WO2001059030A1 - Dendrimers - Google Patents
Dendrimers Download PDFInfo
- Publication number
- WO2001059030A1 WO2001059030A1 PCT/GB2001/000522 GB0100522W WO0159030A1 WO 2001059030 A1 WO2001059030 A1 WO 2001059030A1 GB 0100522 W GB0100522 W GB 0100522W WO 0159030 A1 WO0159030 A1 WO 0159030A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound according
- compound
- groups
- aryl
- Prior art date
Links
- 239000000412 dendrimer Substances 0.000 title claims abstract description 84
- 229920000736 dendritic polymer Polymers 0.000 title claims abstract description 80
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 93
- 150000001875 compounds Chemical class 0.000 claims abstract description 62
- 125000003118 aryl group Chemical group 0.000 claims abstract description 45
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 18
- 125000001072 heteroaryl group Chemical group 0.000 claims abstract description 17
- 239000001257 hydrogen Substances 0.000 claims abstract description 9
- 125000005842 heteroatom Chemical group 0.000 claims abstract description 8
- 125000004450 alkenylene group Chemical group 0.000 claims abstract description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 50
- 125000005504 styryl group Chemical group 0.000 claims description 34
- 239000002904 solvent Substances 0.000 claims description 27
- 239000007787 solid Substances 0.000 claims description 24
- -1 sulphonyl group Chemical group 0.000 claims description 24
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 24
- 125000000217 alkyl group Chemical group 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 16
- 125000003342 alkenyl group Chemical group 0.000 claims description 15
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 15
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 12
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 claims description 11
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 claims description 10
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 claims description 10
- 210000001787 dendrite Anatomy 0.000 claims description 8
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 150000001336 alkenes Chemical class 0.000 claims description 7
- 125000000524 functional group Chemical group 0.000 claims description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 claims description 5
- 125000004429 atom Chemical group 0.000 claims description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 5
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 claims description 5
- 229920002554 vinyl polymer Polymers 0.000 claims description 5
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 claims description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 claims description 4
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 claims description 4
- 230000005284 excitation Effects 0.000 claims description 4
- 150000002430 hydrocarbons Chemical group 0.000 claims description 4
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 3
- 125000003172 aldehyde group Chemical group 0.000 claims description 3
- 125000006575 electron-withdrawing group Chemical group 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 2
- 239000004721 Polyphenylene oxide Chemical group 0.000 claims description 2
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 claims description 2
- 125000003282 alkyl amino group Chemical group 0.000 claims description 2
- 125000003277 amino group Chemical group 0.000 claims description 2
- 210000004027 cell Anatomy 0.000 claims description 2
- WCPAKWJPBJAGKN-UHFFFAOYSA-N oxadiazole Chemical compound C1=CON=N1 WCPAKWJPBJAGKN-UHFFFAOYSA-N 0.000 claims description 2
- 229920000570 polyether Chemical group 0.000 claims description 2
- 229930192474 thiophene Natural products 0.000 claims description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims 1
- 239000005864 Sulphur Substances 0.000 claims 1
- 150000001555 benzenes Chemical group 0.000 claims 1
- 238000001704 evaporation Methods 0.000 claims 1
- 125000001183 hydrocarbyl group Chemical group 0.000 abstract 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 116
- 239000010410 layer Substances 0.000 description 49
- 239000000203 mixture Substances 0.000 description 34
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 28
- WVDDGKGOMKODPV-UHFFFAOYSA-N hydroxymethyl benzene Natural products OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 27
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 26
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 26
- 239000011162 core material Substances 0.000 description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 23
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 23
- 230000037230 mobility Effects 0.000 description 21
- 239000000243 solution Substances 0.000 description 21
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 21
- 239000003208 petroleum Substances 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 238000004440 column chromatography Methods 0.000 description 15
- 229910052786 argon Inorganic materials 0.000 description 14
- 239000012044 organic layer Substances 0.000 description 13
- 229910052938 sodium sulfate Inorganic materials 0.000 description 13
- 235000011152 sodium sulphate Nutrition 0.000 description 13
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 13
- 239000012267 brine Substances 0.000 description 12
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 12
- 239000007983 Tris buffer Substances 0.000 description 11
- 235000019445 benzyl alcohol Nutrition 0.000 description 11
- 230000001965 increasing effect Effects 0.000 description 11
- 238000000816 matrix-assisted laser desorption--ionisation Methods 0.000 description 11
- 239000002356 single layer Substances 0.000 description 11
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 10
- 150000001299 aldehydes Chemical class 0.000 description 10
- 150000001412 amines Chemical class 0.000 description 10
- 239000000377 silicon dioxide Substances 0.000 description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 9
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 8
- 239000003921 oil Substances 0.000 description 8
- CYTQBVOFDCPGCX-UHFFFAOYSA-N trimethyl phosphite Chemical compound COP(OC)OC CYTQBVOFDCPGCX-UHFFFAOYSA-N 0.000 description 8
- 229910020068 MgAl Inorganic materials 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000003480 eluent Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000004411 aluminium Substances 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 6
- 230000004888 barrier function Effects 0.000 description 5
- HUMNYLRZRPPJDN-UHFFFAOYSA-N benzaldehyde Chemical compound O=CC1=CC=CC=C1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 230000009878 intermolecular interaction Effects 0.000 description 5
- 238000004020 luminiscence type Methods 0.000 description 5
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- 125000003545 alkoxy group Chemical group 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- AOJDZKCUAATBGE-UHFFFAOYSA-N bromomethane Chemical compound Br[CH2] AOJDZKCUAATBGE-UHFFFAOYSA-N 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 125000004433 nitrogen atom Chemical group N* 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 238000001953 recrystallisation Methods 0.000 description 4
- 239000012279 sodium borohydride Substances 0.000 description 4
- 229910000033 sodium borohydride Inorganic materials 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 101150041968 CDC13 gene Proteins 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 3
