KR100394509B1 - High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices - Google Patents

High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices Download PDF

Info

Publication number
KR100394509B1
KR100394509B1 KR10-2000-0003929A KR20000003929A KR100394509B1 KR 100394509 B1 KR100394509 B1 KR 100394509B1 KR 20000003929 A KR20000003929 A KR 20000003929A KR 100394509 B1 KR100394509 B1 KR 100394509B1
Authority
KR
South Korea
Prior art keywords
light emitting
polymer
long chain
ppv
alkyl
Prior art date
Application number
KR10-2000-0003929A
Other languages
Korean (ko)
Other versions
KR20010076654A (en
Inventor
기인서
이지훈
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Priority to KR10-2000-0003929A priority Critical patent/KR100394509B1/en
Publication of KR20010076654A publication Critical patent/KR20010076654A/en
Application granted granted Critical
Publication of KR100394509B1 publication Critical patent/KR100394509B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1425Non-condensed systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Abstract

본 발명의 고기능성 전기발광 고분자는 폴리(p-페닐렌비닐렌)(PPV)을 주쇄로 하고, 긴 사슬(long chain)의 지방족 알킬기 또는 알콕시기가 1개 이상 포함된 4개의 치환체가 페닐렌 링의 주쇄에 도입되는 구조로 이루어지며, 하기 화학식(1)으로 표시된다:The high functional electroluminescent polymer of the present invention has a poly (p-phenylenevinylene) (PPV) as a main chain, and four substituents containing one or more long-chain aliphatic alkyl or alkoxy groups are phenylene rings. It consists of a structure introduced into the main chain of, represented by the following formula (1):

화학식 (1)Formula (1)

상기식에서 R1, R2, 및 R3는 각각 독립적으로 C1∼20인 긴 사슬의 알킬 또는 가지난 알킬이고, R4는 C1∼20인 긴 사슬의 알킬, 가지난 알킬, 또는 C1∼20인 긴 사슬의 알콕시 또는 가지난 알콕시이다.Wherein R 1 , R 2 , and R 3 are each independently C 1-20 long chain alkyl or branched alkyl, and R 4 is C 1-20 long chain alkyl, branched alkyl, or C 1 Long alkoxy or branched alkoxy of ˜20 .

또한, 상기 전기발광 고분자 단량체 및 OC1C10-PPV의 단량체의 비율을 조절하면서 공중합시킴으로써 칼라튜닝이 용이한 하기 화학식(2)으로 표시되는 전기발광 고분자를 제조할 수 있다:In addition, the electroluminescent polymer represented by the following Chemical Formula (2) may be prepared by easily copolymerizing while controlling the ratio of the electroluminescent polymer monomer and the monomer of OC1C10-PPV:

화학식 (2)Formula (2)

상기식에서 R1, R2, 및 R3는 각각 독립적으로 C1∼20인 긴 사슬의 알킬 또는 가지난 알킬이고, R4는 C1∼20인 긴 사슬의 알킬, 가지난 알킬, 또는 C1∼20인 긴 사슬의 알콕시 또는 가지난 알콕시이고, 그리고 x는 0.1∼0.9이고 y는 0.9∼0.1이다.Wherein R 1 , R 2 , and R 3 are each independently C 1-20 long chain alkyl or branched alkyl, and R 4 is C 1-20 long chain alkyl, branched alkyl, or C 1 Long chain alkoxy or branched alkoxy having ˜20 , x is from 0.1 to 0.9 and y is from 0.9 to 0.1.

상기 4개의 치환체가 도입된 PPV계 발광고분자는 일반적인 유기용매에 잘 용해되어 흠(defect)이 없는 우수한 박막을 형성할 수 있으며, 단층형 소자를 제작한 결과 소자의 구동 전압(voltage)이 3V 정도이며 504㎚ 근처에서 녹색계 파란색(greenish blue)을 나타낼 수 있고, OC1OC10과 공중합시킨 경우, 고분자 내의 비율에 따라 칼라 튜닝(color tuning)이 가능하며, 발광소자의 구동 전압(voltage)은 2.3V, 최대 발광휘도는 약 23000cd/㎡, 및 최대 효율은 1.22lm/W이다.PPV-based light emitting polymers in which the four substituents are introduced can be dissolved well in a general organic solvent to form an excellent thin film without defects. As a result of fabricating a single layer device, the driving voltage of the device is about 3V. And greenish blue in the vicinity of 504 nm, and when copolymerized with OC1OC10, color tuning is possible according to the ratio of the polymer, and the driving voltage of the light emitting device is 2.3V, The maximum luminous luminance is about 23000 cd / m 2 and the maximum efficiency is 1.22 lm / W.

Description

네개의 치환체를 갖는 페닐렌기를 포함하는 고기능성 전기발광고분자 {High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices}High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene Unit for Use in Electroluminescent Devices}

발명의 분야Field of invention

본 발명은 전기발광 고분자에 관한 것이다. 보다 구체적으로, 본 발명은 고순도의 녹색(green color)의 발광이 가능한 고휘도의 전기발광고분자에 관한 것으로, 페닐렌비닐렌기를 주쇄로 하고, 입체장애가 큰 4개의 치환기를 주쇄에 함유함으로써 순도 높은 녹색의 발광이 가능하고 칼라 튜닝(color tuning)이 우수한 전기발광 고분자 및 이를 적용한 발광 다이오드에 관한 것이다.The present invention relates to an electroluminescent polymer. More specifically, the present invention relates to a high-brightness electroluminescent molecule capable of emitting light of high purity green color, comprising a phenylene vinylene group as a main chain, and containing four substituents having a high steric hindrance in the main chain. The present invention relates to an electroluminescent polymer capable of emitting light and having excellent color tuning, and a light emitting diode using the same.

발명의 배경Background of the Invention

실리콘이 반도체 재료로 사용된 이래 눈부신 발전을 거듭해온 전자기술은 인류의 문화생활을 크게 향상시켰다. 특히, 최근 광통신과 멀티미디어 분야의 빠른 성장은 고도의 정보화 사회로의 발전을 가속화시키고 있다. 이에 따라, 광자(photon)의 전자(electron)로의 변환, 또는 전자(electron)의 광자(photon)로의 변환을 이용하는 광전자소자(optoelectronic device)는 현대 정보전자산업의 핵이 되고 있다. 이러한 반도체 광전자소자는 크게 전기발광소자, 수광소자, 및 이것들이 결합된 소자로 분류할 수 있다. 이제까지 대부분의 디스플레이는 수광형인데 반해 자기 발광형인 전기발광 디스플레이(electroluminescence display)는 응답속도가 빠르며 자기 발광형이기 때문에 배면광(backlight)이 필요없고, 휘도가 뛰어나는 등 여러 가지 장점을 가지고 있어 전기발광소자의 개발은 미래형 천연색 표시소자에의 응용성으로 인하여 최근 가장 연구가 활발히 이루어지고 있는 분야이다. 이러한 전기발광 현상은 GaN, ZnS, 및 SiC 등을 이용한 무기물 반도체에서 잘 개발되어 실제적인 표시소자로 사용되고 있다. 그러나, 무기물로 이루어진 전기발광(EL) 소자의 경우 구동전압이 교류 200V 이상 필요하고, 소자의 제작방법이 진공증착으로 이루어지므로 대형화가 어렵고 가격 또한 고가인 단점이 있다. 상기 문제점을 극복하기 위하여 유기 및 고분자 소재를 이용한 전기발광 현상도 알려져 있는데, 유기 전기발광현상(electroluminescence, EL)은 유기물질에 전기장을 걸어주면 전자 및 정공(hole)이 각각 음극 및 양극에서 전달되어 물질 내에서 결합하고, 이때 생성되는 에너지가 빛으로 방출되는 현상이다.Remarkable developments since silicon has been used as a semiconductor material have greatly improved the cultural life of mankind. In particular, the recent rapid growth in optical communication and multimedia has accelerated the development of a highly information society. Accordingly, optoelectronic devices using the conversion of photons to electrons or the conversion of electrons to photons have become the core of the modern information electronics industry. Such semiconductor optoelectronic devices can be broadly classified into electroluminescent devices, light receiving devices, and devices in which these are combined. Until now, most displays are light-receiving type, while electroluminescent display, which is self-luminous type, has fast response and self-luminous type, so it does not need backlight and has many advantages such as high brightness. The development of the light emitting device is the field which is being actively researched recently because of its applicability to future color display devices. Such electroluminescence is well developed in inorganic semiconductors using GaN, ZnS, SiC, etc., and is used as a practical display device. However, in the case of an electroluminescent (EL) device made of an inorganic material, a driving voltage is required to be AC 200V or more, and the manufacturing method of the device is made by vacuum deposition. In order to overcome the above problems, electroluminescence using organic and polymer materials is also known. In the organic electroluminescence phenomenon, an electron and a hole are transferred from a cathode and an anode when an electric field is applied to an organic material. It is a phenomenon in which the energy that is combined in the material and generated is emitted as light.

유기물질의 전기발광 현상은 1963년 Pope 등에 의하여 발표되었으며, 1987년 이스트만 코닥(Eastmann Kodak)에서 Tang 및 Vanslyke 등에 의하여 알루미나-퀴논(alumina-quinone, Alq3)이라는 π-공액 구조의 색소로 제작된 소자로서 10V 이하에서 양자효율이 1%, 휘도가 1000cd/㎡의 다층구조를 갖는 발광소자가 발표된 이후 많은 연구가 진행되고 있다. 이들은 합성경로가 간단하여 다양한 형태의 물질합성이 용이하며 칼라 튜닝이 가능한 장점이 있다. 그러나, 가공성이나 열안정성이 낮고 또한 전압을 걸어주었을 때 발광층내의 줄(Joule)열이 발생하여 분자가 재배열함에 따라 소자가 파괴되어 발광효율이나 소자의 수명에 문제를 야기시키므로 이를 보완한 고분자 구조를 갖는 유기 전기발광 소자로 대체가 진행되고 있다. 고분자 주쇄에 있는 π-전자 파동함수의 중첩에 의해 에너지 준위가 전도대와 가전도대로 분리되고 그 에너지 차이에 해당하는 밴드 간격(band gap) 에너지에 의하여 고분자의 반도체적인 성질이 결정되며 완전 색상(full color)의 구현이 가능하다. 이러한 고분자를 'π-전자공액 고분자(π-conjugated polymer)' 라고 한다.The electroluminescence of organic materials was published by Pope et al. In 1963. In 1987, Eastmann Kodak made a pigment of π-conjugated structure called alumina-quinone (Alq 3 ) by Tang and Vanslyke et al. Since the light emitting device having a multilayer structure having a quantum efficiency of 1% and a luminance of 1000 cd / m 2 at 10 V or less as a device has been published, many studies have been conducted. They have the advantage of easy synthesis and synthesis of various types of materials and simple color tuning. However, when the processability and thermal stability are low and the voltage is applied, Joule heat is generated in the light emitting layer, and as the molecules are rearranged, the device is destroyed and causes problems in the luminous efficiency or life of the device. Substitution is proceeding with the organic electroluminescent device having. The superposition of the π-electron wavefunction in the polymer backbone separates the energy level into the conduction band and the consumer electronics, and the semiconductor properties of the polymer are determined by the band gap energy corresponding to the energy difference. color) is possible. Such a polymer is called a π-conjugated polymer.

