fiber base material 6b. This is because the strength of the reinforcing layer 6 can be improved and the coefficient of thermal expansion can be reduced.
  • Use at least one of inorganic fibers such as glass fiber, rock wool, ceramic fiber, glass fiber chopped strand mat, glass fiber roving cloth, glass fiber continuous strand mat, and glass fiber paper.Low cost and heat resistance It is preferable in terms of excellent properties and strength.
  • This fiber base material is a non-continuous fiber formed into a mat shape, or a continuous long fiber cut into 3 to 7 cm into a mat (so-called chopped strand mat), dispersed in water. It is possible to apply a sheet which is made into a sheet, a continuous long fiber is spirally laminated to form a mat, or a continuous long fiber is woven.
  • the thickness of the reinforcing layer is desirably 0.1 mm to 3.5 mm.
  • the reinforcing layer may be supplemented with a flame retardant such as aluminum hydroxide and magnesium hydroxide, and a commonly used inorganic binder such as silica sol, alumina sol, and water glass.
  • a flame retardant such as aluminum hydroxide and magnesium hydroxide
  • a commonly used inorganic binder such as silica sol, alumina sol, and water glass.
  • the reinforcing layer is provided, but the surface may be coated with a resin or the like so that the cured body does not absorb moisture.

Landscapes

  • Treatment Of Sludge (AREA)
  • Paper (AREA)