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 230000005525 hole transport Effects 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- QNGNSVIICDLXHT-UHFFFAOYSA-N para-ethylbenzaldehyde Natural products CCC1=CC=C(C=O)C=C1 QNGNSVIICDLXHT-UHFFFAOYSA-N 0.000 description 3
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- QBFNGLBSVFKILI-UHFFFAOYSA-N 4-ethenylbenzaldehyde Chemical compound C=CC1=CC=C(C=O)C=C1 QBFNGLBSVFKILI-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 125000005002 aryl methyl group Chemical group 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 239000010406 cathode material Substances 0.000 description 2
- 229920000547 conjugated polymer Polymers 0.000 description 2
- 230000021615 conjugation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005401 electroluminescence Methods 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 229940102396 methyl bromide Drugs 0.000 description 2
- GZUXJHMPEANEGY-UHFFFAOYSA-N methyl bromide Substances BrC GZUXJHMPEANEGY-UHFFFAOYSA-N 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 230000000171 quenching effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000002525 ultrasonication Methods 0.000 description 2
- NGQSLSMAEVWNPU-YTEMWHBBSA-N 1,2-bis[(e)-2-phenylethenyl]benzene Chemical compound C=1C=CC=CC=1/C=C/C1=CC=CC=C1\C=C\C1=CC=CC=C1 NGQSLSMAEVWNPU-YTEMWHBBSA-N 0.000 description 1
- DQQKEYDDVSREIE-UHFFFAOYSA-N 1,3-bis(4-bromophenyl)propan-2-one Chemical compound C1=CC(Br)=CC=C1CC(=O)CC1=CC=C(Br)C=C1 DQQKEYDDVSREIE-UHFFFAOYSA-N 0.000 description 1
- UTFHKDWYIWJZEJ-UHFFFAOYSA-N 1,3-bis[2-[3,5-bis[2-[3,5-bis[2-(3,5-ditert-butylphenyl)ethenyl]phenyl]ethenyl]phenyl]ethenyl]-5-(bromomethyl)benzene Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(C=CC=2C=C(C=CC=3C=C(C=C(C=3)C(C)(C)C)C(C)(C)C)C=C(C=CC=3C=C(C=CC=4C=C(C=CC=5C=C(C=C(C=5)C(C)(C)C)C(C)(C)C)C=C(C=CC=5C=C(C=C(C=5)C(C)(C)C)C(C)(C)C)C=4)C=C(C=CC=4C=C(C=CC=5C=C(C=CC=6C=C(C=CC=7C=C(C=C(C=7)C(C)(C)C)C(C)(C)C)C=C(C=CC=7C=C(C=C(C=7)C(C)(C)C)C(C)(C)C)C=6)C=C(C=CC=6C=C(C=CC=7C=C(C=C(C=7)C(C)(C)C)C(C)(C)C)C=C(C=CC=7C=C(C=C(C=7)C(C)(C)C)C(C)(C)C)C=6)C=5)C=C(CBr)C=4)C=3)C=2)=C1 UTFHKDWYIWJZEJ-UHFFFAOYSA-N 0.000 description 1
- UPZSDUUNARXLAJ-UHFFFAOYSA-N 1-(bromomethyl)-3,5-bis[2-(3,5-ditert-butylphenyl)ethenyl]benzene Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(C=CC=2C=C(C=CC=3C=C(C=C(C=3)C(C)(C)C)C(C)(C)C)C=C(CBr)C=2)=C1 UPZSDUUNARXLAJ-UHFFFAOYSA-N 0.000 description 1
- SNRYBGHMHAJTTM-UHFFFAOYSA-N 1-(bromomethyl)-3,5-ditert-butylbenzene Chemical compound CC(C)(C)C1=CC(CBr)=CC(C(C)(C)C)=C1 SNRYBGHMHAJTTM-UHFFFAOYSA-N 0.000 description 1
- FCMUPMSEVHVOSE-UHFFFAOYSA-N 2,3-bis(ethenyl)pyridine Chemical compound C=CC1=CC=CN=C1C=C FCMUPMSEVHVOSE-UHFFFAOYSA-N 0.000 description 1
- AMQQZUHWWJLUGS-UHFFFAOYSA-N 2,3-bis(ethenyl)thiophene Chemical compound C=CC=1C=CSC=1C=C AMQQZUHWWJLUGS-UHFFFAOYSA-N 0.000 description 1
- LEAJPWHJWOPKLX-UHFFFAOYSA-N 3,5-bis[2-(3,5-ditert-butylphenyl)ethenyl]benzaldehyde Chemical compound CC(C)(C)C1=CC(C(C)(C)C)=CC(C=CC=2C=C(C=CC=3C=C(C=C(C=3)C(C)(C)C)C(C)(C)C)C=C(C=O)C=2)=C1 LEAJPWHJWOPKLX-UHFFFAOYSA-N 0.000 description 1
- RXXCIBALSKQCAE-UHFFFAOYSA-N 3-methylbutoxymethylbenzene Chemical group CC(C)CCOCC1=CC=CC=C1 RXXCIBALSKQCAE-UHFFFAOYSA-N 0.000 description 1
- ZRXVCYGHAUGABY-UHFFFAOYSA-N 4-bromo-n,n-bis(4-bromophenyl)aniline Chemical compound C1=CC(Br)=CC=C1N(C=1C=CC(Br)=CC=1)C1=CC=C(Br)C=C1 ZRXVCYGHAUGABY-UHFFFAOYSA-N 0.000 description 1
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241001282110 Pagrus major Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical group C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- IUFDZNVMARBLOJ-UHFFFAOYSA-K aluminum;quinoline-2-carboxylate Chemical compound [Al+3].C1=CC=CC2=NC(C(=O)[O-])=CC=C21.C1=CC=CC2=NC(C(=O)[O-])=CC=C21.C1=CC=CC2=NC(C(=O)[O-])=CC=C21 IUFDZNVMARBLOJ-UHFFFAOYSA-K 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000005418 aryl aryl group Chemical group 0.000 description 1
- 125000000732 arylene group Chemical group 0.000 description 1
- JXLHNMVSKXFWAO-UHFFFAOYSA-N azane;7-fluoro-2,1,3-benzoxadiazole-4-sulfonic acid Chemical compound N.OS(=O)(=O)C1=CC=C(F)C2=NON=C12 JXLHNMVSKXFWAO-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000002800 charge carrier Substances 0.000 description 1
- 150000001793 charged compounds Chemical class 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 229940125898 compound 5 Drugs 0.000 description 1
- ONCCWDRMOZMNSM-FBCQKBJTSA-N compound Z Chemical compound N1=C2C(=O)NC(N)=NC2=NC=C1C(=O)[C@H]1OP(O)(=O)OC[C@H]1O ONCCWDRMOZMNSM-FBCQKBJTSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000002027 dichloromethane extract Substances 0.000 description 1
- YMWUJEATGCHHMB-DICFDUPASA-N dichloromethane-d2 Chemical compound [2H]C([2H])(Cl)Cl YMWUJEATGCHHMB-DICFDUPASA-N 0.000 description 1
- WBKFWQBXFREOFH-UHFFFAOYSA-N dichloromethane;ethyl acetate Chemical compound ClCCl.CCOC(C)=O WBKFWQBXFREOFH-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000001194 electroluminescence spectrum Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 125000005549 heteroarylene group Chemical group 0.000 description 1
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002390 rotary evaporation Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 238000010129 solution processing Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- PJANXHGTPQOBST-UHFFFAOYSA-N stilbene Chemical group C=1C=CC=CC=1C=CC1=CC=CC=C1 PJANXHGTPQOBST-UHFFFAOYSA-N 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- AABJANAIRQNECD-UHFFFAOYSA-N tetrachlorosilane 1,3,5-tris(4-bromophenyl)benzene Chemical compound [Si](Cl)(Cl)(Cl)Cl.BrC1=CC=C(C=C1)C1=CC(=CC(=C1)C1=CC=C(C=C1)Br)C1=CC=C(C=C1)Br AABJANAIRQNECD-UHFFFAOYSA-N 0.000 description 1
- 238000002207 thermal evaporation Methods 0.000 description 1
- 238000002366 time-of-flight method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000001665 trituration Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 125000002348 vinylic group Chemical group 0.000 description 1
- 230000005428 wave function Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/43—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C211/54—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C215/00—Compounds containing amino and hydroxy groups bound to the same carbon skeleton
- C07C215/74—Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/002—Dendritic macromolecules
- C08G83/003—Dendrimers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
- H10K85/631—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/791—Starburst compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/10—Transparent electrodes, e.g. using graphene
- H10K2102/101—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
- H10K2102/103—Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising indium oxides, e.g. ITO
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/114—Poly-phenylenevinylene; Derivatives thereof
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/321—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3]
- H10K85/324—Metal complexes comprising a group IIIA element, e.g. Tris (8-hydroxyquinoline) gallium [Gaq3] comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
- H10K85/351—Metal complexes comprising lanthanides or actinides, e.g. comprising europium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S428/00—Stock material or miscellaneous articles
- Y10S428/917—Electroluminescent
Definitions
- This invention relates to improved dendrimers which are light-emitting, to a novel process for making dendrimers and to devices using them.
