WO2001069219A2 - Faims apparatus and method with laser-based ionization source - Google Patents
Faims apparatus and method with laser-based ionization source Download PDFInfo
- Publication number
- WO2001069219A2 WO2001069219A2 PCT/CA2001/000312 CA0100312W WO0169219A2 WO 2001069219 A2 WO2001069219 A2 WO 2001069219A2 CA 0100312 W CA0100312 W CA 0100312W WO 0169219 A2 WO0169219 A2 WO 0169219A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ions
- electrodes
- electrode
- sample
- ion
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J49/00—Particle spectrometers or separator tubes
- H01J49/004—Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/62—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating the ionisation of gases, e.g. aerosols; by investigating electric discharges, e.g. emission of cathode
- G01N27/622—Ion mobility spectrometry
- G01N27/624—Differential mobility spectrometry [DMS]; Field asymmetric-waveform ion mobility spectrometry [FAIMS]
Definitions
- the present invention relates to an apparatus and method for separating ions, more particularly the present invention relates to an apparatus and method for separating ions based on the ion focusing principles of high field asymmetric waveform ion mobility spectrometry (FAIMS).
- FIMS high field asymmetric waveform ion mobility spectrometry
- IMS ion mobility spectrometry
- the ion drift velocity is proportional to the electric field strength at low electric field strength, for example 200 V/cm, and the mobility, K, which is determined from experimentation, is independent of the applied electric field. Additionally, in IMS the ions travel through a bath gas that is at sufficiently high pressure such that the ions rapidly reach constant velocity when driven by the force of an electric field that is constant both in time and location. This is to be clearly distinguished from those techniques, most of which are related to mass spectrometry, in which the gas pressure is sufficiently low that, if under the influence of a constant electric field, the ions continue to accelerate.
- FAIMS high field asymmetric waveform ion mobility spectrometry
- K h transverse field compensation ion mobility spectrometry
- K field ion spectrometry
- Ions are separated in FAIMS on the basis of a difference in the mobility of an ion at high field strength, K h , relative to the mobility of the ion at low field strength, K.
- the ions are separated because of the compound dependent behavior of K h as a function of the applied electric field strength.
- FAIMS offers a new tool for atmospheric pressure gas-phase ion studies since it is the change in ion mobility, and not the absolute ion mobility, that is being monitored.
- Ions are classified into one of three broad categories on the basis of a change in ion mobility as a function of the strength of an applied electric field, specifically: the mobility of type A ions increases with increasing electric field strength; the mobility of type C ions decreases; and, the mobility of type B ions increases initially before decreasing at yet higher field strength.
- the separation of ions in FAIMS is based upon these changes in mobility at high electric field strength.
- an ion for example a type A ion, which is being carried by a gas stream between two spaced-apart parallel plate electrodes of a FAIMS device. The space between the plates defines an analyzer region in which the separation of ions occurs.
- the net motion of the ion between the plates is the sum of a horizontal x-axis component due to the flowing stream of gas and a transverse y-axis component due to the electric field between the parallel plate electrodes.
- the term "net motion” refers to the overall translation that the ion, for instance said type A ion, experiences, even when this translational motion has a more rapid oscillation superimposed upon it.
- a first plate is maintained at ground potential while the second plate has an asymmetric waveform, V(t), applied to it.
- the asymmetric waveform V(t) is composed of a repeating pattern including a high voltage component, V 1 ⁇ lasting for a short period of time t 2 and a lower voltage component, V 2 , of opposite polarity, lasting a longer period of time t ⁇ .
- the peak voltage during the shorter, high voltage portion of the waveform is called the "dispersion voltage" or DV in this disclosure.
- positive ions of type A travel farther during the positive portion of the waveform, for instance. d ⁇ > d 2 , and the type A ion migrates away from the second plate.
- positive ions of type C migrate towards the second plate.
- a positive ion of type A is migrating away from the second plate, a constant negative dc voltage can be applied to the second plate to reverse, or to "compensate" for, this transverse drift.
- This dc voltage called the "compensation voltage” or CV in this disclosure, prevents the ion from migrating towards either the second or the first plate. If ions derived from two compounds respond differently to the applied high strength electric fields, the ratio of K h to K may be different for each compound.
- the magnitude of the CV necessary to prevent the drift of the ion toward either plate is also different for each compound.
- only one species of ion is selectively transmitted for a given combination of CV and DV.
- the remaining species of ions for instance those ions that are other than selectively transmitted through FAIMS, drift towards one of the parallel plate electrodes of FAIMS and are neutralized.
- the speed at which the remaining species of ions move towards the electrodes of FAIMS depends upon the degree to which their high field mobility properties differ from those of the ions that are selectively transmitted under the prevailing conditions of CV and DV.
- An instrument operating according to the FAIMS principle as described previously is an ion filter, capable of selective transmission of only those ions with the appropriate ratio of K h to K.
- the applied CV is scanned with time, for instance the CV is slowly ramped or optionally the CV is stepped from one voltage to a next voltage, and a resulting intensity of transmitted ions is measured. In this way a CV spectrum showing the total ion current as a function of CV, is obtained. It is a significant limitation of early FAIMS devices, which used electrometer detectors, that the identity of peaks appearing in the CV spectrum are other than unambiguously confirmed solely on the basis of the CV of transmission of a species of ion.
- the higher sensitivity of the cylindrical FAIMS is due to a two-dimensional atmospheric pressure ion focusing effect that occurs in the analyzer region between the concentric cylindrical electrodes.
- the radial distribution of ions should be approximately uniform across the FAIMS analyzer.
- the radial distribution of ions is not uniform across the annular space of the FAIMS analyzer region.
- those ions become focused into a band between the electrodes and the rate of loss of ions, as a result of collisions with the FAIMS electrodes, is reduced.
- the efficiency of transmission of the ions of interest through the analyzer region of FAIMS is thereby improved as a result of this two- dimensional ion focusing effect.
- the mirror image of a focussing valley is a hill-shaped potential surface.
- the ions slide to the center of the bottom of a focussing potential valley (2 or 3-dimensions), but slide off of the top of a hill-shaped surface, and hit the wall of an electrode. This is the reason for the existence, in the cylindrical geometry FAIMS, of the independent "modes” called 1 and 2.
- Such a FAIMS instrument is operated in one of four possible modes: PI, P2, Nl, and N2.
- the "P” and “N” describe the ion polarity, positive (P) and negative (N).
- a further improvement to the cylindrical FAIMS design is realized by providing a curved surface terminus of the inner electrode.
- the curved surface terminus is continuous with the cylindrical shape of the inner electrode and is aligned co-axially with an ion-outlet orifice of the FAIMS analyzer region.
- the application of an asymmetric waveform to the inner electrode results in the normal ion-focussing behavior described above, except that the ion-focussing action extends around the generally spherically shaped terminus of the inner electrode. This means that the selectively transmitted ions cannot escape from the region around the terminus of the inner electrode. This only occurs if the voltages applied to the inner electrode are the appropriate combination of CV and DV as described in the discussion above relating to 2-dimensional focussing.
- the CV and DV are suitable for the focussing of an ion in the FAIMS analyzer region, and the physical geometry of the inner surface of the outer electrode does not disturb this balance, the ions will collect within a three- dimensional region of space near the terminus.
- the force of the carrier gas flow tends to influence the ion cloud to travel towards the ion-outlet orifice, which advantageously also prevents the trapped ions from migrating in a reverse direction, back towards the ionization source.
- Ion focusing and ion trapping requires electric fields that are other than constant in space, normally occurring in a geometrical configuration of FAIMS in which the electrodes are curved, and/or are not parallel to each other.
- a non-constant in space electric field is created using electrodes that are cylinders or a part thereof; electrodes that are spheres or a part thereof; electrodes that are elliptical spheres or a part thereof; and, electrodes that are conical or a part thereof.
- various combinations of these electrode shapes are used.
- cylindrical FAIMS technology As discussed above, one previous limitation of the cylindrical FAIMS technology is that the identity of the peaks appearing in the CV spectra are not unambiguously confirmed due to the unpredictable changes in K h at high electric field strengths.