영국의 Cambridge 대학 연구진에 의하여 공액 이중결합을 갖는 고분자인 폴리(p-페닐렌비닐렌) (poly (p-phenylenevinylene): 이하 PPV)을 이용한 전기 발광소자가 1990년에 처음으로 발표된 후 유기고분자를 이용한 연구가 활발히 진행되고 있다. 즉, 짧은 기간임에도 불구하고 가시광 영역에서의 효율이 기존의 무기물 반도체로 만들어진 LED를 능가하는 고분자 LED가 개발되었을 뿐만 아니라 Full-color화에 필요한 Red, Green, 및 Blue의 발광고분자도 개발되었다. 통상 발광고분자는 대표적으로 PPV계를 주쇄로 하고, 알콕시기, 알킬기, 또는 아릴기가 1∼2개 치환된 고분자이며, 이를 적용하여 발광 다이오드를 제작했다. 그러나, Full-color화를 실현하기 위하여는 발광효율, 구동전압 등에서 해결해야될 많은 문제점이 있다.Organic polymers were first published in 1990 by researchers at Cambridge University in the UK, using an electroluminescent device using poly (p-phenylenevinylene) (PPV), a polymer with conjugated double bonds. The research using is actively progressing. That is, in spite of a short period of time, polymer LEDs having efficiency in the visible region that exceeds the LEDs made of inorganic semiconductors have been developed, as well as red, green, and blue light emitting polymers required for full-colorization. Usually, the light emitting polymer is a polymer having a PPV-based backbone as the main chain, and having one or two alkoxy groups, alkyl groups, or aryl groups substituted thereon, thereby applying a light emitting diode. However, in order to realize full-colorization, there are many problems to be solved in terms of luminous efficiency and driving voltage.

대표적인 고분자 전기발광 표시(polymer electroluminescent display, ELD) 소자의 재료인 전구체(precusor) PPV 유도체의 경우 일반적으로 다음과 같은 문제점이 있다.In the case of a precursor PPV derivative, which is a material of a typical polymer electroluminescent display (ELD) device, there are generally the following problems.

완전한 PPV 유도체를 만들기 위해서 술포늄염을 제거해야 하는데 완전히 제거하기가 어렵고, 박막을 형성할 경우 미반응의 술포늄염이 서서히 제거되면서 핀 홀 등이 생기므로 막의 균일성이 좋지 않다.In order to make a complete PPV derivative, sulfonium salts must be removed, but it is difficult to remove them completely. When a thin film is formed, unreacted sulfonium salts are gradually removed, resulting in pinholes.

최근에 상기 문제점을 해결하기 위하여 유기용매에 용해가 가능하도록 친유성 치환체를 도입한 PPV가 개발되고 있다. 즉, 유기용매에 용해될 수 있는 치환체,예를 들면, 에틸헥실옥시(ethylhexyloxy) 또는 디메틸옥틸옥시(dimethyloctyloxy) 등을 도입하고, Gilch 중합법(Dehydrogenhalogenation)을 이용하여 상기 문제를 극복하고 있으나, 특히 전자 공여체(electron donor)인 알콕시기가 도입되면 전자 효과(electronic effect)에 의하여 그 발광 스펙트럼은 붉은 색-전환(red-shift)되어오렌지(orange) 영역에서 발광한다.Recently, in order to solve the above problem, a PPV incorporating a lipophilic substituent to be dissolved in an organic solvent has been developed. That is, a substituent that can be dissolved in an organic solvent, such as ethylhexyloxy or dimethyloctyloxy, is introduced, and the above-mentioned problem is overcome by using Gilch polymerization (Dehydrogenhalogenation). In particular, when an alkoxy group, which is an electron donor, is introduced, its emission spectrum is red-shifted by the electronic effect to emit light in an orange region.

일반적으로 짧은 파장에서 장파장으로 에너지 전이가 쉽게 일어나는 유기 EL 고분자의 특성상, 다른 도핑화합물이나, 공중합을 통한 칼라 튜닝에는 한계가 있다. 또한, 녹색영역에서 발광을 하는 유기 EL 고분자로 알려진, 치환된 페닐기를 포함하는 poly(arylene vinylene)계 고분자는 그 발광영역이 노란색을 띤 녹색(yellowish green) 영역으로 노란색쪽에 가까운 녹색발광을 할뿐만 아니라, 합성법이 매우 어렵고, 특히 브롬이 치환된 화합물을 얻게되어 칼라 튜닝을 위한 상기 디알콕시-폴리페닐렌비닐렌(dialkoxy-PPV)계와의 공중합시 반응성의 차이로 인하여 정확한 칼라 튜닝 및 분자량 조절이 어렵다.In general, due to the characteristics of the organic EL polymer which easily transitions energy from a short wavelength to a long wavelength, there is a limit in color tuning through other doping compounds or copolymerization. In addition, a poly (arylene vinylene) polymer containing a substituted phenyl group, known as an organic EL polymer emitting light in a green region, emits green light close to a yellow side with a yellowish green region whose emission region is a yellowish green region. However, the synthesis method is very difficult, and in particular, bromine-substituted compounds are obtained, and precise color tuning and molecular weight control due to the difference in reactivity in copolymerization with the dialkoxy-polyphenylenevinylene (dialkoxy-PPV) system for color tuning This is difficult.

이와 같이 대표적인 유기 전기발광 소자의 재료로 사용되는 π-전자 공액 고분자 유도체인 PPV의 경우 중합법에 따라 특성이 많이 변하고, device의 재현성이 부족하여 박막형성이 어려운 문제가 발생하기 때문에 공정상 대량생산에는 어느 정도 한계를 갖는다. 즉, 최종 고분자까지 5∼6 단계의 긴 합성과정을 거치게 되어, 발광색의 순도가 떨어진다.PPV, a π-electron conjugated polymer derivative used as a material of a typical organic electroluminescent device, has a large change in characteristics depending on the polymerization method, and it is difficult to form a thin film due to lack of reproducibility of the device. There is some limit. That is, the final polymer is subjected to a long synthesis process of 5-6 steps, the purity of the emission color is lowered.

이에 본 발명자들은 종래에 알려진 PPV계 발광 고분자의 단점을 극복하기 위하여, PPV의 치환체를 적절하게 도입하면서 그 치환체의 입체효과에 의하여 공액 고분자 내의 유효공액 길이(effective conjugation length)를 변화시켜 발광특성을 변화시킬 수 있고, Gilch 중합과정 중에 발생하는 부반응에 의하여 야기되는 발광의 열화를 방지하며, 박막특성이 좋은 고분자를 얻어 제조공정 상의 불량발생 가능성을 감소시킬 수 있음을 발견하였다. 즉, 본 발명자들은 4개의 치환체를 도입함으로써 발생되는 치환체의 입체효과에 의하여 공액 고분자내의 유효공액길이를 조절하여 순도 높은 녹색발광을 하는 고휘도의 전기발광고분자를 개발하게 되었다. 또한, 상기 전기발광 고분자에 비대칭인(asymmetric) 치환체를 도입하여 고분자의 결정성을 낮추고, 유기용매에 대한 용해도가 증가하여 흠(defect)이 없는 고분자가 합성되는 등 박막특성이 크게 개선되고, 다른 고분자와의 공중합을 통하여 칼라 튜닝이 용이한 고효율의 유기 EL 발광 고분자를 개발하게 되었다.In order to overcome the shortcomings of the conventionally known PPV-based light emitting polymer, the present inventors have appropriately introduced a substituent of PPV while changing the effective conjugation length in the conjugated polymer by the steric effect of the substituent to improve the luminescence properties. It was found that it is possible to change, to prevent degradation of light emission caused by side reactions occurring during the Gilch polymerization process, and to obtain a polymer having good thin film properties, thereby reducing the possibility of defects in the manufacturing process. That is, the present inventors have developed a high-brightness electro-adhesive molecule which produces high purity green light by controlling the effective conjugate length in the conjugated polymer by the steric effect of the substituent generated by introducing four substituents. In addition, by introducing an asymmetric substituent to the electroluminescent polymer, the crystallinity of the polymer is lowered, solubility in organic solvents is increased, and thus a thin film property is greatly improved such that a polymer without defects is synthesized. Copolymerization with polymers has led to the development of highly efficient organic EL light emitting polymers with easy color tuning.

본 발명의 목적은 PPV를 주쇄로 하고, 입체장애가 큰 치환체 4개를 주쇄에 치환시켜 주쇄의 유효공액 길이를 조절함으로써 순도높은 녹색 발광특성을 갖는 전기 발광 고분자를 제공하기 위한 것이다.An object of the present invention is to provide an electroluminescent polymer having high purity green luminescence properties by controlling the effective conjugate length of the main chain by substituting the main chain with four substituents having high steric hindrance to the main chain.

본 발명의 다른 목적은 PPV 주쇄에 비대칭인 치환체를 도입하여 고분자의 결정성을 낮추고, 유기용매에 대한 용해도를 증가시켜 스핀 코팅에 의하여 박막을 제조할 수 있으며, 박막특성이 우수한 전기발광 고분자를 제공하기 위한 것이다.Another object of the present invention is to introduce an asymmetric substituent in the PPV backbone to lower the crystallinity of the polymer, increase the solubility in organic solvents to produce a thin film by spin coating, provides an electroluminescent polymer with excellent thin film properties It is to.

본 발명의 또 다른 목적은 PPV를 주쇄로 하고, 4개의 치환체가 주쇄에 도입된 전기발광 고분자 및 폴리{1,4(2-메톡시-5-디메틸옥틸옥시)페닐렌 비닐렌 (Poly{1,4(2-methoxy-5-dimethyloctyloxy)phenylene vinylene; 이하 OC1C10-PPV)을 공중합함으로써 녹색에서 오렌지색 영역까지 칼라 튜닝이 용이한 고효율의 유기 전기발광 고분자를 제공하기 위한 것이다.Still another object of the present invention is an electroluminescent polymer having PPV as the main chain and four substituents introduced into the main chain, and poly {1,4 (2-methoxy-5-dimethyloctyloxy) phenylene vinylene (Poly {1 In order to provide a highly efficient organic electroluminescent polymer having easy color tuning from green to orange region by copolymerizing 4 (2-methoxy-5-dimethyloctyloxy) phenylene vinylene (hereinafter OC1C10-PPV).

본 발명은 상기의 목적 및 기타의 목적들은 하기의 설명되는 바에 의하여 모두 달성될 수 있다.The above and other objects can be achieved by the following description.

제1도는 본 발명의 다이오드용 전기발광 고분자의 모노머 및 발광 고분자 제조공정의 일 구체예를 보여주는 공정도이다.1 is a process chart showing one embodiment of the monomer and light emitting polymer manufacturing process of the electroluminescent polymer for a diode of the present invention.