Description

明 細 書 硬化体、 硬化体の製造方法及び硬化体の製造装置 技術分野
この発明は、 製紙ス ッジを板状に固めてなる明度の高い硬化体を量産でき る硬化体、 硬化体の製造方法及び硬化体の製造装置に関するものである。 背景技術
近年、 地球環境保護の観点から、 種々の産業廃棄物の有効利用が検討されて いる。 例えば、 これまで森林資源を大量に消費してきた建築産業においては、 建築資材を新たに産業廃棄物に求めることにより、 森林資源の消費量を抑える ことが提案されている。 一方、 従来使用していた無機ボード、 例えば、 珪酸カ ルシゥム板、 パーライト板、 スラグ石膏板、 木片セメント板および石膏ボード 等について、 その低コスト化並びに高機能化を実現が求められている。
本発明者らは、 紙の製造後に発生する製紙スラッジを脱水プレスした後、 乾 燥することで硬化させ、 建築用パネル等として有効に利用し得る硬化体の製造 技術を特願平 1 0— 3 5 2 5 8 6号として提案している。
本発明者は、 上記特許において、 製紙スラッジを硬化させることで硬化体が 得られることを示したが、 採算に合うよう硬化体を製造し得るものではなかつ た。 実際に硬化体を量産するためには、 先ず、 得られた水分を大量に含む抄造 体から徐々に水分を減らして行くための技術の確立が必要となった。
また、 製紙スラッジは、 インクやパルプ不純物の影響で着色しており、 脱水 プレス法では、 硬化体の中に不純物がそのまま残留し、 硬化体の明度が低下し てしまレ、、 着色したり装飾できないという問題がみられた。
本発明は、 上述した課題を解決するためになされたものであり、 第 1の目的 とするところは、 製紙スラッジから効率的に硬化体を量産できる硬化体の製造 方法及び硬化体の製造装置を提供することにある。
また、 第 1の目的は、 明度の高い硬化体を提供することにある。 なお、 脱水プレス法では量産性に劣る。 このような問題を解決するために、 特開昭 4 9— 1 1 4 6 2 8号では、 固形分 3 %に希釈された製紙スラッジとセ メントの混合物を回転ドラムで抄造し、 このドラム面から帯状毛布上に転写さ れて、 脱水プレスされ、 さらに卷き取りロールで層厚を増大させたあと、 切断 されてコンベア搬送される技術が開示される。
一方、 特開昭 5 9— 1 5 6 9 5 6号では、 丸金網を使用した抄造法を開示す るが、 1枚づっマットを抄造し、 多層化する技術がそれぞれ開示される。
し力 しながら、 このような抄造法では、 強度にばらつきが生じることが分かつ た。
さらに、 WO 0 0 / 7 9 0 5 2号では、 公知技術に従い 3 %の固形分に稀 釈された製紙スラッジを使用して抄造しており、 従来技術と同じ問題が発生し た。
本発明は、 上述した課題を解決するためになされたものであり、 第 2の目的 とするところは、 製紙スラッジから効率的に硬化体を量産でき強度のばらつき を小さくできる硬化体の製造方法及び硬化体の製造装置を提供することにある。 本発明者は、 上記特願平 1 0— 3 5 2 5 8 6号において、 製紙スラッジを硬 化させることで硬化体が得られることを示したが、 得られた硬化体は、 密度の ばらつきが大きかった。 工業用途に用い得る硬化体を生産するためには、 高密 度で均質な硬化体を製造する技術の確立が必要となった。
特開昭 4 9 - 1 1 4 6 2 8号では、 有機分 2 0 0メッシュ以下がよいことが 開示されている。 ところが、 この技術では、 抄造した成形体の明度が低いとい つた問題が発生した。 また、 特開昭 5 9 - 1 5 6 9 5 6号では、 丸金網を使用 した抄造法を開示するが、 1枚づっマツトを抄造し、多層化するものであるが、 使用する丸金網は、 2 5 0から 1 0メッシュであり、 やはり明度が低いという 問題があった。
本発明は、 上述した課題を解決するためになされたものであり、 第 3の目的 とするところは、 製紙スラッジから効率的に密度の高い硬化体を量産できる硬 化体の製造方法及び硬化体の製造装置を提供することにある。 上記特開昭 4 9 - 1 1 4 6 2 8号では、 得られた製品が不均一で、 はがれや そりといった問題が発生した。 また、 特開昭 5 9 - 1 5 6 9 5 6号では、 丸金 網を使用した抄造法を開示するが、 1枚づっマットを抄造し、 多層化するもの であり、 効率が悪い。
本発明は、 上述した課題を解決するためになされたものであり、 第 4の目的 とするところは、 製紙スラッジから厚さ方向、 面内で均一な硬化体を効率的に 量産できる硬化体の製造方法及び硬化体の製造装置を提供することにある。 上記特開昭 4 9 - 1 1 4 6 2 8号では、 巻き取りロールで切断するため、 力 ッタなどの切断具を必要としており、 生産性が悪く、 安全性にも問題がみられ た。
本発明は、 上述した課題を解決するためになされたものであり、 第 5の目的 とするところは、 製紙スラッジから効率的且つ安全に硬化体を量産できる硬化 体の製造方法及び硬化体の製造装置を提供することにある。 また、特開昭 4 9 - 1 1 4 6 2 8号、特開昭 5 9— 1 5 6 9 5 6号のように、 抄造体を卷回すると、 内部に応力が残り、 積層後に乾燥させると、 硬化体に反 り及び層間剥離を発生させるという問題が生じた。
本発明は、 上述した課題を解決するためになされたものであり、 第 6の目的 とするところは、 製紙スラッジから反りの発生しない硬化体を製造できる硬化 体の製造方法及び硬化体の製造装置を提供することにある。 本発明者は、 上記特願平 1 0 - 3 5 2 5 8 6号において、 製紙スラッジを硬 化させることで硬化体が得られることを示したが、 得られた硬化体は、 比重及 び強度のばらつきが大きかった。 工業用途に用い得る硬化体を生産するために は、 均質な比重の硬化体を製造する技術の確立が必要となった。
本発明は、 上述した課題を解決するためになされたものであり、 第 7の目的 とするところは、 製紙スラッジから均質な比重の硬化体を量産できる硬化体の 製造方法を提供するにある。 また、 上記特開昭 4 9 - 1 1 4 6 2 8号では、 抄造した成形体が、 搬送途中 で切れたりするといった問題が発生した。
一方、 特開昭 5 9 - 1 5 6 9 5 6号では、 丸金網を使用した抄造法を開示す るが、 1枚づっマットを抄造し、 多層化するものであるが、 積層するためにマ ットを持ち上げるとマツトが切れるという問題が生じた。
つまり、 本発明者が、 実際に硬化体を量産するために更に研究を進めたとこ ろ、 製紙スラッジから抄造した抄造体を所定の形状に成形した後の取り扱いが 困難であることが明らかになつたのである。 即ち、 製紙スラッジから抄造した 抄造体を硬化体とするための所定形状に成形した後、 抄造体は多量の水分を含 むため、 形を崩さないように取り扱うことが困難であった。
本発明は、 上述した課題を解決するためになされたものであり、 第 8の目的 とするところは、 抄造体を扱い易くし、 製紙スラッジから硬化体を量産できる 硬化体の製造方法を提供することにある。 本発明者は、 上記特願平 1 0— 3 5 2 5 8 6号において、 製紙スラッジを硬 化させることで硬化体が得られることを示したが、 工業用途用に広く実用に耐 え得る強度を得ることができなかった。本発明者力 S、強度を高める方法として、 製紙スラッジから抄造した抄造体を加圧するとの着想を持ち、 実験の結果を行 つたところ、 印加する圧力を高めることで、 硬化体の強度を高めることができ た。 しかしながら、圧力を高めるに従い、加圧の際に抄造体が千切れ易くなり、 歩留まりが低下することが判明した。
本発明は、 上述した課題を解決するためになされたものであり、 第 9の目的 とするところは、 製紙スラッジから高強度の硬化体を製造できる硬化体の製造 方法及び硬化体の製造装置を提供することにある。 発明の開示
上述した第 1の目的を達成するため、 本発明の請求項 1力、ら 4の硬化体は、 製紙スラッジを抄造し、 硬化させてなり、 S i、 A 1、 C aのそれぞれの酸化 物からなる無機非晶質体中に多糖類からなる有機質繊維状物および炭酸カルシ ゥムを含有してなる硬化体であって、前記硬化体中の C a、 Aし S iの量が、 それぞれ C a 0、 A 1 2O3、 S i 02に換算して C a O/S i 02の比率0. 2 から 7. 9、 C a OZA 1 2O3の比率が 0. 2から 1 2. 5に調整された硬化 体である。 この硬化体の明度は J I S Z 8 72 1の規定に基づく値で N 5 以上である。
第 7の目的を達成するため、請求項 5の硬化体では、製紙スラッジを抄造し、 硬化させてなり、 S i、 A l、 C aのそれぞれの酸化物からなる無機非晶質体 中に多糖類からなる有機質繊維状物および炭酸カルシゥムを含有してなる硬化 体であって、 前記硬化体中の C a、 A 1、 S iの量が、 それぞれ C a 0、 A 1 203、 S i O 2に換算して C a O/S i 02の比率0. 2から 7. 9、 C a O/ A 1 203の比率が 0. 2から 1 2. 5に調整され、 凝集剤が含有されてなるこ とを特 ί敫とする。 このような構成とすることで、 比重や強度のばらつきを改善 でき、 そりもなくすことができる。
なお、 前記原料溶液は、 セメントを全く含まないか、 固形分中 30重量%以 下のセメントを含むことが望ましい。 セメントを含むことで、 抄造性は向上す るが、 強度低下を招き、 また明度が低下するからである。 30重量%が上限で ある。
本発明の硬化体では、製紙スラッジを抄造し、硬化させてなり、 S i、 A 1、 C aのそれぞれの酸化物からなる無機非晶質体中に多糖類からなる有機質繊維 状物および炭酸力ルシゥムを含有してなる硬化体であって、 前記硬化体中の C a、 A 1、 S iの量が、 それぞれ C a 0、 A 1 203、 S i O2に換算して C a OZS i 02の比率 0. 2から 7. 9、 C a O/A 1203の比率が 0. 2から 1 2. 5に調整された硬化体である。 この硬化体の明度は、 J I S Z 8 7 2 1の規定に基づく値で N 5以上である。 なお、 これら C a、 A l、 S iの量 (C a 0、 A 1 203、 S i 02換算量) は、 複合硬化体中の C a、 A 1、 S i の全量であり、 たとえば、 C aであれば、 炭酸カルシウム及び無機非晶質体中 の全ての C aの量をいう。 また、 C a OZS i 02の比率 0. 2を越え、 7. 9以下で、 C a OZA 1 203の比率が 0. 2を越え、 1 2. 5以下に調整され た硬化体であることが最適である。
第 8の目的を達成するため、請求項 6の硬化体では、製紙スラッジを抄造し、 硬化させてなり、 S i、 A 1、 C aのそれぞれの酸化物からなる無機非晶質体 中に多糖類からなる有機質繊維状物および炭酸力ルシゥムを含有してなる硬化 体であって、 前記硬化体中の C a、 A 1、 S iの量が、 それぞれ C a 0、 A 1 2 0 3、 S i O 2に換算して C a OZ S i 0 2の比率 0 . 2から 7 . 9、 C a / A 1 2 0 3の比率が 0 . 2から 1 2 . 5に調整され、 合成繊維が含有されてなる ことを特徴とする。 このような構成とすることで、 曲げ強度や破壊靱性値を改 善できる。
なお、 前記原料溶液は、 セメントを全く含まないか、 固形分中 3 0重量%以 下のセメントを含むことが望ましい。 セメントを含むことで、 抄造性は向上す るが、 強度低下を招き、 また明度が低下するからである。 3 0重量%が上限で ある。
上述した第 1の目的を達成するため、 請求項 7の硬化体の製造方法は、 製紙 スラッジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面に製紙スラッ ジの抄造体を付着させると共に、 この抄造体を搬送ベルトに転写した後に転送 し、所定の大きさに切断し、抄造体を硬化させて製紙スラッジの硬化体を得る。 このため、 製紙スラッジから効率的に硬化体を量産することができる。
上述した第 2の目的を達成するため、 請求項 8の硬化体の製造方法は、 製紙 スラッジを含む原料溶液を回転数が 1〜1 0 0回 分の回転ドラムを用いて抄 造し、 該回転ドラム表面に製紙スラッジの抄造体を付着させると共に、 この抄 造体を搬送ベルトに転写した後に転送し、 所定の大きさに切断し、 抄造体を硬 化させて製紙スラッジの硬化体を得る。 このため、 製紙スラッジから効率的に 硬化体を量産することができる。
また、 回転ドラムの回転速度が 1回 分未満では、 抄造体の厚さ方向に配向 し、 強度のばらつきを招き、 1 0 0回 Z分を越えると、 繊維が回転方向に配向 して強度がばらつく。
上述した第 3の目的を達成するため、 請求項 9の硬化体の製造方法は、 製紙 スラッジを含む原料溶液を # 4 0〜1 5 0の網目構造を有するろ水体を用いて 抄造し、 該ろ水体表面に製紙スラッジの抄造体を付着させると共に、 この抄造 体を搬送ベルトに転写した後に転送し、 所定の大きさに切断し、 抄造体を硬化 させて製紙スラッジの硬化体を得る。 このため、 原料溶液から抄造体を高効率 で抄造でき、 製紙スラッジから効率的に密度の高い硬化体を量産することが可 能となる。 ここで、 # 4 0よりも網目が荒いと、 原料溶液から無機非結晶体の みが抜けて硬化体の密度及び強度が低下する。 一方、 # 1 5 0よりも網目が細 カ ヽと、 水分の抜けが悪くなり、 原料溶液から抄造体を高効率で抄造できなく なる。 また、 水分が残留するため、 空隙により密度が低下する。
上述した第 4の目的を達成するため、 請求項 1 0の硬化体の製造方法は、 製 紙スラッジを含む固形分 3 . 5〜 2 5重量%の原料溶液を網状体からなる回転 ドラムを用いて抄造し、 該網状体からなる回転ドラムに製紙スラッジの抄造体 を付着させると共に、 この抄造体を搬送ベルトに転写した後に転送し、 所定の 大きさに切断し、抄造体を硬化させて製紙スラッジの硬化体を得る。このため、 製紙スラッジからの抄造性を向上させ、 効率的に硬化体を量産することができ る。 即ち、 濃度が 3 . 5 %未満では、 希薄すぎて、 厚みを確保するために時間 がかかる上、 時間が経過するにつれて、 濃度が低下して、 厚さ方向の均一性が 低下する。 2 5 %を越えると、 製品の面内の均一性が低下する。 このため、 乾 燥によりそりが発生する。
上述した第 1の目的を達成するため、 請求項 1 1の硬化体の製造方法は、 製 紙スラッジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面に製紙スラ ッジの抄造体を付着させると共に、 この抄造体を速度 5〜8 O mZ分の搬送べ ノレトに転写した後に転送し、 所定の大きさに切断し、 抄造体を硬化させて製紙 スラッジの硬化体を得る。搬送ベルトの搬送速度が 5〜 8 0 分であるため、 原料溶液から適度な厚さの抄造体を高効率で抄造でき、 製紙スラッジから効率 的に硬化体を量産することが可能となる。 ここで、 搬送ベルトの搬送速度が 5 mZ分よりも低いと、 抄造体を厚く抄造できる反面、 抄造効率が低く、 また、 厚さにむらが生じる。 一方、 搬送速度が 8 O mZ分を越えると、 抄造体が薄く なり、 均一な厚みにし難くなると共に、 抄造体が切れることがあり、 また、 厚 さにむらがある。
第 1の目的を達成するため、 請求項 1 2の硬化体の製造方法は、 製紙スラッ ジを含む原料溶液を網状体からなる回転ドラムを用いて抄造し、 該回転ドラム 面に製紙スラッジの抄造体を付着させると共に、 この抄造体を連続気孔を有す る多孔質体の搬送ベルトへ転写し、 該搬送ベルトで搬送しながら抄造体から脱 水した後、 所定の大きさに切断し、 抄造体を硬化させて製紙スラッジの硬化体 を得る。 搬送ベルトで搬送しながら抄造体から脱水するため、 効率的に抄造体 中の水分を減らすことができ、 硬化体を量産することが可能となる。 特に、 網 状体の回転ドラムを利用し抄造して硬化体を製造しており、 網目から不純物が 脱落するため、 不純物を低減させることができ、 明度を高くすることが可能で ある。 特に、 搬送ベルトでも搬送しながら、 脱水する際に不純物やインクなど も除去できるため、 明度を上げるためには最適である。 また、 炭酸カルシウム を含有してなる硬化体であって、 前記硬化体中の C a、 Aし S iの量が、 そ れぞれ C a 0、 A 1 2 0 3、 S i 0 2に換算して C a O/ S i 0 2の比率0 . 2か ら 7 . 9、 C a OZA 1 2 O 3の比率が 0 . 2から 1 2 . 5に調整されてなるた め、 C a成分が多くなり、 明度が向上する。 また、 強度、 釘打ち性能も高いか らである。 このため、 硬化体の明度としては、 J I S Z 8 7 2 1の規定に 基づく値で N 5以上にできる。
なお、 J I S Z 8 7 2 1は、 理想的な黒の明度を 0とし、 理想的な白の 明度を 1 0とし、 これらの黒の明度と白の明度との間でその明るさの知覚が等 歩度となるように各色を 1 0分割し、 N Oから N 1 0の記号で表示したもので ある。
実際の明度の測定は、 N Oから N 1 0に対応する色票と対比する。 この場合の 少数点 1位は 0または 5とする。 硬化体の明度としては、 J I S Z 8 7 2 1の規定に基づく値で N 5以上にできるため、 着色や装飾を施すことが可能に なる。
前記炭酸カルシウムの結晶習癖は、 紡錘状、 角状、 薄卓状、 立方体または柱 状から選ばれる少なくとも 1種以上の形態であることが望ましい。 白色度が高 く、 角を持っため繊維にからまり抜け落ちにくく抄造でも硬化体に取り込める からである。
前記製紙スラッジセメントを添加する場合は、 その含有量は 3 0重量%以下 であることが望ましい。 製紙スラッジセメントの含有量が増えると、 明度が低 下するからである。 また、 セメントの添加で強度も低下することが認められる からである。
なお、 特開昭 5 5 - 1 2 8 5 3号には製紙スラッジをワイヤープレスして、 脱水し、 ホットプレスする技術が開示されている。 しかしながら、 この当時の スラッジは、 1 979年発行の 「静岡県製紙工業試験場報告」 によれば、 C a O換算で 2. 6重量%程度しかなく、 強度が十分ではない。 また、 抄造ではな いため、 多量の不純物を含み、 結局明度が低い。
また、 特公昭 57- 1 9019号には、 製紙スラッジと、 モンモリ口ナイ ト との混合物をプレス成形したものであるが、 当時の製紙スラッジとして C a成 分が少なく、 また、 C a系結晶ではなく、 圧縮強度などが劣る。 特開昭 50— 101604号には、 製紙スラッジと疎水性繊維とを混合し、 結合剤を加えた ボードを開示している。 しかしながら、 当時の製紙スラッジとしては、 C a成 分が少なく、 また、 強度も曲げ強度で 2. 5 k gZc m2であり、 複合化して 強度の高いものでも、 1 5 k gZcm2程度しかなく、 本発明の方がはるかに 優れている。 特開昭 52— 90585号では、 製紙スラッジの表面をパラフィ ン処理したものが開示されているが、 当時の製紙スラッジとしては、 C a成分 が少なく、 強度に劣ると考えられる。 また、 いずれにせよ、 抄造法ではないた め、 多量の不純物を含み、 結局明度が低い。
また、 網状体の回転ドラムを利用し抄造して硬化体を製造しており、 網目か ら不純物が脱落するため、 不純物を低減させることができ、 明度を高くするこ とが可能である。
なお、 特開昭 49— 1 14628号では、 3 %の希釈された製紙スラッジと セメントの混合物を回転ドラムで抄造し、 このドラム面から帯状毛布上に転写 されて、 脱水プレスされ、 さらに卷き取りロールで層厚を増大させたあと、 切 断されてコンベア搬送される技術が開示される。
し力 し、 この技術では C a Oの比率が小さく、 明度が低下する。 また、 セメ ントが 55%以上含まれており、 やはり明度の低下要因となる。 また、 特開昭 59- 1 56956号では、 丸金網を使用した抄造法を開示するが、 1枚づっ マットを抄造し、 多層化するものであり、 効率が悪い。
上述した第 5の目的を達成するため、 請求項 1 3の硬化体の製造方法は、 製 紙スラッジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面に製紙スラ ッジの抄造体を付着させると共に、 この抄造体を搬送ベルトに転写した後に転 送し、 搬送ベルト上の抄造体を、 切断機構を持つ切断用回転ドラムに転写させ ながら多層化し、 多層化させた抄造体が所定厚さに達した段階で所定の大きさ に切断し、 抄造体を硬化させて製紙スラッジの硬化体を得る。 切断用回転ドラ ムにより、 均一の厚み及び大きさの抄造体を連続的に成形することができるの で、 硬化体を効率的に量産することが可能になる。
抄造体を切断機構を持つ切断用回転ドラムで多層化するため、 切断を必要と せず自動化できる。 切断機構としては、 第 2 0図のような切断用回転ドラム 3 0に概ね垂直に当接する刃 3 5を具備するものや、 第 2 1図のような、 水を滞 留させる溝 3 2と抄造体 2 6を内部から押し出す機構 3 1を具備するものであ ることが望ましい。 第 2 0図では、 刃 3 5を切断用回転ドラム 3 0に同期させ て押し当てることにより、 一定の長さの抄造体を量産できる。