- one way to extend the capability of instruments based on the FAIMS concept is to provide a way to determine the make-up of the CV spectra more accurately, such as by introducing ions from the FAIMS device into a mass spectrometer for mass-to-charge (m/z) analysis.
- the ion focusing property of cylindrical FAIMS devices acts to enhance the efficiency for transporting ions from the analyzer region of a FAIMS device into an external sampling orifice, for instance an inlet of a mass spectrometer.
- This improved efficiency of transporting ions into the inlet of the mass spectrometer is optionally maximized by using a 3- dimensional trapping version of FAIMS operated in nearly trapping conditions.
- the ions that have accumulated in the three- dimensional region of space near the spherical terminus of the inner electrode are caused to leak from this region, being pulled by a flow of gas towards the ion-outlet orifice.
- the ions that leak out from this region do so as a narrow, approximately collimated beam, which is pulled by the gas flow through the ion-outlet orifice and into a small orifice leading into the vacuum system of a mass spectrometer.
- the resolution of a FAIMS device is defined in terms of the extent to which ions having similar mobility properties as a function of electric field strength are separated under a set of predetermined operating conditions.
- a high-resolution FAIMS device transmits selectively a relatively small range of different ion species having similar mobility properties
- a low-resolution FAIMS device transmits selectively a relatively large range of different ion species having similar mobility properties.
- the resolution of FAIMS in a cylindrical geometry FAIMS is compromised relative to the resolution in a parallel plate geometry FAIMS because the cylindrical geometry FAIMS has the capability of focusing ions. This focusing action means that ions of a wider range of mobility characteristics are simultaneously focused in the analyzer region of the cylindrical geometry FAIMS.
- a cylindrical geometry FAIMS with narrow electrodes has the strongest focusing action, but the lowest resolution for separation of ions.
- the focusing action becomes weaker, and the ability of FAIMS to simultaneously focus ions of similar high-field mobility characteristics is similarly decreased.
- the resolution of FAIMS increases as the radii of the electrodes are increased, with parallel plate geometry FAIMS having the maximum attainable resolution.
- the ions are focused into an imaginary cylindrical zone in space with almost zero thickness, or within a 3- dimensional ion trap, in reality it is well known that the ions are actually dispersed in the vicinity of this idealized zone in space because of diffusion. This is important, and should be recognized as a global feature superimposed upon all of the ion motions discussed in this disclosure.
- a 3-dimensional ion trap actually has real spatial width, and ions continuously leak from the 3-dimensional ion trap, for several physical, and chemical reasons.
- the ions occupy a smaller physical region of space if the trapping potential well is deeper.
- ions are typically introduced into FAIMS after being formed by one of several versions of atmospheric pressure ionization, including corona discharge ionization, ionization by radioactive Ni, and electrospray ionization.
- the sample is one of a liquid and a gas, and in every case the analyte ions are suspended in a gas.
- these ionization sources are adaptable for use with FAIMS with relatively slight or no changes to the FAIMS device itself.
- each of these ionization sources must be operated external to the FAIMS analyzer region and the ions so produced swept into the analyzer region using a carrier gas. This involves a transport process which can lower ion transmission and therefore reduces operating efficiency.
- a method for selectively transmitting ions produced by a laser-based ionization technique comprising the steps of: a) providing two electrodes including a first electrode and a second electrode; b) providing an asymmetric waveform and a direct-current compensation voltage, to at least one of the two electrodes to form an electric field therebetween, the field for effecting a difference in net displacement between ions in a time of one cycle of the applied asymmetric waveform for effecting a first separation of the ions by forming a subset thereof; c) producing ions within the electric field using a laser-based ionization technique; and, d) transporting said produced ions through the electric field in a direction approximately transverse to the electric field, wherein the ions are produced under other than high vacuum conditions.
- an apparatus for selectively transmitting ions produced by a laser-based ionization technique including: a source of laser light for providing laser light for ionizing a sample; a FAIMS analyzer comprising: two electrodes disposed for allowing at least a gas to pass therebetween and for providing an electric field therebetween resulting from an application of an asymmetric waveform to at least one of the electrodes in order to affect ion mobility; and, at least a light transmissive port for providing laser light received from the source of laser light to irradiate a sample within the analyzer region in order to ionize the sample.
- an apparatus for selectively transmitting ions produced by a laser-based ionization technique including: a FAIMS analyzer comprising: two electrodes, for providing an electric field therebetween resulting from an application of an asymmetric waveform to at least one of the electrodes in order to affect ion mobility, and for allowing at least a gas to pass therebetween; at least a light transmissive port for receiving laser light; and, a surface for receiving an ion source, the surface in optical communication with the at least a light transmissive port, such that, in use, laser light received through the port and impinging upon the ion source causes ionization thereof.
- a FAIMS analyzer comprising: two electrodes, for providing an electric field therebetween resulting from an application of an asymmetric waveform to at least one of the electrodes in order to affect ion mobility, and for allowing at least a gas to pass therebetween; at least a light transmissive port for receiving laser light; and, a surface for receiving an ion source, the
- an apparatus for selectively transmitting ions produced by a laser-based ionization technique including: a FAIMS analyzer comprising: two electrodes, for providing an electric field therebetween resulting from an application of an asymmetric waveform to at least one of the electrodes in order to affect ion mobility, and for allowing at least a gas to pass therebetween; at least a light transmissive port for receiving laser light; and, a surface for receiving a substrate having a sample on a surface thereof, the surface in optical communication with the at least a light transmissive port, such that, in use, laser light received through the port and impinging upon the sample causes ionization thereof.
- Figure 1 shows three possible examples of changes in ion mobility as a function of the strength of an electric field
- Figure 2a illustrates the trajectory of an ion between two parallel plate electrodes under the influence of the electrical potential V(t);
- Figure 2b shows an asymmetric waveform described by V(t);
- Figure 3 shows a FAIMS device with a laser-based ionization source according to a preferred embodiment of the present invention.
- a first type A ion having a low field mobility Ki, ⁇ ow is not separated in a FAIMS device from a second type A ion having a second different low field mobility K 2 ⁇ ⁇ o , if under the influence of high electric field strength, the ratio Ki. h i gh Ki ow is equal to the ratio K 2 , h ig h K 2) ⁇ ow .
- this same separation is achieved using conventional ion mobility spectrometry, which is based on a difference in ion mobilities at low applied electric field strength.
- FIG. 2a shown is a schematic diagram illustrating the mechanism of ion separation according to the FAIMS principle.
- An ion 1 for instance a positively charged type A ion, is carried by a gas stream 2 flowing between two spaced apart parallel plate electrodes 3 and 4.
- One of the plates 4 is maintained at ground potential, while the other plate 3 has an asymmetric waveform described by V(t), applied to it.
- the peak voltage applied during the waveform is called the dispersion voltage (DV), as is shown in Figure 2b.
- the waveform is synthesized so that the electric fields during the two periods of time thigh and ti ow are not equal.
- K h and K are identical at high and low fields, the ion 1 is returned to its original position at the end of one cycle of the waveform. However, under conditions of sufficiently high electric fields, K h is greater than K and the distances traveled during t h ig h and t ⁇ ow are no longer identical.
- the ion 1 experiences a net displacement from its original position relative to the plates 3 and 4, as illustrated by the dashed line 5 in Figure 2a.
- a constant negative dc compensation voltage CV is applied to plate 3 to reverse or "compensate" for this offset drift.
- the ion 1 does not travel toward either plate.
- two species of ions respond differently to the applied high electric field, for instance the ratios of K h to K are not identical, the compensation voltages necessary to prevent their drift toward either plate are similarly different.
- the compensation voltage is, for example, scanned to transmit each of the components of a mixture in turn. This produces a compensation voltage spectrum, or CV spectrum.
- MALDI matrix-assisted laser desorption ionization
- FIG. 3 shown is a simplified block diagram of a FAIMS device with a laser-based ionization source (maldiFAIMS) according to a preferred embodiment of the present invention.
- the laser-based ionization source is a matrix- assisted laser desorption ionization (MALDI) source.
- the FAIMS comprises an inner FAIMS electrode 6 to which a high voltage asymmetric waveform and a low voltage dc compensation voltage are applied by power supply 7, through electrical contact 8.