- Organic and polymer light emitting diodes have been the focus of intensive research for the past decade. Whereas small organic molecules are processed by thermal evaporation under high vacuum, polymers may be deposited directly from solution. Both classes of materials have their merits, with small organic molecules allowing greater chemical and colour purity and polymers greatly simplifying the manufacturing process which has led, for example, to displays produced by inkjet printing.
- An alternative approach is conjugated dendrimers which have been used successfully both as charge transporting and light-emitting materials. This class of materials combines a well defined chromophore and molecular mass with advantageous solution processing properties. With dendrimers it is possible to tune the emission colour independently of the processing properties.
- the role of the degree of intermolecular interactions in conjugated polymers and their effect on optical and transport properties has been a topic of intense debate over the past few years.
- organic LEDs it is particularly important to understand the relationship between good transport properties and efficient luminescence. It is known that intermolecular interactions can quench the luminescence, but would increase wave function overlap of the ⁇ -electrons and so be beneficial to charge transport.
- the present invention relates to a class of dendrimers which allows a direct control of the microscopic packing through chemical modification and this provides a unique correlation between chemical structure of the molecules and macroscopic device properties. The degree of interaction between
- dendrimer generation Electrochemical studies on conjugated dendrimers have shown that charge injection takes place into the core and not into dendrons which have a wider energy gap. The dendrons act as spatial separators and insulate the cores. We have found that the electronic properties, such as barrier to charge injection in dendrimer-based LEDs, can remain unaffected by generation but that the change in chromophore separation directly affects the charge transport properties.
- X represents a divalent mono- or poly-(i.e. 2 or more) aromatic and/or heteroaromatic moiety
- the or each Y which may be the same or different if x is 1 , represents hydrogen or an optionally substituted hydrocarbon group
- Z represents an aromatic group, or an inherently at least partly conjugated dendritic molecular structure comprising one or more aromatic and/or heteroaromatic groups and, optionally, alkenylene groups, connected to each other either directly or via a carbon atom of an alkenylene group, if present, to a ring carbon atom of an (hetero) aromatic group to which more than one at least partly conjugated dendritic chain is attached, said molecular structure being connected to the remainder of the molecule via a ring carbon atom, one or more of the (hetero) aromatic rings of the dend
- the compounds of the present invention contain 1 to 3 dendritic molecular structures attached to the central nitrogen atom via the
- x is 3 in which case Y is absent.
- Y can represent hydrogen or an optionally substituted hydrocarbon group.
- the nature of the hydrocarbon group is not particularly critical although, typically, it is an alkyl or aryl group such as an alkyl group of 1 to 6 carbon atoms, for example methyl or a phenyl group, an alkylaryl or arylalkyl group, or an arylvinylaryl group such as a stilbene group.
- x is 1, each Y can be the same or different.
- X can be broad and can represent a mono or poly-aromatic and/or hetero aromatic moiety such as a moiety of pyridine (as in divinyl pyridine), pyrimidine, triazine, thiophene, (as in divinylthiophene), oxadiazole and coronene as well as benzene (as in divinylbenzene and distyrylethylene) and anthracene or can represent linked phenylene units. It can also represent a polyaromatic moiety wherein the aromatic rings are connected by a conjugated grouping such as a vinyl grouping.
- a typical example is
- X represents a moiety of benzene.
- the group X is preferably linked to the vinyl groups in the para position although it can also be linked in the ortho or meta position.
- the links are preferably para in the central ring.
- n 1 and n 2 independently represent 0, 1, 2 or 3.
- the length of the conjugated structure can vary although it is preferred that n 1 and n 2 are both equal to 1.
- the preferred unit incorporating the vinyl groups is distyryl benzene.
- the various aromatic and heteroaromatic rings present in the compound may be substituted, for example by C, to C 15 alkyl or alkoxy groups, preferably alkyl or alkoxy of 1 to 8, for example 1 to 6, carbon atoms such as t-butyl or 2-ethyl hexyl. It will be appreciated, in this connection, that the benzene ring which is adjacent to the nitrogen atom can likewise be substituted.
- the aromatic groups are preferably benzene rings, preferably substituted at 3 and 5 positions, pyridine or triazine rings or linked phenylene units. These rings may optionally be substituted in the same manner as the other rings present in the molecule.
- Z incorporates conjugated units which are preferably based on arylenes and heteroarylenes optionally linked by alkenyl (preferably vinyl) groups.
- the conjugation of the core may be varied both in length, with the aim to have the HOMO-LUMO energy gap lower than that of the branches as aforesaid, and in substituent pattern. This allows control of the colour of emission, from blue to red. Electron affinity can be controlled by the choice of core.
- Z is an aromatic group by itself
- this group is typically a benzene group other than unsubstituted benzene and preferably 3,5-disubstituted benzene , or a heteroaromatic group such as pyridine or triazine, or linked phenylene units. These rings may be substituted in the same manner as the other rings.
- the compounds typically have one or more end or surface groups which will be attached to the terminal ring or rings of Z. With higher-generation dendrimers (see hereinafter), the surface groups may tend to assume a majority or substantially all fo the molecular contact with the surrounding environment.
- the outer surface controls the solubility and processability of the molecule in common solvents and thus changes to the internal electronic structure of the chromophore(s) can be possible • without unacceptably affecting the processing properties and vice versa. If the need arises for multilayer LEDs to be prepared, then the surface groups may be selected to allow crosslinking or appropriate solubility.
- the dendrimers of this invention provide an opportunity of optimising the electronic and processing properties independently which should give improved manufacturability of electronically optimised materials.
- Some examples of the surface groups which would be suitable to incorporate onto the dendrimers include branched and unbranched alkyl, especially t-butyl, branched and unbranched alkoxy, for example 2-ethyl-n-hexyloxy, hydroxy, alkylsilane, carboxy, carbalkoxy, and vinyl.
- a more comprehensive list include a further-reac table alkene, (meth)acrylate, sulphur- containing or silicon-containing group; sulphonyl group; polyether group; C,- to C 15 alkyl or alkoxy (preferably t-butyl) group; amine group; mono-, di- or tri C r to C 15 alkylamine group; -COOR group wherein R is hydrogen or C r to C 15 alkyl or alkenyl; - 0 2 SR group wherein R is C t - to -C 15 alkyl or alkenyl; -SR group wherein R is aryl, or C to -C 15 alkyl or alkenyl; -SiR 3 groups wherein the R groups are the same or different and are hydrogen C r to -C 15 alkyl or alkenyl, or -SR' group (R' is aryl or C r to -C 15 alkyl or alkenyl), aryl or heteroary
- the most preferred surface group is t-butyl.
- Z can also represent an aromatic group, preferably a phenyl group which can also be substituted with one or more surface groups as discussed above, Preferably, therefore, in this embodiment Z represents a 3,5-di(t-butyl) phenyl group.
- Z represents an aromatic group in this way, the dendrimer will be the 0-generation dendrimer while when Z represents the value shown in Figure 1 this corresponds to generation 1 of the dendrimer.
- Preferred compounds of the present invention include those shown in Figures 2, 3 and 4, these being the 0- and 1 -generation, 2-generation and 3 -generation, respectively.
- the radii of these molecules are 10.3A, 14.6A, 19.4A and 24.0A, respectively, as estimated from gel permeation chromatography.
- the compound may have more than one luminescent moiety and the energy
- the dendrimer incorporates at least one inherently at-least-partly-conjugated luminescent moieties which moieties may or may not be conjugated with each other, wherein the or each said dendritic structure(s) include(s) at least one of the said luminescent moieties, the luminescent moiety or moieties further from the core of the dendrimer being of larger HOMO- LUMO energy gap than the luminescent moiety or moieties closer to or partly or wholly within the core of the dendrimer.