제2도는 본 발명의 실시예 3에 의하여 제조된 비스(클로로메틸)트리메톡시(디메틸옥틸옥시)벤젠의1H-NMR 스펙트럼이다.2 is a 1 H-NMR spectrum of bis (chloromethyl) trimethoxy (dimethyloctyloxy) benzene prepared according to Example 3 of the present invention.

제3도는 본 발명의 실시예 6에 의하여 제조된 비스(클로로메틸)디메틸옥틸옥시프로필트리메톡시벤젠의1H-NMR 스펙트럼이다.3 is a 1 H-NMR spectrum of bis (chloromethyl) dimethyloctyloxypropyltrimethoxybenzene prepared according to Example 6 of the present invention.

제4도는 본 발명의 실시예 7에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시-3,5,6-트리메톡시)페닐렌 비닐렌의1H-NMR 스펙트럼이다.4 is a 1 H-NMR spectrum of poly {1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene vinylene prepared according to Example 7 of the present invention.

제5도는 본 발명의 실시예 9에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시프로필-3,5,6-트리메톡시)페닐렌 비닐렌의1H-NMR 스펙트럼이다.5 is a 1 H-NMR spectrum of poly {1,4 (2-dimethyloctyloxypropyl-3,5,6-trimethoxy) phenylene vinylene prepared according to Example 9 of the present invention.

제6도는 본 발명의 발광고분자를 사용하여 양극/버퍼층(buffer layer)/정공전달층/발광층/정공차단층/음극으로 제조되는 실시예 11의 발광 다이오드 단면도이다.6 is a cross-sectional view of the light emitting diode of Example 11 manufactured by using the light emitting polymer of the present invention as an anode / buffer layer / hole transport layer / light emitting layer / hole blocking layer / cathode.

제7도는 본 발명의 실시예 7에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시-3,5,6-트리메톡시)페닐렌 비닐렌의 UV-Visible 스펙트럼, PL(photoluminescence) 스펙트럼, 및 이를 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 EL(electroluminescence) 스펙트럼이다.7 is a UV-Visible spectrum, PL (photoluminescence) spectrum of poly {1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene vinylene prepared according to Example 7 of the present invention. And EL (electroluminescence) spectra of a [ITO / PEDOT / balancing molecule / Ca / Al] diode structure using the same as a light emitting polymer.

제8도는 본 발명의 실시예 7에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시-3,5,6-트리메톡시)페닐렌 비닐렌을 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 전압-전류 밀도(voltage-current density) 특성을 보여주는 선도(diagram)이다.8 shows [ITO / PEDOT / luminescence using poly {1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene vinylene prepared as Example 7 of the present invention as a light emitting polymer. This diagram shows the voltage-current density characteristics of a polymer / Ca / Al] diode structure.

제9도는 본 발명의 실시예 7에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시-3,5,6-트리메톡시)페닐렌 비닐렌을 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 휘도-전류 밀도(luminance-current density) 특성을 보여주는 선도(diagram)이다.FIG. 9 shows [ITO / PEDOT / luminescence using poly {1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene vinylene prepared as Example 7 of the present invention as a light emitting polymer. This diagram shows the luminance-current density characteristics of a polymer / Ca / Al] diode structure.

제10도는 본 발명의 실시예 7에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시-3,5,6-트리메톡시)페닐렌 비닐렌을 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 휘도-전압(luminance-voltage) 특성을 보여주는 선도(diagram)이다.10 shows [ITO / PEDOT / luminescence using poly {1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene vinylene prepared as Example 7 of the present invention as a light emitting polymer. Diagram showing the luminance-voltage characteristics of a polymer / Ca / Al] diode structure.

제11도는 본 발명의 실시예 8에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시-3,5,6-트리메톡시)페닐렌-co-{1,4(2-메톡시-5-디메틸옥틸옥시)페닐렌} 비닐렌의 UV-Visible 스펙트럼, PL(photoluminescence) 스펙트럼, 및 이를 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 EL(electroluminescence) 스펙트럼이다.FIG. 11 shows poly {1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene-co- {1,4 (2-methoxy-) prepared according to Example 8 of the present invention. 5-dimethyloctyloxy) phenylene} UV-Visible spectrum, vinyl (photoluminescence) spectrum of vinylene, and EL (electroluminescence) spectrum of [ITO / PEDOT / advertising molecule / Ca / Al] diode structure using the same as light emitting polymer. .

제12도는 본 발명의 실시예 8에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시-3,5,6-트리메톡시)페닐렌-co-{1,4(2-메톡시-5-디메틸옥틸옥시)페닐렌} 비닐렌을 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 전압-전류 밀도(voltage-current density) 특성을 보여주는 선도(diagram)이다.FIG. 12 shows poly {1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene-co- {1,4 (2-methoxy- as prepared in Example 8 of the present invention. 5-dimethyloctyloxy) phenylene} is a diagram showing the voltage-current density characteristics of a [ITO / PEDOT / balancing molecule / Ca / Al] diode structure using vinylene as a light emitting polymer.

제13도는 본 발명의 실시예 8에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시-3,5,6-트리메톡시)페닐렌-co-{1,4(2-메톡시-5-디메틸옥틸옥시)페닐렌} 비닐렌을 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 휘도-전류 밀도(luminance-current density) 특성을 보여주는 선도(diagram)이다.FIG. 13 shows poly {1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene-co- {1,4 (2-methoxy- as prepared in Example 8 of the present invention. 5-dimethyloctyloxy) phenylene} is a diagram showing the luminance-current density characteristics of the structure of [ITO / PEDOT / balancing molecules / Ca / Al] diodes using vinylene as a light emitting polymer.

제14도는 본 발명의 실시예 8에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시-3,5,6-트리메톡시)페닐렌-co-{1,4(2-메톡시-5-디메틸옥틸옥시)페닐렌} 비닐렌을 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 휘도-전압 밀도(luminance-voltage density) 특성을 보여주는 선도(diagram)이다.14 shows poly {1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene-co- {1,4 (2-methoxy- 5-dimethyloctyloxy) phenylene} is a diagram showing the luminance-voltage density characteristics of the structure of [ITO / PEDOT / balancing molecules / Ca / Al] diodes using vinylene as a light emitting polymer.

제15도는 본 발명의 실시예 9에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시프로필-3,5,6-트리메톡시)페닐렌 비닐렌의 UV-Visible 스펙트럼, PL(photoluminescence) 스펙트럼, 및 이를 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 EL(electroluminescence) 스펙트럼이다.FIG. 15 shows UV-Visible spectrum, PL (photoluminescence) of poly {1,4 (2-dimethyloctyloxypropyl-3,5,6-trimethoxy) phenylene vinylene prepared according to Example 9 of the present invention. Spectrum and an EL (electroluminescence) spectrum of a [ITO / PEDOT / balancing molecule / Ca / Al] diode structure using the same as a light emitting polymer.

제16도는 본 발명의 실시예 9에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시프로필-3,5,6-트리메톡시)페닐렌 비닐렌을 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 전압-전류 밀도(voltage-current density) 특성을 보여주는 선도(diagram)이다.FIG. 16 shows [ITO / PEDOT / using poly {1,4 (2-dimethyloctyloxypropyl-3,5,6-trimethoxy) phenylene vinylene prepared as Example 9 of the present invention as a light emitting polymer. A diagram showing the voltage-current density characteristics of a light emitting polymer / Ca / Al] diode structure.

제17도는 본 발명의 실시예 9에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시프로필-3,5,6-트리메톡시)페닐렌 비닐렌을 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 휘도-전류 밀도(luminance-current density) 특성을 보여주는 선도(diagram)이다.FIG. 17 shows [ITO / PEDOT / using poly {1,4 (2-dimethyloctyloxypropyl-3,5,6-trimethoxy) phenylene vinylene prepared as Example 9 of the present invention as a light emitting polymer. It is a diagram showing the luminance-current density characteristics of the light emitting polymer / Ca / Al] diode structure.

제18도는 본 발명의 실시예 9에 의하여 제조된 폴리{1,4(2-디메틸옥틸옥시프로필-3,5,6-트리메톡시)페닐렌 비닐렌을 발광고분자로 사용한 [ITO/PEDOT/발광고분자/Ca/Al] 다이오드 구조의 휘도-전압 밀도(luminance-voltage density) 특성을 보여주는 선도(diagram)이다.FIG. 18 shows [ITO / PEDOT / using poly {1,4 (2-dimethyloctyloxypropyl-3,5,6-trimethoxy) phenylene vinylene prepared as Example 9 of the present invention as a light emitting polymer. It is a diagram showing the luminance-voltage density characteristic of the light emitting polymer / Ca / Al] diode structure.

본 발명의 전기발광 고분자는 폴리(p-페닐렌비닐렌)(PPV)을 주쇄로 하고, 긴 사슬(long chain)의 지방족 알킬기 또는 알콕시기가 1개 이상 포함된 4개의 치환체가 페닐렌 링의 주쇄에 도입되는 구조를 갖는다. 본 발명의 전기발광 고분자는 하기 화학식(1)으로 표시된다:The electroluminescent polymer of the present invention has a poly (p-phenylenevinylene) (PPV) as a main chain, and four substituents containing at least one long chain aliphatic alkyl or alkoxy group are the main chain of the phenylene ring. It has a structure that is introduced into. The electroluminescent polymer of the present invention is represented by the following formula (1):

상기식에서 R1, R2, 및 R3는 각각 독립적으로 C1∼20인 긴 사슬의 알킬 또는 가지난 알킬이고, R4는 C1∼20인 긴 사슬의 알킬, 가지난 알킬, 또는 C1∼20인 긴 사슬의 알콕시 또는 가지난 알콕시이다.Wherein R 1 , R 2 , and R 3 are each independently C 1-20 long chain alkyl or branched alkyl, and R 4 is C 1-20 long chain alkyl, branched alkyl, or C 1 Long alkoxy or branched alkoxy of ˜20 .

상기 발광 고분자는 고분자 주쇄의 페닐렌 링에 긴 사슬의 알킬 또는 알콕시를 포함하는 4개의 치환기가 도입된 테트라알콕시-PPV(tetraalkoxy-PPV) 또는 트리알콕시알킬-PPV(trialkoxyalkyl-PPV)로서 일반적인 유기용매에 대한 용해도가 증가되고, 전극과의 계면특성이 향상되어 흠(defect)이 없는 우수한 박막을 형성할 수있다. 치환체가 4개 도입된 상기 발광고분자는 구동전압이 약 3∼6V이고, 순도 높은 녹색을 발하는 발광 디스플레이를 제작할 수 있으며, 전기광학 특성이 우수하다.The light emitting polymer is a tetraalkoxy-PPV or a trialkoxyalkyl-PPV in which four substituents including long chain alkyl or alkoxy are introduced into the phenylene ring of the polymer backbone. Its solubility increases, and the interfacial property with the electrode is improved to form an excellent thin film without defects. The light emitting polymer having four substituents introduced therein has a driving voltage of about 3 to 6V, and can produce a light emitting display that emits high purity of green, and has excellent electro-optic characteristics.