一方、 第 2 1図のものは、 溝 3 2の表面に滞留した水が抄造体 2 6に浸透し て局所的に柔らかくなり、 ピアノ線 3 1で抄造体を内部から押し出すことで切 断が達成できる。 これは、 鋭利な刃を使用しないため、 作業者の安全性を確保 することができる。
上述した第 1の目的を達成するため、 請求項 1 4の硬化体の製造方法は、 製 紙スラッジを含む原料溶液をろ水体を用いて抄造して得られた製紙スラッジの 抄造体を、 複数積層し、 1 0〜2 5 O Kgん m2で加圧プレスする。 抄造により厚 い抄造体を得ることは非効率的であるので、 製紙スラッジから薄い抄造体を効 率的に抄造し、 積層することで必要とする強度及び厚みの硬化体を製造する。 このため、 製紙スラッジから効率的に硬化体を量産することが可能になる。 多 層化した後加圧プレスするため、 必要とする厚みの硬化体を容易に製造するこ とができる。 更に、 加圧プレスを 1 0〜 2 5 O Kgん m2で行う。 加圧プレスを 1 O Kgん ra2未満で行うと、 必要とされる強度を得ることができない。 一方、 2 5 0 Kg/cm2を越えて加圧プレスしても強度を高めることができず、 プレス装置が 大型化 ·高価格化するからである。 更に、 1 0 k g Z c m 2未満では、 空隙が 生じて強度が低く、 剥離や反りが発生する。 逆に 2 5 0 k g Z c m 2を越える と繊維が圧力のかかる方向に配向してしまい、 やはり強度が低下し、 剥離や反 りが生じる。 抄造では、 繊維がもともと配向し易く、 高い圧力はかえつて不都 合である。
上述した第 6の目的を達成するため、 請求項 1 5の硬化体の製造方法は、 製 紙スラッジを含む原料溶液を抄造して得た製紙スラッジの抄造体を積層して硬 化させる硬化体の製造方法であって、 抄造体を積層する際に、 交互に反転させ ながら積層する。 即ち、 反りの発生する方向を反対にしながら抄造体を積層す るため、 抄造体を積層して成る硬化体に反り、 層間剥離を発生させることがな レ、。
第 6の目的を達成するため、 請求項 1 6の硬化体の製造方法は、 製紙スラッ ジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面に製紙スラッジの抄 造体を付着させると共に、 この抄造体を搬送ベルトに転写した後に転送し、 該 搬送ベルト上の製紙スラッジの抄造体を切断用回転ドラムに転写させながら多 層化し、 これを所定の大きさに切断して得られた複数の抄造体を積層して硬化 させる硬化体の製造方法であって、 抄造体を積層する際に、 交互に反転させな がら積層する。 即ち、 反りの発生する方向を反対にしながら抄造体を積層する ため、抄造体を積層して成る硬化体に反り、層間剥離を発生させることがない。 第 6の目的を達成するため、 請求項 1 7の硬化体の製造方法は、 製紙スラッ ジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面に製紙スラッジの抄 造体を付着させると共に、 この抄造体を搬送ベルトに転写した後に転送し、 該 搬送ベルト上の製紙スラッジの抄造体を切断用回転ドラムに転写させながら多 層化し、 これを所定の大きさに切断して得られた複数の抄造体を積層して硬化 させる硬化体の製造方法であって、 抄造体を積層する際に、 最上層及び最下層 の抄造体について、 露出面を回転ドラムに接触していた面とし、 抄造体の積層 面を交互に反転させながら積層する。 即ち、 反りの発生する方向を反対にしな がら抄造体を積層するため、 抄造体を積層して成る硬化体に反り、 層間剥離を 発生させることがない。 また、 最上層及び最下層の抄造体について、 露出面を 回転ドラムに接触していた面とするため、 積層してなる硬化体の表面を平滑に することができる。
第 6の目的を達成するため、 請求項 1 8の硬化体の製造方法は、 製紙スラッ ジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面に製紙スラッジの抄 造体を付着させると共に、 この抄造体を搬送ベルトに転写し、 これを所定の大 きさに切断して得られた複数の抄造体を積層して硬化させる硬化体の製造方法 であって、 抄造体を積層する際に、 前記搬送ベルトへの転写方向がずれるよう に積層する。抄造体は、搬送ベルトへの転写方向に沿って強度差が発生するが、 抄造体を積層する際に、 搬送ベルトへの転写方向がずれるように積層すること で、 均一な強度を有する硬化体を製造することができる。
上述した第 7の目的を達成するため、 請求項 1 9の硬化体の製造方法は、 製 紙スラッジを含む原料溶液に凝集剤を添カ卩して凝集させ、 この凝集原料溶液を ろ水体を用いて抄造し、この抄造体を硬化させて製紙スラッジの硬化体を得る。 このため、 製紙スラッジから均質な比重の硬化体を量産することができる。 ま た、 凝集剤により製紙スラッジ中にフロックができるので、 抄造効率を高める ことが可能になる。
第 7の目的を達成するため、 請求項 2 0の硬化体の製造方法は、 製紙スラッ ジを含む原料溶液に凝集剤を添加して凝集させ、 この凝集原料溶液をろ水体を 用いて抄造し、 該ろ水体表面に製紙スラッジの抄造体を付着させると共に、 こ の抄造体を搬送ベルトに転写した後に転送し、 所定の大きさに切断し、 抄造体 を硬化させて製紙スラッジの硬化体を得る。 このため、 製紙スラッジから均質 な比重の硬化体を量産することができる。 また、 凝集剤により製紙スラッジ中 にフロックができるので、 抄造効率を高めることが可能になる。
上述した第 8の目的を達成するため、 請求項 2 1の硬化体の製造方法は、 製 紙スラッジを含む原料溶液にバインダを添加し、 この原料溶液をろ水体を用い て抄造し、 この抄造体を硬化させて製紙スラッジの硬化体を得る。 バインダに より抄造体に可撓性を持たせるので、 扱いが容易になり、 硬化体を量産するこ とが可能になる。 また、 バインダにより、 硬化体の強度及び靱 1"生を高めること ができる。
第 8の目的を達成するため、 請求項 2 2の硬化体の製造方法は、 製紙スラッ ジを含む原料溶液にバインダを添加し、この原料溶液をろ水体を用いて抄造し、 該ろ水体表面に製紙スラッジの抄造体を付着させると共に、 この抄造体を搬送 ベルトに転写した後に転送し、 所定の大きさに切断し、 抄造体を硬化させて製 紙スラッジの硬化体を得る。 バインダにより抄造体に可撓性を持たせるので、 切断後の扱いが容易になり、 硬化体を量産することが可能になる。 また、 バイ ンダにより、 硬化体の強度及び靱性を高めることができる。
上述した第 9の目的を達成するため、 請求項 2 3の硬化体の製造方法は、 製 紙スラッジを含む原料溶液をろ水体を用いて抄造して得られた製紙スラッジの 抄造体を、 型枠中で加圧せしめて製紙スラッジの硬化体を製造する。 型枠中で 行うため、 高圧で加圧しても抄造体が千切れなくなり、 製紙スラッジから高強 度の硬化体を高い歩留まりで製造することが可能となる。
第 9の目的を達成するため、 請求項 2 4の硬化体の製造方法は、 製紙スラッ ジを含む原料溶液をろ水体を用いて抄造して得られた製紙スラッジの抄造体を 複数積層し、 加圧せしめて製紙スラッジの硬化体を製造する。 型枠中で行うた め、 高圧で加圧しても抄造体が千切れなくなり、 製紙スラッジから高強度の硬 化体を高い歩留まりで製造することが可能となる。 また、 抄造体を積層した後 加圧プレスするため、必要とする厚みの硬化体を容易に製造することができる。 請求項 2 5の硬化体の製造方法は、 製紙スラッジを含む原料溶液の濃度が、 固形分 3 . 5〜2 5重量%であるため、製紙スラッジからの抄造性を向上させ、 効率的に硬化体を量産することができる。 即ち、 濃度が 3 . 5 %未満では、 効 率的に原料溶液からろ水体を用いて抄造することができず、 2 5 %を越えると、 製品の均一性が低下するからである。
請求項 2 6の硬化体の製造方法では、 搬送ベルトで搬送しながら抄造体から 脱水するため、 効率的に抄造体中の水分を減らすことができる。
請求項 2 7の硬化体の製造方法では、 搬送ベルト上の抄造体を切断用回転ド ラムに転写させながら多層化し、 多層化させた抄造体が所定厚さに達した段階 で切断する。このため、均一な厚みの抄造体を連続的に成形することができる。 請求項 2 8の硬化体の製造方法では、切断した抄造体をさらに多層化した後、 加圧プレスする。 このため、 必要とする厚みの硬化体を容易に製造することが できる。
請求項 2 9の硬化体の製造方法では、 加圧プレスを 1 0〜2 5 0 Kg/cm2で行 う。 加圧プレスを 1 0 Kg/cm2未満で行うと、 必要とされる強度を得ることがで きない。 一方、 2 5 O Kgん m2を越えて加圧プレスしても強度を高めることがで きず、 プレス装置が大型化 ·高価格化するからである。
請求項 3 0は、 セメントを全く含まないか、 固形分中 3 0重量%以下のセメ ントを含む。 セメントを含むことで、 抄造性は向上するが、 強度低下を招き、 また明度が低下するからである。 3 0重量%が上限である。
請求項 3 1の硬化体の製造方法では、 抄造体を原料溶液を介在させて積層す るため、 剥離の生じない多層の硬化体を製造することができる。
請求項 3 2の硬化体の製造方法では、 抄造体を厚さ 2 O ram以下に形成するこ とで、 製紙スラッジを効率的に抄造し、 積層することで必要とする強度及び厚 みの硬化体を製造する。 このため、 製紙スラッジから効率的に硬化体を量産す ることが可能になる。
請求項 3 3の硬化体の製造方法は、 凝集剤が、 硫酸アルミニウム、 塩化第二 鉄、 ポリ塩化アルミユウム、 ポリアクリル酸ナトリウム、 ポリメタクリル酸ェ ステル、ポリアクリル酸エステル、ポリアクリルアミ ドのいずれかであるため、 製紙スラッジを含む原料溶液を効率的に凝集させることができる。
請求項 3 4の硬化体の製造方法は、 バインダが有機繊維であるため、 抄造体 に可撓性を持たせることができる。
第 1の目的を達成するため、 請求項 3 5の硬化体の製造装置は、 原料溶液を 抄造し、 表面に製紙スラッジの抄造体を付着させるろ水体と、 ろ水体の表面に 付着した抄造体を転写して搬送する搬送ベルトと、 搬送ベルトを搬送された抄 造体を所定の大きさに切断する切断装置と、 切断された抄造体を硬化させて製 紙スラッジの硬化体を得る硬化装置とを備える。 このため、 製紙スラッジから 効率的に硬化体を量産することができる。
第 2の目的を達成するため、 請求項 3 6の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させる回転数 が 1〜1 0 0回 分の回転ドラムと、 回転ドラムの表面に付着した抄造体を転 写して搬送する搬送ベルトと、 搬送ベルトを搬送された抄造体を所定の大きさ に切断する切断装置と、 切断された抄造体を硬化させて製紙スラッジの硬化体 を得る硬化装置とを備える。 このため、 製紙スラッジから効率的に硬化体を量 産することができる。
第 3の目的を達成するため、 請求項 3 7の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させる # 4 0 〜 1 5 0の網目構造を有するろ水体と、 ろ水体の表面に付着した抄造体を転写 して搬送する搬送ベルトと、 搬送ベルトを搬送された抄造体を所定の大きさに 切断する切断装置と、 切断された抄造体を硬化させて製紙スラッジの硬化体を 得る硬化装置とを備える。このため、原料溶液から抄造体を高効率で抄造でき、 製紙スラッジから効率的に密度の高い硬化体を量産することが可能となる。 こ こで、 # 4 0よりも網目が荒いと、 原料溶液から無機非結晶体のみが抜けて硬 化体の密度及ぴ強度が低下する。 一方、 # 1 5 0よりも網目が細かいと、 水分 の抜けが悪くなり、 原料溶液から抄造体を高効率で抄造できなくなる。 また、 水分が残留して、 乾燥により空隙が生じるため、 密度が低下する。
また、 # 4 0未満 (つまり、 目が粗い) 場合、 白色度を付与する炭酸カルシ ゥムを取り込むことができず、 また、 # 1 5 0を越える (つまり、 目が細力い) 場合、 不純物を取り込んでしまい、 いずれにせよ明度が低下する。
第 4の目的を達成するため、 請求項 3 8の硬化体の製造装置は、 製紙スラッ ジを含む固形分 3 . 5〜2 5重量%の原料溶液を抄造し、 表面に製紙スラッジ の抄造体を付着させる網状体からなる回転ドラムと、 網状体からなる回転ドラ ムの表面に付着した抄造体を転写して搬送する搬送ベルトと、 搬送ベルトを搬 送された抄造体を所定の大きさに切断する切断装置と、 切断された抄造体を硬 化させて製紙スラッジの硬化体を得る硬化装置とを備える。 このため、 製紙ス ラッジからの抄造性を向上させ、 効率的に硬化体を量産することができる。 即 ち、 濃度が 3 . 5 %未満では、 濃度が低く効率的に原料溶液から回転ドラムを 用いて抄造することができず、 また、 時間の経過に伴って濃度が低下して、 厚 さ方向に不^ J一になる。 また、 2 5 %を越えると、 製品の面内の均一性が低下 する。 不均一になると、 乾燥により剥離、 反りが発生する。
第 1の目的を達成するため、 請求項 3 9の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させるろ水体 と、 ろ水体の表面に付着した抄造体を転写して搬送する速度 5〜8 0 m //分の 搬送ベルトと、 搬送ベルトを搬送された抄造体を所定の大きさに切断する切断 装置と、 切断された抄造体を硬化させて製紙スラッジの硬化体を得る硬化装置 とを備える。 搬送ベルトの搬送速度が 5〜8 O m/分であるため、 原料溶液か ら適度な厚さの抄造体を高効率で抄造でき、 製紙スラッジから効率的に硬化体 を量産することが可能となる。 ここで、 搬送速度が 5 mZ分よりも低いと、 抄 造体を厚く抄造できる反面、 抄造効率が低く、 厚さの均一性が低い。 一方、 搬 送速度が 8 O mZ分を越えると、 抄造体が薄くなり、 均一な厚みにし難くなる と共に、 抄造体が切れることがある。 第 1の目的を達成するため、 請求項 4 0の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させる網状体 からなる回転ドラムと、 回転ドラムの表面に付着した抄造体を転写して、 搬送 しながら脱水する多孔質体の搬送ベルトと、 搬送ベルトを搬送された抄造体を 所定の大きさに切断する切断装置と、 切断された抄造体を硬化させて製紙スラ ッジの硬化体を得る硬化装置とを備える。 搬送ベル卜で搬送しながら抄造体か ら脱水するため、 効率的に抄造体中の水分を減らすことができ、 硬化体を量産 することが可能となる。 また、 網状体からなる回転ドラムを用いるため、 原料 溶液から抄造体を連続して抄造でき、 製紙スラッジから効率的に硬化体を量産 することが可能となる。 また、 網状体の回転ドラムを利用し抄造して硬化体を 製造しており、 網目から不純物が脱落するため、 不純物を低減させることがで き、 明度を高くすることが可能である。
第 5の目的を達成するため、 請求項 4 1の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させるろ水体 と、 ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 搬送べ ルト上の抄造体を転写させながら多層化する切断用回転ドラムであって、 表面 に水を滞留させる溝と、 この溝の近傍に位置し、 内部から抄造体を押し出すた めの押出機構とを備え、表面の多層化させた抄造体が所定厚さに達した段階で、 押出機構を作動させ、 溝に対応する位置で前記抄造体を切断する切断用回転ド ラムと、 切断された抄造体を硬化させて製紙スラッジの硬化体を得る硬化装置 とを備える。 このため、 均一な厚みの抄造体を連続的に成形することができ、 硬化体を効率的に量産することが可能になる。 また、 カツタなどの刃物を使用 せず安全性が高い。
第 2 1図で詳細に説明する。 第 2 1図 (A) 、 ( B ) は、 切断用回転ドラム の説明図であり、 第 2 1図 (C) は、 切断用回転ドラムの斜視図である。 第 2 1図 (A) に示すように切断用回転ドラム 3 0には表面の水が滞留する溝 3 2 が形成されており、 この水が製紙スラッジの抄造体 2 6に局所的に柔らかい部 位 (W) を形成する。 つぎに、 第 2 1図 (B ) 、 ( C ) に示すように、 ピアノ 線 3 1が押し出され、製紙スラッジの抄造体 2 6を内部から押し出す。すると、 局所的に柔らかくなっていた部分 Wで抄造体が破断して、 切断が達成される。 第 1の目的を達成するため、 請求項 4 2の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させるろ水体 と、 ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 搬送べ ノレ トを搬送された抄造体を所定の大きさに切断する切断装置と、 切断された製 紙スラッジの抄造体を、 原料溶液を介在させて複数積層せしめる積層装置と、 を備える。 抄造により厚い抄造体を得ることは非効率的であるので、 製紙スラ ッジから薄レ、抄造体を効率的に抄造し、 積層することで必要とする強度及び厚 みの硬化体を製造する。 このため、 製紙スラッジから効率的に硬化体を量産す ることが可能になる。 また、 抄造体を原料溶液を介在させて積層するため、 剥 離の生じない多層の硬化体を製造することができる。
第 6の目的を達成するため、 請求項 4 3の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させるろ水体 と、 ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 搬送べ ルトを搬送された抄造体を所定の大きさに切断する切断装置と、 切断された製 紙スラッジの抄造体を、交互に反転させて積層せしめる積層装置と、を備える。 即ち、 反りの発生する方向を反対にしながら抄造体を積層するため、 抄造体を 積層して成る硬化体に反り、 層間剥離を発生させることがない。
第 9の目的を達成するため、 請求項 4 4の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 製紙スラッジの抄造体を生成する抄造装置と、 製 紙スラッジの抄造体を、 型枠に入れて加圧する加圧装置であって、 該抄造体か ら染み出る水分を抜くための通孔を備える加圧装置と、 を備える。 型枠中で行 うため、 高圧で加圧しても抄造体が千切れなくなり、 製紙スラッジから高強度 の硬化体を高い歩留まりで製造することが可能となる。 また、 型枠に抄造体か ら染み出る水分を抜くための通孔を備えるため、 加圧の際に脱水を行い、 後に 乾燥による硬化工程を短時間で完了させれる。
第 9の目的を達成するため、 請求項 4 5の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させるろ水体 と、 ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 搬送べ ノレトを搬送された抄造体を所定の大きさに切断する切断装置と、 切断された製 紙スラッジの抄造体を、 型枠に入れて加圧する加圧装置であって、 該抄造体か ら染み出る水分を抜くための通孔を備える加圧装置と、 を備える。 型枠中で行 うため、 高圧で加圧しても抄造体が千切れなくなり、 製紙スラッジから高強度 の硬化体を高い歩留まりで製造することが可能となる。 また、 型枠に抄造体か ら染み出る水分を抜くための通孔を備えるため、 加圧の際に脱水を行い、 後の 乾燥による硬化工程を短時間で完了させれる。 また、 抄造体を積層した後加圧 プレスするため、 必要とする厚みの硬化体を容易に製造することができる。 第 9の目的を達成するため、 請求項 4 6の硬化体の製造装置は、 製紙スラッ ジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させるろ水体 と、 ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 搬送べ ルトを搬送された抄造体を所定の大きさに切断する切断装置と、 切断された製 紙スラッジの抄造体を、 前記原料溶液を介在させて積層させる積層装置と、 積 層された抄造体を 型枠に入れて加圧する加圧装置であって、 該抄造体から染 み出る水分を抜くための通孔を備える加圧装置と、 を備える。 型枠中で行うた め、 高圧で加圧しても抄造体が千切れなくなり、 製紙スラッジから高強度の硬 化体を高い歩留まりで製造することが可能となる。 また、 型枠に抄造体から染 み出る水分を抜くための通孔を備えるため、 加圧の際に脱水を行い、 後の乾燥 による硬化工程を短時間で完了させれる。 また、 製紙スラッジの抄造体を原料 溶液を介在させて複数積層せるため、 剥離の生じない多層の硬化体を製造する ことができる。