- the inner electrode 6 is mounted in an electrically insulating block (not shown).
- the gas 9 serves as the carrier gas in the analyzer region 10.
- a different detection means such as an electrometric ion detector, is provided in place of the mass spectrometer.
- the ions are formed by the impact of a laser beam 15 that passes through a window 16 in the FAIMS outer electrode 12 and strikes the sample spot 17 that is deposited on the surface of the FAIMS inner electrode 6.
- the laser beam 15 is generated by a laser beam source 18.
- the samples are deposited on the FAIMS inner electrode 6 while the electrode is withdrawn from its operating location, for instance using a motorized translational device 19.
- the motorized translational device 19 is connected to the inner electrode 6 through an insulating rod 20.
- the motorized translational device 19 is capable of longitudinal translation of the inner electrode 6, and it is also capable of rotation of the inner electrode 6.
- the samples and appropriate matrix are applied as a series of spots 17 arranged around the circumference of the inner FAIMS electrode 6.
- the sample spots 17 are optionally dried in an apparatus separately from the system shown in Figure 3, however in the system shown in Figure 3 the samples are applied to the inner electrode 6 through a sample introduction port 21.
- a mechanical sample applicator 22 delivers the sample to the surface of the inner electrode 6 such that spots 17 are located substantially adjacent to the sample introduction port 21.
- the solvent vapor that results from the drying of the spots 17 is carried partly out of the FAIMS device through port 21.
- the inner electrode 6 of maldiFAIMS is re-inserted using the motorized translational device 19.
- the portion of gas flow 9 which does not escape through sample introduction port 21 acts to purge the FAIMS analyzer region 10, and to carry the ions along the length of the analyzer region 10.
- the laser 18 is activated for each sample spot 17 for the appropriate number of pulses to induce ionization of the sample molecules.
- the inner electrode 6 is rotated using the connection 20, such that each sample 17 is brought in turn into the beam of the laser.
- the inner electrode 6 is rotated very slowly while the beam impinges on each sample in order to maximize the amount of new sample material that is available to the laser beam 15.
- the location and position of the inner electrode 6 inside of the FAIMS outer electrode 12 is very critical, especially the location of the spherical domed terminus 23 of the inner electrode 6. This position must be accurately controlled using the motorized translational device 19. All aspect of the timing of the movements of the inner electrode 6, delivery of sample droplets to spots 17, and ionization of the samples with laser beam 15, are controlled by computer system 24, which delivers the electronic signals to the motorized translational device 19, to the sample introduction unit 25, and the laser power supply 18. Of course, often the pressure that is maintained within the FAIMS analyzer region is approximately one standard atmosphere.
- ion focusing within the FAIMS analyzer region is a consequence of collisions, occurring in the gas phase, between the analyte ions and the neutral molecules of the carrier, or bath, gas. Absent said bath gas, the ions continue to accelerate under the influence of the applied electric field, and separation is other than achieved.
- FAIMS devices are optionally operated at reduced pressure, however, in such cases the applied electric field strength is decreased as the number density of the bath gas is decreased. Further, even the minimum effective operating pressures for the FAIMS device are several orders of magnitude higher than the pressures required for effective ion production with a MALDI source.
- the plume of ions produced above the sample/matrix mixture encounter molecules of the dense bath gas, suffering repeated collisions therewith, which collectively impede the rapid dispersion of the ions.
- the ions being forced to occupy a small three-dimensional region of space, tend to collide with other ions and re-combine.
- FAIMS rapidly separates the analyte ions from the ions that are other than of interest. Since the ion losses occurring immediately after ionization are minimized, the sensitivity of maldiFAIMS is increased and detection limits for analyte ions are similarly improved.
- the maldiFAIMS is optionally operated by removing completely the inner electrode 6 for application of the sample.
- a series of exchangeable inner electrodes 6 are further optionally substituted for each other during the course of the analysis of a series of samples.
- the inner electrode 6 is moved to present new sample spots 17 to the laser beam 15, it is optionally possible for the laser beam 15 to be directed in sequence to a series of different sample spots 17 located on the inner electrode 6.
- Sample spots are optionally placed on the outer electrode 12.
- Sample spots are further optionally placed on a transparent window similar to transparent window 16 shown in Figure 3, which is mounted onto the outer electrode of FAIMS with the sample spot facing inwards to the analyzer region 10 of FAIMS.
- the laser beam 15 therefore passes through the transparent window material and strikes the sample.
- the ions formed from this surface are then captured by. the focusing action of FAIMS as discussed previously, and separated by FAIMS within analyzer region 10.
- a FAIMS device having other than cylindrical geometry is interfaced to the laser-based ionization source.
- FAIMS devices having three or more electrodes, wherein the electrodes are one of flat parallel plates and curved plates are disclosed by the present inventors in a related PCT application entitled FAIMS Improvements. Modifications similar to those described with reference to Figure 3 for the cylindrical electrode geometry FAIMS, for example to permit sample introduction and sample irradiation, are also easily envisioned for the alternate geometry FAIMS devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Pathology (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
- Electron Tubes For Measurement (AREA)
- Sampling And Sample Adjustment (AREA)
- Photoreceptors In Electrophotography (AREA)
- Saccharide Compounds (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001239073A AU2001239073B2 (en) | 2000-03-14 | 2001-03-14 | Faims apparatus and method with laser-based ionization source |
DE60114394T DE60114394T2 (en) | 2000-03-14 | 2001-03-14 | FAIMS Laser based ionization source apparatus and method |
EP01913444A EP1273029B8 (en) | 2000-03-14 | 2001-03-14 | Faims apparatus and method with laser-based ionization source |
AU3907301A AU3907301A (en) | 2000-03-14 | 2001-03-14 | Faims apparatus and method with laser-based ionization source |
AT01913444T ATE308115T1 (en) | 2000-03-14 | 2001-03-14 | FAIMS APPARATUS AND METHOD WITH LASER-ASSISTED IONIZATION SOURCE |
US10/220,602 US6653627B2 (en) | 2000-03-14 | 2001-03-14 | FAIMS apparatus and method with laser-based ionization source |
CA002401722A CA2401722C (en) | 2000-03-14 | 2001-03-14 | Faims apparatus and method with laser-based ionization source |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18908500P | 2000-03-14 | 2000-03-14 | |