- the HOMO-LUMO energy gap is the same.
- the relative HOMO-LUMO energy gaps of the moieties can be measured by methods known per se using a UV-visible spectrophotometer.
- One of the luminescent moieties may be, or (partly or wholly) within, the core itself i.e. the part of the molecule excluding Z, which will thus preferably have a smaller inherent HOMO- LUMO gap energy than the other luminescent moiety or moieties in the dendritic structures.
- the dendritic structures themselves may each contain more than one luminescent moiety, in which case those further from the core will again preferably have larger inherent HOMO-LUMO gap energies than those closer to the core.
- the core itself need not be luminescent, although luminescent cores are generally preferred. Again any groups Y can also be luminescent.
- the branches and/or core may contain heteroaromatic units such as pyridine, pynmidine, thiazole, triazine or fluorinated aryl or heteroaryl units to increase the electron affinity of the dendrimer.
- optimised chromophores can be used, and intermolecular interactions controlled to avoid undesirable processes such as excimer formation.
- the exciton migrates through the sample to regions of low HOMO-LUMO gap energy and can often encounter defects which quench the luminescence.
- Dendrimers can be designed according to the present invention so that the innermost or central chromophore has a lower HOMO-LUMO energy gap than chromophores closer to the surface.
- the excitations are localised on the core and migration to quenching sites is impeded.
- this process will tend to give rise to a space charge build-up similar to that obtained in organic light emitting devices incorporating a hole-blocking electron transporting layer.
- Dendrimers with electron- withdrawing groups attached to the chromophores and/or high electron affinity chromophores will be easier to prepare as the routes involve "small molecule" reactions, which do not have the same stringent requirements, for example, yield, of those for forming high polymers.
- the compounds of the present invention possess particular advantages over other dendrimers. In particular, they possess enhanced stability which results in devices using them to have an increased life.
- the compounds of the present invention can be processed in solution i.e. a solution of the compound can be applied as a layer of a display device and then the solvent evaporated. This is a much simpler procedure than vacuum deposition which is currently generally needed because individual molecular chromophores such as those included within dendrimers are not often solution processable.
- the compounds of the present invention can act both as a hole transport layer and/or as a light emitting layer, with appropriate other layers, in a display device. This naturally gives rise to increased versatility of the compounds.
- charge mobility can be controlled by altering the generation of the dendrimer. In other words by measuring the mobility of successive generations it can be readily established what generation is needed to give the desired degree of mobility. This provides a way of controlling the operating bias and current of an organic LED.
- the low charge mobility of some of the compounds of the present invention gives rise to increased efficiency.
- the dendrimers of this invention may appear fully conjugated. However, as the branch linkages are typically all meta in arrangement, the pi-electron system is not fully delocalised over the whole molecule (R.S. Kang et al, J Chem. Soc., Chem. Comm. 1996, 1167). This means that in a simple analysis the central core can be considered independently from the branches when determining the required colour of light emission and the relative energy gaps or conjugation lengths.
- the present invention also provides a process for preparing the compounds of the present invention which comprises reacting an aldehyde of the formula:
- Y, n 1 , X, x and Z are as defined above, n 3 is 0, 1 or 2, and T represents a functional group which allows the adjacent methylene group to react with an aldehyde group to form an alkene.
- R represents an alkyl group of 1 to 6 carbon atoms such as methyl.
- the aldehyde starting material is typically obtained by reacting a bromide of the formula:
- aryl methyl bromide itself can conveniently be obtained by reducing an aldehyde of formula OCH-Z, for example with a borohydride and then brominating the corresponding alcohol.
- the present invention also provides a process for preparing a compound of the formula:
- CORE represents an atom or group
- n represents an integer of at least 1
- DEND RITE which may be the same or different if n is greater than 1
- CORE represents an inherently at least partly conjugated dendritic molecular structure comprising aryl and/or heteroaryl groups and alkenyl groups connected to each other via a carbon atom of an alkenyl group to a ring carbon atom of an aryl or heteroaryl group, CORE terminating in the first single bond which is connected to a ring carbon atom of an (hetero) aryl group to which more than one at least partly conjugated dendritic chain is attached, said ring carbon atom forming part of DENDRITE, the CORE and/or DENDRITE being luminescent, which comprises reacting an aldehyde of the central atom or group with an aryl or heteroaryl compound bearing a functional group which allows the adjacent methylene group to react with an aldehyde to form an alkene thus resulting in the
- the CORE-DENDRITE can have any of the values disclosed in W099/21935, to which reference should be made for further details. It is particularly useful where the CORE is centered on a 1,3,5-substituted benzene ring.
- the dendrimers of the present invention find utility in light emitting devices (LED). Accordingly, the present invention also provides a light emitting device comprising at least one compound of the present invention. Typically the LED comprises two electrodes with 1 or more layers therebetween, at least one of said layers is, or contains, a compound of the present invention. As indicated above, a particular feature of the compounds of the present invention is that they can act both _ as light emitters and/or charge transporting layers, depending on the other materials present.
- the compound acts as a light emitter.
- a “bi-layer device” the compound can form a hole transporting layer together with a light emitter such as an aluminium quinolinate.
- a bi-layer device formed with an electron transport layer such as PBD (2-phenyl-5-biphenyl- 1,3,4-oxadiazole) which has a wide gap cause the dendrimer to act as a light emitter.
- PBD 2-phenyl-5-biphenyl- 1,3,4-oxadiazole
- an organolanthanide layer emission can come from the organolanthanide and/or from the dendrimer.
- the general construction of the light emitting devices can be conventional although it is a particular feature of the present invention that the compounds of the present invention are solution processable such that they can be applied to the device in the form of a solution in a common solvent such as tetrahydrofuran, for example by spin coating, and then the solvent evaporated.
- the dendrimer layer will be adjacent to one electrode, typically an indium tin oxide layer, with the extra layer over it before the cathode, typically of aluminium or MgAl, layer.
- a buffer layer for example of poly(3,4-ethylenedioxythiophene) and polystyrene sulphonate ⁇ can be placed between the dendrimer layer and the indium tin oxide layer.
- the light emitting devices of the present invention can form part of a colour display device including pixels.
- the compounds can be used in any semi- conductor device, for example a photodiode, solar cell, FET or solid state triode.
- N requires C, 90.90; H, 8.75; N, 0.35 %); ⁇ max (CH 2 Cl 2 )/nm (log ⁇ ) 239 (5.25), 323 (5.73), 334sh (5.70) and 423 (5.18); ⁇ H (400MHz, CDC1 3 ) 1.41 (216 H, s, t-Bu), 7.06-7.34 (54 H, m, vinylic-H and 2,6-H), 7.41 (12 H, dd, J 1.5, 4""-H), 7.45 (24 H, d, J 1.5, 2"", 6""-H), 7.48 (6 H, ' ⁇ AA'BB', 3,5-H), 7.58 (12 H, AA'BB', 2'3'5'6'-H), 7.67 (24 H, m, 2",6",2"',4'",6'"-H) and 7.71 (3 H, br s, 4"); m/z (MALDI) 4042.8 (M + , 100%).
- Trimethylphosphite (5.4 cm 3 , 46 mmol) was added to 3,5-bis ⁇ 3',5'-bis[3",5"- bis(3'",5'"-di-tert-butylstyryl)styryl]styryl ⁇ benzyl bromide (1.14 g, 0.455 mmol) and the suspension heated at 100 °C under argon for 2 h. Excess trimethylphosphite was removed by distillation under reduced pressure.