請求項 4 7の硬化体の製造装置は、 ろ水体が網状体からなる回転ドラムから 成る。 このため、 原料溶液から抄造体を連続して抄造でき、 製紙スラッジから 効率的に硬化体を量産することが可能となる。
請求項 4 8の硬化体の製造装置は、 回転ドラムの回転速度が 1〜 1 0 0回 分であるため、 原料溶液から抄造体を高効率で抄造でき、 製紙スラッジから効 率的に硬化体を量産することが可能となる。 ここで、 回転ドラムが 1回転 分 よりも低いと、 抄造効率が低い。 一方、 回転数が 1 0 0回転ノ分を越えると、 均一な厚みで抄造体が出来にくくなる。
請求項 4 9の硬化体の製造装置は、 ろ水体を搬送ベルトに沿って複数個併設 し、 当該搬送ベルトに多層化させながら抄造体を転写する。 このため、 原料溶 液から抄造体を高効率で抄造でき、 製紙スラッジから効率的に硬化体を量産す ることが可能となる。
請求項 5 0の硬化体の製造装置は、 ろ水体が # 4 0〜1 5 0の網目構造を有 する。 このため、 原料溶液から抄造体を高効率で抄造でき、 製紙スラッジから 効率的に密度の高い硬化体を量産することが可能となる。 ここで、 # 4 0より も網目が荒いと、 原料溶液から無機非結晶体のみが抜けて硬化体の密度及び強 度が低下する。一方、 # 1 5 0よりも網目が細かいと、水分の抜けが悪くなり、 原料溶液から抄造体を高効率で抄造できなくなる。
請求項 5 1の硬化体の製造装置は、 搬送ベルトの搬送速度が 5〜 8 0 分 であるため、 原料溶液から適度な厚さの抄造体を高効率で抄造でき、 製紙スラ ッジから効率的に硬化体を量産することが可能となる。 ここで、 搬送速度が 5 m/分よりも低いと、 抄造体を厚く抄造できる反面、 抄造効率が低い。 一方、 搬送速度が 8 O mZ分を越えると、 抄造体が薄くなり、 均一な厚みにし難くな ると共に、 抄造体が切れることがある。
請求項 5 2の硬化体の製造装置は、 搬送ベルトが連続する気孔を有する多孔 質体で構成されているため、搬送ベルトで搬送しながら、抄造体から脱水でき、 効率的に抄造体中の水分を減らすことができる。
請求項 5 3の硬化体の製造装置は、 切断装置が抄造体を転写させながら多層 化する切断用回転ドラムから成る。 そして、 切断用回転ドラム表面の多層化さ せた抄造体が所定厚さに達した段階で、 押出機構を作動させ、 溝に対応する位 置で抄造体を切断する。 このため、 均一の厚みの抄造体を効率的に生成するこ とができる。
請求項 5 4の硬化体の製造装置は、 切断装置が、 切断用回転ドラムにて一端 の切断された抄造体を一定間隔で切断する刃を備える。 このため、 効率的に所 定長の抄造体を形成することができる。
請求項 5 5の硬化体の製造装置は、 切断装置が、 切断用回転ドラムにて一端 の切断された抄造体を一定間隔で切断する刃を備える。 このため、 効率的に所 定長の抄造体を形成することができる。
請求項 5 6の硬化体の製造装置は、 積層装置が、 製紙スラッジの抄造体を原 料溶液を介在させて複数積層せるため、 剥離の生じない多層の硬化体を製造す ることができる。 図面の簡単な説明
第 1図は、 この発明の複合硬化体の断面模式図である。
第 2図は、 この発明の複合硬化体の断面模式図である。
第 3図は、 本発明の第 1実施例に係る硬化体の製造装置の概念図である。 第 4図 (A) 、 (B) は、 原料調整機構の概念図である。
第 5図は、 抄造機構の概念図である。
第 6図 (A) 、 (B) 、 (C) は、切断用回転ドラムの動作の説明図である。 第 7図 (A) 、 (B) 、 (C) は、 反転装置の動作の説明図である。
第 8図 (A) 、 (B) 、 (C) は、 プレス機の動作の説明図である。
第 9図 (A) 、 (B) 、 (C) は、 プレス機の動作の説明図である。
第 10図 (A) 、 (B) 、 (C) は、 抄造体の張合せ向きの説明図である。 第 1 1図は、 抄造体の張合向きと層間剥離の発生との関係、 及び、 プレス機 での圧力と強度との関係を示す図表である。
第 12図は、 実施例 1に係る複合硬化体の X線回折のチャートである。
第 13図は、 実施例 1に係る複合硬化体の X線回折のチャートである。
第 14図は、 本発明の第 2実施例に係る硬化体の製造装置の概念図である。 第 1 5図は、 C a O/S i 02と圧縮強度との関係を示すグラフである。 第 16図は、 C a / 1203と圧縮強度との関係を示すグラフである。 第 1 7図は、 C a Oの含有量と曲げ強度 ·圧縮強度との関係を示すグラフで ある。
第 18図は、 C a Oの含有量と釘引き抜き強度との関係を示すグラフである。 第 19図は、 この発明の複合硬化体を用いた複合建築材料の断面模式図であ る。
第 20図は、 切断用回転ドラムの説明図である。
第 21図 (A) 、 (B) 、 (C) は、 切断用回転ドラムの動作の説明図であ る。 発明を実施するための最良の形態
ここでは先ず、 後述するこの発明の複合硬化体の製造方法で製造する複合硬 化体の構造について、第 1図の模式図に基づき説明する。この複合硬化体 1は、 2種以上の酸化物の系からなる無機非晶質体 2を含み、 該無機非晶質体 2中に 有機質繊維状物 3が混在してなることを基本とする。 ここでいう 2種以上の酸 化物の系からなる無機非晶質体とは、 酸化物 (1) 一酸化物 (2) · · ·—酸 化物 (n) 系 (但し nは自然数であり、 酸化物 (1) 、 酸化物 (2) 、 · · · 酸化物 (n) は、 それぞれ異なる酸化物) の非晶質体である。
このような非晶質体は、 正確な定義づけが困難であるが、 2種以上の酸化物 を固溶あるいは水和反応等させることにより生成する、 非晶質の化合物である と考えられる。 このような無機非晶質の化合物は、 蛍光 X線分析により、 酸化 物を構成する元素 (A l、 S i、 C a、 Na、 Mg、 P、 S、 K:、 T i、 Mn、 F e、 Znから選ばれる少なくとも 2種以上) が確認され、 X線回折による分 析のチャートでは 26 : 10。 〜40° の範囲でハローが見られる。 このハロ 一は、 X線の強度の緩やかな起伏であり、 X線チャートでブロードな盛り上が りとして観察される。 なお、 ハローは半値幅が 20 : 2° 以上である。
上記複合硬化体 1は、 まず無機非晶質体 2が強度発現物質となり、 しかも有 機質繊維状物 3が無機非晶質体 2中に分散して破壊靱性値を改善するため、 曲 げ強度値ゃ耐衝撃性を向上させることができる。 また、 強度に異方性がなく、 均質な硬化体が得られる。 さらに、 非晶質体であるため、 低密度で充分な強度 が得られるという利点もある。
なお、 上記非晶質体が強度発現物質となる理由は定かではないが、 結晶質の 構造に比べてクラックの進展が阻害されるためではないかと推定される。また、 結晶質中に比べて非晶質中の方が繊維状物が均一に分散しゃすレ、こと力 ら、 破 壊靱个生値も向上すると考えられる。 その結果、 釘を打ち込んだり貫通孔を設け ても、 クラックが生じないために、 建築材料などの加工を必要とする材料に最 適なものとなる。
ここで、 酸化物としては、 金属およびノまたは非金属の酸化物を使用でき、 A 1203、 S i〇2、 C aO、 Na 2O、 MgO、 P25、 S〇3、 K20、 T i〇2、 MnO、 F e 203および Z nOから選ばれることが望ましい。 とりわ け、 A 1 03— S i 02— Ca O系または A 1203— S i 02— C a O—酸化 物系からなる非晶質体、もしくはこれら非晶質体の複合体が最適である。なお、 後者の非晶質体における酸化物は、 A 1203、 S i 02および C a Oを除く金 属および/または非金属の酸化物の 1種以上である。
まず、 A 123— S i 02— C a O系からなる非晶質体は、 A 1„03、 S i 02および C a Oの各成分の全部または一部が互いに固溶あるいは水和反応な どにより生成する非晶質構造を有する化合物である。すなわち、 A l 203と S i〇2、 S i 02と C a O、 A 1203と C a O、 そして A 120„、 S i O„お よび C a Oの組合せで固溶あるいは水和反応等させることにより生成する化合 物のいずれかを含むと考えられる。
このような無機非晶質の化合物は、 蛍光 X線分析により、 A l、 S i、 C a が確認され、 X線回折による分析のチャートでは 20 : 10° 〜40° の範囲 で上記ハローが見られる。
また、 A 1203、 S i 02および C a O以外に少なくとも 1種の酸化物を加 えた系、 つまり A 1203 _S i 02-C a O—酸化物系からなる非晶質体は、 上記 A 1203 -S i 02-C a O系での組み合わせ以外に、 A 1203と酸化物、 S i O 2と酸化物、 C a Oと酸化物、 A 12 O 3と S i O 2と酸化物、 S i〇 2 と C a Oと酸化物、 A 1203と C a Oと酸化物、 そして A 1203と S i〇2 と C a Oと酸化物の組合せで固溶あるいは水和反応等させることにより生成す る化合物のいずれかを含むと考えられる。
なお、 前記酸化物が 2以上、 つまり、 A 1203— S i 02_C a O—酸化物 (n) 系 (nは 2以上の自然数) の非晶質体であれば、 これらの酸化物、 例え ば酸化物 (1) 、 酸化物 (2) · · ·酸化物 (n) (nは 2以上の自然数で、 酸化物 (n) は、 nの値が異なればそれぞれ異なる酸化物を意味し、 かつ A 1 23、 S i〇2、 C a Oを除いたものである) のそれぞれから選ばれる少なく とも 2種の組合せで固溶あるいは水和反応等させることにより生成する化合物、 A 1203、 S i 02、 C a Oから選ばれる少なくとも 2種の組合せで固溶ある いは水和反応等させることにより生成する化合物、 さらに酸化物 (1) 、 酸化 物 (2) · · ·酸化物 (n) (nは 2以上の自然数) のそれぞれから選ばれる 少なくとも 1種と、 A 123、 S i 02 、 C a Oから選ばれる少なくとも 1 種との組合せで固溶あるいは水和反応等させることにより生成する化合物のい ずれかを含むと考えられる。 このような無機非晶質の化合物は、 蛍光 X線分析により、 A 1、 S i、 C a に加えて、 酸化物を構成する元素 (Na、 Mg、 P、 S、 K、 T i、 Mn、 F e、 Z nから選ばれる少なくとも 2種以上) が確認され、 X線回折による分析 のチャートでは 20 : 10° 〜40° の範囲で上記ハローが見られる。
ここで、 A 1203、 S i 02および C a Oと組み合わせる酸化物は、 1種ま たは 2種以上であり、 A 1203、 S i Oハ C a Oを除く金属おょぴ または 非金属の酸化物を使用でき、 例えば Na 20、 MgO、 P205、 S03、 K2 0、 T i 02、 MnO、 F e 203および Z nOから選ぶことができる。 この選 択は、 複合硬化体に期待する特性を基準に行うことができる。
例えば、 Na 20または K20は、 アルカリなどで除去できるため、 めっき処 理に先立って除去処理を行えば、 複合硬化体表面の被めつき面が粗くなってめ つきのアンカーとして作用させることができる。
MgOは、 A 1203、 S i 02、 C a Oと固溶して強度発現に寄与し、 曲げ 強度ゃ耐衝撃性を大きく改善する。
P 205は、 骨との癒着を助けるため生体材料 (人工歯根、 人工骨) に使用す る場合は特に有利である。
so3は、 殺菌作用があり抗菌建築材料に適している。
T i〇2は、 白系着色材であるとともに、 光酸化触媒として作用することか ら、 付着した有機汚染物質を強制的に酸化でき、 光を照射しただけで洗浄でき るという自浄力のある建築材料、 あるいは各種フィルター、 反応触媒として使 用できるという特異な効果を有する。
MnOは暗色系の着色材、 F e 03は明色系の着色材、 ZnOは白系の着色 材として有用である。
なお、 これらの酸化物は非晶質体中にそれぞれ単独で存在していてもよい。 上記非晶質体の組成物は、 それぞれ A 1203、 S i 02および C a Oに換算 して、 A 12 O 3 :複合硬化体の全重量に対して 3〜 51重量%、 S i O 2 :複 合硬化体の全重量に対して 6〜 53重量%および C a O:複合硬化体の全重量 に対して 6〜63重量%、 望ましくは 8〜 63重量%で、 かつそれら合計が 1 00重量%をこえない範囲において、 含有することが好ましい。
なぜなら、 A 12 O 3の含有量が 3重量%未満あるいは 51重量%をこえると、 複合硬化体の強度が低下し、 また、 S i 02の含有量が 6重量%未満あるいは 5 3重量%をこえても、 複合硬化体の強度が低下する。 また、 C a Oの含有量 が 8重量%未満あるいは 6 3重量%をこえてもやはり複合硬化体の強度が低下 するのである。
さらに、 酸化物に換算して C a OZS i O,の比率を 0. 2〜7. 9、 C a
O/A 1 203の比率を 0 2 2. 5に調整すること力 強度の大きい硬化 体を得るのに有利である。
前記 C a O/S i 02の比率は、 0. 2を超え 7. 9以下、 C a O/A l zO
3の比率が 0. 2を超え 1 2. 5以下が最適である。 なお、 これら、 C a、 A 1、 S iの量 (C a 0、 A 1 203、 S i 02 換算量) は、 複合硬化体中の C a、 A 1 , S iの全量であり、 たとえば C aであれば、 炭酸カルシウムおよび 無機非晶質体中のすべての C aの量をいう。
また、 A 1 203、 S i 02および C a O以外の酸化物として、 N a 20、 M g 0、 P 205、 S03、 K20、 T i〇2、 MnO、 F e 23および Z nOの うち 1種または 2種以上を含有する場合、 各成分の好適含有量は次のとおりで ある。 なお、 これら酸化物の合計量は、 1 00重量%を越えないことはいうま でもない。
Na 20 複合硬化体の全重量に対して 0. 1· -1. 2重量%
Mg O :複合硬化体の全重量に対して 0. 3 -1 1. 0重量% PP.2OO5. :複合硬化体の全重量に対して 0. 1 7. 3重量%
so3 複合硬化体の全重量に対して 0. 1 -3. 5重量%
2ο 複合硬化体の全重量に対して 0. 1' 1. 2重量%
τ io2 複合硬化体の全重量に対して 0. 1 -8. 7重量%
Μη Ο :複合硬化体の全重量に対して 0. 1
FF ee。2〇03。 :複合硬化体の全重量に対して 0. 2 7. 8重量% Z nO 複合硬化体の全重量に対して 0. 1〜 8重量% これら酸化物の含有量を上記範囲に限定した理由は、 上記範囲を逸脱すると 複合硬化体の強度が低下するからである。
なお、 非晶質構造か否かは、 X線回折により確認できる。 すなわち、 X線回 折により 2 0 : 1 0° 〜40° の領域でハローが観察されれば、 非晶質構造を 有していることを確認できる。 なお、 この発明では、 完全に非晶質構造となつ ているもの以外に、非晶質構造中に Hydrogen Aluminium Silicate、 Kaolinite、 Zeolite 、 Gehlenite, syn 、 Anorthite 、 Melitite、 Gehlenite- synthetic 、 tobermorite 、 xonotlite 、 ettringiteや、 S i〇2、 A120。、 C a 0、 N a 2〇、 Mg O、 P 205、 S03、 K20、 T i 〇2、 MnO、 F e 23および Z nOなどの酸化物、 そして C a C〇3 (Calcite ) などの結晶体が混在して いてもよレヽ。
これら結晶体は、 それ自体が強度発現物質になるとは考えられないが、 例え ば、 硬度および密度を高くして圧縮強度を改善したり、 クラックの進展を抑制 するなどの効果があると考えられる。 なお、 結晶体の含有量は、 複合硬化体の 全重量に対して 0. 1〜50重量%であることが望ましい。 なぜなら、 結晶体 が 0. 1重量%未満では、 硬度および密度を髙くして圧縮強度を改善したり、 クラックの進展を抑制するなどの効果が十分得られず、 逆に 50重量%を超え ると、 曲げ強度低下を招くからである。
ちなみに、 上記 A 1„ O3 - S i O„系の結晶性化合物が Hydrogen Aluminium Silicate 、 Kaolinite 、 Zeolite 、 A 1 2 O 3— C a O系の結晶十生ィ匕合物が Calcium Aluminate、 C a O— S i O Q系の結晶十生ィ匕合物力 Calcium Silicate、 A 1 203— S i 02_C a O系の結晶†生ィ匕合物が Gehlenite, syn 、 Anorthite であり、 また A 1 203 - S i 02 -C a O—M g O系の結晶性化合物が Melitite、 Gehlenite-synthetic である。
さらに、上記結晶体としては C aを含むものが望ましく、 Gehlenite, syn (C a 2 A 1 „ O 7 ) 、 Melitite- synthetic (C a。 (M g 0 5 A 10 5 ) (S i j 5 A 10 5 O 7 ) ) 、 Gehlenite-synthetic (C a 2 (M g 0 25A 1 0. 75) (S i j „ 5 A 10 75 O 7 ) ) 、 Anorthite, ordered ( C a 2 A 1 2 S i 2 08 ) , 炭酸カルシウム (Calcite ) を含有していても 良い。
またこの発明の製造方法で製造する複合硬化体では、 少なくとも 2種以上の 酸化物の系からなる非晶質体中に、 ハロゲンを添加してもよい。 このハロゲン は、 固溶体、 水和物の生成反応の触媒となり、 また燃焼抑制物質として作用す る。 その含有量は、 0. 1〜1. 2重量%が望ましい。 なぜなら、 0. 未満では強度が低く、 1 . 2重量%を越えると燃焼により有害物質を発生する からである。 ハロゲンとしては、 塩素、 臭素、 フッ素が望ましい。
同様に、 炭酸カルシウム (Calcite ) を添カ卩していてもよレ、。 炭酸カルシゥ ムそれ自体は強度発現物質ではないが、 炭酸カルシウムの周囲を非晶質体が取 り囲むことにより、 クラックの進展を阻止するなどの作用により強度向上に寄 与すると考えられる。 この炭酸カルシウムの含有量は、 複合硬化体の全重量に 対して 4 8重量%以下が望ましい。 この理由は、 4 8重量%を越えると曲げ強 度が低下するからである。 また、 0 . 1重量%以上が望ましい。 0 . 1重量% 未満では、 強度向上に寄与しないからである。
さらに、 結合剤を添加することも、 強度のさらなる向上や、 耐水性、 耐薬品 性および耐火性の向上に、 有利である。 この結合剤としては、 熱硬化性樹脂お よび無機結合剤のいずれか一方または両方からなることが望ましレ、。 熱硬化性 樹脂としては, フエノール樹脂, メラミン樹脂, エポキシ樹脂, ユリア樹脂か ら選ばれる少なくとも 1種以上の樹脂が望ましい。 無機結合剤としては, 珪酸 ソーダ, シリカゲル及びアルミナゾルの群から選ばれる少なくとも 1種以上が 望ましい。
次に、 この発明の複合硬化体の製造方法において無機非晶質体中に混在させ る有機繊維状物は、 多糖類からなる有機質繊維状物を使用する。 なぜなら、 多 糖類には O H基が存在し、 水素結合により A 1 2 0 3、 3 1〇2または〇3〇の 各種化合物と結合しやすいからである。
この多糖類は、 アミノ糖、 ゥロン酸、 デンプン、 グリコーゲン、 ィヌリン、 リケニン、 セノレロース、 キチン、 キトサン、 へミセノレロースおよびぺクチン力、 ら選ばれる少なくとも 1種以上の化合物であることが望ましい。 これら多糖類 力 らなる有機質繊維状物としては、 一般に、 パルプや、 パルプかす、 新聞や雑 誌などの故紙の粉碎物が有利に適合する。
なお、 上記繊維状物の含有率は、 2〜7 5重量%であることが望ましい。 こ の理由は、 2重量%未満では複合硬化体の強度が低下し、 一方 7 5重量%を越 えると防火性能、耐水性、寸法安定性などが低下するおそれがあるからである。 さらに、 繊維状物の平均長さは、 1 0〜1 0 0 0 μ ιηが望ましい。 平均長さ が短すぎると絡み合いが生じず、 また長すぎると空隙が生じて複合硬化体の強 度が低下しやすいからである。
以上の複合硬化体 1は、 紙スラッジ (スカム) を乾燥させて凝集硬化させた ものが最適である。 すなわち、 製紙スラッジは、 無機物を含むパルプかすであ り、 有機質繊維状物を含んでおり、 産業廃棄物を原料として使用するため低コ ス トであり、 環境問題の解決に寄与するからである。 しかも、 この製紙スラッ ジは、 それ自体がバインダーとしての機能を有しており、 それ自体のみで、 又 は、 他の産業廃棄物と混練することにより、 所望の形状に成形できる利点を有 する。
また、 製紙スラッジ中には、 パルプの他に、 A 1203 S i〇2 C a O Na 20 MgO P205 SO K20 T i〇2 MnO F e 203およ び Z nOの結晶もしくはこれら酸化物の前駆体であるゾル状物、 またはそれら の複合物、 ハロゲンおよび炭酸カルシウムから選ばれる少なくとも 1種、 そし て水を含むのが、 一般的である。