또한, 상기 화학식(1)으로 표시되는 본 발명의 전기발광 고분자와 기존의 발광 고분자인 OC1C10-PPV를 공중합하여 하기 화학식(2)의 발광 고분자를 제조할 수 있다.In addition, the light emitting polymer of Formula (2) may be prepared by copolymerizing the electroluminescent polymer of the present invention represented by Formula (1) with OC1C10-PPV, which is a conventional light emitting polymer.

상기식에서 R1, R2, 및 R3는 각각 독립적으로 C1∼20인 긴 사슬의 알킬 또는 가지난 알킬이고, R4는 C1∼20인 긴 사슬의 알킬, 가지난 알킬, 또는 C1∼20인 긴 사슬의 알콕시 또는 가지난 알콕시이고, 그리고 x는 0.1∼0.9이고 y는 0.9∼0.1이다. 상기 공중합 전기발광 고분자는 상기 화학식(1)의 발광 고분자를 OC1C10-PPV의 모노머와 공중합시킨 것으로, 이를 사용하여 제작된 발광 디스플레이는 구동전압이 3V이고, 최대 발광휘도가 약 23000cd/㎡며, 소자의 최대효율은 1.22 lm/W이다. 또한, 소자 제조시 OC1C10-PPV의 함량에 따라 녹색에서 오렌지까지 칼라 튜닝이 가능하다.Wherein R 1 , R 2 , and R 3 are each independently C 1-20 long chain alkyl or branched alkyl, and R 4 is C 1-20 long chain alkyl, branched alkyl, or C 1 Long chain alkoxy or branched alkoxy having ˜20 , x is from 0.1 to 0.9 and y is from 0.9 to 0.1. The copolymerized electroluminescent polymer is obtained by copolymerizing the light emitting polymer of Chemical Formula (1) with a monomer of OC1C10-PPV. The light emitting display manufactured using the same has a driving voltage of 3V and a maximum emission luminance of about 23000 cd / m 2. The maximum efficiency of is 1.22 lm / W. In addition, color tuning is possible from green to orange depending on the content of OC1C10-PPV during device manufacturing.

본 발명의 전기발광 고분자는 종래의 위티그 축합(Wittig condensation) 중합법에 의하여 합성된 발광고분자의 분자량이 약 10,000 정도인 것에 비하여, 고분자량을 얻을 수 있는 길치(Gilch) 중합법을 이용함으로써 수평균분자량(Mn)이 약 10,000∼1,000,000 정도이고 분자량 분포가 1.5∼5.0이다.The electroluminescent polymer of the present invention can be obtained by using the Gilch polymerization method, which can obtain a high molecular weight, compared with the molecular weight of the light-emitting polymer synthesized by the conventional Wittig condensation polymerization method. The average molecular weight (Mn) is about 10,000 to 1,000,000 and the molecular weight distribution is 1.5 to 5.0.

본 발명의 PPV를 주쇄로 하고, 4개의 치환체가 페닐렌링에 치환된 전기발광 고분자를 발광층으로 하여 발광 다이오드(EL diode)를 제작할 수 있다. 또한, 본 발명에서 제조된 상기 고분자의 단량체와 기존에 잘 알려진 발광 고분자인 OC1C10-PPV의 단량체를 공중합하여, 이를 발광층으로 사용하는 발광 다이오드를 제작할 수 있다.The light emitting diode (EL diode) can be manufactured using the electroluminescent polymer in which the PPV of this invention is a main chain, and the four substituents substituted by the phenylene ring as a light emitting layer. In addition, by copolymerizing the monomer of the polymer prepared in the present invention and a monomer of OC1C10-PPV which is a well known light emitting polymer, a light emitting diode using the same as a light emitting layer can be manufactured.

제6도는 본 발명의 발광고분자를 사용하여 양극/버퍼층(buffer layer)/정공전달층/발광층/정공차단층/음극으로 제조되는 실시예 11의 발광 다이오드 단면도이다.6 is a cross-sectional view of the light emitting diode of Example 11 manufactured by using the light emitting polymer of the present invention as an anode / buffer layer / hole transport layer / light emitting layer / hole blocking layer / cathode.

발광 다이오드는 양극/발광층/음극, 양극/버퍼층(buffer layer)/발광층/음극, 양극/버퍼층(buffer layer)/정공전달층/발광층/음극, 양극/버퍼층(buffer layer)/정공전달층/발광층/전자전달층/음극, 및 양극/버퍼층(buffer layer)/정공전달층/발광층/정공차단층/음극으로 이루어진 구조를 갖는다. 보통 양극은 투명한 ITO 유리를 사용하고 음극은 일 함수(work function)가 작은 Al, Al:Li, 또는 Ca을 사용한다. 전자전달층 및 정공전달층은 운반자들을 발광 고분자로 효율적으로 전달시켜 줌으로써 발광 고분자 내에서 발광 결합의 확률을 크게 하기 위하여 사용한다. 버퍼층으로 폴리티오펜(polythiophene), 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리피롤(polypyrrole), 또는 폴리 페닐렌비닐렌 유도체를 사용하는 것이 바람직하며, 정공차단층으로 LiF 또는 MgF2가 사용된다.Light emitting diodes are anode / light emitting layer / cathode, anode / buffer layer / light emitting layer / cathode, anode / buffer layer / hole transport layer / light emitting layer / cathode, anode / buffer layer / hole transport layer / light emitting layer / Electron transport layer / cathode, and anode / buffer layer (hole layer) / hole transport layer / light emitting layer / hole blocking layer / cathode. Usually the anode uses transparent ITO glass and the cathode uses Al, Al: Li, or Ca with small work function. The electron transport layer and the hole transport layer are used to increase the probability of luminescence bonding in the light emitting polymer by efficiently transporting carriers to the light emitting polymer. It is preferable to use polythiophene, polyaniline, polyacetylene, polypyrrole, or polyphenylenevinylene derivative as the buffer layer, and LiF or MgF 2 is used as the hole blocking layer. .

본 발명은 하기의 실시예에 의하여 보다 명확히 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적에 불과하며 발명의 영역을 제한하고자 하는 것은 아니다.The present invention can be more clearly understood by the following examples, which are only intended to illustrate the present invention and are not intended to limit the scope of the invention.

실시예 1 :Trimethoxyphenol (1)의 제조 Example 1: Preparation of Trimethoxyphenol (1)

1000㎖ 플라스크에 트리메톡시벤즈알데히드(trimethoxybenzaldehyde) 29.4g (150m㏖)을 디클로로메탄(dichloromethane) 500㎖에 용해시킨 후에 0℃에서 m-CPBA 40g(180m㏖)을 천천히 적가하였다. 온도를 천천히 상온까지 승온시킨 후, 하루동안 교반하였다. 물 200㎖와 탄산수소나트륨(sodiumbicarbonate)의 수용액 300㎖를 적하한 후에 10분 동안 교반하였다. 층을 분리한 후에 유기층을 분리하고, 수용액 층을 디클로로메탄(dichloromethane) 300㎖로 한번 더 추출하였다. 상기 추출된 액에 상기 유기층을 첨가하여 그 속에 무수 MgSO4를 넣어 건조시킨 후에 여과(filtering)하여 유기용액을 진공 건조시켰다. 얻어진 오일을 컬럼 크로마토그래피(column chromatography) (전개액 : n-헥산/에틸아세테이트 = 4/1)를 이용하여 정제하여 트리메톡시페놀(trimethoxyphenol) 22g(119m㏖, 수율 79%)를 얻었다. 상기 트리메톡시페놀의 구조는1H-NMR을 통하여 확인하였다.1H-NMR(CDCl3) : δ3.79(s, 3H), 3.82(s, 3H), 3.828(s, 3H), 5.46(br, 1H), 6.56(s, 1H), 6.59(s, 1H)29.4 g (150 mmol) of trimethoxybenzaldehyde was dissolved in 500 mL of dichloromethane in a 1000 mL flask, and 40 g (180 mmol) of m-CPBA was slowly added dropwise at 0 ° C. The temperature was slowly raised to room temperature and then stirred for one day. 200 ml of water and 300 ml of an aqueous solution of sodium bicarbonate were added dropwise, followed by stirring for 10 minutes. After separating the layers, the organic layer was separated, and the aqueous layer was extracted once more with 300 ml of dichloromethane. The organic layer was added to the extracted solution, dried with anhydrous MgSO 4, and then filtered and dried to vacuum dry the organic solution. The oil thus obtained was purified using column chromatography (column solution: n-hexane / ethyl acetate = 4/1) to obtain 22 g (119 mmol, yield 79%) of trimethoxyphenol. The structure of the trimethoxyphenol was confirmed by 1 H-NMR. 1 H-NMR (CDCl 3 ): δ 3.79 (s, 3H), 3.82 (s, 3H), 3.828 (s, 3H), 5.46 (br, 1H), 6.56 (s, 1H), 6.59 (s, 1H)

실시예 2 :Trimethoxy(dimethyloctyloxy)benzene (2)의 제조 Example 2: Preparation of Trimethoxy (dimethyloctyloxy) benzene (2)

트리메톡시페놀 22g (119m㏖)을 DMF 300㎖에 용해시킨 후에, K2CO349g(357m㏖)과 촉매량의 KI(10g)를 적가하고, 디메틸옥틸브로마이드( dimethyloctylbromide) 52g(238m㏖)을 첨가하였다. 이 혼합액을 150℃에서 12시간동안 교반한 후에 물 300㎖를 넣었다. 10% NaOH 수용액을 300㎖ 첨가한 후에 10분 동안 교반하였다. 층을 분리한 후에 유기층을 분리하고, 수용액 층을 n-헥산 300㎖로 한번 더 추출하였다. 상기 추출된 액에 상기 유기층을 첨가한 다음, 그 속에 무수 MgSO4를 넣어 건조하고, 여과시키며 유기용액을 진공건조시켰다. 얻어진 오일을 컬럼 크로마토그래피(전개액 : n-헥산)를 이용하여 정제하여 25g(77.1 m㏖)의 트리메톡시디메틸옥틸벤젠을 얻었다. 상기 트리메톡시디메틸옥틸벤젠의 구조는1H-NMR을 통하여 확인하였다.1H-NMR(CDCl3) : δ 0.85∼0.95(m, 9H), 1.14∼1.32(m, 6H), 1.52∼1.78(m, 3H), 1.83∼1.93(m, 1H), 3.83(s, 3H), 3.837(s, 3H), 3.84(s, 3H), 3.97∼4.03(m, 2H), 6.59(s, 1H), 6.60(s, 1H)After dissolving 22 g (119 mmol) of trimethoxyphenol in 300 ml of DMF, 49 g (357 mmol) of K 2 CO 3 and KI (10 g) in catalytic amount were added dropwise, and 52 g (238 mmol) of dimethyloctylbromide were added dropwise. Added. After the mixture was stirred at 150 ° C. for 12 hours, 300 ml of water was added thereto. 300 ml of 10% aqueous NaOH solution was added, followed by stirring for 10 minutes. After separating the layers, the organic layer was separated, and the aqueous layer was extracted once more with 300 ml of n-hexane. The organic layer was added to the extracted solution, dried over anhydrous MgSO 4 , dried, filtered and the organic solution was vacuum dried. The oil thus obtained was purified using column chromatography (developing solution: n-hexane) to obtain 25 g (77.1 mmol) of trimethoxydimethyloctylbenzene. The structure of the trimethoxydimethyloctylbenzene was confirmed by 1 H-NMR. 1 H-NMR (CDCl 3 ): δ 0.85 to 0.95 (m, 9H), 1.14 to 1.32 (m, 6H), 1.52 to 1.78 (m, 3H), 1.83 to 1.93 (m, 1H), 3.83 (s, 3H), 3.837 (s, 3H), 3.84 (s, 3H), 3.97-4.03 (m, 2H), 6.59 (s, 1H), 6.60 (s, 1H)