- Phosphorus tribromide (1.2 cm 3 , 12.4 mmol) was added to a solution of 3,5- bis ⁇ 3',5'-bis[3",5"-bis(3'",5" , -di-tert-butylstyryl)styryl]styryl ⁇ benzyl alcohol (3.009 g, 1.235 mmol) in dichloromethane (120 cm 3 ) and the yellow mixture stirred in the dark under argon for approximately 6 days. Water (50 cm 3 ) was added carefully, then ether (300 cm 3 ). The organic layer was washed with water (100 cm 3 ) and brine (70 cm 3 ), dried over sodium sulphate, filtered and the solvent removed.
- Figure 21 gives the reaction scheme to produce the [G-l] phosphonate and also to the aldehyde starting material for Example 3C leading to the [G-2] phosphonate.
- LEDs Light emitting diodes
- ITO indium tin oxide
- set B In all cases the dendrimers were spin-coated from tetrahydrofuran solutions of concentration 10 mg/ml.
- a PEDOT (poly(3,4- ethylenedioxythiophene))/PSS (polystyrene sulphonate) layer was deposited onto the ITO; the dendrimer was subsequently spin coated on top of the PEDOT/PSS layer.
- Metal electrodes were subsequently thermally evaporated on top of the dendrimer layer.
- set B the dendrimer was spin-coated onto the ITO and, if appropriate, the molecular materials were subsequently evaporated onto the dendrimer layer.
- patterned metal electrodes Al or MgAl
- Single layer diodes were fabricated from the compounds of Examples 1 to 4 (refened to as 0 to 3 (conesponding to [G-0] to [G-3] respectively).
- the electroluminescence (EL) spectra are shown in Figure 5, which show that the core of the material is a green emitter. The red tail is reduced as the generation increases. This may be due to a decrease in excimer formation or aggregation as the intermolecular interactions between chromophores are reduced with increasing generation.
- the mobility is measured directly by the time of flight (TOF) technique in thin layers of the film (typically 200 nm) in conjunction with a rhodamine charge generation layer.
- Dendrimer films are spin-coated onto ITO substrates. Subsequently a 15 nm rhodamine film (R6G) is evaporated onto the dendrimer film, followed by patterned aluminium electrodes. Charges are generated within the rhodamine layer by a 550 nm 10 ns light pulse from an optical parametric oscillator pumped by a Q-switched Nd:YAG laser and swept across the dendrimer film by the application of a DC field.
- TOF time of flight
- the transient current is measured using a digital oscilloscope and gives information about the carrier transit times as a function of applied field.
- a further indirect way of estimating the mobility comes from the change of the current-field characteristics with generation.
- Current-field characteristics can be fitted using the barrier height to injection in a Schottky model and a field dependent mobility of the form m 0 *exp((E/E 0 ) 05 ). Values obtained by this method agree quantitatively with mobility values obtained by the TOF method as shown in Figure 8.
- the device structure used was ITO/dendrimer/Alq3/metal.
- Devices were prepared as described above with vacuum deposited layers of the organic electron transporter (typically 50 nm, with dendrimer film thicknesses ⁇ 80 nm, spun at 1600 rpm). Patterned cathodes were evaporated either from aluminium or from a mixture of aluminium and magnesium. Device areas were 4 mm 2 .
- Figure 10 shows the current-voltage characteristics for different device configurations. It is seen that devices with 0 can support larger currents and also show lower operating biases, which is a direct result of the larger mobility of the dendrimer. A further reduction in operating bias is achieved through the change of electrode material.
- the devices are relatively stable in air, which is surprising considering the inherent instability to oxidation of many phenylene-vinylene compounds.
- the development of the brightness over 60 seconds is displayed in Figure 12.
- Commercial use of this material would involve encapsulation to extend this lifetime greatly.
- the efficiency increases by a factor of 300 for 0 and a factor of 40 for 3.
- the maximum brightness is increased dramatically for 0 and by at least a factor of 5 for 3. It is seen that the efficiency more than doubles as the mobility of the hole transporter is decreased, but remains virtually independent of the cathode material. Also, in contrast to the devices with Alq3, the maximum brightness and current do not show a strong dependence on either generation or on cathode material.
- Bilayer devices were also prepared with an organolanthanide layer of MeTbl3, which is a green phosphor, in the configuration ITO/dendrimer/MeTbl3/MgAl.
- the emission was found to come from both the organolanthanide and the dendrimer, although at high currents the dendrimer emission dominated.
- the EL spectrum is given in Figure 14 for a 3/MeTbl3/MgAl device at 11 V and 17 V, corresponding to currents of 75 mA and 1.4 mA.
- a comparison of devices made with different electron transport layers with single layer devices as shown in Figure 15 yields valuable information on the charge carrier blocking nature or current enhancing effect of the different layers.
- the largest current in 3 is supported by the single layer device, which exhibits characteristics similar to the device incorporating an organolanthanide layer.
- the electron current supported by Alq3 clearly increases the overall device current, which leads to a significant reduction in operating bias.
- the larger band gap PBD shows much poorer electron transport properties than Alq, which gives rise to overall extremely low currents, particularly at biases below 10 V.
- PBD acts as a very efficient hole blocker which helps to accumulate holes in the dendrimer at the dendrimer/PBD interface and likewise 3 efficiently blocks electrons.
- the bilayer device using PBD is the most efficient configuration, certainly at low biases, as the light output closely follows the single layer emission, yet the current is much reduced.
- the turn-on field for light emission is halved with respect to the single layer, whereas it is increased with the organolanthanide.
- the maximum brightnesses are all comparable, which suggests that this is a drawback of increasing efficiency through decreasing mobility.
- efficiency is more important than brightness, and brightnesses of 100 Cd/m 2 with good efficiencies are entirely acceptable.
- Tris-aldehyde benzene core l,3,5-Tris(4"-formylstilbene)benzene A mixture of 4-vinylbenzaldehyde (1.95 g, 14.7 mmol), dimethylacetamide (40 ml), l,3,5-tris(4'-bromophenyl)benzene (2.00 g, 3.68 mmol), trans-di((-aceto)-bis[o-(di-o- tolylphosphino)benzyl] dipalladium (II) (10 mg, 11m (mol), 2,6-di-tert-butyl-p-cresol (646 mg, 29.3 mmol), and sodium carbonate (1.56 g, 14.7 mmol) was degassed by sequential evacuation and purging with argon over 35 min.
- Example 7 The novel dendrimer 8 and reaction scheme are shown in Figure 24.
- Phosphorus tribromide (0.7 cm 3 , 7.37 mmol) was added slowly to a solution of the benzyl alcohol 5 (890 mg, 1.72 mmol) in dry DCM (37 cm 3 ) at room temperature under argon for 18 h. The mixture was diluted with water (10 cm 3 ). The organic layer was separated, washed with water (2x20 cm 3 ), brine (1x20 cm), dried over anhydrous magnesium sulfate, and the solvent completely removed to give yellowish oil.
- Example ID (4'formyl)styrylphenyl]amine (Example ID) (131 mg, 0.205 mmol), potassium tert- butoxide (92 mg, 0.821 mmol) and anhydrous THF (22 cm 3 ) was stirred at room temperature for 14 h before being quenched with 3 cm 3 of water. The aqueous portion was separated and the organic layer was washed with brine (1 x 10 cm 3 ), dried (MgS0 4 ) and the solvent was completely removed to leave a yellow oil.
- the oil was purified over silica gel using ethyl acetate-light petroleum (1 : 10) as eluent to give 8 (406 mg, 95%) as a bright yellow solid; (Found: C, 86.3; H, 8.3; N, 0.8.