ここで、 第 2図に示すように、 複合硬化体 1中に、 無機粒子 4を混在させる ことが、 防火性を向上させたり、 非晶質体と反応して強度発現物質を形成して 強度を向上するのに有利であり、 この無機粒子量を調整することにより、 複合 硬化体の比重を調整することもできる。
上記無機粒子 4としては、 炭酸カルシウム、 水酸化カルシウム、 シラス、 シ ラスバルーン、 パーライ ト、 水酸化アルミニウム、 シリカ、 ァノレミナ、 タノレク、 炭酸カルシウム、 産業廃棄物粉末から選ばれる少なくとも 1種以上を使用でき る。 特に、 産業廃棄物粉末としては、 製紙スラッジの焼成粉末、 ガラスの研磨 屑、 および珪砂の粉砕屑から選ばれる少なくと 1種以上の産業廃棄物粉末を用 いることが望ましレ、。なぜなら、これら産業廃棄物粉末を使用することにより、 低コスト化を実現でき、 さらに環境問題の解決に寄与できるからである。
なお、 製紙スラッジを焼成した無機粒子は、 製紙スラッジを 300 1 50 0°Cで加熱処理することによって得られる。 かくして得られる無機粒子は、 非 晶質であり、 強度および靱性に優れ、 力つ密度も小さいため、 複合硬化体に分 散させることにより軽量ィヒを実現できる。 また、 製紙スラッジを 300°C以上 800°C未満で焼成した場合および、 300 1500°Cで加熱処理後、 急冷 することによって得られる無機粒子は、確実に非晶質体を含むため有利である。 無機粒子 4は、 比表面積が、 0 . 8〜1 0 0 m 2 Z gであることが望まし レ、。 0 . 8 m 2 Z g未満では、 非晶質体と無機粒子の接触面積が小さくなり 強度が低下してしまレ、、 逆に 1 0 O m 2 を越えるとクラック進展や硬度 の向上といった効果が低下して結果的に強度が低下する。
さらに、 無機粒子 4中には、 シリカ、 アルミナ、 酸化鉄、 酸化カルシウム、 酸化マグネシウム、 酸化カリウム、 酸ィ匕ナトリウム、 五酸化リンから選ばれる 少なくとも 1種以上の無機物が含まれるていることが望ましい。 これらは化学 的に安定で耐候性に優れ、 建築材料などの産業材料として望ましい特性をそな えているからである。
この無機粒子 4は、 その平均粒子径が小さすぎても大きすぎても充分な強度 が得られないため、 1〜1 0 0 μ ιηの範囲にあることが望ましレ、。 無機粒子の 含有量は、 1 0〜9 0重量%であることが望ましい。 すなわち、 無機粒子が多 すぎると強度が低下し、 逆に無機粒子の量が多すぎるともろくなり、 いずれに しても強度が低下するからである。
この発明の方法で製造した複合硬化体 1は、 各種産業において利用され、 ケ ィ酸カルシウム板、 パーライ トボード、 合板、 石膏ボードなどに代わる新たな 建築材料を始めとして、 義肢、 人工骨、 人工歯根用の医療材料、 プリント配線 板のコァ基板、 層間樹脂絶縁層などの電子材料に使用することができる。 次に、 この発明に係る硬化体の製造方法及び硬化体の製造装置の実施例につ いて第 3図〜第 9図を参照して説明する。
この発明の製造方法では、 複合硬化体の原料に製紙スラッジを他の産業廃棄 物と昆練することなく使用する。 この発明の製造方法で使用する製紙スラッジ としては、 印刷 ·情報用紙、 クラフト紙、 チタン紙、 ティッシュペーパー、 ち り紙、 トイレットペーパー、 生理用品、 タオル用紙、 工業用雑種紙または家庭 用雑種紙等を製造する際のパルプ製造工程、 古紙等の原料処理工程、 抄造工程 などで排出される製紙スラッジが望ましレ、。 製紙スラッジは、 丸東窯材社が取 扱っている。 第 3図は、 硬化体の製造装置の全体の構成を示している。 硬化体の製造装置 は、 製紙スラッジを調整しスラリー 1 4を生成する原料調整機構 1 0と、 スラ リー 1 4から抄造体 2 6を抄造する抄造機構 2 0と、 抄造体 2 6を反転するた めの反転装置 4 0と、 抄造体 2 6を積層してから加圧し脱水を行うプレス機 5 0と、 プレスされた抄造体を乾燥して硬化体 1を形成する乾燥機 6 0とからな る。
先ず、 原料の調整を行う原料調整機構 1 0について、 第 4図 (A) を参照し て説明する。 上記原料 1 1と、 水 1 2とを、 後述する吸引脱水により濃度を固 形分 0 . 5 〜 2 5重量%となるように計量して混合器 1 3内に入れ、 硫酸アル ミニゥム、 塩化第二鉄、 ポリ塩化アルミニウム、 ポリアクリル酸ナトリウム、 ポリメタクリル酸エステル、 ポリアクリル酸エステル、 ポリアクリルアミ ドの いずれかから成る凝集剤 (フロック剤:添加量 0 . 0 1 〜 5 %) 及びビニロン 繊維等の有機繊維 (バインダ:添加量 0 . :! 〜 1 0重量0 /0) を添加し、 混合器 1 3にて混合してスラリー 1 4を調整する。 有機繊維 (バインダ) は、 ポリエ チレン、 ポリプロピレン、 ビニロンなどの合成繊維、 パイプ、 古紙から回収さ れるパルプ、 その他、 繊維状の産業廃棄物などを用いることができる。 原料は 製紙スラッジに、 更に各種無機粉末や樹脂を添加することができる。
このスラリー 1 4を、 底部にフィルター 1 6が設けられた脱水容器 1 5を使 用して吸引脱水する。 吸引脱水することにより、 濃度が固形分 0 . 5 〜 2 5重 量%となるようにする。吸引脱水では、製紙スラッジの繊維が配向しないため、 得られる複合硬化体に反りやクラックが発生しにくレ、。
この脱水容器 1 5の底部は真空ポンプ 1 7と連結しており、 真空ポンプ 1 7 の稼働により水分を吸引する。 フィルター 1 6は特に限定されないが、 焼結金 属、 多孔金属板 (直径 1 〜 5瞧の穴があいた金属板) 、 多孔質セラミックフィ ノレター、 多孔質の樹脂、 ガラス繊維板などを使用できる。 脱水容器 1 5にて水 分調整された原料 1 4を、 チェストタンク 1 8內に一時貯留する。 該チェスト タンク 1 8には、 攪拌用のプロペラが備えられており、 原料中の固形分が沈降 しないようになっている。
なお、本実施例では、脱水容器 1 5により水分を調整している力 S、第 4図(B ) に示すように、 脱水容器 1 5を用いることなく、 混合器 1 3への水の添加量の みで含水率を調整することも可能である。
引き続き、 上記水分調整を行った製紙スラッジを含むスラリー 1 4から抄造 機構 2 0にて抄造体 2 6を生成する。 スラリー (原料溶液) 中には、 セメント などの無機バインダーゃ榭脂などの有機バインダーを添加してもよい。 この抄 造機構 2 0について、 第 5図を参照して説明する。 抄造機構 2 0は、 スラリー 1 4を貯留する 3連のバット 2 1 、 2 1 8、 2 1〇と、 ノくット内に配設され、 スラリー 1 4を抄造するワイヤーシリンダ 2 2 A、 2 2 B、 2 2 Cと、 ワイヤ ーシリンダ 2 2 A、 2 2 B、 2 2 Cにて抄造された抄造体 2 6を転写し、 搬送 する搬送ベルト 2 3と、 搬送ベルト 2 3にて搬送された抄造体 2 6を所定の厚 みまで卷回し切断する切断用回転ドラム 3 0と、 抄造体 2 6を切断するための カツタ 3 6と、 抄造体 2 6を搬送するベルトコンベア 3 8とを備える。
ワイヤーシリンダ 2 2 A、 2 2 B、 2 2 Cは、 直径 7 0 cmで、 幅 1 瞧に形成 されている。 本実施例では、 ろ水 (抄造) を行うろ水体が網状体より構成され る回転ドラム (ワイヤーシリンダ) から成るため、 原料溶液 1 4から抄造体 2 6を連続して抄造でき、 製紙スラッジから効率的に硬化体を量産することが可 能となる。 ワイヤーシリンダ 2 2 A、 2 2 B、 2 2 Cを透過した水は、 パイプ 1 7 a及び真空ポンプ 1 7を介して第 4図(A)に示す混合器 1 3へ戻される。 また、 本実施例では、 ワイヤーシリンダ 2 2 A、 2 2 B、 2 2 Cを搬送ベル ト 2 3に沿って 3台併設し、 当該搬送ベルト 2 3に多層化させながら抄造体 2 6を転写する。 このため、 原料溶液 1 4から抄造体 2 6を高効率で抄造でき、 製紙スラッジから効率的に硬化体を量産することが可能となる。 なお、 本実施 例では、 ワイヤーシリンダの回転数が 6 0回転 分に設定されている。 この回 転数は、 1〜: L 0 0回ノ分が望ましい。 原料溶液 1 4から抄造体 2 6を高効率 で抄造でき、 製紙スラッジから効率的に硬化体を量産することが可能となるか らである。 ここで、 回転ドラムが 1回転ノ分よりも低いと、 抄造効率が低い。 一方、 回転数が 1 0 0回転/分を越えると、 均一な厚みで抄造体が出来にくく なる。 本実施例では、 ワイヤーシリンダ 2 2 A、 2 2 B、 2 2 Cを 3台併設し たが、 1台以上何台でも用いることができる。
なお、 ワイヤーシリンダ 2 2 A、 2 2 B、 2 2 Cの網目は # 6 0 ( 1インチ 当たりの網目数 6 0 ) に形成されている。 ワイヤーシリンダ 2 2 A、 2 2 B、 2 2 Cの網目は # 4 0〜1 5 0が望ましレ、。 原料溶液 (スラリー) 1 4から抄 造体 2 6を高効率で抄造でき、 製紙スラッジから効率的に密度の高い硬化体を 量産することが可能となるからである。 ここで、 # 4 0よりも網目が荒いと、 原料溶液から無機非結晶体のみが抜けて硬化体の密度及び強度が低下する。 一 方、 # 1 5 0よりも網目が細かいと、 水分の抜けが悪くなり、 原料溶液から抄 造体を高効率で抄造できなくなる。 なお、 凝集剤により製紙スラッジ (原料溶 液) 中にフロックができているので、 効率的に抄造を行うことができる。 製紙スラッジを含む原料溶液の濃度は、 固形分 3 . 5〜2 5重量%であるこ とが望ましい。 製紙スラッジからの抄造性を向上させ、 効率的に硬化体を量産 することができるからである。 即ち、 濃度が 3 . 5 %未満では、 効率的に原料 溶液からワイヤーシリンダ (ろ水体) を用いて抄造することができず、 2 5 % を越えると、 製品の均一性が低下するからである。
ワイヤーシリンダ 2 2 A、 2 2 B、 2 2 Cにて抄造された抄造体を転写し、 搬送する搬送ベルト 2 3は、 幅 1 mのフェルトからなり、 ローラ 3 4にて懸架 されており、 裏面に吸引ボックス 2 4を設けて、 真空ポンプ 1 7で吸引しなが ら脱水を行っている。 即ち、 該ベルト 2 3は、 製紙スラッジを含む原料 1 4の 水分をフェルトの気孔内へ吸着し、 吸着した水分が吸引ボックス 2 4を経て真 空ポンプ 1 7側へ吸着され、 第 4図 (A) に示す混合器 1 3へ戻される。 この 第 1実施例では、 ベルト 2 3をフヱルトから構成したが、 この代わりに、 連続 した気孔を有する多孔質の樹脂、 多孔質のゴム、 無機繊維を結合剤などで固め たもの、 焼結金属、 多孔金属、 多孔金属のブロックをゴム等の可撓性を有する バインダで固めたベルト、 などを使用することができる。 本実施例は、 搬送べ ノレト 2 3が連続する気孔を有する多孔質体で構成され、 搬送ベルト 2 3で搬送 しながら脱水するため、 効率的に抄造体 2 6中の水分を減らすことができる。 また、 本実施例では、 搬送ベルト 2 3の搬送速度が 4 8 in,分に設定されて おり、 これと同期するように、 ワイヤーシリンダ 2 2 A、 2 2 B、 2 2 C、 切 断用回転ドラム 3 0及びベルトコンベア 3 8が図示しないモータにより駆動さ れている。 搬送ベルト 2 3の搬送速度は、 5〜8 O mZ分であることが望まし レ、。 原料溶液から適度な厚さの抄造体を高効率で抄造でき、 効率的に硬化体を 量産することが可能となるからである。 ここで、 搬送速度が 5 mZ分よりも低 いと、 抄造体を厚く抄造できる反面、 抄造効率が低い。 一方、 搬送速度が 8 0 m 分を越えると、 抄造体が薄くなり、 均一な厚みにし難くなると共に、 抄造 体が切れることがある。
搬送ベルト 2 3にて搬送された抄造体を所定の厚みまで卷回し切断する切断 用回転ドラム 3 0は、 直径 6 4 cm (外周 2 m) に形成されており、 表面に水を滞 留させる貯留溝 3 2と、 この溝 3 2の近傍に位置する収容溝 3 3に収容された ピアノ線 3 1とを備える。 該切断用回転ドラム 3 0は、 表面に搬送ベルト 2 3 から搬送された抄造体 2 6を多層化させながら卷回する。
そして、 抄造体 2 6が所定の厚み (1 . 5 cm) に達し、 これが図示しないセ ンサで検出されると、 収容溝 3 3内のピアノ線 3 1が押し出される。 貯留溝 3 2に沿った位置で抄造体 2 6は、 含水率が髙く、 ピアノ線 3 1が押し出される と、 貯留溝 3 2に沿って切断され、 第 6図 (A) に示すように、 切断端がベル トコンベア 3 8側に倒れかかる。 そして、 切断用回転ドラム 3 0の回転及びべ ノレトコンベア 3 8の搬送に伴い、 所定の厚みの抄造体 2 6がベルトコンベア 3 8上まで搬送される (第 6図 (B ) 参照) 。 ここで、 第 6図 (C) に示すよう に、 他方の切断端がカツタ 3 6の対応位置まで搬送されると、 カツタ 3 6がべ ルトコンベア 3 8側へ降ろされ、 抄造体 2 6の切断端と搬送ベルト 2 3上を搬 送される未積層の抄造体とが分離される。
本実施例では、 搬送ベルト 2 3上の抄造体を、 切断用回転ドラム 3 0に転写 させながら多層化し、 多層化させた抄造体 2 6が所定厚さに達した段階で所定 の大きさに切断する。 切断用回転ドラムにより、 均一の厚み (1 . 5 cm) 及び 大きさ (l mX 2 m) の抄造体 2 6を連続的に成形することができるので、 硬化 体を効率的に量産することが可能になる。
また、 本実施例では、 切断用回転ドラム 3 0にて一端の切断された抄造体 2 6を一定間隔で切断するカツタ 3 6を備える。このため、効率的に所定長(2 m) の抄造体 2 6を形成することができる。 なお、 本実施例では、 抄造体 2 6の厚 みを 1 . 5 cmとしたが、 厚みは 2 cm以下であることが望ましい。 2 cm以下の厚 みであれば、 抄造が容易であり、 また、 搬送等においても扱い易い。
抄造体を反転するための反転装置 4 0について、第 7図を参照して説明する。 本実施例の製造装置では、 後述するように抄造体を交互に反転しながら積層す るため、 1枚おきに抄造体 2 6が反転される。 反転装置 4 0は、 抄造体を吸着 して搬送する搬送装置 4 2と、 テーブル 4 4と、 反転板 4 6と力 ら成る。 第 7図 (A) に示すように、 ベルトコンベア 3 8上の抄造体 2 6力 搬送装 置 4 2によって反転板 4 6上に載置される。 反転板 4 6が駆動され、 抄造体 4 6を反転させる (第 7図 (B ) 参照) 。 そして、 第 7図 (C ) に示すように反 転された抄造体 2 6力 搬送装置 4 2によって第 3図中に示すプレス機 5 0へ 搬送される。 なお、 上述したように、 本実施例では、 スラリー 1 4にバインダ を添加することで抄造体 2 6に可撓性を持たせ、 切断後の极ぃを容易にしてあ る。
抄造体を加圧して脱水を行うプレス機 5 0について、 第 8図及び第 9図を参 照して説明する。 第 8図 (A) に示すように、 プレス機 5 0は、 凹部 5 4 Aを 備えるメス型 5 4と、 該凹部 5 4 Aへ嵌入するォス型 5 2とから成り、 メス型 5 4及びォス型 5 2には、 抄造体を加圧した際に発生する水分を導出するため の微細な通孔 5 4 a、 5 2 aがそれぞれ形成されている。 また、 該プレス機 5 0には、 抄造体 2 6に原料溶液 1 4を塗布するためのカーテンコーター 5 6が 備えられている (第 8図 (B ) 参照) 。
プレス機 5 0での積層及び加圧について説明する。 先ず、 第 8図 (A) に示 すように、 メス型 5 4の凹部 5 4 Aに、 最下層として、 第 7図 (C) を参照し て上述した反転装置 4 0にて反転されて上記切断用回転ドラム 3 0との接触面 側を下側に向けられた抄造体 2 6が、 搬送装置 4 2により搬入される。 次に、 第 8図(B )に示すように、カーテンコーター 5 6により、抄造体 2 6の上面、 即ち、 上層の抄造体との接着面に原料溶液 1 4が塗布される。 この原料溶液の 量は、抄造体 1層当たり、固形分で 5 0 g /m2〜 5 0 0 g Zm2が好適である。 なお、 ここでは、 カーテンコーター 5 6を用いているが、 ロールコーター等の 種々の塗布装置を用いることができる。
2層目の抄造体として、 第 8図 (C ) に示すように、 ベルトコンベア 3 8上 の抄造体 2 6が反転されることなくメス型 5 4の凹部 5 4 Aへ搬送装置 4 2に より搬入される。 その後、 第 9図 (A) に示すように、 原料溶液 1 4を塗布し た後、 3層目の反転された抄造体 2 6が載置され、 原料溶液 1 4を塗布した後 に 4層目 (最上層) の反転されない抄造体 2 6が載置され積層が完了する。 こ こでは、 4層を積層しているが、 2枚以上ならば何枚でも良く、 薄い硬化体を 製造する際には、 1枚でも可能である。
その後、ォス型 5 2を押し下げ、加圧プレスを 6 O KgA^m2で行う (第 9図(B ) 参照) 。 この際、 抄造体 2 6から染み出る水分を、 通孔 5 4 a 、 5 2 aを介し て外部へ導出する。 その後、 ォス型 5 2を上げて (第 9図 (C ) 参照) 、 加圧 により形成した複合硬化体 1をメス型から取り出し、 乾燥機 6 0へ搬送する。 本実施例では、 加圧を型枠 (凹部 5 4 A) 中で行うため、 高圧で加圧しても 抄造体 2 6が千切れなくなり、 製紙スラッジから高強度の硬化体 1を高い歩留 まりで製造することが可能となる。 また、 ォス型 5 2及びメス側 5 4に抄造体 2 6から染み出る水分を抜くための通孔 5 2 a 、 5 4 aを備えるため、 加圧の 際に脱水を行い、 後の乾燥による硬化工程を短時間で完了させれる。 また、 製 紙スラッジの抄造体を原料溶液 1 4を介在させて複数積層せるため、 剥離の生 じない多層の硬化体を製造することができる。
加圧プレスは、 1 0 〜 2 5 O Kgん m2で行うことが望ましレ、。 加圧プレスを 1 0 Kgん m2未満で行うと、 必要とされる強度を得ることができない。 一方、 2 5 O Kgん m2を越えて加圧プレスしても強度を高めることができず、 プレス機が大 型化 ·高価格化するからである。
本実施例では、 原料溶液をワイヤーシリンダ (ろ水体) を用いて抄造して得 られた製紙スラッジの抄造体を、 複数積層せしめる。 これは、 抄造により厚い 抄造体を得ることは非効率的であるので、 製紙スラッジから薄い抄造体を効率 的に抄造し、 積層することで必要とする強度及び厚みの硬化体を製造する。 こ れにより、 製紙スラッジから効率的に硬化体を量産する。
また、本実施例の製造方法では、抄造体を厚さ 2 O mm以下に形成することで、 製紙スラッジを効率的に抄造し、 積層することで必要とする強度及び厚みの硬 化体を製造する。 このため、 製紙スラッジから効率的に硬化体を量産すること が可能になる。
本実施例では、抄造体 2 6の積層面を交互に反転させながら積層する。即ち、 反りの発生する方向を反対にしながら抄造体 2 6を積層するため、 抄造体 2 6 を積層して成る硬化体 1に反り、 層間剥離を発生させることがない。 また、 最 上層及び最下層の抄造体について、露出面を回転ドラムに接触していた面とし、 フェルトからなる搬送ベルト 3 2と接していた凹凸の付いた面を内側にするた め、 積層してなる硬化体の表面を平滑にすることができる。
更に、 本実施例では、 製紙スラッジを含む原料溶液に凝集剤を添加して凝集 させるため、 製紙スラッジから均質な比重 (1 . 2〜1 . 3の範囲) の硬化体 1を量産することができる。 更に、 本実施例では、 メス型 5 4内で積層を行う ため、 積層した抄造体を移送する必要がなく量産に適する。 本実施例では、 型 枠 5 4内で積層したが、 積層後に型枠内に移送することも可能である。
上記プレス機 5 0にて加圧脱水乾燥して、 含水率を下げた後、 引き続き、 第 3図に示す乾燥機 6 0にて完全に脱水して硬化反応を進行させる。 乾燥機 6 0 は、電熱ヒータ 6 2とファン 6 4とを備え、乾燥を温度 8 0〜2 0 0 °Cで行う。 乾燥機 6 0は、 電熱ヒータ 6 2を備えるが、 この代わりに、 赤外線ヒータ、 蒸 気、 天日乾燥機などを使用することができる。
乾燥工程を経た硬化体 1は、 さらに搬送されて、 図示しない切断機で所定の 大きさに切断される。 切断は、 コンベア上に配設されたカッター、 或いは、 鋸 などで行う。 切断された複合硬化体 1は、 最後に図示しない検査機で反りなど の検査を行う。検査機としては、 X線センサ、赤外線センサなどを使用できる。 また、 画像処理装置などで欠けゃクラックの有無を検査してもよレ、。
ここで、 抄造体の積層方向 (張合向き) と層間剥離の発生との関係について 第 1 0図及び第 1 1図を参照して説明する。