US60/189,085 | 2000-03-14 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2001069219A2 true WO2001069219A2 (en) | 2001-09-20 |
WO2001069219A3 WO2001069219A3 (en) | 2002-09-19 |
Family
ID=22695859
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2001/000309 WO2001069217A2 (en) | 2000-03-14 | 2001-03-14 | Faims apparatus and method with ion diverting device |
PCT/CA2001/000312 WO2001069219A2 (en) | 2000-03-14 | 2001-03-14 | Faims apparatus and method with laser-based ionization source |
PCT/CA2001/000314 WO2001069647A2 (en) | 2000-03-14 | 2001-03-14 | Tandem high field asymmetric waveform ion mobility spectrometry (faims)/tandem mass spectrometry |
PCT/CA2001/000311 WO2001069218A2 (en) | 2000-03-14 | 2001-03-14 | Tandem faims/ion-trapping apparatus and method |
PCT/CA2001/000310 WO2001069646A2 (en) | 2000-03-14 | 2001-03-14 | Faims apparatus and method using carrier gas of mixed composition |
PCT/CA2001/000313 WO2001069220A2 (en) | 2000-03-14 | 2001-03-14 | Apparatus and method for trandem icp/faims/ms |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2001/000309 WO2001069217A2 (en) | 2000-03-14 | 2001-03-14 | Faims apparatus and method with ion diverting device |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CA2001/000314 WO2001069647A2 (en) | 2000-03-14 | 2001-03-14 | Tandem high field asymmetric waveform ion mobility spectrometry (faims)/tandem mass spectrometry |
PCT/CA2001/000311 WO2001069218A2 (en) | 2000-03-14 | 2001-03-14 | Tandem faims/ion-trapping apparatus and method |
PCT/CA2001/000310 WO2001069646A2 (en) | 2000-03-14 | 2001-03-14 | Faims apparatus and method using carrier gas of mixed composition |
PCT/CA2001/000313 WO2001069220A2 (en) | 2000-03-14 | 2001-03-14 | Apparatus and method for trandem icp/faims/ms |
Country Status (8)
Country | Link |
---|---|
US (6) | US6653627B2 (en) |
EP (4) | EP1266395A2 (en) |
JP (1) | JP4783533B2 (en) |
AT (2) | ATE459976T1 (en) |
AU (10) | AU780704B2 (en) |
CA (6) | CA2402812C (en) |
DE (2) | DE60141455D1 (en) |
WO (6) | WO2001069217A2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003067243A1 (en) * | 2002-02-08 | 2003-08-14 | Ionalytics Corporation | Side-to-side faims apparatus having an analyzer region with non-uniform spacing and method therefore |
US6906319B2 (en) | 2002-05-17 | 2005-06-14 | Micromass Uk Limited | Mass spectrometer |
EP2112683A1 (en) | 2008-04-22 | 2009-10-28 | IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. | Differential mobility spectrometer and operating method therefor |
CN102901753A (en) * | 2012-09-24 | 2013-01-30 | 杭州泰林生物技术设备有限公司 | Liquid oxidation detection electrode and equipment thereof |
Families Citing this family (140)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6815669B1 (en) * | 1999-07-21 | 2004-11-09 | The Charles Stark Draper Laboratory, Inc. | Longitudinal field driven ion mobility filter and detection system |
US7157700B2 (en) * | 2001-06-30 | 2007-01-02 | Sionex Corporation | System for collection of data and identification of unknown ion species in an electric field |
US6815668B2 (en) | 1999-07-21 | 2004-11-09 | The Charles Stark Draper Laboratory, Inc. | Method and apparatus for chromatography-high field asymmetric waveform ion mobility spectrometry |
US7399958B2 (en) * | 1999-07-21 | 2008-07-15 | Sionex Corporation | Method and apparatus for enhanced ion mobility based sample analysis using various analyzer configurations |
US7148477B2 (en) * | 1999-07-21 | 2006-12-12 | Sionex Corporation | System for trajectory-based ion species identification |
US7057168B2 (en) * | 1999-07-21 | 2006-06-06 | Sionex Corporation | Systems for differential ion mobility analysis |
US7005632B2 (en) * | 2002-04-12 | 2006-02-28 | Sionex Corporation | Method and apparatus for control of mobility-based ion species identification |
US6806463B2 (en) * | 1999-07-21 | 2004-10-19 | The Charles Stark Draper Laboratory, Inc. | Micromachined field asymmetric ion mobility filter and detection system |
US7129482B2 (en) | 1999-07-21 | 2006-10-31 | Sionex Corporation | Explosives detection using differential ion mobility spectrometry |
US6690004B2 (en) * | 1999-07-21 | 2004-02-10 | The Charles Stark Draper Laboratory, Inc. | Method and apparatus for electrospray-augmented high field asymmetric ion mobility spectrometry |
US7098449B1 (en) | 1999-07-21 | 2006-08-29 | The Charles Stark Draper Laboratory, Inc. | Spectrometer chip assembly |
AU782410B2 (en) * | 2000-03-14 | 2005-07-28 | National Research Council Of Canada | Improved parallel plate geometry faims apparatus and method |
AU2001239076A1 (en) * | 2000-03-14 | 2001-09-24 | National Research Council Canada | Tandem high field asymmetric waveform ion mobility spectrometry (faims)/ion mobility spectrometry |
WO2001069217A2 (en) * | 2000-03-14 | 2001-09-20 | National Research Council Canada | Faims apparatus and method with ion diverting device |
WO2001095999A1 (en) * | 2000-06-09 | 2001-12-20 | University Of Delaware | System and method for chemical analysis using laser ablation |
CA2444257A1 (en) * | 2001-04-17 | 2002-10-24 | The Charles Stark Draper Laboratory, Inc. | Methods and apparatus for electrospray-augmented high field asymmetric ion mobility spectrometry |
US7586088B2 (en) | 2001-06-21 | 2009-09-08 | Micromass Uk Limited | Mass spectrometer and method of mass spectrometry |
US7119328B2 (en) * | 2001-06-30 | 2006-10-10 | Sionex Corporation | System for DMS peak resolution |
CN1692279B (en) * | 2001-06-30 | 2012-02-15 | 西奥奈克斯有限公司 | System for collection of data and identification of unknown ion species in an electric field |
US7091481B2 (en) * | 2001-08-08 | 2006-08-15 | Sionex Corporation | Method and apparatus for plasma generation |
US7274015B2 (en) * | 2001-08-08 | 2007-09-25 | Sionex Corporation | Capacitive discharge plasma ion source |
US6727496B2 (en) | 2001-08-14 | 2004-04-27 | Sionex Corporation | Pancake spectrometer |
JP2005509888A (en) * | 2001-11-16 | 2005-04-14 | ウオーターズ・インベストメンツ・リミテツド | Parallel processing of concentration, desalination and deposition on MALDI target |
US7005633B2 (en) * | 2002-02-08 | 2006-02-28 | Ionalytics Corporation | Method and apparatus for desolvating ions for introduction into a FAIMS analyzer region |
US7223967B2 (en) * | 2002-02-08 | 2007-05-29 | Thermo Finnigan Llc | Side-to-side FAIMS apparatus having an analyzer region with non-uniform spacing and method therefore |
US6987262B2 (en) * | 2002-02-08 | 2006-01-17 | Ionalytics Corporation | FAIMS apparatus and method for detecting trace amounts of a vapour in a carrier gas |
US7026612B2 (en) * | 2002-02-08 | 2006-04-11 | Ionalytics Corporation | FAIMS apparatus and method using carrier gases that contain a trace amount of a dopant species |
US7034286B2 (en) | 2002-02-08 | 2006-04-25 | Ionalytics Corporation | FAIMS apparatus having plural ion inlets and method therefore |
US7122794B1 (en) | 2002-02-21 | 2006-10-17 | Sionex Corporation | Systems and methods for ion mobility control |
FI118277B (en) | 2002-03-25 | 2007-09-14 | Environics Oy | Cell structure, instruments and method |
DE10236344B4 (en) * | 2002-08-08 | 2007-03-29 | Bruker Daltonik Gmbh | Ionize to atmospheric pressure for mass spectrometric analysis |
WO2004029614A1 (en) * | 2002-09-25 | 2004-04-08 | Ionalytics Corporation | Faims apparatus and method for separating ions |