- C 150 H 171 NO 6 requires C, 86.5; H, 8.3; N, 0.7%); ⁇ CH ⁇ y /nm 264 ( ⁇ /dm 3 mol " 'cm- 1 150046), 287sh (133375), 345 (120870) and 424 (183389); ⁇ H (400 MHz; CD 2 C1 2 ), 0.91-1.07 (36 H, m, 12xMe), 1.34-1.67 (48 H, m, 24xCH 2 ), 1.74-1.87 (6 H, m, 6CH), 3.96 (12 H, m, 6xAr0CH 2 ), 7.04-7.70 (69 H, ArH & vinyl H); m/z [MALDI] 2083 (M + ).
- Device Preparation & Results Device fabrication & measurement was carried out as for the preceding set A devices. However, in addition to single layer devices several heterolayer devices were prepared.
- the heterolayer devices were prepared by sequentially depositing a PEDOT/PSS film, a layer of dendrimer, a layer of dendrimer blended with PBD and then an Al cathode onto the cleaned ITO substrate.
- the neat dendrimer layer was spin-coated at a spin speed of 1000 m and then the blended dendrimer:PBD layer was spin-coated onto the neat dendrimer layer at a spin speed of 2000 ⁇ m.
- the dendrimer and dendrimer:PBD mixture were both dissolved in THF at a dendrimer concentration of 10 mg/ml.
- the abso ⁇ tion spectrum and PL emission spectrum of 8 are shown in Figure 25.
- the performance of several devices containing 8 are summarised in the table below:
- Figure 26 shows the electroluminescent emission spectrum at different voltages of the device ITO / PEDOT / 8 / 8: PBD (1 :0.8) / Al.
- Figure 27 shows the current -voltage-luminescent characteristics.
- Figure 28 shows the current-luminance-efficiency characteristics.
- Spectra for the heterolayer device ITO / PEDOT / 8 / 8: PBD (1 : 1) / Al are shown in figures 29-31. Changing the concentration of PBD in the blend has increased the maximum efficiency, although decreased the maximum brightness.
- Figure 29 shows the electroluminescent emission spectrum at different voltages.
- Figure 30 shows the current -voltage-luminescent characteristics.
- Figure 31 shows the current-luminance-efficiency characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electroluminescent Light Sources (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2001232043A AU2001232043A1 (en) | 2000-02-09 | 2001-02-09 | Dendrimers |
US10/203,448 US7083862B2 (en) | 2000-02-09 | 2001-02-09 | Dendrimers |
JP2001558170A JP5328070B2 (en) | 2000-02-09 | 2001-02-09 | Dendrimer |
DE60143379T DE60143379D1 (en) | 2000-02-09 | 2001-02-09 | dendrimers |
EP01904124A EP1254196B1 (en) | 2000-02-09 | 2001-02-09 | Dendrimers |
AT01904124T ATE486916T1 (en) | 2000-02-09 | 2001-02-09 | DENDRIMERE |
US11/438,570 US7276299B2 (en) | 2000-02-09 | 2006-05-22 | Dendrimers |
US11/852,447 US7682708B2 (en) | 2000-02-09 | 2007-09-10 | Dendrimers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0002936.3 | 2000-02-09 | ||
GBGB0002936.3A GB0002936D0 (en) | 2000-02-09 | 2000-02-09 | Improved dendrimers |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10203448 A-371-Of-International | 2001-02-09 | ||
US11/438,570 Division US7276299B2 (en) | 2000-02-09 | 2006-05-22 | Dendrimers |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001059030A1 true WO2001059030A1 (en) | 2001-08-16 |
Family
ID=9885225
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2001/000522 WO2001059030A1 (en) | 2000-02-09 | 2001-02-09 | Dendrimers |
Country Status (8)
Country | Link |
---|---|
US (2) | US7276299B2 (en) |
EP (1) | EP1254196B1 (en) |
JP (2) | JP5328070B2 (en) |
AT (1) | ATE486916T1 (en) |
AU (1) | AU2001232043A1 (en) |
DE (1) | DE60143379D1 (en) |
GB (1) | GB0002936D0 (en) |
WO (1) | WO2001059030A1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002066575A1 (en) * | 2001-02-20 | 2002-08-29 | Isis Innovation Limited | Asymmetric dendrimers |
WO2003079736A1 (en) * | 2002-03-18 | 2003-09-25 | Isis Innovation Limited | Phosphorescent dendrimers for use in light-emitting devices |
WO2003081688A2 (en) * | 2002-03-26 | 2003-10-02 | Sharp Kabushiki Kaisha | Organic el light emitting device and liquid crystal display using the same |
WO2004020547A1 (en) * | 2002-08-29 | 2004-03-11 | Isis Innovation Limited | Reactive dendrimers |
EP1398341A2 (en) * | 2002-09-13 | 2004-03-17 | H.C. Starck GmbH | Organic compounds with core-shell structure |
EP1580217A1 (en) * | 2004-03-25 | 2005-09-28 | H.C. Starck GmbH | Macromolecular compounds with core-shell structure |
EP1651013A1 (en) * | 2003-07-08 | 2006-04-26 | Konica Minolta Holdings, Inc. | Organic electroluminescent device, illuminating device, and display |
WO2007054903A2 (en) | 2005-11-08 | 2007-05-18 | Ecole Polytechnique Federale De Lausanne (Epfl) | Hyperbranched polymer for micro devices |
US7592074B2 (en) | 2001-02-20 | 2009-09-22 | Isis Innovation Limited | Metal-containing dendrimers |
US7659540B2 (en) | 2003-10-22 | 2010-02-09 | Merck Patent Gmbh | Materials for electroluminescence and the utilization thereof |
US7960725B2 (en) | 2001-02-20 | 2011-06-14 | Isis Innovation Limited | Aryl-aryl dendrimers |
US7977861B2 (en) | 2002-08-29 | 2011-07-12 | Isis Innovation Limited | Blended dendrimers |
US8058790B2 (en) | 2004-05-11 | 2011-11-15 | Merck Patent Gmbh | Material mixtures for use in electroluminescence |
US8431243B2 (en) | 2007-03-08 | 2013-04-30 | Universal Display Corporation | Phosphorescent materials containing iridium complexes |
US8519130B2 (en) | 2006-12-08 | 2013-08-27 | Universal Display Corporation | Method for synthesis of iriduim (III) complexes with sterically demanding ligands |
WO2014085858A1 (en) | 2012-12-04 | 2014-06-12 | The University Of Queensland | Method for the detection of analytes via luminescence quenching |
US8778508B2 (en) | 2006-12-08 | 2014-07-15 | Universal Display Corporation | Light-emitting organometallic complexes |
US9853227B2 (en) | 2007-03-08 | 2017-12-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10008677B2 (en) | 2011-01-13 | 2018-06-26 | Universal Display Corporation | Materials for organic light emitting diode |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0002936D0 (en) * | 2000-02-09 | 2000-03-29 | Isis Innovation | Improved dendrimers |
JP5093680B2 (en) * | 2008-06-26 | 2012-12-12 | 独立行政法人産業技術総合研究所 | Bisquaternary ammonium salt core type dendrimer |
TWI501955B (en) * | 2012-07-19 | 2015-10-01 | Lg Chemical Ltd | Polycyclic compound and organic electronic device comprising the same |
JP6095107B2 (en) | 2013-01-29 | 2017-03-15 | 高砂香料工業株式会社 | Triphenylamine derivative, charge transport material and electrophotographic photoreceptor using the same |
JP6341157B2 (en) * | 2015-07-30 | 2018-06-13 | 京セラドキュメントソリューションズ株式会社 | Triphenylamine derivative and electrophotographic photoreceptor |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4769302A (en) * | 1986-05-12 | 1988-09-06 | Minolta Camera Kabushiki Kaisha | Photosensitive member incorporating styryl compound |