第 1 0図 (A) の右側に、 抄造体 2 6を反転させて、 搬送ベルトを構成する フェルト当接面側を張り合わせた場合を示している。 ここで、 抄造体 2 6は、 第 3図中に示す切断用回転ドラム 3 0にて卷回された際に応力が残り、 切断後 も卷回方向に沿って反っている。 図中の左側は、 積層した抄造体 2 6の断面を 示し、 図中での凹凸は、 フェルト当接面を示している。 本実施例では、 第 1 0 図 (A) の張り合わせ方向が採用されている。
第 1 0図(B )は、抄造体 2 6を反転させず張り合わせた場合を示している。 また、 第 1 0図 (C ) は、 抄造体 2 6を反転させ、 切断用回転ドラム当接面側 に張り合わせた場合を示している。
第 1 1図は、 抄造体の張合向きと層間剥離の発生との関係、 及び、 プレス機 での圧力と強度との関係を示す図表である。 図表中で、塗布量とは抄造体と抄造体との間の原料溶液 14を塗布量を示し、 圧力とはプレス機での圧力を、 時間とは加圧時間を示し、 密度は乾燥前の硬化 体の密度であり、 最大荷重は、 乾燥後の硬化体の耐え得る荷重、 即ち、 強度を 示している。 また、 含水率は、 加圧後の値である。 収縮率厚さとは、 厚さ方向 の収縮率を、 収縮率長さとは長さ方向の収縮率を、 収縮率幅とは幅方向の収縮 率を示している。 ここでは、 5枚の抄造体を積層しており、 剥離層数とは 5枚 中の剥離した層の数を、 剥離辺数とは 4隅の内で剥離の発生した数を、 剥離長 さは、 剥離の生じた部分の総延長を示している。
先ず、 圧力を高めることにより、 最大荷重を高め得ることが分かる。 また、 張合向きとして第 10図 (A) に示す" A" を採用し、 6 OKg/cm2の圧力を加 えることで層間剥離が完全に防げることが分かる (No. 9参照) 。 本実施例 では、 製紙スラッジを原料として用いるため、 収縮率が大きく、 乾燥の際に、 切断用回転ドラム 30にて卷回された際に残った応力が作用して剥離が発生し 易いが、 抄造体を反転させて張り合わせることで、 剥離を防ぐことができる。 なお、 本実施例では、 1層毎に抄造体を反転したが、 2層おき、 また、 3層お きに反転させて積層することによつても、 反り及び層間剥離を防ぐことができ る。
( 1 ) S i、 A 1、 C aの量を変えた場合
上述した工程で得られた複合硬化体を、 蛍光 X線分析装置 (Rigaku製 RIX2100 ) を用いて分析した一例を下記に示す。 '
実施例 1一 1
酸化物に換算して、 下記の組成であることが判った。 なお、 パルプについて は、 1100°Cで焼成して重量減少量から測定した。
パルプ: 51. 4 重量0ん SO 3 : 0. 5
S i O 2 : 24. 2 重量%, P 2 O 5 : 0. 2
A 1 2 O 3 : 14. 0 重量。ん C 1 : 0. 2
C a O : 8. 0 重量%, Z ηθ : 0
Mg O : 1. 4 重量%, その他:
T i O 2 : 1. 0 重量%, 実施例 1一 2
未焼成の製紙スラッジ (丸東窯材社が取り扱う牧製紙株式会社の OA機器用 上質紙の製紙スラッジ 「生スラッジ」 :固形分 51重量0 /0、 水分 49重量0 /0) 1500 gを用意した。 これを実施例 1のように抄造した。
また、 蛍光 X線分析装置 (R i g a k u株式会社 R I X 2000) を用い て組成を分析した。 酸化物換算値を以下に示す。 パルプの量は 1 100°Cで焼 成したときの重量減少量から算出した。 X線では炭酸カルシゥムのピークが観 察された。 糸且成は炭酸力ルシゥムも含めての量である。
炭酸カルシウムの量は、 X線回折チャートの 20 = 29° 付近の最大ピーク の高さと炭酸カルシウムの含有量で検量線を作成して、 炭酸カルシウムの含有 量を測定した。 検量線は装置に依存性があるため、 異なる装置で回折試験を実 施する場合には、 検量線を作成しなおす必要がある。 本出願では、 R i g a k u株式会社製 m i n i F 1 e xを使用した。 その結果、 約 1 1重量%であつ た。 また、 蛍光 X線の C aと Oのマッピング映像から、 炭酸カルシウムの結晶 習癖は、 紡錘状と推定された。
実施例 1― 2の製紙スラッジ硬化物の組成
パルプ 53. Mg O 3重量%
S i 02 1 5 , 7重量% so3 : 0. 8重量%
A 1203 9 7重量% P2O5 : 0 8重量%
C a O 16. C 1 0.
T i o2 Ζ ηθ : 0. 6重量%
F e O 0. 2重量%
その他 実施例 1一 3
未焼成の製紙スラッジ (丸東窯材社が取り扱う牧製紙株式会社の OA機器用 上質紙の製紙スラッジ 「生スラッジ」 :固形分 51重量%、 水分 49重量%) 1500 gに、 紡錘状軽質炭酸カルシウム (平均径 2 m、 奥多摩工業株式会 社 タマパール TP— 121) を 73 g添カ卩した。 これを実施例 1のように抄造した。
実施例 1一 3の製紙スラッジ硬化物の組成
パルプ 50. 4重量% Mg O : 2重量%
s i o2 : 14. 9重量% SO 0 7重量%
A 1203 9. 2重量% P2O5 0 7重量%
C a O 20. 6重量% C 1 : 0. 3重量%
T i o2 1. 0重量% Z n O : 0 6重量%
F e O 0. 2重量%
その他 微量 実施例 1一 4
未焼成の製紙スラッジ (丸東窯材社が取り扱う牧製紙株式会社の O A槻器用 の上質紙の製紙スラッジ 「生スラッジ」 :固形分 51重量0 /0、 水分 49重量0 /0) 1 500 gに、 柱状軽質炭酸カルシウム (平均径 2 m、 奥多摩工業株式会社 タマパール TP— 123) を 219 g添加した。
蛍光 X線分析装置 (R i g a k u社製の商品名 R 1 X21 00) を用いて組 成を分析した。 炭酸カルシウムの含有量を測定した。 その結果、 約 30. 8重 量%であった。
実施例 1― 4の製紙スラッジ硬化物の組成
パルプ 45. 7重量% Mg O : 1.
S i o2 : 13. 5重量% S O 3: 0. 7重量%
A 1203 8. 4重量% P205 : 0. 7重量%
C a O 27. 9重量% C 1 : 0. 3重量%
T i o2 : 0重量% Z ηθ : 0. 5重量%
F e O 0.
その他 微量 実施例 1一 5
製紙スラッジの焼成物 (丸東窯材社 商品名 「サイクロン灰」 ) 103重量部 と、 実施例 1— 1の未焼成の製紙スラッジ 1 209重量部とを混練した。 ついで、 実施例 1と同様にして複合硬化体を製造した。
なお、 焼成スラッジの組成は、 蛍光 X線分析装置 (R i g a k u製 R I X 2 100) を用いて分析を行い、 各酸化物に換算して次のとおりであった。 比重 は 0. 9であった。
(製紙スラッジの焼成物)
製紙スラッジの焼成物の組成
S i O, 34 Mg O : 6 0重量%
A 1203 : 20 7重量% P2O5 : 2. 7重量%
F e 203 : 12 4重量% T i 09 : 1 0重量%
C a O : 21. 3重量% SO 0
Z n O : 0. C 1 : 0. 2重量%
その他 実施例 1一 6
坪量 80 g/cm2のクラフト紙にフエノール樹脂を含浸させたコア紙の 10 枚を積層し、 140°C、 80 k gZ cm2で加圧し、 化粧板とした。 この化粧 板を実施例 1の硬化体の両面に酢酸ビニル系接着剤で接着した。
実施例 1一 Ί
実施例 1― 2の糸且成の製紙スラッジにポルトランドセメントを 10重量0 /0添加 した。
セメントの組成
S i 02 : 22. 2重量% S O 3 : 1. 6重量%
A 123 : 5. 1重量0 /0 Mg O : 1. 4重量0 /0
C a O : 65. 1重量%
F e O : 3. 2重量%
その他 実施例 1一 8
未焼成の製紙スラッジ (丸東窯材社の取り极ぅ中村製紙の OA機器用の低質 紙:固形分 34重量%、 水分 66重量%) 3020重量部を用意した。 次に、 2 N塩酸水溶液を用いて、 酸洗浄し、 C a成分をほぼ完全に除去し、 これを A とした。
A
パルプ: 5 2重量% gO 6重量%
S i O,: 8 6 z so3 3- 5重: 1%
A 1 ,03: 22 3重量% p,o, . 0.
C aO: 0 0重量% C I : 0. 1重量%
Z ηθ: 0 2重量%
その他 また、 丸東窯材社が取り扱う牧製紙株式会社のインクジェットプリンタ用紙 の製紙スラッジ;固形分 51重量%、 水分 49重量%を8とした。
Β
パルプ: 21. 8重萤% S i〇7: 4 6蜇量%
A 1203: 7. 5重量% Ρ2θ5 0 1重量%
C aO: 65. 0重量% N a 20: 0 2重量%
SOs: 0. 2重量%
その他 微量
炭酸カルシウムの量は、 55重量%であった また、 丸東^材社が取り扱う牧製紙株式会社のインクジエツトプリンタ用紙 の製紙スラッジ:固形分 51重量 、 水分 49重量%にさらに炭酸カルシウム (立方形状) を 10重量%添加して Cとした。
C
パルプ: 15. 0重量 S i 02 2. 6重量%
A 1203: 5. 5重量% P2Os 0. 1重量%
C a〇 : 75. 0重量% N azO : 0 2重量%
S O 3: 0. 2重量%
その他 微量
炭酸カルシウムの量は、 65重量%であった 以上 A、 B、 Cを適宜混合して試料を調整して、実施例 1と同様に抄造して、 硬化体を製造し、 曲げ強度、 圧縮強度、 釘打ち性を測定した。
その結果を第 1 5図〜第 18図のグラフに示した。 ここで、 第 1 5図は C a O/S i 02と圧縮強度との関係を示し、 縦軸に圧縮強度 (KgZcm2) を横軸 に C a O/S i 02の割合を取ってある。 第 1 6図は C a O/A 1203と圧縮 強度との関係を示し、 縦軸に圧縮強度 (KgZcm2) を横軸に C a OZA 1203 の割合を取ってある。 第 1 7図は、 C a Oの含有量と曲げ強度 ·圧縮強度との 関係を示し、 縦軸に曲げ強度 ·圧縮強度 (KgZcm2) を横軸に C a Oの含有量 (%) を取ってある。 第 18図は C a Oの含有量と釘引き抜き強度との関係を 示し、 縦軸に釘引き抜き強度 (Kg/cm2) を横軸に C a Oの含有量 (%) を取 つてある。 第 15図に示すように、 硬化体は、 C a、 A l、 S iの量がそれぞ れ C a 0、 A 1203、 S i 02に換算して C a O/S i 02の比率0. 2から 7. 9の際に、高い圧縮強度を発揮する。一方、第 1 6図に示すように、硬化体は、 C a OZA 1203の比率が 0. 2カゝら 12. 5の際に高い圧縮強度を発揮する。 比較例 1一 1
未焼成の製紙スラッジ (丸東窯材社 商品名 「生スラッジ」 :固形分 34重 量%、 水分 66重量%) 1512 gを用意した。 次いで、 製紙スラッジを、 1 80 OmmX 1000 mmの面積を持つ铸型に流し込んだ。 ついで、 ステンレ ス板、 パンチングメタル板、 不織布を入れて断面 19 Omni角の押し棒を 45 本を挿入して、 昇圧時間 30分で 60 k g f Zcm2の圧力を加えながら、 5 分間圧締し、 厚さ 10mmのシート状成形体とした。 このシート状成形体を 1 00°Cで加熱して板状の複合硬化体とした。 比重は、 1. 2であった。 力 くして得られた複合硬化体を、 蛍光 X線分析装置 (R i g a k u製 R I X2100) を用いて分析したところ、 酸化物に換算して下記の糸且成であるこ とが判った。 なお、 パルプについては、 1 10 o°cで焼成して重量減少量から 測定した。
記 パルプ 51. 4重量% Mg O: 4重量%
S i 02 24. so3 0. 5重量%
A 1 O, 14 0重量% P2O5 0
C a O 8. 0重量% C 1 : 0. 2重量%
T i o2 0重量% Z ηθ 0.
その他
炭酸カルシウムは、 9. 8重量%であった。
比較例 1一 2
実施例 1一 1の製紙スラッジを 1 N塩酸で洗浄し、 炭酸カルシウムを除去した あと、球状の炭酸カルシウム (平均径 2 / m、奥多摩工業株式会社 C一 90) を 84 g添カ卩した。 固形分に対して約 1 1重量%である。 しかしながら、 抄造 では、 ほとんど硬化体中に炭酸カルシウムを取り込めなかった。 比較例 1—3
実施例 1—2の製紙スラッジに 55重量%のポルトランドセメントを添加した c 比較例 1一 4
比較例 1一 4では、 搬送ベルトで脱水吸引を行わなかつた c 以上の実施例 1および比較例 1で得られた複合硬化体について曲げ強度、 圧 縮強度、 加工性および釘打ち性、 破壊靭性、 耐磨耗性について試験を行った。 その結果を表 1に示す。 なお、 試験方法は、 曲げ強度が J I S A 6901 に、また圧縮強度が J I S A 5416に規定された方法に、それぞれ準じて 測定した。また、加工性は、木工用丸鋸にて切断加工を行い判断した。 さらに、 釘打ち性については、 直径 4mm、 長さ 50 mmの釘を打ちつけ、 クラックの 有無を調べた。 破壊靭性値は、 ビッカース硬度計 (明石製作所 MVK— D) により圧子を圧入して生じたクラックの長さから計算した。 ヤング率は、 曲げ 破壊試験のカーブから計算し、 1. 4から 2. 7 k g f Zc m2であり、 この 値を用いた。 また、 明度はマンセル色票を使用した。
【表 1】 曲げ強度 加工性 釘うち性 破壊靭性 日日 k g y cm2 k g c m2 MP a · m1/2 実施例 1-1 3 30 o nj 加工可 なし 3. 3 7· 実施例 1-2 3 3 5 o O Ό Π U 加工可 なし 3. 3 7 実施例 1-3 340 p c
O Ό O 加工可 なし 3. 3 i . O 実施例ト 4 3 50 Q n 加工可 なし 3. 2 ( . O 実施例 1-5 3 30 Q c Π
KJ 加工可 なし 3. 2 I
Q Π
夫舰1タリ丄 り o ο o ο π U o O U ノ ~Γ "5Τ
JU丄 PJ な 1し O . o ( 実施例 1-7 3 1 0 800 加工可 なし 3. 1 6 比較例 1 - 1 300 8 50 加工可 なし 3. 0 4. 5 比較例 1 - 2 280 790 加工可 なし 3. 5 4 比較例 1-3 1 80 300 加工不可 あり 2. 5 4 比較例 1-4 3 1 0 8 50 加工可 なし 3. 0 7 また、実施例 1-1の複合硬化体について、 X線回折により結晶構造を確認した。 その X線回折のチャートを第 1 2図及び第 1 3図に示す。なお、 X線回折は、 R i g a k u製 M i n i F 1 e xを使用し、 Cuをターゲットとした。 2 0 = 1 5° 〜30° の領域にゆるやかな起伏 レ、ロー) が観察されるとともに、 結 晶構造を示すピークも観察され、 非晶質構造中に結晶構造が混在していること が判る。 また、 ピークからは、 炭酸カルシウムの結晶 (C a 1 s i t e) が同 定された。
なお、 明度は、 セメントの量が少ないほど、 C a Oの量が多いほど高い。 ま た、 抄造法の方がプレス法よりも、 明度が高い。 さらに、 角を持つ炭酸カルシ ゥムの方が抄造法で取りこみやすく、 明度を高くできる。
(2) 回転ドラムの回転数を変えた場合を実施例 2として以下記述する。
回転ドラムの回転速度が 1回 //分未満では、 抄造体の厚さ方向に配向し、 強 度のばらつきを招き、 1 00回 分を越えると、 繊維が回転方向に配向して強 度がばらつく。 なお実施例 2では、 合成繊維が抄造によりすきこまれており、 単に、 原料と混合して脱水プレスした以上の強度の向上と破壊靱性値の向上を 実現できる。
その理由は、 合成繊維が延びた状態で硬化体に取り込まれるからである。 実施例 2、 比較例 2の製造条件は以下である。 抄造体を 5枚重ねて反転させ て積層し多層化した。
【表 2】
製紙スラッジ 凝集剤 セメント ビニロン繊維 回転速度 実施例 2-1 95% 3 % 0% 2% 2. 0 実施例 2- 2 90% 2 % 5% 3% 20 実施例 2-3 98 % 0.1% 0% 1.9% 40 実施例 2- 4 80 % 0.02% 1 5% 4.98% 50 実施例 2- 5 70% 3 % 25% 2% 60 実施例 2-6 90% 2 % 0% 8% 80 実施例 2- 7 65% 5 % 28% 2% 100 比較例 2-1 95% 0 % 0% 回
5% 0. 8 比較例 2- 2 95% 0 % 0% 5% 105 比較例 2- 2については、 多層化せず、 2 Ommのものを使用した。
以上の実施例 2および比較例 2で得られた複合硬化体について曲げ強度、 圧 縮強度、 加工性および釘打ち性、 破壊靭性、 耐磨耗性について試験を行った。 その結果を表 3に示す。 そり量は、 lmの長さの硬化体の最大そり量を測定し た。
【表 3】
曲げ強度 圧縮強度 加工性 釘うち性 破壊靭性 明度
k g / cm" k g. cm MP a m 1/2
実施例 2-1 330 850 加工可 なし 3. 3 7
実施例 2 - 2 335 860 加工可 なし 3 3 7
実施例 2-3 340 865 加工可 なし 3 3 7
実施例 2 - 4 308 800 加工可 なし 3 5 5 実施例 2 - 5 310 800 加工可 なし 3 5 5 実施例 2-6 330 850 加工可 なし 3 3 7 実施例 2-7 3 1 0 800 加工可 なし 3. 3 5. 0 比較例 2-1 2 70 8 50 加工可 なし 3. 0 7
比較例 2- 2 3 7 5 8 50 加工可 なし 3. 0 7 ί りハつ^ · C
5 実施例 2-1 1. 5
実施例 2 - 2 1. 5
実施例 2-3 2. 0
実施例 2-4 1. 8
実施例 2-5 2. 0
実施例 2-6 2. 0
実施例 2-7 1. 8
比較例 2 - 1 8. 9
比較例 2-2 9. 0
(3) 回転ドラムの網目を変えた場合の実施例 3について以下述べる。
回転ドラムが、 #40よりも網目が荒いと、 原料溶液から無機非結晶体のみが 抜けて硬化体の密度及び強度が低下する。 一方、 # 1 5 0よりも網目が細かい と、水分の抜けが悪くなり、原料溶液から抄造体を高効率で抄造できなくなる。 また、水分が残留して、乾燥により空隙が生じるため、密度が低下する。また、 #40未満 (つまり、 目が粗い) 場合、 白色度を付与する炭酸カルシウムを取 り込むことができず、 また、 # 1 50を越える (つまり、 目が細カ 、) 場合、 不純物を取り込んでしまい、 いずれにせよ明度が低下する。
実施例 3、 比較例 3の固形分の組成及び網目のメッシュは以下である。
【表 4】
製紙スラッジ 凝集剤 セメント ビニ口ン繊維 固形分 メッシコ 実施例 3-1 95% 3 % 0 0. 5°/c 4°/ 40 実施例 3-2 90% 2 % 5 3°/c 5°A 50 実施例 3- 3 98% 0 % 0 ° 2°/c 1 0ο 70 ") ife SilQ O Λ 0/ \ 0/ 0/
o U r
0 U 1 1 C O/
O yo 5 1 r 0/
失旭1タリ
Figure imgf000048_0001
Q » 0/
失她 1タリ <3 り y U 0/
70 Δ yo U yo o 0/
0 yo 5 yo 1 z u 臾她 1タリ《3— /
Ό O To o o/ O \ 0
2 % 2 5% 1 5 0
0 比較例 3-1 9 5% 3% 0% 0% 3% 1 0 比較例 3 - 2 9 5% 3% 0% 0% 3% 2 0 0 比較例 3-3 9 5% 3% 0% 0% 3% 2 5 0 比較例 3-4 8 0% 0% 1 0% 石膏 1 0% 5% 1 0 0 以上の実施例 3および比較例 3で得られた複合硬化体について曲げ強度、 圧 丄 U 縮強度、 加工性および釘打ち性、 破壊靭性、 耐磨耗性について試験を行った。
その結果を表 5に示す。
【表 5】
曲げ強度 圧縮強度 加工性 釘うち性 破壊靭性 明度 比重 k g/ 'cm2 k g / c m2 MP a m1/2
1 ιΰ c 実施例 3-1 3 3 0 8 5 0 加工可 なし 3. 3 7 1. 2 実施例 3 - 2 3 3 5 8 6 0 加工可 なし 3. 3 7 1. 2 実施例 3-3 34 0 8 6 5 加工可 なし 3. 3 7 1. 2 実施例 3-4 3 0 8 8 0 0 加工可 なし 3. 1 5. 5 1. 1 実施例 3 - 5 3 1 0 8 0 0 加工可 なし 3. 1 5. 5 1. 1 on
U 実施例 3-6 3 3 0 8 5 0 加工可 なし 3. 3 7 1. 2 実施例 3-7 3 1 0 8 0 0 加工可 なし 3. 3 5. 0 1. 1 比較例 3-1 2 9 0 8 5 0 加工可 なし 3. 0 4 1. 0 比較例 3-2 2 9 0 8 5 0 加工可 なし 3. 0 4 1. 0 比較例 3-3 2 7 0 7 5 0 加工可 なし 2. 8 4 1. 0
25 比較例 3 - 4 2 7 0 7 5 0 加工不可 あり 2. 8 5 1. 0
(4) 原料溶液中の固形分を変えた場合の実施例 4について以下述べる。 濃度が 3. 5%未満では、 希薄すぎて、 厚みを確保するために時間がかかる 上、時間が経過するにつれて、濃度が低下して、厚さ方向の均一性が低下する。