실시예 3 :Bis(chloromethyl)trimethoxy(dimethyloctyloxy)benzene (3)의 제조 Example 3: Preparation of Bis (chloromethyl) trimethoxy (dimethyloctyloxy) benzene (3)

트리메톡시디메틸옥틸벤젠 25g(77.1m㏖)을 클로로메틸 메틸에테르(chloromethyl methylether)(31g, 385 m㏖)에 첨가한 후에 5 ㎖의 황산을 넣었다. 8시간 동안 50℃에서 교반한 후에, 상온에서 물 300㎖와 n-헥산을 300㎖ 첨가하고 10분 동안 교반하였다. 층을 분리한 후에 유기층을 분리하고, 수용액 층을 n-헥산 300㎖로 한번 더 추출하였다. 상기 추출된 액에 상기 유기층을 첨가하여, 그 속에 무수 MgSO4를 넣어 건조시킨 후에 여과하여 유기용액을 진공 건조시켰다. 얻어진 오일을 컬럼 크로마토그래피(전개액 : n-헥산/톨루엔 = 10/1)를 이용하여 정제하여, 비스(클로로메틸)트리메톡시디메틸옥틸옥시벤젠 7g(16.6m㏖, 수율 22%)를 얻었다. 구조는1H-NMR을 통하여 확인하였다.1H-NMR(CDCl3) : δ 0.85∼0.90(m, 6H), 0.96∼0.99(m, 3H), 1.17∼1.37(m, 6H), 1.52∼1.78(m, 3H), 1.83∼1.93(m, 1H), 3.88(s, 3H), 3.92(s, 3H), 3.93(s, 3H), 3.92∼3.95(m, 2H), 4.70(s, 4H)25 g (77.1 mmol) of trimethoxydimethyloctylbenzene was added to chloromethyl methylether (31 g, 385 mmol), followed by 5 ml of sulfuric acid. After stirring at 50 ° C. for 8 hours, 300 ml of water and 300 ml of n-hexane were added at room temperature, followed by stirring for 10 minutes. After separating the layers, the organic layer was separated, and the aqueous layer was extracted once more with 300 ml of n-hexane. The organic layer was added to the extracted solution, dried with anhydrous MgSO 4, and then filtered to dry the organic solution in vacuo. The oil thus obtained was purified using column chromatography (developing solution: n-hexane / toluene = 10/1) to obtain 7 g (16.6 mmol, yield 22%) of bis (chloromethyl) trimethoxydimethyloctyloxybenzene. . The structure was confirmed by 1 H-NMR. 1 H-NMR (CDCl 3 ): δ 0.85 to 0.90 (m, 6H), 0.96 to 0.99 (m, 3H), 1.17 to 1.37 (m, 6H), 1.52 to 1.78 (m, 3H), 1.83 to 1.93 ( m, 1H), 3.88 (s, 3H), 3.92 (s, 3H), 3.93 (s, 3H), 3.92-3.95 (m, 2H), 4.70 (s, 4H)

실시예 4 :Trimethoxyphenylpropanol (4)의 제조 Example 4 : Preparation of Trimethoxyphenylpropanol (4)

2,4,5-트리메톡시신나믹산(2,4,5-trimethoxycinnamic acid) 5g (21m㏖)을 에테르(200㎖)에 용해시킨 다음, LiAlH41.2g (31m㏖)을 0℃에서 천천히 적가하였다. 온도를 상온으로 승온시킨 후에, 6시간 동안 교반하고, 물을 천천히 적가하였다. 이때, 남아있는 LiAlH4가 물과 과격하게 반응하므로 반응 플라스크에 냉각기를 달고0℃로 온도를 낮춘 다음, 물을 한 방울씩 천천히 적가하였다. 약 2㎖의 물을 적가한 다음, 에틸 아세테이트 300㎖를 추가로 첨가하고 무수 MgSO4를 넣어 건조한 후에 여과시키고 유기용액을 진공 건조하였다. 얻어진 오일을 컬럼 크로마토그래피(전개액 : n-헥산/에틸 아세테이트 = 1/4)를 이용하여 정제하여 2.61g(11.5 m㏖)의 트리메톡시페닐프로판올을 얻었다. 상기 트리메톡시페닐프로판올의 구조는1H-NMR을 통하여 확인하였다. δ 1.76∼1.85(m, 2H), 2.65(t, 2H), 3.57(t, 2H), 3.82∼3.88(m, 9H), 6.52(s, 1H), 6.87(s, 1H)5 g (21 mmol) of 2,4,5-trimethoxycinnamic acid was dissolved in ether (200 mL), and then 1.2 g (31 mmol) of LiAlH 4 was slowly added at 0 ° C. Added dropwise. After the temperature was raised to room temperature, the mixture was stirred for 6 hours, and water was slowly added dropwise. At this time, since the remaining LiAlH 4 reacts violently with water, a cooler is attached to the reaction flask, the temperature is lowered to 0 ° C., and water is slowly added dropwise. About 2 ml of water was added dropwise, 300 ml of ethyl acetate was further added, anhydrous MgSO 4 was added thereto, dried, filtered, and the organic solution was dried in vacuo. The oil thus obtained was purified using column chromatography (developing solution: n-hexane / ethyl acetate = 1/4) to obtain 2.61 g (11.5 mmol) of trimethoxyphenylpropanol. The structure of the trimethoxyphenylpropanol was confirmed by 1 H-NMR. δ 1.76 to 1.85 (m, 2H), 2.65 (t, 2H), 3.57 (t, 2H), 3.82 to 3.88 (m, 9H), 6.52 (s, 1H), 6.87 (s, 1H)

실시예 5 :Dimethyloctyloxypropyltrimethoxybenzene (5)의 제조 Example 5: Preparation of Dimethyloctyloxypropyltrimethoxybenzene (5)

트리메톡시페닐프로판올 2.61g(11.5m㏖)을 THF 30㎖와 HMPA 6㎖에 넣은 후에 NaH 0.55g(7.5m㏖)을 0℃에서 적가하였다. 80℃에서 1시간 동안 교반한 다음, 디메틸옥틸 브로마이드(dimethyloctyl bromide) 5g(23 m㏖) 을 넣었다. 80℃에서 6시간 동안 교반하고 물 50㎖를 첨가한 후에 10분 동안 교반하였다. 층을 분리한 후에 유기층을 분리하고, 수용액 층을 n-헥산 100㎖로 한번 더 추출하였다. 상기 추출된 액에 유기층을 첨가하고, 그 속에 무수 MgSO4를 넣어 건조시킨 다음 여과시켜 유기용액을 진공건조시켰다. 얻어진 오일을 컬럼 크로마토그래피(전개액 : n-헥산/톨루엔 = 10/1)를 이용하여 정제하여 2.7g(7.5m㏖, 수율 65%)의 디메틸옥틸옥시프로필트리메톡시벤젠을 얻었다. 상기 디메틸옥틸옥시프로필트리메톡시벤젠의구조는1H-NMR을 통하여 확인하였다. δ 0.86∼0.91(m, 9H), 1.14∼1.32(m, 6H), 1.52∼1.78(m, 4H), 1.82∼1.87(m, 2H), 2.63(t, 2H), 3.43(m, 4H), 3.81(s, 3H), 3.84(s, 3H), 3.89(s, 3H), 6.52(s, 1H), 6.72(s, 1H)2.61 g (11.5 mmol) of trimethoxyphenylpropanol was added to 30 mL of THF and 6 mL of HMPA, and 0.55 g (7.5 mmol) of NaH was added dropwise at 0 占 폚. After stirring at 80 ° C. for 1 hour, 5 g (23 mmol) of dimethyloctyl bromide was added thereto. Stir at 80 ° C. for 6 hours, add 50 ml of water and then stir for 10 minutes. After separating the layers, the organic layer was separated, and the aqueous layer was extracted once more with 100 ml of n-hexane. An organic layer was added to the extracted solution, dried with anhydrous MgSO 4, and filtered to dry the organic solution in vacuo. The oil thus obtained was purified using column chromatography (developing solution: n-hexane / toluene = 10/1) to obtain 2.7 g (7.5 mmol, yield 65%) of dimethyloctyloxypropyltrimethoxybenzene. The structure of the dimethyloctyloxypropyltrimethoxybenzene was confirmed by 1 H-NMR. δ 0.86 to 0.91 (m, 9H), 1.14 to 1.32 (m, 6H), 1.52 to 1.78 (m, 4H), 1.82 to 1.87 (m, 2H), 2.63 (t, 2H), 3.43 (m, 4H) , 3.81 (s, 3H), 3.84 (s, 3H), 3.89 (s, 3H), 6.52 (s, 1H), 6.72 (s, 1H)

실시예 6 :Bis(chloromethyl)dimethyloctyloxypropyltrimethoxybenzene (6)의 제조Preparation of Bis (chloromethyl) dimethyloctyloxypropyltrimethoxybenzene (6) : Example 6

디메틸옥틸옥시프로필트리메톡시벤젠 2.7g(7.5m㏖)을 클로로메틸 메틸에테르(3.1g, 38.5 m㏖)에 첨가한 후에 0.5㎖의 황산을 넣었다. 8시간 동안 50℃에서 교반한 다음, 상온에서 물 100㎖와 n-헥산을 100㎖ 첨가하고 10분 동안 교반하였다. 층을 분리한 후에 유기층을 분리하고, 수용액 층을 n-헥산 100㎖로 한번 더 추출하였다. 상기 추출액에 상기 유기층을 첨가하여, 그 속에 무수 MgSO4를 넣어 건조한 다음 여과시켜 유기용액을 진공 건조시켰다. 얻어진 오일을 컬럼 크로마토그래피 (전개액 : n-헥산/톨루엔 = 10/1)를 이용하여 정제하여 비스(클로로메틸)디메틸옥틸옥시프로필트리메톡시벤젠 540㎎ (1.16 m㏖, 수율 16%)을 얻었다. 상기 비스(클로로메틸)디메틸옥틸옥시프로필트리메톡시벤젠의 구조는1H-NMR을 통하여 확인하였다. δ 0.87∼0.95(m, 9H), 1.14∼1.42(m, 7H), 1.52∼1.78(m, 3H), 1.83∼1.93(m, 2H), 2.76∼2.82(m, 2H), 3.47(t, 4H), 3.89(s, 3H), 3.93(s, 3H), 3.97(s, 3H), 4.70(s, 2H), 4.73(s, 2H)2.7 g (7.5 mmol) of dimethyloctyloxypropyltrimethoxybenzene was added to chloromethyl methyl ether (3.1 g, 38.5 mmol), and 0.5 ml of sulfuric acid was added thereto. After stirring at 50 ° C. for 8 hours, 100 ml of water and 100 ml of n-hexane were added at room temperature, followed by stirring for 10 minutes. After separating the layers, the organic layer was separated, and the aqueous layer was extracted once more with 100 ml of n-hexane. The organic layer was added to the extract, dried with anhydrous MgSO 4, and filtered to dry the organic solution in vacuo. The oil thus obtained was purified using column chromatography (eluent: n-hexane / toluene = 10/1) to give 540 mg (1.16 mmol, 16% yield) of bis (chloromethyl) dimethyloctyloxypropyltrimethoxybenzene. Got it. The structure of the bis (chloromethyl) dimethyloctyloxypropyltrimethoxybenzene was confirmed by 1 H-NMR. δ 0.87 to 0.95 (m, 9H), 1.14 to 1.42 (m, 7H), 1.52 to 1.78 (m, 3H), 1.83 to 1.93 (m, 2H), 2.76 to 2.82 (m, 2H), 3.47 (t, 4H), 3.89 (s, 3H), 3.93 (s, 3H), 3.97 (s, 3H), 4.70 (s, 2H), 4.73 (s, 2H)

실시예 7 :Poly{1,4(2-dimethyloctyloxy,3,5,6-trimethoxy)phenylene vinylene (7)의 제조Preparation of Poly {1,4 (2-dimethyloctyloxy, 3,5,6-trimethoxy) phenylene vinylene (7): Example 7

실시예 3에 의하여 제조된 모노머 (3) 430㎎(1m㏖)을 무수(anhydrous) THF 63㎖에 용해시켜(0.016M solution) 0℃에서 상기 용액을 교반하면서 포타슘 터셔리-부톡사이드(potassium tert-butoxide) 4㎖(1.0㏖ solution in THF, 4 당량)를 천천히 첨가하였다. 포타슘 터셔리-부톡사이드의 양이 1.5∼2.0당량을 넘으면서 상기 용액은 점점 점성을 나타내기 시작하였다. 약 3시간 동안 교반시킨 후에, 상기 반응물을 다량의 메탄올(500㎖)에 침전시켰다. 생성된 침전물을 여과시켜 Soxhlet 장치에 옮긴 다음, 메탄올을 증류시키면서 정제하고 클로로포름으로 용해시키고 메탄올에 재침전시켜 최종 고분자를 얻었다(수율 약 70%). 얻어진 고분자의 수평균분자량은 대략 200,000∼300,000이었다.430 mg (1 mmol) of the monomer (3) prepared in Example 3 was dissolved in 63 ml of anhydrous THF (0.016M solution), and the potassium tertiary-butoxide (potassium tert) was stirred with stirring the solution at 0 ° C. -butoxide) 4 ml (1.0 mol solution in THF, 4 equiv) was slowly added. The solution began to become more viscous as the amount of potassium tertiary-butoxide exceeded 1.5-2.0 equivalents. After stirring for about 3 hours, the reaction was precipitated in a large amount of methanol (500 mL). The resulting precipitate was filtered and transferred to a Soxhlet apparatus, then purified by distillation of methanol, dissolved in chloroform and reprecipitated in methanol to give a final polymer (yield about 70%). The number average molecular weight of the obtained polymer was about 200,000-300,000.

실시예 8 :Poly{1,4 (2-dimethyloctyloxy-3,5,6-trimethoxy) phenylene-co- (1'-methoxy-4'-dimethyloctyloxy)phenylene vinylene (8)(Tetraalkoxy-PP-co -OC1OC10-PPV)의 제조 Example 8: Poly {1,4 (2- dimethyloctyloxy-3,5,6-trimethoxy) phenylene-co- (1'-methoxy-4'-dimethyloctyloxy) phenylene vinylene (8) (Tetraalkoxy-PP-co -OC1OC10 -PPV)

실시예 3에서 얻어진 모노머 (3)와 2,5-비스(클로로메틸)-1-디메틸옥틸옥시-4-메톡시벤젠을 여러 가지 몰 조성비로 조절하면서 무수 THF(0.016M solution)에 용해시켰다. 0℃에서 용액을 교반하면서 포타슘 터셔리-부톡사이드(1.0㏖ solution in THF, 4 당량)를 천천히 첨가하였다. 포타슘 터셔리-부톡사이드의 양이 1.5∼2.0 당량을 넘으면서 용액이 점점 점성을 나타내기 시작하였다. 약 3시간동안 교반시킨 다음, 상기 반응물을 다량의 메탄올(500㎖)에 침전시켰다. 상기 생성된 침전물을 여과시켜 Soxhlet 장치에 옮긴 후에, 메탄올을 증류시키면서 정제하고 클로로포름으로 용해시키고, 메탄올에 재침전시켜 최종 고분자를 얻었다(수율 약 70%). 얻어진 고분자의 수평균분자량은 대략 200,000∼300,000이었다.Monomer (3) and 2,5-bis (chloromethyl) -1-dimethyloctyloxy-4-methoxybenzene obtained in Example 3 were dissolved in anhydrous THF (0.016M solution) while adjusting to various molar composition ratios. Potassium tertiary-butoxide (1.0 mol solution in THF, 4 equiv) was slowly added while stirring the solution at 0 ° C. The solution began to become more viscous with an amount of potassium tertiary-butoxide exceeding 1.5-2.0 equivalents. After stirring for about 3 hours, the reaction was precipitated in a large amount of methanol (500 mL). After the resulting precipitate was filtered and transferred to a Soxhlet apparatus, methanol was purified by distillation, dissolved in chloroform, and reprecipitated in methanol to obtain a final polymer (yield about 70%). The number average molecular weight of the obtained polymer was about 200,000-300,000.

실시예 9 :Poly{1,4(2-dimethyloctyloxypropyl-3,5,6-trimethoxy)phenylene vinylene (9)의 제조Preparation of Poly {1,4 (2-dimethyloctyloxypropyl- 3,5,6-trimethoxy) phenylene vinylene (9): Example 9

실시예 6에 의하여 제조된 모노머 (6) 170㎎(0.37m㏖)을 무수 THF 23㎖에 용해시켜(0.016M solution) 0℃에서 상기 용액을 교반하면서 포타슘 터셔리-부톡사이드 1.47㎖(1.0㏖ solution in THF, 4당량)를 천천히 첨가하였다. 포타슘 터셔리-부톡사이드의 양이 1.5∼2.0 당량을 넘으면서 용액이 점점 점성을 나타내기 시작하였다. 약 3시간 동안 교반시킨 다음, 상기 반응물을 다량의 메탄올(100㎖)에 침전시켰다. 생성된 침전물을 여과시켜 Soxhlet 장치에 옮긴 후에, 메탄올을 증류시키면서 정제하고 클로로포름으로 용해시켜 메탄올에 재침전시켜 최종 고분자를 얻었다(수율 약 40%). 얻어진 고분자의 수평균분자량은 대략 20,000이었다.170 mg (0.37 mmol) of the monomer (6) prepared according to Example 6 was dissolved in 23 mL of anhydrous THF (0.016 M solution), and 1.47 mL (1.0 mol) of potassium tert-butoxide was stirred at 0 ° C. while stirring the solution. solution in THF, 4 equivalents) was added slowly. The solution began to become more viscous with an amount of potassium tertiary-butoxide exceeding 1.5-2.0 equivalents. After stirring for about 3 hours, the reaction was precipitated in a large amount of methanol (100 mL). The resulting precipitate was filtered and transferred to a Soxhlet apparatus, after which methanol was purified by distillation, dissolved in chloroform and reprecipitated in methanol to give a final polymer (yield about 40%). The number average molecular weight of the obtained polymer was approximately 20,000.

실시예 10 :Poly{1,4 (2-dimethyloctyloxypropyl-3,5,6-trimethoxy) phenylene-co- (1'-methoxy-4'-dimethyloctyloxy)phenylene vinylene (10) (Trialkoxyalkyl-PP- co-OC1OC10-PPV)의 제조 Example 10: Poly {1,4 (2- dimethyloctyloxypropyl-3,5,6-trimethoxy) phenylene-co- (1'-methoxy-4'-dimethyloctyloxy) phenylene vinylene (10) (Trialkoxyalkyl-PP- co-OC1OC10 -PPV)

실시예 6에 의하여 제조된 모노머 (6)와 2,5-비스(클로로메틸)-1-디메틸옥틸옥시-4-메톡시벤젠을 여러 가지 몰조성비로 조절하면서 무수 THF (0.016M solution)에 용해시켜 0℃에서 용액을 교반하면서 포타슘 터셔리-부톡사이드(1.0㏖ solution in THF, 4당량)를 천천히 첨가하였다. 포타슘 터셔리-부톡사이드의 양이 1.5∼2.0 당량을 넘으면서 용액이 점점 점성을 나타내기 시작하였다. 약 3시간 동안 교반시킨 후, 상기 반응물을 다량의 메탄올(500㎖)에 침전시켰다. 생성된 침전물을 여과시켜 Soxhlet 장치에 옮긴 후, 메탄올을 증류시키면서 정제하고 클로로포름으로 용해시켜 메탄올에 재침전시켜 최종 고분자를 얻었다(수율 약 70%). 얻어진 고분자의 수평균분자량은 대략 200,000∼300,000이었다.Monomer (6) prepared in Example 6 and 2,5-bis (chloromethyl) -1-dimethyloctyloxy-4-methoxybenzene were dissolved in anhydrous THF (0.016M solution) with various molar composition ratios. Potassium tert-butoxide (1.0 mol solution in THF, 4 equivalents) was slowly added while stirring the solution at 0 ° C. The solution began to become more viscous with an amount of potassium tertiary-butoxide exceeding 1.5-2.0 equivalents. After stirring for about 3 hours, the reaction was precipitated in a large amount of methanol (500 mL). The resulting precipitate was filtered, transferred to a Soxhlet apparatus, purified by distillation of methanol, dissolved in chloroform and reprecipitated in methanol to obtain a final polymer (yield about 70%). The number average molecular weight of the obtained polymer was about 200,000-300,000.