US7417225B2 (en) * | 2002-09-25 | 2008-08-26 | Thermo Finnigan Llc | Apparatus and method for adjustment of ion separation resolution in FAIMS |
US7378651B2 (en) * | 2002-09-25 | 2008-05-27 | Thermo Finnigan Llc | High field asymmetric waveform ion mobility spectrometer FAIMS |
US7358504B2 (en) * | 2002-09-25 | 2008-04-15 | Thermo Finnigan Llc | FAIMS apparatus and method for separating ions |
US6822225B2 (en) * | 2002-09-25 | 2004-11-23 | Ut-Battelle Llc | Pulsed discharge ionization source for miniature ion mobility spectrometers |
WO2004040257A2 (en) * | 2002-10-12 | 2004-05-13 | Sionex Corporation | NOx MONITOR USING DIFFERENTIAL MOBILITY SPECTROMETRY |
DE10310394A1 (en) * | 2003-03-07 | 2004-09-23 | Wma Airsense Analysentechnik Gmbh | Process and measuring system for the detection of hazardous substances |
US7470898B2 (en) * | 2003-04-01 | 2008-12-30 | The Charles Stark Draper Laboratory, Inc. | Monitoring drinking water quality using differential mobility spectrometry |
WO2004090534A1 (en) * | 2003-04-01 | 2004-10-21 | The Charles Stark Draper Laboratory, Inc. | Non-invasive breath analysis using field asymmetric ion mobility spectrometry |
US7199362B2 (en) * | 2003-04-09 | 2007-04-03 | Brigham Young University | Cross-flow ion mobility analyzer |
WO2004097396A1 (en) * | 2003-04-24 | 2004-11-11 | Sionex Corporation | Apparatus and method for controlling ion behavior in ion mobility spectrometry |
JP2007524964A (en) * | 2003-06-20 | 2007-08-30 | ブリガム・ヤング・ユニバーシティ | Single instrument for ion mobility analysis and ion trap mass spectrometry |
CA2472492A1 (en) * | 2003-06-27 | 2004-12-27 | Ionalytics Corporation | Method of separating ions |
US7227138B2 (en) | 2003-06-27 | 2007-06-05 | Brigham Young University | Virtual ion trap |
US7223970B2 (en) | 2003-09-17 | 2007-05-29 | Sionex Corporation | Solid-state gas flow generator and related systems, applications, and methods |
US7071465B2 (en) | 2003-10-14 | 2006-07-04 | Washington State University Research Foundation | Ion mobility spectrometry method and apparatus |
US7186972B2 (en) * | 2003-10-23 | 2007-03-06 | Beckman Coulter, Inc. | Time of flight mass analyzer having improved mass resolution and method of operating same |
JP4802104B2 (en) * | 2003-11-25 | 2011-10-26 | サイオネックス コーポレイション | Mobility-based apparatus and method using dispersion characteristics, sample dissociation and / or pressure control to improve sample analysis |
EP1697024B1 (en) * | 2003-12-18 | 2017-08-30 | DH Technologies Development Pte. Ltd. | Methods and apparatus for enhanced ion based sample detection using selective pre-separation and amplification |
CA2551991A1 (en) | 2004-01-13 | 2005-07-28 | Sionex Corporation | Methods and apparatus for enhanced sample identification based on combined analytical techniques |
EP1562042A3 (en) * | 2004-01-22 | 2007-02-21 | Ionalytics Corporation | Method and apparatus for FAIMS for In-Line analysis of multiple samples |
EP1562041B1 (en) * | 2004-01-22 | 2016-11-09 | Thermo Finnigan Llc | Apparatus and method for establishing a temperature gradient within a FAIMS analyzer region |
WO2005074584A2 (en) | 2004-02-02 | 2005-08-18 | Sionex Corporation | Compact sample analysis systems and related methods using combined chromatography and mobility spectrometry techniques |
US20080251732A1 (en) * | 2004-02-03 | 2008-10-16 | Louis Dick | Radiation Detector |
EP1580793A3 (en) * | 2004-03-03 | 2006-07-19 | Ionalytics Corporation | Method and apparatus for selecting inlets of a FAIMS with multiple inlets |
GB0408751D0 (en) | 2004-04-20 | 2004-05-26 | Micromass Ltd | Mass spectrometer |
EP1756561A1 (en) * | 2004-04-28 | 2007-02-28 | Sionex Corporation | System and method for ion species analysis with enhanced condition control and data interpretation using differential mobility spectrometers |
EA200700395A1 (en) * | 2004-08-02 | 2008-12-30 | Оулстоун Лтд. | SPECTROMETER OF ION MOBILITY |
GB0417184D0 (en) * | 2004-08-02 | 2004-09-01 | Owlstone Ltd | Microchip ion mobility spectrometer |
CA2574295C (en) * | 2004-08-05 | 2009-11-24 | Ionalytics Corporation | Low field mobility separation of ions using segmented cylindrical faims |
US7388195B2 (en) * | 2004-09-30 | 2008-06-17 | Charles Stark Draper Laboratory, Inc. | Apparatus and systems for processing samples for analysis via ion mobility spectrometry |
DE112005002204T5 (en) * | 2004-10-14 | 2007-09-27 | Electronic Biosciences, LLC, San Diego | Integrated sensor field for generating a bio-fingerprint of an analyte |
JP5529379B2 (en) * | 2004-10-28 | 2014-06-25 | リザーランド,アルバート,エドワード | Method and apparatus for separating isobaric interferences |
GB0424426D0 (en) | 2004-11-04 | 2004-12-08 | Micromass Ltd | Mass spectrometer |
US7227132B2 (en) * | 2004-11-24 | 2007-06-05 | Thermo Finnigan Llc | Apparatus and method for adjustment of ion separation resolution in FAIMS |
US7399959B2 (en) * | 2004-12-03 | 2008-07-15 | Sionex Corporation | Method and apparatus for enhanced ion based sample filtering and detection |
WO2006061593A2 (en) | 2004-12-07 | 2006-06-15 | Micromass Uk Limited | Mass spectrometer |
US8754366B2 (en) * | 2005-01-11 | 2014-06-17 | Hamilton Sundstrand Corporation | Tandem differential mobility ion mobility spectrometer for chemical vapor detection |
US7812309B2 (en) * | 2005-02-09 | 2010-10-12 | Thermo Finnigan Llc | Apparatus and method for an electro-acoustic ion transmittor |
GB0503010D0 (en) * | 2005-02-14 | 2005-03-16 | Micromass Ltd | Mass spectrometer |
US8440968B2 (en) * | 2005-02-14 | 2013-05-14 | Micromass Uk Limited | Ion-mobility analyser |
US7714282B2 (en) * | 2005-02-17 | 2010-05-11 | Thermo Finnigan Llc | Apparatus and method for forming a gas composition gradient between FAIMS electrodes |
US7148474B2 (en) * | 2005-04-11 | 2006-12-12 | Battelle Memorial Institute | Device for two-dimensional gas-phase separation and characterization of ion mixtures |
US7608818B2 (en) | 2005-04-29 | 2009-10-27 | Sionex Corporation | Compact gas chromatography and ion mobility based sample analysis systems, methods, and devices |
US7351960B2 (en) * | 2005-05-16 | 2008-04-01 | Thermo Finnigan Llc | Enhanced ion desolvation for an ion mobility spectrometry device |
WO2006127974A1 (en) * | 2005-05-24 | 2006-11-30 | Sionex Corporation | Combined mass and differential mobility spectrometry |
US7579589B2 (en) | 2005-07-26 | 2009-08-25 | Sionex Corporation | Ultra compact ion mobility based analyzer apparatus, method, and system |
GB0808344D0 (en) * | 2008-05-08 | 2008-06-18 | Owlstone Ltd | Sensor |
US7358487B2 (en) * | 2005-09-19 | 2008-04-15 | Owlstone Nanotech, Inc. | Ion gate |
US20110036973A1 (en) * | 2005-09-19 | 2011-02-17 | Owlstone Ltd | Ion pump |
US7449683B2 (en) * | 2005-09-28 | 2008-11-11 | Battelle Memorial Institute | Method and apparatus for high-order differential mobility separations |
FI119660B (en) * | 2005-11-30 | 2009-01-30 | Environics Oy | Method and apparatus for measuring ion mobility in a gas |
WO2007072271A2 (en) * | 2005-12-19 | 2007-06-28 | Koninklijke Philips Electronics N.V. | Apparatus and method for generating steam |
CA2632251C (en) * | 2005-12-22 | 2011-06-21 | Thermo Finnigan Llc | Apparatus and method for pumping in an ion optical device |
WO2007120373A2 (en) * | 2006-01-26 | 2007-10-25 | Sionex Corporation | Differential mobility spectrometer analyzer and pre-filter apparatus, methods and systems |