30 2 5%を越えると、 製品の面内の均一性が低下する。 このため、 乾燥によりそ りが発生する。
実施例 4、 比較例 4の固形分の組成は以下である。
【表 6】
製紙スラッジ 凝集剤 セメント ビニロン繊維 固形分
关她1タ1 J 4ー丄 0/ 0/
70 U 0/
To 7o 4
夹地 1タリ 4- u 0/
TO 50 %/ 37o 5
実施例 4-3 98% 2% 0% 0% 10
実施例 4-4 80% 5% 15% 0% 1 5
実施例 4-5 70% 3% 20% 2% 5
実施例 4-6 95% 3% 0% 2% 25
実施例 4 - 7 65% 3% 30% 2% 25
比較例 4-1 95% 3% 0% 2% 3
比較例 4-2 95% 3% 0% 2% 30
比較例 4 - 3 65% 3% 35% 2% 15
比較例 4- 4 80% 0% 10 % 石膏 10% 5 以上の実施例 4および比較例 4で得られた複合硬化体について曲げ強度、 圧 縮強度、 加工性および釘打ち性、 破壊靭性、 耐磨耗性について試験を行った。 その結果を表 7に示す。 そり量は、 lmの長さの硬化体の最大そり量を測定し た。
【表 7】
曲げ強度 圧縮強度 加工性 釘うち性 破壊靭性 明度 そり k g/ cm2 k gx c m2 MP a • m1/2 mm 実施例 4-1 330 850 加工可 なし 3. 3 7 2. 2 実施例 4-2 335 860 加工可 なし 3. 3 7 2. 0 実施例 4-3 340 865 加工可 なし 3. 3 7 4. 0 実施例 4-4 308 800 加工可 なし 3. 1 5. 5 3. 6 実施例 4-5 310 800 加工可 なし 3. 1 5. 5 2. 0 実施例 4-6 330 850 加工可 なし 3. 3 7 4. 0 実施例 4-7 310 800 加工可 なし 3. 3 5. 0 4. 0 比較例 4-1 330 850 加工可 なし 3. 0 7 10.0 比較例 4- 2 330 850 加工可 なし 3. 0 7 12.0 比較例 4- 3 270 750 加工可 なし 2. 8 4 3. 6 比較例 4-4 270 750 加工不可 あり 2. 8 4 3. 6
(5) 搬送ベルトの速度を変えた場合の実施例 5について述べる c
実施例 5、 比較例 5の製造条件は以下である。
【表 8】
製紙スラッジ 凝集剤 セメント ビニロン繊維 速度
Figure imgf000050_0001
実施例 5-1 95% 3% 0% 2% 5 実施例 5-2 90% 2% 5% 3% 10 実施例 5-3 98% 0.1% 0% 1. 9% 20 実施例 5 - 4 80% 0.02% 15% 4. 98% 30 実施例 5-5 70% 3% 25% 2% 50 実施例 5-6 90% 2% 0% 8% 60 実施例 5-7 65% 5% 28% 2% 80 比較例 5-1 95% 0% 0% 5% 3 比較例 5-2 95% 0% 0% 5% 85 以上の実施例 5および比較例 5で得られた複合硬化体について曲げ強度、 圧 縮強度、 加工性および釘打ち性、 破壊靭性、 耐磨耗性について試験を行った。 その結果を表 9に示す。 なお、厚さばらつきについては、 lm角の板を 100分 割して、 厚さを測定して、 その平均値を計算し、 最大値と最小値の差を平均値 で割って、 百分率 (%) で表現した。
【表 9】
曲げ強度 圧縮強度 加工性 釘うち性 破壊靭性 明度
k g/cra k gZcm2 MP a · m1/2
実施例 5-1 330 850 加工可 なし 3. 3 7
実施例 5-2 335 860 加工可 なし 3. 3 7 実施例 5-3 340 865 加工可 なし 3. 3 7
実施例 5-4 308 800 加工可 なし 3. 1 5 5 実施例 5- 5 310 800 加工可 なし 3. 1 5 5 実施例 5- 6 330 850 加工可 なし 3. 3 7
実施例 5-7 310 800 加工可 なし 3. 3 5 0 比較例 5-1 330 850 加工可 なし 3. 0 7
比較例 5- 2 330 850 加工可 なし 3. 0 7 厚さばらつき%
実施例 1 3%
実施例 2 3%
実施例 3 3%
実施例 4 4%
実施例 5 4%
実施例 6 3%
実施例 7 3%
比較例 1 7%
比較例 2 8% (6) 加圧プレスの圧力を変えた実施例 6について以下述べる。
加圧プレスは、 10〜 250 Kg/cm2で行う。 加圧プレスを 1 0 Kg/cm2未満で 行うと、 必要とされる強度を得ることができない。 一方、 250Kg/cm2を越え て加圧プレスしても強度を高めることができず、 プレス装置が大型化 ·高価格 化するからである。 更に、 10 k gZcm2未満では、 空隙が生じて強度が低 く、 剥離や反りが発生する。 逆に 250 k gZ cm2を越えると繊維が圧力の 力かる方向に配向してしまい、 やはり強度が低下し、 剥離や反りが生じる。 抄 造では、 繊維がもともと配向し易く、 高い圧力はかえつて不都合である。 実施例 6、 比較例 6の製造条件は以下である。 抄造体を 5枚重ねて反転させ て積層し多層化した。
【表 10】 製紙スラッジ 凝集剤 ノ 卜 ヒー一口ノ繊 ίΛ: ノ土刀
/ /c -.m 2
寒倫例 — 1 Q c: 70 U 70 U
ジ q n % o To O 70 o yo o U
Figure imgf000052_0001
f
実施例 6- 4 80 % U. /o 4, yo /o Ό U 実施例 6-5 70% 3% 25% 2% 100 実施例 6 - 6 90% 2% 0% 8% 1 50 実施例 6 - 7 65% 5% 28% 2% 250 比較例 6-1 95% 0% 0% 5% 8 比較例 6- 2 95% 0% 0% 5% 255 比較例 6-2については、 多層化せず、 20隱のものを使用した。
以上の実施例 6および比較例 6で得られた厚さ 20瞧の複合硬化体について 曲げ強度、 圧縮強度、 加工性および釘打ち性、 破壊靭性、 耐磨耗性について試 験を行った。 その結果を表 1 1に示す。 なお、 試験方法は、 曲げ強度が J I S A 6901に、また圧縮強度が J I S A 5416に規定された方法に、そ れぞれ準じて測定した。 そり量は、 厚さ 20 mmで 1 m角の板で測定した 【表 1 1】
曲げ強度 圧縮強度 加工性 釘うち性 破壊靭性 明度
k g. c m" k g/ c m2 MP a • m
実施例 6-1 320 850 加工可 なし 3. 3 7
実施例 6 - 2 335 860 加工可 なし 3. 3 7
実施例 6-3 340 865 加工可 なし 3. 3 7
実施例 6 - 4 308 800 加工可 なし 3. 1 5. 5 実施例 6 - 5 310 800 加工可 なし 3. 1 5. 5 実施例 6-6 330 850 加工可 なし 3. 3 7
実施例 6-7 310 800 加工可 なし 3. 3 5. 0 比較例 6-1 270 850 加工可 なし 3. 0 7
比較例 6-2 275 850 加工可 なし 3. 0 7 ( 7 ) 積層を反転させる実施例 7及び順に積層する比較例 7について以下述べ る。
実施例 7、 比較例 7の製造条件は以下である。 抄造体を 5枚積層して多層化 した。
【表 1 2】
製紙スラッジ 凝 产 |J ノ 卜 ヒ— -口 々
ノ繊維 多層 実施例 7 - 1 95% 3% 0% 2% 反転 実施例 7-2 90% 2% 5% 3% 反転 実施例 7-3 98% 0.1% 0% 1.9% 反? s 実施例 7-4 80% 0.02% 15% 4.98% 反転 実施例 7 - 5 70% 3% 25% 2% 反転 実施例 7 - 6 90% 2% 0% 8% 反転 実施例 7-7 65% 5% 28% 2% 反転 比較例 7 - 1 95% 0% 0% 5% 順 比較例 7-2 95% 0% 0% 5%
比較例 7-2については、 多層化せず、 20匪のものを用いた。
以上の実施例 7および比較例 7で得られた厚さ 20匪の複合硬化体について 曲げ強度、 圧縮強度、 加工性および釘打ち性、 破壊靭性、 耐磨耗性について試 験を行った。 その結果を表 13に示す。 そり量は、 厚さ 20mmで、 lm角の硬 化体の最大そり量を測定した。
【表 1 3】
曲げ強度 圧縮強度 加工性 釘うち性 破壊靭性 明度 k g/ cm2 k g / cm2 MP a · m1,2
実施例 7 - 1 330 850 加工可 なし 3. 3 7 実施例 7-2 335 860 加工可 なし 3. 3 7 実施例 7-3 340 865 加工可 なし 3. 3 7 実施例 7-4 308 800 加工可 なし 3. 1 5. 5 実施例 7-5 310 800 加工可 なし 3. 1 5. 5 実施例 7 - 6 330 850 加工可 なし 3. 3 7 実施例 7-7 3 10 800 加工可 なし 3. 3 5. 0 比較例 7-1 330 850 加工可 なし 3. 0 7 比較例 7- 2 330 850 加工可 なし 3. 0 7 そり量 剥離の有無
実施例 7 - 1 5
無無無無無有有無無
実施例 7 - 2
実施例 7-3 2
実施例 7-4
実施例 7 - 5 2
実施例 7-6 2. 0
実施例 7-7 1. 8
比較例 7-1 8. 9
比較例 7- 2 9. 0
(8) 凝集剤の量を変えた実施例 8について述べる。
凝集剤の量が 0. 01重量%未満では、凝集効果がなく、反り防止や、比重、 強度の均一化の効果がない。 逆に 5重量%を越えると、 凝集剤により、 硬化体 が不均一になり、 反りが発生したり、 比重、 強度が不均一になり易い。
実施例 8、 比較例 8の固形成分の組成は以下である。
【表 14】
製紙スラッジ 凝集剤 セメント ビニロン繊維 固形分 実施例 8-1 95% 3% 0% 2% 4% 実施例 8-2 90% 2% 5% 3% 5% 実施例 8-3 98% 0.1% 0% 1.9% 10% 実施例 8-4 80% 0.02% 15% 4.98% 1 5% 実施例 8-5 70% 3% 25% 2% 5% 実施例 8-6 90% 2% 0% 8% 25% 実施例 8-7 65 % 5% 28 % 2% 25 %
比較例 8-1 95 % 0% 0% 5% 5%
比較例 8-2 88 % 2% 0% 0% 5%
以上の実施例 8および比較例 8で得られた複合硬化体について曲げ強度、 圧 縮強度、 加工性および釘打ち性、 破壊靭性、 耐磨耗性について試験を行った。 そり量は、 lm角の大きさの板の反り量を測定した。 また、 ばらつきは、 lm角 の板を 100分割して、 強度、 比重を測定して、 その平均値を計算し、 最大値 と最小値の差を平均値で割って、 百分率 (%) 表示した。
【表 1 5】
曲げ強度 圧縮強度 加工性 釘うち性 破壊靭性 明度 そり k g/ cm2 k g/ c m2 MP a • m 1/2
実施例 8-1 330 850 加工可 なし 3. 3 7 2. 0 実施例 8 - 2 335 860 加工可 なし 3. 3 7 2. 0 実施例 8-3 340 865 加工可 なし 3. 3 7 2. 0 実施例 8-4 308 800 加工可 なし 3. 1 5. 5 3. 0 実施例 8-5 310 800 加工可 なし 3. 1 5. 5 3. 0 実施例 8-6 330 850 加工可 なし 3. 3 7 2. 0 実施例 8-7 31 0 800 加工可 なし 3. 3 5. 0 3. 0 比較例 8-1 330 850 加工可 なし 3. 0 7 10.0 比較例 8-2 330 850 加工可 なし 3. 0 7 10.0 比重ばらつき% 強度ばらつき% 実施例 8-1 3% 3%
実施例 8-2 3% 3%
実施例 8 - 3 3% 3%
実施例 8-4 4% 4%
実施例 8-5 4% 4%
実施例 8 - 6 3% 3%
実施例 8 - 7 3% 3% 比較例 8-1 7% 7%
比較例 8 - 2 8% 8%
(9) 有機質繊維の量を変えた実施例 9について述べる。
有機質繊維の量は、 0. 1重量%未満では、 補強効果がなく、 成形体の破断 を防止できず、 逆に 10重量%を越えると、 空隙が増えて含水率が上がり、 や はり破断が発生し易い。
実施例 9、 比較例 9の固形成分の組成は以下である。
【表 16】
製紙スラッジ 凝集剤 セメント ビニロン繊維 固形分 実施例 9 - 1 95% 3% 0% 0.5% 4% 実施例 9-2 90% 2% 5% 3% 5% 実施例 9-3 98% 0% 0% 2% 10% 実施例 9-4 80% 0% 15% 5% 15% 実施例 9 - 5 70% 3% 20% 2% 5% 実施例 9-6 90% 2% 0% 8% 25% 実施例 9-7 65% 3% 30% 2% 25% 比較例 9-1 95% 3% 0% 0% 3% 比較例 9-2 95% 3% 0% 0.05% 20% 比較例 9-3 85% 3% 0% 1 2% 1 5% 比較例 9-4 95% 3% 0% 2% 85% 比較例 9 - 5 80% 0% 10% 石膏 10 %
比較例 9-4は、 プレス法による。
以上の実施例 9および比較例 9で得られた複合硬化体について曲げ強度、 圧 縮強度、 加工性および釘打ち性、 破壊靭性、 耐磨耗性について試験を行った。 その結果を表 2に示す。 成形体は、 乾燥前の抄造体を lm角に切って、 持ち上 げた場合に破断するか否かを調べた。
【表 1 7】
曲げ強度 圧縮強度 加工性 釘うち性 破壊靭性 明度 破断 K g / し m k g c m 丄 vi a * m 1/2
π U o o o c n u 丁 ΈΤ Q q 夫 /JtElグリ 丄 ck し . ο 7 夫 Zit Iグリ ώ
Figure imgf000057_0001
1
Q
夫 1タリ y ^± U c3 O O ノ ο Q
丄 PJ し . ο 1
1
夭 ϊΰΙΊグリ τ: Q O Π VJ « o o Q n U π U / 丄 WJ / 1し 丄 ο · ο 挺
q
夫 ¾1Ίグリ 0 O 丄 U o o π U Π U / ■fJinU丄~r" HJT ck し 丄 ο . Ο ^ 夫; (¾1Ίグリ D o n o c n
U o O U fin丁 ΈΤ ο
し . ί
夫/ グリ , »D 丄 リ o Q π VJ Π U "fin丁 "5T z し Ο Ο · KJ
Π
1タリ 丄 O Π U o o υ " n U~T oT つ
nJ し . U ί 右 比較例 9-2 3 30 8 50 加工可 なし 3. 0 7 有 比較例 9-3 2 70 7 50 加工可 なし 2. 8 4 有 比較例 9-4 3 1 0 8 50 加工可 なし 3. 0 4
比較例 9-5 2 70 7 50 加工可 なし 2. 8 4 有 比較例 9-6 2 70 7 50 加工不可 あり 2. 8 5 有
(1 0) プレスを型枠内で行った実施例 1 0と、 型枠を用いなかった比較例 0とについて述べる。 実施例 1 0、 比較例 1 0の製造条件は以下である。 【表 1 8】
製紙スラッジ 凝集剤 セメント ビニロン繊維 固形分 実施例 10 - 1 9 5% 3% 0% 2% 5% 実施例 10-2 90% 2% 5% 3% 1 0% 実施例 10 - 3 98% 0.1% 0% 1.9% 20% 実施例 10-4 80% 0.02% 1 5% 4.98% 30% 実施例 10-5 70% 3% 25% 2% 50% 実施例 10 - 6 90% 2% 0% 8% 60% 実施例 10 - 7 6 5% 5% 28% 2% 80% 比較例 10-1 9 5% 0% 0% 5% 3% 比較例 10 - 2 90% 0% 0% 5% 3% 比較例 10- 1は、 抄造後、 型枠なしのプレスによる。 以上の実施例 10および比較例 10で得られた複合硬化体について曲げ強度、 圧縮強度、加工性および釘打ち性、破壊靭性、耐磨耗性について試験を行った。 その結果を表 2に示す。
【表 19】
曲げ強度 圧縮強度 加工性 釘うち性 破壊靭性 明度
k g / c m2 k g無無無無無無無有有 X c m 2 MP a • m1/2
実施例 10-1 3 30 8 50 加工可 なし 3. 3 7
実施例 10-2 3 3 5 86 0 加工可 なし 3. 3 7
実施例 10 - 3 340 8 6 5 加工可 なし 3. 3 7
実施例 10-4 308 8 00 加工可 なし 3. 1 5. 5 実施例 10-5 3 1 0 800 加工可 なし 3. 1 5. 5 実施例 10-6 3 30 8 50 加工可 なし 3. 3 7
実施例 10-7 3 1 0 800 加工可 なし 3. 3 5. 0 比較例 10-1 3 30 8 50 加工可 なし 3. 0 7
比較例 10- 2 3 30 8 50 加工可 なし 3. 0 7 ちぎれの有無 実施例 10-1
実施例 10-2
実施例 10 - 3
実施例 10-4
実施例 10-5
実施例 10-6
実施例 10-7
比較例 10-1
比較例 10-2 引き続き、 本発明の第 2実施例に係る硬化体の製造方法及び硬化体の製造装 置について、 第 14図を参照して説明する。 この第 2実施例は、 抄造体を切断方法及び積層方向を除いて第 1実施例とほ ぼ同様である。 このため、 切断方向及び積層方向を除いて、 説明を省略する。 上述した第 1実施例では、 抄造体 2 6が l m X 2 mに切断された。 これに対 して、 第 2実施例では、 カツタ 3 6により、 抄造体 2 6が l m X l mに切断さ れる。 また、 ベルトコンベア 3 8から搬送装置 4 2にて抄造体 2 6が反転装置 4 0の反転板 4 6に載置させる際に、水平方向に 9 0度捻ってから載置される。 即ち、 抄造体を積層する際に、 ワイヤーシリンダ 2 2 A、 2 2 B、 2 2 Cから 搬送ベルト 2 3への転写方向がずれるようにする。 抄造体 2 6は、 搬送ベルト 2 3への転写方向に沿って強度差が発生する。 具体的には、 転写方向に沿って 曲げを加えた際の強度を 1とすると、 転写方向と垂直方向の強度が 0 . 8程度 になる。 第 2実施例では、 抄造体 2 6を積層する際に、 搬送ベルト 2 3への転 写方向がずれるように積層することで、均一な強度を有する硬化体を製造する。 上記複合硬化体 1の一応用例として、複合建築材料について以下に説明する。 すなわち、 第 1 9図に示すように、 芯材 5の少なくとも片面に、 図示例では 両面に補強層 6が形成された複合建築材料において、 該芯材 5に、 この発明の 方法で製造した複合硬化体 1を適用する。 すなわち、 芯材 5をこの発明の方法 で製造する複合硬化体 1とすることによって、 この芯材に引っ張り力が加わつ た場合でも、 芯材自体が曲げ強度に優れているため、 しかも芯材の表面に補強 層が設けられていることも相まって、容易に破壊が起きない構成となっている。 また、 表面に局所的に圧力が加わっても凹みや窪みが生じることもない。
さらに、 この複合建築材料は、 その使用に当たり、 補強層 6の上に塗装、 ィ匕 粧板および化粧単板などによる化粧層を設けることになるから、 耐衝撃性が向 上して、 凹みなどのキズが生じにくくなり、 化粧面がキズにより歪んで意匠性 を低下させることもない。
また、 補強層 6は、 樹脂 6 a中に繊維基材 6 bを埋設した構造になる。 この 榭月旨 6 aには、 特に熱硬化性樹脂を用いることが望ましい。 すなわち、 熱硬化 性樹脂は熱可塑性樹脂と異なり、 耐火性に優れ高温下でも軟化しないため、 補 強層としての機能が失われないからである。 熱硬化性樹脂としては、 フエノー ル樹脂、 メメラミン樹脂、 エポキシ榭脂、 ポリイミ ド樹脂、 尿素樹脂などが適 合する。 そして、 補強層に充分な剛性と耐衝撃性、 さらに高い耐火性を付与す るには、 補強層における熱硬化性樹脂の含有量を、 1 0重量%〜6 5重量%の 範囲にすることが望ましい。
—方、 繊維基材 6 bには、 無機質繊維を用いることが望ましい。 なぜなら、 補強層 6の強度を向上し、かつ熱膨張率を小さくすることができるからである。 無機質繊維には、 ガラス繊維、 ロックウール、 セラミックファイバー、 ガラス 繊維チョップドストランドマット、 ガラス繊維ロービングクロス、 ガラス繊維 コンティニユアスストランドマツト、 ガラス繊維ペーパーのうち一種以上を用 いること力 低価格でかつ耐熱性並びに強度に優れる点で好ましい。 この繊維 基材は、 非連続の繊維をマット状に成形したもの、 または連続した長繊維を 3 〜7 c mに切断してマツト状にしたもの (いわゆるチヨップドストランドマツ ト) 、 水で分散させてシート状にすきあげたもの、 連続した長繊維を渦巻き状 に積層しマツト状にしたもの、 あるいは連続した長繊維を織りあげたものが、 適用できる。
さらに、 補強層の厚さは、 0 . l mm〜3 . 5 mmとすることが望ましい。 この範囲に設定すると、 充分な剛性、 耐衝擊性などが得られ、 かつ高い加工性 を維持できるからである。 なお、 補強層には、 水酸ィ匕アルミニウム、 水酸化マ グネシゥムなどの難燃化剤、 ならびにシリカゾル、 アルミナゾル、 水ガラスな ど一般に使用される無機質の結合剤を添カ卩してもよい。 ここでは、 補強層を設 けたが、 硬化体が水分を吸収しないように、 表面を樹脂等でコートすることも 可能である。