실시예 11 : 전기발광소자의 제작 Example 11 : Fabrication of electroluminescent device

실시예 7, 8, 9, 및 10에서 제조된 발광고분자를 이용하여 전기발광 디바이스를 제작하였다. 제작된 EL device의 구조를 도6에 나타내었다. EL device의 제작과정은 ITO(indium-tin oxide)를 유리기판 위에 코팅한 투명전극 기판을 깨끗이 세정한 후, 원하는 모양으로 ITO를 감광성 수지(photoresist resin)와 에천트(etchant)를 이용하여 페터닝(patterning)하고, 다시 깨끗이 세정하였다. 그 위에 전도성 버퍼층(conductive buffer layer)으로 Bayer사의 Batron P 4083을 약 500Å의 두께로 코팅한 다음, 180℃에서 약 1시간 동안 베이킹(baking)하였다. 클로로벤젠에 용해시켜 제조된 유기 발광 고분자 용액을 스핀코팅하고, 베이킹 처리한 후에, 진공오븐 내에서 용매를 완전히 제거하여 고분자 박막을 형성시켰다. 고분자 용액은 0.2㎛ 필터로 여과시켜, 스핀코팅하였으며, 고분자 박막 두께는 고분자 용액의 농도 및 스핀 속도(spin rate)를 조절하여 자유롭게 조절할 수 있었다. 발광 고분자 두께는 약 50∼500㎚ 정도였다. 그리고, 절연층(insulating layer) 및 메탈전극은 진공증착기(thermoevaporator)를 이용하여 진공도를 4×10-6torr 이하로 유지하면서 증착시켜 형성하였다. 증착시 막 두께 및 막의 성장 속도는 크리스탈 센서(crystal sensor)를 이용하여 조절하였으며, 발광면적은 4㎟이었고 구동전압은 직류전압으로 순방향 바이어스 전압(forward bias voltage)을 사용하였다.Electroluminescent devices were fabricated using the light emitting polymers prepared in Examples 7, 8, 9, and 10. The structure of the fabricated EL device is shown in FIG. EL device fabrication process cleans the transparent electrode substrate coated with ITO (indium-tin oxide) on the glass substrate, and then patternes the ITO using a photoresist resin and an etchant into a desired shape. It was patterned and washed again. Bayer Batron P 4083 was coated with a conductive buffer layer to a thickness of about 500 kPa, and then baked at 180 ° C. for about 1 hour. After spin-coating an organic light emitting polymer solution prepared by dissolving in chlorobenzene and baking, the solvent was completely removed in a vacuum oven to form a polymer thin film. The polymer solution was filtered through a 0.2 μm filter and spin-coated, and the polymer thin film thickness was freely controlled by controlling the concentration and spin rate of the polymer solution. The light emitting polymer thickness was about 50-500 nm. The insulating layer and the metal electrode were formed by depositing while maintaining a vacuum degree of 4 × 10 −6 torr or less using a vacuum evaporator. During deposition, the film thickness and the growth rate of the film were controlled by using a crystal sensor, the emission area was 4 mm 2, and the driving voltage was a forward bias voltage.

실시예 12 :고분자 필름의 UV-Visible, PL(photoluminescence) 특성 Example 12: UV-Visible, PL ( photoluminescence) properties of the polymer film

실시예 7, 8, 9, 및 10으로부터 제조된 발광고분자 용액들을 유리(glass) 위에 스핀 코팅하여 고분자 박막을 형성한 후에, UV 흡수 피크와 Photoluminescence(PL)를 측정하였다. 형성된 박막은 핀 홀(pin hole)이 없고 균일하였으며, 기판에 대한 접착성이 매우 우수하였다. 각각 시료의 UV 및 PL 스펙트럼의 측정 결과를 도 7, 11, 및 15에 나타내었다.After luminescent polymer solutions prepared from Examples 7, 8, 9, and 10 were spin-coated on glass to form a polymer thin film, UV absorption peaks and Photoluminescence (PL) were measured. The formed thin film was uniform without pin holes and had excellent adhesion to the substrate. The measurement results of the UV and PL spectra of the samples are shown in FIGS. 7, 11, and 15, respectively.

도 7에 나타난 바와 같이, 테트라알콕시-PPV의 경우, UV 최대 흡수 피크는 446㎚이었고, 여기파장을 446㎚로 하여 측정한 PL 스펙트럼에서의 PL 최대 피크는 506㎚이었으며, shoulder가 541㎚에서 측정되었다.As shown in FIG. 7, in the case of tetraalkoxy-PPV, the UV maximum absorption peak was 446 nm, the PL maximum peak in the PL spectrum measured with an excitation wavelength of 446 nm was 506 nm, and the shoulder was measured at 541 nm. It became.

도 11에 나타난 바와 같이, Tetraalkoxy-co-OC1OC10-PPV(10:1)의 경우 UV 최대 흡수 피크는 451㎚이었고, 여기파장을 451㎚로 하여 측정한 PL 스펙트럼에서의PL 최대 피크는 581㎚이었다. 또한, Tetraalkoxy-co-OC1OC10-PPV(1:1)의 경우 UV 최대 흡수 피크는 486㎚이었고, 여기파장을 486㎚로 하여 측정한 PL 스펙트럼에서의 PL 최대 피크는 588㎚이었다.As shown in FIG. 11, in the case of Tetraalkoxy-co-OC1OC10-PPV (10: 1), the UV maximum absorption peak was 451 nm, and the PL maximum peak in the PL spectrum measured with an excitation wavelength of 451 nm was 581 nm. . In the case of Tetraalkoxy-co-OC1OC10-PPV (1: 1), the UV maximum absorption peak was 486 nm, and the PL maximum peak in the PL spectrum measured with an excitation wavelength of 486 nm was 588 nm.

도 15에 나타난 바와 같이, 트리메톡시알킬-PPV의 경우에는 UV 최대 흡수 피크는 399㎚이었고, 여기파장을 399㎚로 하여 측정한 PL 스펙트럼에서의 PL 최대 피크는 493㎚이었으며, shoulder가 527㎚에서 측정되었다. 또한, 공중합체인 Trimethoxyalkyl-co-OC1OC10-PPV(1:1)의 경우 UV 최대 흡수 피크는 475㎚이었고, 여기파장을 475㎚로 하여 측정한 PL 스펙트럼에서의 PL 최대 피크는 585㎚이었다.As shown in FIG. 15, in the case of trimethoxyalkyl-PPV, the UV maximum absorption peak was 399 nm, the PL maximum peak in the PL spectrum measured with an excitation wavelength of 399 nm was 493 nm, and the shoulder was 527 nm. Measured in In the case of the copolymer Trimethoxyalkyl-co-OC1OC10-PPV (1: 1), the UV maximum absorption peak was 475 nm, and the PL maximum peak in the PL spectrum measured with an excitation wavelength of 475 nm was 585 nm.

실시예 13 :전기적 특성평가 Example 13 : Electrical Characterization

실시예 7, 8 및 9에서 제조된 발광 고분자를 이용하여 제작된 EL device로부터 전기발광 특성을 평가하여 도 8∼10, 12∼14 및 도 16∼18에 나타내었다. 제작된 ITO/PEDOT/고분자/Ca/Al 구조의 단층형 EL소자들은 모두 전형적인 정류 다이오드(rectifying diode) 특성을 보였다. Tetraalkoxy-PPV의 경우 구동전압(turn-on voltage)은 도 10에서 보듯이 약 2.9 V에서 시작되었으며, 최대휘도는 28900 cd/m2이며 소자의 최대효율은 0.58 lm/W 이었다. Trialkoxyalkyl-PPV의 경우는 구동전압은 도 18에서 알 수 있듯이 약 6.3 V에서 시작되었으며, 최대휘도는 8600 cd/m2이며 소자의 최대효율은 0.77 lm/W 이었다.The electroluminescent properties of the EL devices fabricated using the light emitting polymers prepared in Examples 7, 8 and 9 were evaluated and shown in FIGS. 8 to 10, 12 to 14 and 16 to 18. FIG. The fabricated ITO / PEDOT / polymer / Ca / Al structure single layer EL devices showed typical rectifying diode characteristics. In the case of Tetraalkoxy-PPV, the turn-on voltage began at about 2.9 V, as shown in FIG. 10, the maximum luminance was 28900 cd / m 2, and the maximum efficiency of the device was 0.58 lm / W. In the case of trialkoxyalkyl-PPV, the driving voltage started at about 6.3 V as shown in FIG. 18, the maximum luminance was 8600 cd / m 2, and the maximum efficiency of the device was 0.77 lm / W.

또한, 실시예 8에 의하여 제조되는 공중합체인 Tetraalkoxy-co-OC1C10-PPV(10:1)의경우 구동전압은 약 3.6 V에서 시작되었으며, 최대휘도는 12500 cd/m2이며 소자의 최대효율은 1.22 lm/W이었다. 상기 공중합체 내의 단량체 비율에 변화를 가하여 제조된 공중합체인 Tetraalkoxy-co-OC1C10-PPV(1:1)의 경우 구동전압은 약 2.3 V에서 시작되었으며, 최대휘도는 24400 cd/m2이며 소자의 최대효율은 0.53 lm/W이었다. 실시예 10에 의하여 제조되는 공중합체인 Trialkoxyalkyl-co-OC1C10-PPV(1:1)의 경우 구동전압은 약 2.6 V에서 시작되었으며, 최대휘도는 12570 cd/m2이며 소자의 최대효율은 1.10 lm/W이었다. 제작된 EL 소자들은 수 차례 반복구동 후에도 초기의 전압-전류밀도 특성을 그대로 유지하는 안정성을 보였다.In addition, in the case of Tetraalkoxy-co-OC1C10-PPV (10: 1), a copolymer prepared according to Example 8, the driving voltage was started at about 3.6 V, the maximum luminance was 12500 cd / m 2, and the maximum efficiency of the device was 1.22. lm / W. In the case of Tetraalkoxy-co-OC1C10-PPV (1: 1), a copolymer prepared by changing the monomer ratio in the copolymer, the driving voltage started at about 2.3 V, the maximum luminance was 24400 cd / m 2, and the maximum The efficiency was 0.53 lm / W. In the case of Trialkoxyalkyl-co-OC1C10-PPV (1: 1), a copolymer prepared according to Example 10, the driving voltage was started at about 2.6 V, the maximum luminance was 12570 cd / m 2, and the maximum efficiency of the device was 1.10 lm /. It was W The fabricated EL devices showed stability maintaining the initial voltage-current density characteristics even after several times of repeated driving.

본 발명의 전기발광 고분자는 기존의 발광고분자인 폴리(p-페닐렌비닐렌기)(PPV)를 주쇄로 하여, 4개의 치환체를 주쇄에 도입함으로써 유기용매에 대한 용해성이 우수하고, 고순도, 고휘도의 녹색발광, 전극과의 계면특성 및 박막 형성능력이 우수하고, 또한 상기 전기발광 고분자와 OC1C10-PPV를 공중합하여 합성된 공중합 전기발광 고분자는 녹색 및 오렌지색 사이의 칼라 튜닝이 뛰어나고, 우수한 디스플레이 특성을 갖는다.The electroluminescent polymer of the present invention uses poly (p-phenylenevinylene group) (PPV), which is a conventional light emitting polymer, as a main chain, and introduces four substituents into the main chain, so that it is excellent in solubility in organic solvents, and has high purity and high brightness. It has excellent green light emission, interfacial property with electrode and thin film formation ability, and the copolymerized electroluminescent polymer prepared by copolymerizing the electroluminescent polymer and OC1C10-PPV has excellent color tuning between green and orange and has excellent display characteristics. .

본 발명의 단순한 변형 내지 변경은 모두 본 발명의 영역에 속하는 것으로 본 발명의 구체적인 보호범위는 첨부된 특허청구범위에 의하여 명확해질 것이다.All simple modifications and variations of the present invention fall within the scope of the present invention, and the specific scope of the present invention will be apparent from the appended claims.

Claims (6)

폴리(p-페닐렌비닐렌)(PPV)을 주쇄로 하고, 페닐렌 링에 4개의 치환체가 도입되는 하기 화학식(1)으로 표시되는 것을 특징으로 하는 고기능성 전기발광고분자:A high functional electroadhesive molecule characterized by represented by the following general formula (1) in which poly (p-phenylenevinylene) (PPV) is the main chain and four substituents are introduced into the phenylene ring: 화학식 (1)Formula (1) 상기식에서 R1, R2, 및 R3는 각각 독립적으로 C1∼15인 긴 사슬의 알킬 또는 가지난 알킬이고, R4는 C1∼15인 긴 사슬의 알킬, 가지난 알킬, 또는 C1∼15인 긴 사슬의 알콕시 또는 가지난 알콕시임.Wherein R 1 , R 2 , and R 3 are each independently C 1-15 long chain alkyl or branched alkyl, and R 4 is C 1-15 long chain alkyl, branched alkyl, or C 1 to 15 of the long-chain or branched alkoxy responsibility of the alkoxy group. 제1항의 전기발광 고분자 단량체 및 OC1C10-PPV의 단량체를 공중합시켜 제조되며, 하기 화학식(2)으로 표시되는 것을 특징으로 하는 고기능성 전기발광 고분자:A high functional electroluminescent polymer prepared by copolymerizing the electroluminescent polymer monomer of claim 1 and a monomer of OC1C10-PPV, which is represented by the following formula (2): 화학식 (2)Formula (2) 상기식에서 R1, R2, 및 R3는 각각 독립적으로 C1∼15인 긴 사슬의 알킬 또는 가지난 알킬이고, R4는 C1∼15인 긴 사슬의 알킬, 가지난 알킬, 또는 C1∼15인 긴 사슬의 알콕시 또는 가지난 알콕시이고, 그리고 x는 0.1∼0.9이고 y는 0.9∼0.1임.Wherein R 1 , R 2 , and R 3 are each independently C 1-15 long chain alkyl or branched alkyl, and R 4 is C 1-15 long chain alkyl, branched alkyl, or C 1 Long chain alkoxy or branched alkoxy having 15 to 15 , x is 0.1 to 0.9 and y is 0.9 to 0.1. 제1항 또는 제2항에 있어서, 상기 전기발광 고분자의 수평균분자량이 10,000∼1,000,000이고, 분자량 분포가 1.5∼5.0인 것을 특징으로 하는 고기능성 전기발광 고분자.The high functional electroluminescent polymer according to claim 1 or 2, wherein the number average molecular weight of the electroluminescent polymer is 10,000 to 1,000,000, and the molecular weight distribution is 1.5 to 5.0. 양극/발광층/음극, 양극/버퍼층(buffer layer)/발광층/음극, 양극/버퍼층(buffer layer)/정공전달층/발광층/음극, 양극/버퍼층(buffer layer)/정공전달층/발광층/전자전달층/음극, 및 양극/버퍼층(buffer layer)/정공전달층/발광층/정공차단층/음극으로 이루어진 군으로부터 선택되고, 상기 발광층이 폴리(p-페닐렌비닐렌)(PPV)을 주쇄로 하고, 페닐렌 링에 4개의 치환체가 도입되는 하기 화학식(1)으로 표시되는 전기발광 고분자 또는 상기 전기발광 고분자 단량체 및 OC1C10-PPV의 단량체를 공중합시켜 제조되며, 하기 화학식(2)으로 표시되는 전기발광 고분자로 이루어지는 것을 특징으로 하는 유기 전기발광 고분자 다이오드:Anode / light emitting layer / cathode, anode / buffer layer / light emitting layer / cathode, anode / buffer layer / hole transport layer / light emitting layer / cathode, anode / buffer layer / hole transport layer / light emitting layer / electron transport Layer / cathode, and anode / buffer layer / hole transport layer / light emitting layer / hole blocking layer / cathode, and the light emitting layer is made of poly (p-phenylenevinylene) (PPV) , An electroluminescent polymer represented by the following formula (1) in which four substituents are introduced into the phenylene ring or prepared by copolymerizing the electroluminescent polymer monomer and a monomer of OC1C10-PPV, and electroluminescence represented by the following formula (2) An organic electroluminescent polymer diode comprising: a polymer: 화학식 (1)Formula (1) 화학식 (2)Formula (2) 상기식에서 R1, R2, 및 R3는 각각 독립적으로 C1∼15인 긴 사슬의 알킬 또는 가지난 알킬이고, R4는 C1∼15인 긴 사슬의 알킬, 가지난 알킬, 또는 C1∼15인 긴 사슬의 알콕시 또는 가지난 알콕시이고, 그리고 x는 0.1∼0.9이고 y는 0.9∼0.1임.Wherein R 1 , R 2 , and R 3 are each independently C 1-15 long chain alkyl or branched alkyl, and R 4 is C 1-15 long chain alkyl, branched alkyl, or C 1 Long chain alkoxy or branched alkoxy having 15 to 15 , x is 0.1 to 0.9 and y is 0.9 to 0.1. 제4항에 있어서, 상기 버퍼층이 폴리티오펜(polythiophene), 폴리아닐린(polyaniline), 폴리아세틸렌(polyacetylene), 폴리피롤(polypyrrole), 및 폴리 페닐렌비닐렌 유도체로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 유기 전기발광 고분자 다이오드.The organic material according to claim 4, wherein the buffer layer is selected from the group consisting of polythiophene, polyaniline, polyacetylene, polypyrrole, and polyphenylenevinylene derivatives. Electroluminescent polymer diodes. 제4항에 있어서, 상기 정공차단층이 LiF 또는 MgF2인 것을 특징으로 하는 유기 전기발광 고분자 다이오드.The organic electroluminescent polymer diode of claim 4, wherein the hole blocking layer is LiF or MgF 2 .
KR10-2000-0003929A 2000-01-27 2000-01-27 High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices KR100394509B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0003929A KR100394509B1 (en) 2000-01-27 2000-01-27 High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0003929A KR100394509B1 (en) 2000-01-27 2000-01-27 High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices

Publications (2)

Publication Number Publication Date
KR20010076654A KR20010076654A (en) 2001-08-16
KR100394509B1 true KR100394509B1 (en) 2003-08-09

Family

ID=19641970

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0003929A KR100394509B1 (en) 2000-01-27 2000-01-27 High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices

Country Status (1)

Country Link
KR (1) KR100394509B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100710985B1 (en) * 2002-01-22 2007-04-24 에스케이 주식회사 Polyp-phenylenevinylene derivatives substituted with styryl group containing aryl group and the electroluminescent device prepared using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247460A (en) * 1991-12-05 1993-09-24 Sumitomo Chem Co Ltd Organic electroluminescent device
KR19990004159A (en) * 1997-06-27 1999-01-15 구자홍 Organic electroluminescent device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05247460A (en) * 1991-12-05 1993-09-24 Sumitomo Chem Co Ltd Organic electroluminescent device
KR19990004159A (en) * 1997-06-27 1999-01-15 구자홍 Organic electroluminescent device and manufacturing method thereof
KR100232171B1 (en) * 1997-06-27 1999-12-01 구자홍 Organic electroluminescence element and method for fabricating the same

Also Published As

Publication number Publication date
KR20010076654A (en) 2001-08-16

Similar Documents

Publication Publication Date Title
KR100323606B1 (en) Light Emitting Polymers having High Efficiency and Color Tunable Properties
US6638644B2 (en) Electroluminescent devices having diarylanthracene polymers
KR101170168B1 (en) Organic electroluminescent polymer having 9,9-difluorenyl-2,7-fluorenyl unit and organic electroluminescent device manufactured using the same
KR20010050735A (en) Electroluminescent devices having phenylanthracene-based polymers
US20060121314A1 (en) Electroluminescent polymer having 9-fluoren-2-yl-9-aryl-2,7-fluorenyl unit and electroluminescent device manufactured using the same
US6613457B2 (en) Electroluminescent devices having diarylanthracene ladder polymers in emissive layers
KR20030097658A (en) Blue electroluminescent polymer and organic-electroluminescent device manufactured by using the same
KR100651357B1 (en) Polyphenylenevinylene derivatives substituted with spirobifluorenyl groups and electroluminescent devices prepared using the same
KR100730454B1 (en) Blue light emitting polymers containing 9,10-diphenylanthracene moiety and the electroluminescent device prepared using the same
KR100394509B1 (en) High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices
KR101179321B1 (en) Electroluminescent Polymer having 9-fluoren-2-yl-2,7-fluorenyl Units and the Electroluminescent Device Prepared Using the Same
KR101258701B1 (en) Organic electroluminescent polymer having arylamine unit containing 9'-aryl-fluoren-9'-yl group and organic electroluminescent device manufactured using the same
KR20070017733A (en) Fluorene derivatives, Organic Electroluminescent Polymer Prepared Therefrom and the Electroluminescent Device Manufactured Using the Same
KR100619356B1 (en) Fluorenylene vinylene-based Light Emitting Polymers and Electroluminescent Device Prepared Using the Same
KR100378742B1 (en) Poly(spirobifluorenylene vinylene) Derivatives and Electroluminescent Device Prepared Using the Same
KR101249640B1 (en) Electroluminescent Polymers having 9-fluoren-2-yl-9-aryl-2,7-fluorenyl Unit and the Electroluminescent Device Prepared Using the Same
KR101412813B1 (en) Organic electroluminescent polymer containing oxadiazole group and organic electroluminescent device manufactured using the same
KR100710986B1 (en) Blue Light Emitting Polymers and Electroluminescent Device Using the Same
KR100411184B1 (en) Highly luminescent polymer and red electroluminescent device
KR100440901B1 (en) Poly(aceanthrylene)-based Light Emitting Polymers and Electroluminescent Device Prepared Using the Same
KR100710987B1 (en) Organic Electroluminescent Polymer with Polyarylenic Backbone Containing 1,2-Difluorenyl-substituted Ethylene Moiety and Electroluminescent Device Prepared Using the Same
KR100604196B1 (en) Polyspirobifluorenyl-2,7-vinylene and Polydialkylfluorenyl-2,7-vinylene Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same
KR100710985B1 (en) Polyp-phenylenevinylene derivatives substituted with styryl group containing aryl group and the electroluminescent device prepared using the same
KR100718793B1 (en) Organic electroluminescent polymers having 9,9-di3,3'-bicarbazyl-2,7-fluorenyl unit and the electroluminescent device prepared using the same
KR20080104821A (en) Organic electroluminescent polymer containing novel blue dopants and organic electroluminescent devices manufactured using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
J201 Request for trial against refusal decision
B601 Maintenance of original decision after re-examination before a trial
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20020816

Effective date: 20030531

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130628

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20140701

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20150701

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20160629

Year of fee payment: 14

FPAY Annual fee payment

Payment date: 20170704

Year of fee payment: 15

FPAY Annual fee payment

Payment date: 20180702

Year of fee payment: 16

FPAY Annual fee payment

Payment date: 20190701

Year of fee payment: 17