US8563322B2 (en) | 2006-04-20 | 2013-10-22 | Axel Mie | Method for separation of molecules |
US7397027B2 (en) * | 2006-05-30 | 2008-07-08 | Agilent Technologies, Inc. | Multi-channel high-field asymmetric waveform ion mobility spectrometry |
US7468511B2 (en) | 2006-06-13 | 2008-12-23 | Thermo Finnigan, Llc | FAIMS electrodes with lateral ion focusing |
US7812305B2 (en) * | 2006-06-29 | 2010-10-12 | Sionex Corporation | Tandem differential mobility spectrometers and mass spectrometer for enhanced analysis |
GB0613900D0 (en) * | 2006-07-13 | 2006-08-23 | Micromass Ltd | Mass spectrometer |
GB0622780D0 (en) * | 2006-11-15 | 2006-12-27 | Micromass Ltd | Mass spectrometer |
US7550717B1 (en) * | 2006-11-30 | 2009-06-23 | Thermo Finnigan Llc | Quadrupole FAIMS apparatus |
JP5362586B2 (en) * | 2007-02-01 | 2013-12-11 | サイオネックス コーポレイション | Differential mobility spectrometer prefilter for mass spectrometer |
US7723679B2 (en) * | 2007-02-23 | 2010-05-25 | Brigham Young University | Coaxial hybrid radio frequency ion trap mass analyzer |
EP2126961B1 (en) * | 2007-02-24 | 2014-06-18 | Sociedad Europea De Analisis Diferencial De Movilidad S.L. | Method to accurately discriminate gas phase ions with several filtering devices in tandem |
DE102007017055B4 (en) * | 2007-04-11 | 2011-06-22 | Bruker Daltonik GmbH, 28359 | Measuring the mobility of mass-selected ions |
JP4862738B2 (en) * | 2007-05-08 | 2012-01-25 | 株式会社日立製作所 | Ion mobility analyzer and ion mobility separation / mass spectrometry combined device |
US7863562B2 (en) * | 2007-06-22 | 2011-01-04 | Shimadzu Corporation | Method and apparatus for digital differential ion mobility separation |
JP4905270B2 (en) * | 2007-06-29 | 2012-03-28 | 株式会社日立製作所 | Ion trap, mass spectrometer, ion mobility analyzer |
US8173959B1 (en) * | 2007-07-21 | 2012-05-08 | Implant Sciences Corporation | Real-time trace detection by high field and low field ion mobility and mass spectrometry |
US7638765B1 (en) | 2007-07-27 | 2009-12-29 | Thermo Finnigan Llc | FAIMS cell with separate desolvation and carrier gas inlets |
US8334506B2 (en) | 2007-12-10 | 2012-12-18 | 1St Detect Corporation | End cap voltage control of ion traps |
US7858934B2 (en) * | 2007-12-20 | 2010-12-28 | Thermo Finnigan Llc | Quadrupole FAIMS apparatus |
US8067731B2 (en) * | 2008-03-08 | 2011-11-29 | Scott Technologies, Inc. | Chemical detection method and system |
US7973277B2 (en) | 2008-05-27 | 2011-07-05 | 1St Detect Corporation | Driving a mass spectrometer ion trap or mass filter |
US8084736B2 (en) * | 2008-05-30 | 2011-12-27 | Mds Analytical Technologies, A Business Unit Of Mds Inc. | Method and system for vacuum driven differential mobility spectrometer/mass spectrometer interface with adjustable resolution and selectivity |
US20100282966A1 (en) * | 2008-05-30 | 2010-11-11 | DH Technologies Development Pte Ltd. | Method and system for vacuum driven mass spectrometer interface with adjustable resolution and selectivity |
DE102008063233B4 (en) * | 2008-12-23 | 2012-02-16 | Bruker Daltonik Gmbh | High mass resolution with ICR measuring cells |
GB0907619D0 (en) * | 2009-05-01 | 2009-06-10 | Shimadzu Res Lab Europe Ltd | Ion analysis apparatus and method of use |
JP5985989B2 (en) * | 2010-01-28 | 2016-09-06 | エムディーエス アナリティカル テクノロジーズ, ア ビジネス ユニット オブ エムディーエス インコーポレイテッド | Mass spectrometry system with low pressure differential mobility spectrometer |
GB201002445D0 (en) * | 2010-02-12 | 2010-03-31 | Micromass Ltd | Improved differentiation and determination of ionic conformations by combining ion mobility and hydrogen deuterium exchange reactions |
US8158932B2 (en) | 2010-04-16 | 2012-04-17 | Thermo Finnigan Llc | FAIMS having a displaceable electrode for on/off operation |
EP2603307B1 (en) * | 2010-08-10 | 2018-10-10 | Shimadzu Corporation | Curtain gas filter for high-flux ion sources |
GB201021360D0 (en) * | 2010-12-16 | 2011-01-26 | Thermo Fisher Scient Bremen Gmbh | Apparatus and methods for ion mobility spectrometry |
DE102011008713B4 (en) * | 2011-01-17 | 2012-08-02 | Bruker Daltonik Gmbh | Kingdon ion traps with higher order Cassini potentials |
US9068943B2 (en) | 2011-04-27 | 2015-06-30 | Implant Sciences Corporation | Chemical analysis using hyphenated low and high field ion mobility |
US9395333B2 (en) | 2011-06-22 | 2016-07-19 | Implant Sciences Corporation | Ion mobility spectrometer device with embedded faims |
WO2012167254A1 (en) * | 2011-06-03 | 2012-12-06 | Dh Technologies Development Pte. Ltd. | Method and system for reducing interferences in the spectrometric analysis of steroids |
US8502138B2 (en) * | 2011-07-29 | 2013-08-06 | Sharp Kabushiki Kaisha | Integrated ion mobility spectrometer |
CN102354650A (en) * | 2011-09-20 | 2012-02-15 | 中国科学院化学研究所 | Electrospray ion source device |
RU2476870C1 (en) * | 2011-11-02 | 2013-02-27 | Федеральное государственное унитарное предприятие "Научно-исследовательский технологический институт имени А.П. Александрова" | Method of separating and detecting ions in gas (versions) |
US9400261B2 (en) * | 2011-11-17 | 2016-07-26 | Owlstone Limited | Sensor apparatus and method for use with gas ionization systems |
US9070542B2 (en) | 2012-04-06 | 2015-06-30 | Implant Sciences Corporation | Selective ionization using high frequency filtering of reactive ions |
CN104380098B (en) * | 2012-05-18 | 2018-03-27 | Dh科技发展私人贸易有限公司 | Method for selective enumeration method biology related acid |
US9188565B2 (en) * | 2012-05-31 | 2015-11-17 | The University Of North Carolina At Chapel Hill | High field asymmetric ion mobility spectrometry (FAIMS) methods and devices with voltage-gas composition linked scans |
GB201314977D0 (en) * | 2013-08-21 | 2013-10-02 | Thermo Fisher Scient Bremen | Mass spectrometer |
CN104569233B (en) * | 2013-10-28 | 2018-04-24 | 同方威视技术股份有限公司 | ion mobility spectrometer system |
WO2015191569A1 (en) * | 2014-06-13 | 2015-12-17 | Perkinelmer Health Sciences, Inc. | Rf ion guide with axial fields |
WO2016018304A1 (en) * | 2014-07-30 | 2016-02-04 | Hewlett-Packard Development Company, L.P. | Ion writing unit with heating |
GB2531292B (en) * | 2014-10-14 | 2019-06-12 | Smiths Detection Watford Ltd | Method and apparatus |
GB2569059B (en) * | 2014-10-14 | 2019-09-25 | Smiths Detection Watford Ltd | Method and apparatus |
US9766218B2 (en) * | 2014-10-31 | 2017-09-19 | Morpho Detection, Llc | Gas curtain at inlet for trace detectors |
CN107407658B (en) | 2015-03-09 | 2020-08-07 | 株式会社岛津制作所 | Parallel-plate type non-uniform electric field ion mobility spectrometer |
US10030658B2 (en) | 2016-04-27 | 2018-07-24 | Mark W. Wood | Concentric vane compressor |
US11480178B2 (en) | 2016-04-27 | 2022-10-25 | Mark W. Wood | Multistage compressor system with intercooler |
US11686309B2 (en) | 2016-11-07 | 2023-06-27 | Mark W. Wood | Scroll compressor with circular surface terminations |
US11339786B2 (en) | 2016-11-07 | 2022-05-24 | Mark W. Wood | Scroll compressor with circular surface terminations |
US10049868B2 (en) | 2016-12-06 | 2018-08-14 | Rapiscan Systems, Inc. | Apparatus for detecting constituents in a sample and method of using the same |
US11092569B1 (en) | 2020-07-05 | 2021-08-17 | Cannabix Technologies Inc. | Apparatus and methods for detection of molecules |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3668383A (en) * | 1969-01-09 | 1972-06-06 | Franklin Gno Corp | Apparatus and methods for separating, detecting, and measuring trace gases |