Claims

請 求 の 範 囲
' 1. 製紙スラッジを抄造し、 硬化させてなり、
S i、 Aし C aのそれぞれの酸化物からなる無機非晶質体中に多糖類からな る有機質繊維状物および炭酸力ルシゥムを含有してなる硬化体であって、 前記硬化体中の C a、 A 1、 S iの量が、 それぞれ C a 0、 A 1203、 S i O 2に換算して C a OZS i O2の比率 0. 2から 7. 9、 C a Ο,Α 12 O 3の比 率が 0. 2から 12. 5に調整され、
かつ、 硬化体の明度が J I S Z 8721の規定に基づく値で N 5以上であ ることを特徴とする製紙スラッジの硬化体。
2. 製紙スラッジを抄造し、 硬化させてなり、
S i、 A l、 C aのそれぞれの酸化物からなる無機非晶質体中に多糖類からな る有機質繊維状物および炭酸カルシウムを含有してなる硬化体であって、 前記硬化体中の C a、 Aし S iの量が、 それぞれ C a 0、 A 1203、 S i〇 2に換算して C a OZS i 02の比率 0. 2から 7. 9、 C a OZA 12 O 3の比 率が 0. 2から 1 2. 5に調整されてなる製紙スラッジの硬化体。
3. 前記炭酸カルシウムの結晶習癖は、 紡錘状、 角状、 薄卓状、 立方体また は柱状から選ばれる少なくとも 1種以上の形態である請求項 1に記載の製紙ス ラッジの硬化体。
4. 前記製紙スラッジのセメント含有量は、 0または 30重量%以下である 請求項 1カゝら 3のいずれか 1に記載の製紙スラッジ硬化体。
5. 製紙スラッジを抄造し、 硬化させてなり、
S i、 A 1、 C aのそれぞれの酸化物からなる無機非晶質体中に多糖類から なる有機質繊維状物および炭酸力ルシゥムを含有してなる硬化体であって、 前記硬化体中の C a、 A 1、 S iの量が、 それぞれ C a〇、 A 1203、 S i 02に換算して C a OZS i 02の比率 0. 2から 7. 9、 C a O/A 1203 の比率が 0. 2から 12. 5に調整され、 凝集剤が含有されてなる製紙スラッ ジの硬化体。
6. 製紙スラッジを抄造し、 硬化させてなり、
S i、 A 1、 C aのそれぞれの酸化物からなる無機非晶質体中に多糖類から なる有機質繊維状物および炭酸カルシウムを含有してなる硬化体であって、 前記硬化体中の C a、 A 1、 S iの量が、 それぞれ。 a 0、 A 1203、 S i 02に換算して C a O/S i O2の比率 0. 2から 7. 9、 Ca O/A l 23 の比率が 0. 2から 12. 5に調整され、 合成繊維が含有されてなる製紙スラ ッジの硬化体。
7. 製紙スラッジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面に 製紙スラッジの抄造体を付着させると共に、 この抄造体を搬送ベルトに転写し た後に転送し、 所定の大きさに切断し、 抄造体を硬化させて製紙スラッジの硬 化体を得ることを特徴とする硬化体の製造方法。
8. 製紙スラッジを含む原料溶液を 1〜 100回/分で回転する回転ドラム を用いて抄造し、 該回転ドラム表面に製紙スラッジの抄造体を付着させると共 に、 この抄造体を搬送ベルトに転写した後に転送し、 所定の大きさに切断し、 抄造体を硬化させて製紙スラッジの硬化体を得ることを特徴とする硬化体の製 造方法。
9. 製紙スラッジを含む原料溶液を #40〜 150の網目構造を有するろ水 体を用いて抄造し、該ろ水体表面に製紙スラッジの抄造体を付着させると共に、 この抄造体を搬送ベルトに転写した後に転送し、 所定の大きさに切断し、 抄造 体を硬化させて製紙スラッジの硬化体を得ることを特徴とする硬化体の製造方 法。
10. 製紙スラッジを含む固形分 3. 5〜 25重量%の原料溶液を網状体か らなる回転ドラムを用いて抄造し、 該網状体からなる回転ドラム表面に製紙ス ラッジの抄造体を付着させると共に、 この抄造体を搬送ベルトに転写した後に 転送し、 所定の大きさに切断し、 抄造体を硬化させて製紙スラッジの硬化体を 得ることを特徴とする硬化体の製造方法。
1 1. 製紙スラッジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面 に製紙スラッジの抄造体を付着させると共に、 この抄造体を速度 5〜8 OmZ 分の搬送ベルトに転写した後に転送し、 所定の大きさに切断し、 抄造体を硬化 させて製紙スラッジの硬化体を得ることを特徴とする硬化体の製造方法。
1 2. C a、 A 1、 S iの量が、 それぞれ C a 0、 A 1203、 S i 02に換 算して C a O/S i 02の比率 0. 2から 7. 9、 C a OZA 123の比率が 0. 2から 1 2. 5である製紙スラッジを含む原料溶液を網状体からなる回転 ドラムを用いて抄造し、 該回転ドラム表面に製紙スラッジの抄造体を付着させ ると共に、 この抄造体を連続気孔を有する多孔質体の搬送ベルトへ転写し、 該 搬送ベルトで搬送しながら抄造体から脱水した後、 所定の大きさに切断し、 抄 造体を硬化させて製紙スラッジの硬化体を得ることを特徴とする硬化体の製造 方法。
1 3 . 製紙スラッジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面 に製紙スラッジの抄造体を付着させると共に、 この抄造体を搬送ベルトに転写 した後に転送し、 前記搬送ベルト上の抄造体を、 切断用回転ドラムに転写させ ながら多層化し、 多層化させた抄造体が所定厚さに達した段階で所定の大きさ に切断し、 抄造体を硬化させて製紙スラッジの硬化体を得ることを特徴とする 硬化体の製造方法。
1 4 . 製紙スラッジを含む原料溶液をろ水体を用いて抄造して得られた製紙 スラッジの抄造体を、 複数積層し、 1 0〜2 5 O Kgん m2で加圧プレスすること を特徴とする硬化体の製造方法。
1 5 . 製紙スラッジを含む原料溶液を抄造して得た製紙スラッジの抄造体を 積層して硬化させる硬化体の製造方法であって、
前記抄造体を積層する際に、 交互に反転させながら積層することを特徴とす る硬化体の製造方法。
1 6 . 製紙スラッジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面 に製紙スラッジの抄造体を付着させると共に、 この抄造体を搬送ベルトに転写 した後に転送し、 該搬送ベルト上の製紙スラッジの抄造体を切断用回転ドラム に転写させながら多層化し、 これを所定の大きさに切断して得られた複数の抄 造体を積層して硬化させる硬化体の製造方法であって、
前記抄造体を積層する際に、 交互に反転させながら積層することを特徴とす る硬化体の製造方法。
1 7 . 製紙スラッジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面 に製紙スラッジの抄造体を付着させると共に、 この抄造体を搬送ベルトに転写 した後に転送し、 該搬送ベルト上の製紙スラッジの抄造体を切断用回転ドラム に転写させながら多層化し、 これを所定の大きさに切断して得られた複数の抄 造体を積層して硬化させる硬化体の製造方法であって、 前記抄造体を積層する際に、 最上層及び最下層の抄造体について、 露出面を 回転ドラムに接触していた面とし、 抄造体の積層面を交互に反転させながら積 層することを特徴とする硬化体の製造方法。
1 8 . 製紙スラッジを含む原料溶液をろ水体を用いて抄造し、 該ろ水体表面 に製紙スラッジの抄造体を付着させると共に、 この抄造体を搬送ベルトに転写 し、 これを所定の大きさに切断して得られた複数の抄造体を積層して硬化させ る硬化体の製造方法であって、
前記抄造体を積層する際に、 前記搬送ベルトへの転写方向がずれるように積 層することを特徴とする硬化体の製造方法。
1 9 . 製紙スラッジを含む原料溶液に凝集剤を添加して凝集させ、 この凝集 原料溶液をろ水体を用いて抄造し、 この抄造体を硬化させて製紙スラッジの硬 化体を得ることを特徴とする硬化体の製造方法。
2 0 . 製紙スラッジを含む原料溶液に凝集剤を添加して凝集させ、 この凝集 原料溶液をろ水体を用いて抄造し、 該ろ水体表面に製紙スラッジの抄造体を付 着させると共に、 この抄造体を搬送ベルトに転写した後に転送し、 所定の大き さに切断し、 抄造体を硬化させて製紙スラッジの硬化体を得ることを特徴とす る硬化体の製造方法。
2 1 . 製紙スラッジを含む原料溶液にバインダを添加し、 この原料溶液をろ 水体を用いて抄造し、 この抄造体を硬化させて製紙スラッジの硬化体を得るこ とを特徴とする硬化体の製造方法。
2 2 . 製紙スラッジを含む原料溶液にバインダを添加し、 この原料溶液をろ 水体を用いて抄造し、 該ろ水体表面に製紙スラッジの抄造体を付着させると共 に、 この抄造体を搬送ベルトに転写した後に転送し、 所定の大きさに切断し、 抄造体を硬化させて製紙スラッジの硬化体を得ることを特徴とする硬化体の製 造方法。
2 3 . 製紙スラッジを含む原料溶液をろ水体を用いて抄造して得られた製紙 スラッジの抄造体を、 型枠中で加圧せしめて製紙スラッジの硬化体を製造する ことを特徴とする硬化体の製造方法。
2 4 . 製紙スラッジを含む原料溶液をろ水体を用いて抄造して得られた製紙 スラッジの抄造体を複数積層し、 加圧せしめて製紙スラッジの硬化体を製造す ることを特徴とする硬化体の製造方法。
2 5 . 前記製紙スラッジを含む原料溶液の濃度が、固形分 3 . 5〜 2 5重量% であることを特徴とする請求項 7〜請求項 2 4のいずれか 1の硬化体の製造方 法。
2 6 . 前記搬送ベルトで搬送しながら、 前記抄造体から脱水することを特徴 とする請求項 7〜請求項 1 1、 請求項 1 3, 請求項 1 9〜請求項 2 2のいずれ か 1の硬化体の製造方法。
2 7 . 前記搬送ベルト上の抄造体を、 切断用回転ドラムに転写させながら多 層化し、 多層化させた抄造体が所定厚さに達した段階で切断することを特徴と する請求項 7〜請求項 1 2のいずれか 1の硬化体の製造方法。
2 8 . 前記切断した抄造体をさらに多層化した後、 加圧プレスすることを特 徴とする請求項 7〜請求項 1 3、 請求項 1 5〜請求項 2 2のレ、ずれか 1の硬化 体の製造方法。
2 9 . 前記加圧プレスを 1 0 〜 2 5 O Kgん m2で行うことを特徴とする請求項 2 3、 請求項 2 4 , 請求項 2 8のいずれか 1の硬化体の製造方法。
3 0 . 前記原料溶液は、 セメントを全く含まないか、 固形分中 3 0重量%以 下のセメントを含む請求項 1 0に記載の硬化体の製造方法。
3 1 . 前記抄造体を、 前記原料溶液を介在させて積層することを特徴とする 請求項 1 4〜請求項 1 8、 請求項 2 3のいずれか 1の硬化体の製造方法。
3 2 . 前記抄造体を厚さ 2 0瞧以下に形成することを特徴とする請求項 1 4 〜請求項 1 8、 請求項 2 4のいずれか 1の硬化体の製造方法。
3 3 . 前記凝集剤が、 硫酸アルミニウム、 塩化第二鉄、 ポリ塩ィヒアルミニゥ ム、 ポリアクリル酸ナトリウム、 ポリメタクリル酸エステル、 ポリアクリル酸 エステル、 ポリアクリルアミ ドのいずれかであることを特徴とする請求項 1 9 又は 2 0の硬化体の製造方法。
3 4 . 前記バインダが、 有機繊維であることを特徴とする請求項 2 1又は請 求項 2 2の硬化体の製造方法。
3 5 . 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させるろ水体と、
前記ろ水体の表面に付着した抄造体を転写して、 搬送する搬送ベルトと、 前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された抄造体を硬化させて製紙スラッジの硬化体を得る硬化装置と を備えることを特徴とする硬化体の製造装置。
3 6 · 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させる回転速度が 1〜1 0 0回 分の回転ドラムと、
前記回転ドラムの表面に付着した抄造体を転写して、搬送する搬送ベルトと、 前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された抄造体を硬化させて製紙スラッジの硬化体を得る硬化装置と を備えることを特徴とする硬化体の製造装置。
3 7 . 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させる # 4 0〜1 5 0の網目構造を有するろ水体と、
前記ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された抄造体を硬化させて製紙スラッジの硬化体を得る硬化装置と を備えることを特徴とする硬化体の製造装置。
3 8 . 製紙スラッジを含む固形分 3 . 5〜 2 5重量%の原料溶液を抄造し、 表面に製紙スラッジの抄造体を付着させる網状体からなる回転ドラムと、 前記網状体からなる回転ドラムの表面に付着した抄造体を転写して搬送する 搬送ベルトと、
前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された抄造体を硬化させて製紙スラッジの硬化体を得る硬化装置と を備えることを特徴とする硬化体の製造装置。
3 9 . 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させるろ水体と、
前記ろ水体の表面に付着した抄造体を転写して搬送する速度 5〜8 O mZ分 の搬送ベルトと、
前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された抄造体を硬化させて製紙スラッジの硬化体を得る硬化装置と を備えることを特徴とする硬化体の製造装置。
4 0 . 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させる網状体からなる回転ドラムと、
前記回転ドラムの表面に付着した抄造体を転写して、 搬送しながら脱水する 多孔質体の搬送ベルトと、
前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された抄造体を硬化させて製紙スラッジの硬化体を得る硬化装置と を備えることを特徴とする硬化体の製造装置。
4 1 . 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させるろ水体と、
前記ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 搬送ベルト上の抄造体を転写させながら多層化する切断用回転ドラムであつ て、 表面に水を滞留させる溝と、 この溝の近傍に位置し、 内部から抄造体を押 し出すための押出機構とを備え、 表面の多層化させた抄造体が所定厚さに達し た段階で、 前記押出機構を作動させ、 前記溝に対応する位置で前記抄造体を切 断する切断用回転ドラムと
前記切断された抄造体を硬化させて製紙スラッジの硬化体を得る硬化装置と を備えることを特徴とする硬化体の製造装置。
4 2 . 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させるろ水体と、
前記ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された製紙スラッジの抄造体を、 前記原料溶液を介在させて複数積 層せしめる積層装置と、 を備えることを特徴とする硬化体の製造装置。
4 3 . 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させるろ水体と、
前記ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された製紙スラッジの抄造体を、 交互に反転させて積層せしめる積 層装置と、 を備えることを特徴とする硬化体の製造装置。
4 4 . 製紙スラッジを含む原料溶液を抄造し、 製紙スラッジの抄造体を生成 する抄造装置と、 前記製紙スラッジの抄造体を、 型枠に入れて加圧する加圧装置であって、 該 抄造体から染み出る水分を抜くための通孔を備える加圧装置と、 を備えること を特徴とする硬化体の製造装置。
4 5 . 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させるろ水体と、
前記ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された製紙スラッジの抄造体を、 型枠に入れて加圧する加圧装置で あって、 該抄造体から染み出る水分を抜くための通孔を備える加圧装置と、 を 備えることを特徴とする硬化体の製造装置。
4 6 . 製紙スラッジを含む原料溶液を抄造し、 表面に製紙スラッジの抄造体 を付着させるろ水体と、
前記ろ水体の表面に付着した抄造体を転写して搬送する搬送ベルトと、 前記搬送ベルトを搬送された抄造体を所定の大きさに切断する切断装置と、 前記切断された製紙スラッジの抄造体を、 前記原料溶液を介在させて積層さ せる積層装置と、
前記積層された抄造体を 型枠に入れて加圧する加圧装置であって、 該抄造 体から染み出る水分を抜くための通孔を備える加圧装置と、 を備えることを特 徴とする硬化体の製造装置。
4 7 . 前記ろ水体は、 網状体からなる回転ドラムであることを特徴とする請 求項 3 5〜請求項 3 7、 請求項 3 9〜請求項 4 2のいずれか 1の硬化体の製造
4 8 . 前記回転ドラムの回転速度が 1〜1 0 0回/分であることを特徴とす る請求項 3 5 , 請求項 3 7〜請求項 4 3のいずれか 1の硬化体の製造装置。
4 9 . 前記ろ水体を搬送ベルトに沿って複数個併設し、 当該搬送ベルトに多 層化させながら抄造体を転写することを特徴とする請求項 3 5〜請求項 4 2の いずれか 1の硬化体の製造装置。
5 0 . 前記ろ水体は、 # 4 0〜1 5 0の網目構造を有することを特徴とする 請求項 3 5, 請求項 3 6、 請求項 3 8〜請求項 4 2のいずれか 1の硬化体の製
5 1 . 前記搬送ベルトの搬送速度が 5〜 8 0 分であることを特徴とする 請求項 3 5〜請求項 3 8、 請求項 4 1のいずれか 1の硬化体の製造装置。 5 2 . 前記搬送ベルトは、 連続する気孔を有する多孔質体で構成されている ことを特徴とする請求項 3 5〜請求項 3 9、 請求項 4 1のいずれか 1の硬化体 の製造装置。
5 3 . 前記切断装置は、 抄造体を転写させながら多層化する切断用回転ドラ ムから成り、
当該切断用回転ドラムが、 表面に水を滞留させる溝と、 この溝の近傍に位置 し、 内部から抄造体を押し出すための押出機構とを備え、
該切断用回転ドラム表面の多層化させた抄造体が所定厚さに達した段階で、 前記押出機構を作動させ、 前記溝に対応する位置で前記抄造体を切断すること を特徴とする請求項 3 5〜請求項 4 0のいずれか 1の硬化体の製造装置。 5 4 . 前記切断装置が、 更に、 前記切断用回転ドラムにて一端の切断された 抄造体を一定間隔で切断する刃を備えることを特徴とする請求項 5 3の硬化体 の製造装置。
5 5 . 前記切断用回転ドラムにて一端の切断された抄造体を一定間隔で切断 する刃を備えることを特徴とする請求項 4 1の硬化体の製造装置。
5 6 . 前記積層装置が、 前記製紙スラッジの抄造体を、 前記原料溶液を介在 させて複数積層せしめることを特徴とする請求項 4 3の硬化体の製造装置。
PCT/JP2001/002245 2000-03-21 2001-03-21 Corps durci et procede et dispositif de production dudit corps durci WO2001071094A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01915673A EP1197597A1 (en) 2000-03-21 2001-03-21 Hardened body, and method and device for manufacturing the hardened body

Applications Claiming Priority (24)

Application Number Priority Date Filing Date Title
JP2000077733 2000-03-21
JP2000077729 2000-03-21
JP2000-077732 2000-03-21
JP2000-077725 2000-03-21
JP2000-077733 2000-03-21
JP2000-077726 2000-03-21
JP2000077722A JP2001271297A (ja) 2000-03-21 2000-03-21 硬化体の製造方法及び硬化体の製造装置
JP2000077726 2000-03-21
JP2000-077731 2000-03-21
JP2000077727 2000-03-21
JP2000-077728 2000-03-21
JP2000-077729 2000-03-21
JP2000077728 2000-03-21
JP2000-077722 2000-03-21
JP2000077725 2000-03-21
JP2000-077727 2000-03-21
JP2000-077723 2000-03-21
JP2000077732 2000-03-21
JP2000077723 2000-03-21
JP2000077731 2000-03-21
JP2000-077730 2000-03-21
JP2000077730 2000-03-21
JP2000077724 2000-03-21
JP2000-077724 2000-03-21

Publications (1)

Publication Number Publication Date
WO2001071094A1 true WO2001071094A1 (fr) 2001-09-27

Family

ID=27583551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/002245 WO2001071094A1 (fr) 2000-03-21 2001-03-21 Corps durci et procede et dispositif de production dudit corps durci

Country Status (2)

Country Link
EP (1) EP1197597A1 (ja)
WO (1) WO2001071094A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102493287A (zh) * 2011-12-08 2012-06-13 南京博方生物科技有限公司 一种用含纤维污泥生产板材的方法及其应用
CN102758385A (zh) * 2012-06-16 2012-10-31 江南大学 海藻生物质板材及其加工方法和专用模具
CN109574260A (zh) * 2018-11-19 2019-04-05 浙江山鹰纸业有限公司 一种造纸真空设备除垢系统

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104942961B (zh) * 2015-05-25 2017-12-05 广东绿保生态科技股份有限公司 一种具有净化空气功能的植物多纤维改性板的生产方法
CN104942960B (zh) * 2015-05-25 2018-01-30 广东绿保生态科技股份有限公司 一种阻燃的植物多纤维改性板的生产方法
CN104928994B (zh) * 2015-05-25 2017-10-27 广东绿保生态科技股份有限公司 一种植物多纤维改性板的生产方法
CN104928992B (zh) * 2015-05-25 2017-10-24 广东绿保生态科技股份有限公司 一种防油污的植物多纤维改性板的生产方法
CN104928993A (zh) * 2015-05-25 2015-09-23 东莞市绿保电子科技有限公司 一种防水防霉的植物多纤维改性板的生产方法
CN105369693B (zh) * 2015-11-11 2017-07-04 广东华凯科技股份有限公司 一种高密度纤维板的湿板分切机
FR3072672B1 (fr) 2017-10-24 2019-11-08 Safran Ceramics Installation pour le depot d'une meche chargee mise en forme
CN109403114A (zh) * 2018-11-09 2019-03-01 常州市英中电气有限公司 制造低密度纸板的设备及方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046567A (ja) * 1973-07-30 1975-04-25
JPS50101604A (ja) * 1974-01-18 1975-08-12
JPS5146756A (en) * 1974-10-18 1976-04-21 Sumitomo Chemical Co Haiekino shorihoho
JPS5154614A (en) * 1974-11-08 1976-05-13 Fukuoka Prefecture Suisai sekidei seishisuratsujisogoryokenchikuzairyono seizoho
JPS5236575A (en) * 1975-09-19 1977-03-19 Fujisash Co Method for solidifying the sludge from paper manufacturing
JPS5237812A (en) * 1975-09-19 1977-03-24 Fuji Satsushi Kogyo Kk Method of solidifying paper making sludge
JPS5512853A (en) * 1978-07-10 1980-01-29 Heisaku Inagawa Production of board using paper making sludge
JPS58176159A (ja) * 1982-04-07 1983-10-15 日本セメント株式会社 非晶質ケイ酸カルシウム成形体の製造方法
JPS60139894A (ja) * 1983-12-28 1985-07-24 ニチアス株式会社 抄造による無機質板の製造法
JPS63227890A (ja) * 1987-03-11 1988-09-22 三菱マテリアル株式会社 模様を有する無機質繊維補強板の抄造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5046567A (ja) * 1973-07-30 1975-04-25
JPS50101604A (ja) * 1974-01-18 1975-08-12
JPS5146756A (en) * 1974-10-18 1976-04-21 Sumitomo Chemical Co Haiekino shorihoho
JPS5154614A (en) * 1974-11-08 1976-05-13 Fukuoka Prefecture Suisai sekidei seishisuratsujisogoryokenchikuzairyono seizoho
JPS5236575A (en) * 1975-09-19 1977-03-19 Fujisash Co Method for solidifying the sludge from paper manufacturing
JPS5237812A (en) * 1975-09-19 1977-03-24 Fuji Satsushi Kogyo Kk Method of solidifying paper making sludge
JPS5512853A (en) * 1978-07-10 1980-01-29 Heisaku Inagawa Production of board using paper making sludge
JPS58176159A (ja) * 1982-04-07 1983-10-15 日本セメント株式会社 非晶質ケイ酸カルシウム成形体の製造方法
JPS60139894A (ja) * 1983-12-28 1985-07-24 ニチアス株式会社 抄造による無機質板の製造法
JPS63227890A (ja) * 1987-03-11 1988-09-22 三菱マテリアル株式会社 模様を有する無機質繊維補強板の抄造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102493287A (zh) * 2011-12-08 2012-06-13 南京博方生物科技有限公司 一种用含纤维污泥生产板材的方法及其应用
CN102758385A (zh) * 2012-06-16 2012-10-31 江南大学 海藻生物质板材及其加工方法和专用模具
CN109574260A (zh) * 2018-11-19 2019-04-05 浙江山鹰纸业有限公司 一种造纸真空设备除垢系统

Also Published As

Publication number Publication date
EP1197597A1 (en) 2002-04-17

Similar Documents

Publication Publication Date Title
WO2001071094A1 (fr) Corps durci et procede et dispositif de production dudit corps durci
WO2000036242A1 (fr) Materiau de construction composite
JP2002302898A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2002292815A (ja) 硬化体の製造方法及び硬化体
JP2004003108A (ja) 硬化体の製造方法及び硬化体の製造装置
JP3462185B2 (ja) 硬化体
JP2001336082A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2001334515A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2001336100A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2001334513A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2001336098A (ja) 硬化体の製造方法及び硬化体
JP2001336081A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2002371497A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2001336099A (ja) 硬化体の製造方法及び硬化体
JP2001336080A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2001336097A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2001334514A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2002302899A (ja) 硬化体の製造方法及び硬化体の製造装置
WO2001094700A1 (fr) Procede et dispositif de traitement de la boue resultant de la fabrication de papier, et corps solidifie
JP2002088676A (ja) 製紙スラッジの処理方法及び処理装置
JP2001271297A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2002088696A (ja) 硬化体
JP2002292816A (ja) 硬化体
JP2002371491A (ja) 硬化体の製造方法及び硬化体の製造装置
JP2002068858A (ja) 硬化体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN ID KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001915673

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001915673

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001915673

Country of ref document: EP