JPS6413553A (en) * | 1987-07-08 | 1989-01-18 | Konishiroku Photo Ind | Electrophotographic sensitive body |
JPH01106070A (en) * | 1987-10-20 | 1989-04-24 | Konica Corp | Electrophotographic sensitive body |
JPH01105955A (en) * | 1987-10-19 | 1989-04-24 | Konica Corp | Electrophotographic sensitive body |
EP0506493A2 (en) * | 1991-03-29 | 1992-09-30 | Mita Industrial Co. Ltd. | Phenylenediamine derivative and photosensitive material using said derivative |
DE19541113A1 (en) * | 1995-10-25 | 1997-04-30 | Syntec Ges Fuer Chemie Und Tec | Electroluminescent device, e.g. for TV screen |
JPH1174079A (en) * | 1997-06-20 | 1999-03-16 | Nec Corp | Organic electroluminescent element |
WO1999021935A1 (en) * | 1997-10-23 | 1999-05-06 | Isis Innovation Limited | Light-emitting dendrimers and devices |
EP0996177A2 (en) * | 1998-10-23 | 2000-04-26 | Nec Corporation | Organic electroluminescent device using hole-injectable, light-emitting material |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63163361A (en) * | 1986-12-25 | 1988-07-06 | Canon Inc | Electrophotographic sensitive body |
JP2951032B2 (en) * | 1991-04-12 | 1999-09-20 | コニカ株式会社 | Electrophotographic photoreceptor |
DE69204359T2 (en) | 1991-06-05 | 1996-04-18 | Sumitomo Chemical Co | Organic electroluminescent devices. |
JP3278252B2 (en) * | 1993-08-12 | 2002-04-30 | 靖彦 城田 | Organic EL device |
JP3642606B2 (en) * | 1994-04-28 | 2005-04-27 | Tdk株式会社 | Organic EL device |
JP3506281B2 (en) * | 1995-01-26 | 2004-03-15 | 出光興産株式会社 | Organic electroluminescence device |
JP3050307B2 (en) * | 1998-03-31 | 2000-06-12 | 日本電気株式会社 | Method for producing triphenylamine compound |
JP2000007604A (en) * | 1998-06-18 | 2000-01-11 | Idemitsu Kosan Co Ltd | Distyrylarylene derivative and organic electroluminescence element |
JP4429438B2 (en) * | 1999-01-19 | 2010-03-10 | 出光興産株式会社 | Amino compound and organic electroluminescence device using the same |
JP4067259B2 (en) * | 2000-01-12 | 2008-03-26 | 富士フイルム株式会社 | Fused ring polycyclic hydrocarbon compound, light emitting device material, and light emitting device using the same |
GB0002936D0 (en) * | 2000-02-09 | 2000-03-29 | Isis Innovation | Improved dendrimers |
US7083862B2 (en) * | 2000-02-09 | 2006-08-01 | Isis Innovation Limited | Dendrimers |
-
2000
- 2000-02-09 GB GBGB0002936.3A patent/GB0002936D0/en active Pending
-
2001
- 2001-02-09 AU AU2001232043A patent/AU2001232043A1/en not_active Abandoned
- 2001-02-09 DE DE60143379T patent/DE60143379D1/en not_active Expired - Lifetime
- 2001-02-09 WO PCT/GB2001/000522 patent/WO2001059030A1/en active Application Filing
- 2001-02-09 JP JP2001558170A patent/JP5328070B2/en not_active Expired - Lifetime
- 2001-02-09 AT AT01904124T patent/ATE486916T1/en not_active IP Right Cessation
- 2001-02-09 EP EP01904124A patent/EP1254196B1/en not_active Expired - Lifetime
-
2006
- 2006-05-22 US US11/438,570 patent/US7276299B2/en not_active Expired - Lifetime
-
2007
- 2007-09-10 US US11/852,447 patent/US7682708B2/en not_active Expired - Fee Related
-
2012
- 2012-03-12 JP JP2012054106A patent/JP2012156519A/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4769302A (en) * | 1986-05-12 | 1988-09-06 | Minolta Camera Kabushiki Kaisha | Photosensitive member incorporating styryl compound |
JPS6413553A (en) * | 1987-07-08 | 1989-01-18 | Konishiroku Photo Ind | Electrophotographic sensitive body |
JPH01105955A (en) * | 1987-10-19 | 1989-04-24 | Konica Corp | Electrophotographic sensitive body |
JPH01106070A (en) * | 1987-10-20 | 1989-04-24 | Konica Corp | Electrophotographic sensitive body |
EP0506493A2 (en) * | 1991-03-29 | 1992-09-30 | Mita Industrial Co. Ltd. | Phenylenediamine derivative and photosensitive material using said derivative |
DE19541113A1 (en) * | 1995-10-25 | 1997-04-30 | Syntec Ges Fuer Chemie Und Tec | Electroluminescent device, e.g. for TV screen |
JPH1174079A (en) * | 1997-06-20 | 1999-03-16 | Nec Corp | Organic electroluminescent element |
WO1999021935A1 (en) * | 1997-10-23 | 1999-05-06 | Isis Innovation Limited | Light-emitting dendrimers and devices |
EP0996177A2 (en) * | 1998-10-23 | 2000-04-26 | Nec Corporation | Organic electroluminescent device using hole-injectable, light-emitting material |
Non-Patent Citations (4)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 013, no. 185 (P - 865) 2 May 1989 (1989-05-02) * |
PATENT ABSTRACTS OF JAPAN vol. 013, no. 347 (P - 910) 4 August 1989 (1989-08-04) * |
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 08 30 June 1999 (1999-06-30) * |
SANDER R ET AL: "SYNTHESIS, PROPERTIES, AND GUEST-HOST SYSTEMS OF TRIPHENYLAMINE- BASED OLIGO(ARYLENEVINYLENE)S: ADVANCED MATERIALS FOR LED APPLICATIONS", MACROMOLECULES,US,AMERICAN CHEMICAL SOCIETY. EASTON, vol. 29, no. 24, 18 November 1996 (1996-11-18), pages 7705 - 7708, XP000631120, ISSN: 0024-9297 * |
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7906902B2 (en) | 2001-02-20 | 2011-03-15 | Isis Innovation Limited | Metal-containing dendrimers |
US8319213B2 (en) | 2001-02-20 | 2012-11-27 | Isis Innovation Limited | Aryl-aryl dendrimers |
US7537842B2 (en) | 2001-02-20 | 2009-05-26 | Isis Innovation Limited | Asymmetric dendrimers |
US7592074B2 (en) | 2001-02-20 | 2009-09-22 | Isis Innovation Limited | Metal-containing dendrimers |
US7960725B2 (en) | 2001-02-20 | 2011-06-14 | Isis Innovation Limited | Aryl-aryl dendrimers |
US8314549B2 (en) | 2001-02-20 | 2012-11-20 | Isis Innovation Limited | Metal-containing dendrimers |
US7960557B2 (en) | 2001-02-20 | 2011-06-14 | Isis Innovation Limited | Asymmetric dendrimers |
WO2002066575A1 (en) * | 2001-02-20 | 2002-08-29 | Isis Innovation Limited | Asymmetric dendrimers |
WO2003079736A1 (en) * | 2002-03-18 | 2003-09-25 | Isis Innovation Limited | Phosphorescent dendrimers for use in light-emitting devices |
US7641986B2 (en) | 2002-03-18 | 2010-01-05 | Isis Innovation Limited | Phosphorescent dendrimers for use in light-emitting devices |
WO2003081688A2 (en) * | 2002-03-26 | 2003-10-02 | Sharp Kabushiki Kaisha | Organic el light emitting device and liquid crystal display using the same |
WO2003081688A3 (en) * | 2002-03-26 | 2004-04-15 | Sharp Kk | Organic el light emitting device and liquid crystal display using the same |
US7371468B2 (en) | 2002-03-26 | 2008-05-13 | Sharp Kabushiki Kaisha | Organic EL light emitting device and liquid crystal display using the same |
US8025988B2 (en) | 2002-08-29 | 2011-09-27 | Isis Innovation Limited | Reactive organometallic dendrimers |