US5420424A (en) * | 1994-04-29 | 1995-05-30 | Mine Safety Appliances Company | Ion mobility spectrometer |
US5905258A (en) * | 1997-06-02 | 1999-05-18 | Advanced Research & Techology Institute | Hybrid ion mobility and mass spectrometer |
WO2000008454A1 (en) * | 1998-08-05 | 2000-02-17 | National Research Council Canada | Method for separation of isomers and different conformations of ions in gaseous phase |
Family Cites Families (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2001A (en) * | 1841-03-12 | Sawmill | ||
US2002A (en) * | 1841-03-12 | Tor and planter for plowing | ||
US2003A (en) * | 1841-03-12 | Improvement in horizontal windivhlls | ||
JPS50119696A (en) * | 1974-03-04 | 1975-09-19 | ||
US4234791A (en) * | 1978-11-13 | 1980-11-18 | Research Corporation | Tandem quadrupole mass spectrometer for selected ion fragmentation studies and low energy collision induced dissociator therefor |
US4311669A (en) * | 1980-08-21 | 1982-01-19 | The Bendix Corporation | Membrane interface for ion mobility detector cells |
US4501965A (en) * | 1983-01-14 | 1985-02-26 | Mds Health Group Limited | Method and apparatus for sampling a plasma into a vacuum chamber |
US5106468A (en) * | 1985-12-30 | 1992-04-21 | Exxon Research And Engineering Company | Electrophoretic separation |
US5026987A (en) * | 1988-06-02 | 1991-06-25 | Purdue Research Foundation | Mass spectrometer with in-line collision surface means |
US5073713A (en) * | 1990-05-29 | 1991-12-17 | Battelle Memorial Institute | Detection method for dissociation of multiple-charged ions |
US5283199A (en) * | 1990-06-01 | 1994-02-01 | Environmental Technologies Group, Inc. | Chlorine dioxide monitor based on ion mobility spectrometry with selective dopant chemistry |
US5248875A (en) * | 1992-04-24 | 1993-09-28 | Mds Health Group Limited | Method for increased resolution in tandem mass spectrometry |
US5523566A (en) * | 1994-07-20 | 1996-06-04 | Fuerstenau; Stephen D. | Method for detection and analysis of inorganic ions in aqueous solutions by electrospray mass spectrometry |
US5520424A (en) | 1995-01-30 | 1996-05-28 | U.S. Controls Copr. | Tamper-proof door switch and latch device |
AU6653296A (en) * | 1995-08-11 | 1997-03-12 | Mds Health Group Limited | Spectrometer with axial field |
US5811800A (en) * | 1995-09-14 | 1998-09-22 | Bruker-Franzen Analytik Gmbh | Temporary storage of ions for mass spectrometric analyses |
RU2105298C1 (en) | 1995-10-03 | 1998-02-20 | Владилен Федорович Минин | Method of analysis of microimpurities of substances in air |
US5801379A (en) * | 1996-03-01 | 1998-09-01 | Mine Safety Appliances Company | High voltage waveform generator |
US5723861A (en) * | 1996-04-04 | 1998-03-03 | Mine Safety Appliances Company | Recirculating filtration system for use with a transportable ion mobility spectrometer |
US5736739A (en) * | 1996-04-04 | 1998-04-07 | Mine Safety Appliances Company | Recirculating filtration system for use with a transportable ion mobility spectrometer in gas chromatography applications |
US5763876A (en) * | 1996-04-04 | 1998-06-09 | Mine Safety Appliances Company | Inlet heating device for ion mobility spectrometer |
US5869831A (en) * | 1996-06-27 | 1999-02-09 | Yale University | Method and apparatus for separation of ions in a gas for mass spectrometry |
RU2105296C1 (en) | 1996-07-24 | 1998-02-20 | Всероссийский научно-исследовательский институт минерального сырья им.Н.М.Федоровского | Method of determining nitrite ion in solution |
US6498342B1 (en) * | 1997-06-02 | 2002-12-24 | Advanced Research & Technology Institute | Ion separation instrument |
US6323482B1 (en) * | 1997-06-02 | 2001-11-27 | Advanced Research And Technology Institute, Inc. | Ion mobility and mass spectrometer |
US6960761B2 (en) | 1997-06-02 | 2005-11-01 | Advanced Research & Technology Institute | Instrument for separating ions in time as functions of preselected ion mobility and ion mass |
US5955886A (en) * | 1997-07-10 | 1999-09-21 | Pcp, Inc. | Microliter-sized ionization device and method |
CA2245022C (en) * | 1997-08-22 | 2007-06-12 | Mds Inc. | Ion source |
US6040573A (en) * | 1997-09-25 | 2000-03-21 | Indiana University Advanced Research & Technology Institute Inc. | Electric field generation for charged particle analyzers |
US5789745A (en) * | 1997-10-28 | 1998-08-04 | Sandia Corporation | Ion mobility spectrometer using frequency-domain separation |
US6041734A (en) * | 1997-12-01 | 2000-03-28 | Applied Materials, Inc. | Use of an asymmetric waveform to control ion bombardment during substrate processing |
DE69825789T2 (en) * | 1997-12-04 | 2005-09-01 | University Of Manitoba, Winnipeg | DEVICE AND METHOD FOR THE SHOCK-INDUCED DISSOCIATION OF IONES IN A QUADRUPOL ION LADDER |
DE69806415T2 (en) | 1997-12-05 | 2003-02-20 | The University Of British Columbia, Vancouver | METHOD FOR THE EXAMINATION OF IONS IN AN APPARATUS WITH A FLIGHT-TIME SPECTROMETER AND A LINEAR QUADRUPOL ION TRAP |
US6015972A (en) * | 1998-01-12 | 2000-01-18 | Mds Inc. | Boundary activated dissociation in rod-type mass spectrometer |
US6600155B1 (en) * | 1998-01-23 | 2003-07-29 | Analytica Of Branford, Inc. | Mass spectrometry from surfaces |
US6124592A (en) * | 1998-03-18 | 2000-09-26 | Technispan Llc | Ion mobility storage trap and method |
US6504149B2 (en) * | 1998-08-05 | 2003-01-07 | National Research Council Canada | Apparatus and method for desolvating and focussing ions for introduction into a mass spectrometer |
US6621077B1 (en) * | 1998-08-05 | 2003-09-16 | National Research Council Canada | Apparatus and method for atmospheric pressure-3-dimensional ion trapping |
CA2255122C (en) * | 1998-12-04 | 2007-10-09 | Mds Inc. | Improvements in ms/ms methods for a quadrupole/time of flight tandem mass spectrometer |
US6410914B1 (en) * | 1999-03-05 | 2002-06-25 | Bruker Daltonics Inc. | Ionization chamber for atmospheric pressure ionization mass spectrometry |
EP1688987A1 (en) * | 1999-04-06 | 2006-08-09 | Micromass UK Limited | Improved methods of identifying peptides and proteins by mass spectrometry |
AU3952200A (en) | 1999-04-16 | 2000-11-02 | Mds Inc. | Mass spectrometer, including coupling of an atmospheric pressure ion source to alow pressure mass analyzer |
US6534764B1 (en) * | 1999-06-11 | 2003-03-18 | Perseptive Biosystems | Tandem time-of-flight mass spectrometer with damping in collision cell and method for use |
US6512224B1 (en) * | 1999-07-21 | 2003-01-28 | The Charles Stark Draper Laboratory, Inc. | Longitudinal field driven field asymmetric ion mobility filter and detection system |
US6815668B2 (en) * | 1999-07-21 | 2004-11-09 | The Charles Stark Draper Laboratory, Inc. | Method and apparatus for chromatography-high field asymmetric waveform ion mobility spectrometry |
US6495823B1 (en) * | 1999-07-21 | 2002-12-17 | The Charles Stark Draper Laboratory, Inc. | Micromachined field asymmetric ion mobility filter and detection system |
US6525314B1 (en) * | 1999-09-15 | 2003-02-25 | Waters Investments Limited | Compact high-performance mass spectrometer |
WO2001022049A2 (en) | 1999-09-24 | 2001-03-29 | Haley Lawrence V | A novel ion-mobility based device using an oscillatory high-field ion separator with a multi-channel array charge collector |
AU2001239076A1 (en) | 2000-03-14 | 2001-09-24 | National Research Council Canada | Tandem high field asymmetric waveform ion mobility spectrometry (faims)/ion mobility spectrometry |
AU782410B2 (en) * | 2000-03-14 | 2005-07-28 | National Research Council Of Canada | Improved parallel plate geometry faims apparatus and method |
WO2001069217A2 (en) * | 2000-03-14 | 2001-09-20 | National Research Council Canada | Faims apparatus and method with ion diverting device |
JP3976470B2 (en) * | 2000-04-13 | 2007-09-19 | 本州化学工業株式会社 | Method for debutylating butylphenols |
US6417511B1 (en) * | 2000-07-17 | 2002-07-09 | Agilent Technologies, Inc. | Ring pole ion guide apparatus, systems and method |
US6598553B1 (en) * | 2002-02-13 | 2003-07-29 | Mark X Steering Systems, Llc | Power assist marine steering system |
-
2001
- 2001-03-14 WO PCT/CA2001/000309 patent/WO2001069217A2/en active IP Right Grant
- 2001-03-14 CA CA2402812A patent/CA2402812C/en not_active Expired - Fee Related
- 2001-03-14 CA CA002401735A patent/CA2401735C/en not_active Expired - Lifetime
- 2001-03-14 CA CA002402628A patent/CA2402628A1/en not_active Abandoned
- 2001-03-14 CA CA002401722A patent/CA2401722C/en not_active Expired - Fee Related
- 2001-03-14 US US10/220,602 patent/US6653627B2/en not_active Expired - Lifetime
- 2001-03-14 AU AU42138/01A patent/AU780704B2/en not_active Ceased
- 2001-03-14 AT AT01914868T patent/ATE459976T1/en not_active IP Right Cessation
- 2001-03-14 US US10/221,479 patent/US6799355B2/en not_active Expired - Lifetime
- 2001-03-14 EP EP01913443A patent/EP1266395A2/en not_active Withdrawn
- 2001-03-14 AU AU3907401A patent/AU3907401A/en active Pending
- 2001-03-14 US US10/220,605 patent/US6822224B2/en not_active Expired - Fee Related
- 2001-03-14 AU AU2001239073A patent/AU2001239073B2/en not_active Ceased
- 2001-03-14 US US10/221,481 patent/US6825461B2/en not_active Expired - Fee Related
- 2001-03-14 US US10/220,604 patent/US6774360B2/en not_active Expired - Lifetime
- 2001-03-14 EP EP01913446A patent/EP1266393A2/en not_active Withdrawn
- 2001-03-14 WO PCT/CA2001/000312 patent/WO2001069219A2/en active IP Right Grant
- 2001-03-14 DE DE60141455T patent/DE60141455D1/en not_active Expired - Lifetime
- 2001-03-14 AU AU4213901A patent/AU4213901A/en active Pending
- 2001-03-14 AU AU2001239072A patent/AU2001239072B2/en not_active Ceased
- 2001-03-14 CA CA2402798A patent/CA2402798C/en not_active Expired - Fee Related
- 2001-03-14 AU AU2001239075A patent/AU2001239075A1/en not_active Abandoned
- 2001-03-14 WO PCT/CA2001/000314 patent/WO2001069647A2/en active Application Filing
- 2001-03-14 WO PCT/CA2001/000311 patent/WO2001069218A2/en active IP Right Grant
- 2001-03-14 JP JP2001567612A patent/JP4783533B2/en not_active Expired - Fee Related
- 2001-03-14 EP EP01914868A patent/EP1266394B1/en not_active Expired - Lifetime
- 2001-03-14 DE DE60114394T patent/DE60114394T2/en not_active Expired - Lifetime
- 2001-03-14 WO PCT/CA2001/000310 patent/WO2001069646A2/en active Application Filing
- 2001-03-14 EP EP01913444A patent/EP1273029B8/en not_active Expired - Lifetime
- 2001-03-14 CA CA2401802A patent/CA2401802C/en not_active Expired - Fee Related
- 2001-03-14 WO PCT/CA2001/000313 patent/WO2001069220A2/en active Application Filing
- 2001-03-14 AU AU3907201A patent/AU3907201A/en active Pending
- 2001-03-14 AU AU2001239074A patent/AU2001239074B2/en not_active Expired - Fee Related
- 2001-03-14 AT AT01913444T patent/ATE308115T1/en not_active IP Right Cessation
- 2001-03-14 AU AU3907301A patent/AU3907301A/en active Pending
- 2001-03-14 AU AU2001242139A patent/AU2001242139B2/en not_active Expired - Fee Related
- 2001-03-14 US US10/221,624 patent/US6703609B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3668383A (en) * | 1969-01-09 | 1972-06-06 | Franklin Gno Corp | Apparatus and methods for separating, detecting, and measuring trace gases |
US5420424A (en) * | 1994-04-29 | 1995-05-30 | Mine Safety Appliances Company | Ion mobility spectrometer |
US5905258A (en) * | 1997-06-02 | 1999-05-18 | Advanced Research & Techology Institute | Hybrid ion mobility and mass spectrometer |
WO2000008454A1 (en) * | 1998-08-05 | 2000-02-17 | National Research Council Canada | Method for separation of isomers and different conformations of ions in gaseous phase |
Non-Patent Citations (1)
Title |
---|
BURYAKOV I A ET AL: "A NEW METHOD OF SEPARATION OF MULTI-ATOMIC IONS BY MOBILITY AT ATMOSPHERIC PRESSURE USING A HIGH-FREQUENCY AMPLITUDE-ASYMMETRIC STRONG ELECTRIC FIELD" INTERNATIONAL JOURNAL OF MASS SPECTROMETRY AND ION PROCESSES, ELSEVIER SCIENTIFIC PUBLISHING CO. AMSTERDAM, NL, vol. 128, 1993, pages 143-148, XP000865595 ISSN: 0168-1176 cited in the application * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003067243A1 (en) * | 2002-02-08 | 2003-08-14 | Ionalytics Corporation | Side-to-side faims apparatus having an analyzer region with non-uniform spacing and method therefore |
WO2003067244A2 (en) * | 2002-02-08 | 2003-08-14 | Ionalytics Corporation | Faims with non-destructive detection of selectively transmitted ions |
WO2003067244A3 (en) * | 2002-02-08 | 2003-10-16 | Ionalytics Corp | Faims with non-destructive detection of selectively transmitted ions |
US6787765B2 (en) | 2002-02-08 | 2004-09-07 | Ionalytics Corporation | FAIMS with non-destructive detection of selectively transmitted ions |
US6917036B2 (en) | 2002-02-08 | 2005-07-12 | Ionalytics Corporation | FAIMS with non-destructive detection of selectively transmitted ions |
US6998608B2 (en) | 2002-02-08 | 2006-02-14 | Ionalytics Corporation | FAIMS with non-destructive detection of selectively transmitted ions |
US6906319B2 (en) | 2002-05-17 | 2005-06-14 | Micromass Uk Limited | Mass spectrometer |
US7095014B2 (en) | 2002-05-17 | 2006-08-22 | Micromass Uk Limited | Mass spectrometer |
EP2112683A1 (en) | 2008-04-22 | 2009-10-28 | IEE INTERNATIONAL ELECTRONICS & ENGINEERING S.A. | Differential mobility spectrometer and operating method therefor |
CN102901753A (en) * | 2012-09-24 | 2013-01-30 | 杭州泰林生物技术设备有限公司 | Liquid oxidation detection electrode and equipment thereof |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1273029B8 (en) | Faims apparatus and method with laser-based ionization source | |
AU2001239073A1 (en) | Faims apparatus and method with laser-based ionization source | |
CA2401772C (en) | Tandem high field asymmetric waveform ion mobility spectrometry (faims)/ion mobility spectrometry | |
AU2001239074A1 (en) | Apparatus and method for tandem ICP/FAIMS/MS | |
AU2001239072A1 (en) | Tandem FAIMS/ion-trapping apparatus and method | |
US20030057367A1 (en) | Parallel plate geometry faims apparatus and method | |
AU2001242139A1 (en) | Faims apparatus and method using carrier gas of mixed composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A2 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A2 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2401722 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10220602 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001239073 Country of ref document: AU |
|
AK | Designated states |
Kind code of ref document: A3 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A3 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001913444 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001913444 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001239073 Country of ref document: AU |
|
WWG | Wipo information: grant in national office |
Ref document number: 2001913444 Country of ref document: EP |