WO2004020547A1 (en) * | 2002-08-29 | 2004-03-11 | Isis Innovation Limited | Reactive dendrimers |
US7740954B2 (en) | 2002-08-29 | 2010-06-22 | Isis Innovation Limited | Reactive dendrimers |
US7977861B2 (en) | 2002-08-29 | 2011-07-12 | Isis Innovation Limited | Blended dendrimers |
US7078724B2 (en) | 2002-09-13 | 2006-07-18 | H.C. Starck, Gmbh | Organic compounds having a core-shell structure |
KR101061310B1 (en) | 2002-09-13 | 2011-08-31 | 하.체. 스타르크 게엠베하 | Organic compound having a core-shell structure |
EP1398341A2 (en) * | 2002-09-13 | 2004-03-17 | H.C. Starck GmbH | Organic compounds with core-shell structure |
EP1398341A3 (en) * | 2002-09-13 | 2004-03-24 | H.C. Starck GmbH | Organic compounds with core-shell structure |
JP2004149514A (en) * | 2002-09-13 | 2004-05-27 | Hc Starck Gmbh | Organic compound having core-shell structure, method for producing the same, its use, and electronic part containing the compound |
US7862909B2 (en) | 2003-07-08 | 2011-01-04 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, illuminator and display |
EP1651013A4 (en) * | 2003-07-08 | 2008-07-23 | Konica Minolta Holdings Inc | Organic electroluminescent device, illuminating device, and display |
EP1651013A1 (en) * | 2003-07-08 | 2006-04-26 | Konica Minolta Holdings, Inc. | Organic electroluminescent device, illuminating device, and display |
US8173276B2 (en) | 2003-10-22 | 2012-05-08 | Merck Patent Gmbh | Materials for electroluminescence and the utilization thereof |
EP2366752A2 (en) | 2003-10-22 | 2011-09-21 | Merck Patent GmbH | New materials for electroluminescence and use of same |
US7659540B2 (en) | 2003-10-22 | 2010-02-09 | Merck Patent Gmbh | Materials for electroluminescence and the utilization thereof |
EP1580217A1 (en) * | 2004-03-25 | 2005-09-28 | H.C. Starck GmbH | Macromolecular compounds with core-shell structure |
US7402651B2 (en) | 2004-03-25 | 2008-07-22 | H.C. Starck Gmbh & Co. Kg | Macromolecular compounds with a core-shell structure |
US8058790B2 (en) | 2004-05-11 | 2011-11-15 | Merck Patent Gmbh | Material mixtures for use in electroluminescence |
WO2007054903A2 (en) | 2005-11-08 | 2007-05-18 | Ecole Polytechnique Federale De Lausanne (Epfl) | Hyperbranched polymer for micro devices |
WO2007054903A3 (en) * | 2005-11-08 | 2007-12-13 | Ecole Polytech | Hyperbranched polymer for micro devices |
US8519130B2 (en) | 2006-12-08 | 2013-08-27 | Universal Display Corporation | Method for synthesis of iriduim (III) complexes with sterically demanding ligands |
US8778508B2 (en) | 2006-12-08 | 2014-07-15 | Universal Display Corporation | Light-emitting organometallic complexes |
US8431243B2 (en) | 2007-03-08 | 2013-04-30 | Universal Display Corporation | Phosphorescent materials containing iridium complexes |
US9853227B2 (en) | 2007-03-08 | 2017-12-26 | Universal Display Corporation | Organic electroluminescent materials and devices |
US10008677B2 (en) | 2011-01-13 | 2018-06-26 | Universal Display Corporation | Materials for organic light emitting diode |
US10680189B2 (en) | 2011-01-13 | 2020-06-09 | Universal Display Corporation | Materials for organic light emitting diodes |
US11374180B2 (en) | 2011-01-13 | 2022-06-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
US11997918B2 (en) | 2011-01-13 | 2024-05-28 | Universal Display Corporation | Organic electroluminescent materials and devices |
WO2014085858A1 (en) | 2012-12-04 | 2014-06-12 | The University Of Queensland | Method for the detection of analytes via luminescence quenching |
Also Published As
Publication number | Publication date |
---|---|
US20060252963A1 (en) | 2006-11-09 |
US7276299B2 (en) | 2007-10-02 |
GB0002936D0 (en) | 2000-03-29 |
ATE486916T1 (en) | 2010-11-15 |
US7682708B2 (en) | 2010-03-23 |
EP1254196A1 (en) | 2002-11-06 |
DE60143379D1 (en) | 2010-12-16 |
EP1254196B1 (en) | 2010-11-03 |
JP2003522202A (en) | 2003-07-22 |
JP2012156519A (en) | 2012-08-16 |
JP5328070B2 (en) | 2013-10-30 |
US20080004471A1 (en) | 2008-01-03 |
AU2001232043A1 (en) | 2001-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7276299B2 (en) | Dendrimers | |
US7960557B2 (en) | Asymmetric dendrimers | |
US7960725B2 (en) | Aryl-aryl dendrimers | |
EP1926795B1 (en) | New compound and organic light emitting device using the same(1) | |
US7993747B2 (en) | Light emitting devices and compositions comprising lumophore-functionalized nanoparticles | |
JP4065521B2 (en) | Deuterated organic semiconductor compounds for optoelectronic devices | |
US6399224B1 (en) | Conjugated polymers with tunable charge injection ability | |
US7083862B2 (en) | Dendrimers | |
Jiang et al. | Solution-processable π-conjugated dendrimers with hole-transporting, electroluminescent and fluorescent pattern properties | |
US20050176953A1 (en) | Phenanthrene derivatives and organic light-emitting diodes containing said phenanthrene derivative | |
KR20070004641A (en) | Organic materials with tunable electric and electroluminescent properties | |
KR100951707B1 (en) | Material for organic electro-optical device comprising cyclohexane and organic electro-optical device including the same | |
JP5196747B2 (en) | Polymer for luminescence | |
Blumstengel et al. | Photo-, and electroluminescence studies of 2, 5-bis [2′-(4 ″-(6-hexoxy benzyl))-1′-ethenyl]-3, 4-dibutyl thiophenes | |
CN116156980A (en) | Organic electroluminescent device and application thereof | |
US20050100737A1 (en) | Cyclohexyl silyl or phenyl silyl substituted poly (phenylenevinylene) derivative, electroluminescence device using the same and production method thereof | |
WO2008120957A1 (en) | Light-emitting compound and organic light-emitting device using the same | |
KR100411184B1 (en) | Highly luminescent polymer and red electroluminescent device | |
KR100710985B1 (en) | Polyp-phenylenevinylene derivatives substituted with styryl group containing aryl group and the electroluminescent device prepared using the same | |
KR100394509B1 (en) | High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices | |
KR20110111611A (en) | Novel poly(phenylenevinylene) derivative and process for preparing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
ENP | Entry into the national phase |
Ref country code: JP Ref document number: 2001 558170 Kind code of ref document: A Format of ref document f/p: F |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2001904124 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2001904124 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10203448 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |