KR100604196B1 - Polyspirobifluorenyl-2,7-vinylene and Polydialkylfluorenyl-2,7-vinylene Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same - Google Patents

Polyspirobifluorenyl-2,7-vinylene and Polydialkylfluorenyl-2,7-vinylene Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same Download PDF

Info

Publication number
KR100604196B1
KR100604196B1 KR1020040083169A KR20040083169A KR100604196B1 KR 100604196 B1 KR100604196 B1 KR 100604196B1 KR 1020040083169 A KR1020040083169 A KR 1020040083169A KR 20040083169 A KR20040083169 A KR 20040083169A KR 100604196 B1 KR100604196 B1 KR 100604196B1
Authority
KR
South Korea
Prior art keywords
pfv
light emitting
organic electroluminescent
electroluminescent device
spiro
Prior art date
Application number
KR1020040083169A
Other languages
Korean (ko)
Other versions
KR20060034042A (en
Inventor
진성호
주문규
Original Assignee
부산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 부산대학교 산학협력단 filed Critical 부산대학교 산학협력단
Priority to KR1020040083169A priority Critical patent/KR100604196B1/en
Publication of KR20060034042A publication Critical patent/KR20060034042A/en
Application granted granted Critical
Publication of KR100604196B1 publication Critical patent/KR100604196B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/115Polyfluorene; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 발명은 유기전기 발광소자에 사용될 수 있는 폴리(스파이로바이플로레닐-2,7-비닐렌)[poly(spirobifluorenyl- 2,7-vinylene), (Spiro-PFV, X₂-Spiro-PFV)]과 폴리(플로레닐-2,7-비닐렌)(PFV) 유도체 및 이를 이용한 유기전기 발광소자에 관한 것이다.The present invention is poly (spirobifluorenyl-2,7-vinylene), (Spiro-PFV, X₂-Spiro-PFV) that can be used in the organic electroluminescent device And a poly (florenyl-2,7-vinylene) (PFV) derivative and an organic electroluminescent device using the same.

본 발명에서 합성된 폴리(스파이로바이플로레닐-2,7-비닐렌)계 및 폴리(알킬플로레닐-2,7-비닐렌) 유도체는 종래 유기전기 발광소자로 사용되던 PPV 유도체에 비해 발광고분자의 내열 특성과 전계에 대한 안정성 그리고 구동전압에 대한 발광특성이 크게 향상된 특성을 가진다. The poly (spirobifluorenyl-2,7-vinylene) -based and poly (alkylflorenyl-2,7-vinylene) derivatives synthesized in the present invention emit light compared to the PPV derivatives used in conventional organic electroluminescent devices. The heat resistance, stability of the electric field, and light emission characteristics of the driving voltage are greatly improved.

폴리(파라페닐렌비닐렌) (PPV), 폴리(스파이로바이플로레닐-2,7-비닐렌) (Spiro-PFV, X₂-Spiro-PFV), 폴리(알킬플로레닐-2,7-비닐렌) (PFV)Poly (paraphenylenevinylene) (PPV), poly (spirobifluorenyl-2,7-vinylene) (Spiro-PFV, X₂-Spiro-PFV), poly (alkylflorenyl-2,7-vinyl Rennes) (PFV)

Description

열적 안정성 및 발광특성이 향상된 폴리(스파이로바이플로레닐-2,7-비닐렌)계 및 폴리(알킬플로레닐-2,7-비닐렌) 유도체 및 이를 이용한 전기 발광 소자 {Poly(spirobifluorenyl-2,7-vinylene) and Poly(dialkylfluorenyl-2,7-vinylene) Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same}Poly (spirobifluorenyl-2,7-vinylene) -based and poly (alkylflorenyl-2,7-vinylene) derivatives having improved thermal stability and luminescence properties and electroluminescent devices using the same {Poly (spirobifluorenyl-2 , 7-vinylene) and Poly (dialkylfluorenyl-2,7-vinylene) Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same}

도 1은 종래의 일반적인 유기전기 발광소자의 구조를 도시한 단면도.1 is a cross-sectional view showing the structure of a conventional general organic electroluminescent device.

도 2는 본 발명의 실시예 1에 따른 Spiro-PFV 유도체의 단량체 제조과정을 예시한 반응식.Figure 2 is a reaction diagram illustrating a monomer manufacturing process of Spiro-PFV derivative according to Example 1 of the present invention.

도 3은 본 발명의 또 다른 실시예 2에 따른 X₂-Spiro-PFV 유도체의 단량체 제조과정을 도시한 반응도.Figure 3 is a reaction diagram showing a monomer manufacturing process of X₂-Spiro-PFV derivative according to another embodiment 2 of the present invention.

도 4는 본 발명의 또 다른 실시예 3에 따른 PFV 유도체의 단량체 제조과정을 도시한 반응도.Figure 4 is a reaction diagram showing a monomer manufacturing process of the PFV derivative according to another embodiment 3 of the present invention.

도 5는 본 발명의 실시예 1, 실시예 2, 및 실시예 3에 따라 합성된 단량체의 중합과정을 도시한 반응도.FIG. 5 is a reaction diagram illustrating a polymerization process of monomers synthesized according to Examples 1, 2, and 3 of the present invention. FIG.

도 6은 본 발명의 일 실시예에 따라 합성된 X₂-Spiro-PFV 유도체의 FT-IR 그래프.6 is an FT-IR graph of the X₂-Spiro-PFV derivative synthesized according to an embodiment of the present invention.

도 7은 각각 본 발명에서 합성된 Spiro-PFV, X₂-Spiro-PFV 및 PFV 유도체의 UV-visible 흡광도를 측정한 그래프. Figure 7 is a graph measuring the UV-visible absorbance of the Spiro-PFV, X₂-Spiro-PFV and PFV derivatives synthesized in the present invention, respectively.

도 8은 각각 본 발명에서 합성된 Spiro-PFV, X₂-Spiro-PFV 및 PFV 유도체의 PL 강도를 측정한 그래프.8 is a graph measuring the PL strength of the Spiro-PFV, X₂-Spiro-PFV and PFV derivatives synthesized in the present invention, respectively.

도 9는 각각 본 발명에서 합성된 Spiro-PFV, X₂-Spiro-PFV 및 PFV 유도체를 사용하여 제작된 전기발광소자의 EL 강도를 도시한 그래프.Figure 9 is a graph showing the EL intensity of the electroluminescent device fabricated using the Spiro-PFV, X₂-Spiro-PFV and PFV derivatives synthesized in the present invention, respectively.

도 10은 본 발명의 실시예 4, 5 및 6에 따라 제작된 발광고분자인 Spiro-PFV, X₂-Spiro-PFV 및 PFV 유도체를 발광층으로 채용한 유기전기 발광소자의 개략적인 단면도.10 is a schematic cross-sectional view of an organic electroluminescent device employing Spiro-PFV, X₂-Spiro-PFV and PFV derivatives, which are light emitting polymers prepared according to Examples 4, 5 and 6 of the present invention, as light emitting layers.

도 11은 본 발명에서 합성된 X₂-Spiro-PFV 유도체를 사용하여 제작된 유기전기 발광소자의 전압에 따른 전류밀도와 발광휘도의 세기를 도시한 그래프.11 is a graph showing the current density and the intensity of light emission luminance according to the voltage of the organic electroluminescent device manufactured using the X₂-Spiro-PFV derivative synthesized in the present invention.

도 12는 본 발명에서 합성된 X₂-Spiro-PFV 유도체를 사용하여 제작된 전기발광소자의 전류밀도에 대한 발광 효율을 도시한 그래프.12 is a graph showing luminous efficiency versus current density of an electroluminescent device fabricated using the X₂-Spiro-PFV derivative synthesized in the present invention.

도 13a 및 도 13b는 본 발명에서 합성된 X₂-Spiro-PFV 및 PFV 유도체의 인가 전압에 따른 EL 강도를 도시한 그래프.13A and 13B are graphs showing EL intensities according to applied voltages of the X 2 -Spiro-PFV and PFV derivatives synthesized in the present invention.

도 14a 및 도 14b는 각각 종래 PPV 유도체인 MEH-PPV의 광학 스펙트럼 및 MEH-PPV를 사용하여 제작된 전기발광소자의 전압-전류 강도를 도시한 그래프.14A and 14B are graphs showing the voltage and current intensity of the electroluminescent device fabricated using the optical spectrum of MEH-PPV and MEH-PPV, respectively, a conventional PPV derivative.

본 발명은 유기전기 발광소자에 사용될 수 있는 발광고분자에 관한 것으로, 보다 상세하게는 폴리(스파이로바이플로레닐-2,7-비닐렌)[poly(spirobifluorenyl- 2,7-vinylene), (Spiro-PFV, X₂-Spiro-PFV)]과 폴리(플로레닐-2,7-비닐렌)(PFV) 유도체 및 이를 이용한 유기전기 발광소자에 관한 것이다. The present invention relates to a light emitting polymer that can be used in an organic electroluminescent device, and more particularly, to poly (spirobifluorenyl-2,7-vinylene) [poly (spirobifluorenyl-2,7-vinylene), (Spiro -PFV, X₂-Spiro-PFV)] and poly (florenyl-2,7-vinylene) (PFV) derivatives and organic electroluminescent device using the same.

반도체와 금속이 갖는 전기적, 광학적 특성과 고분자의 이점을 동시에 가지고 있는 전도성 고분자는 1970년 대 이후에 개발된 이후에 필름, 섬유 및 다양한 분야에 응용되고 있다. 특히, 영국 캠브릿지 대학의 R.H. Friend 팀에 의하여 공액 이중결합(conjugated double bond)을 갖는 고분자인 폴리(파라페닐렌비닐렌)(PPV)를 이용한 유기전기 발광소자가 처음으로 발표된 이후, 유기전기 발광소자의 물질로서 다양한 PPV 유도체에 대한 연구가 이루어지고 있다.Conductive polymers, which have both the electrical and optical properties of semiconductors and metals and the advantages of polymers, have been developed since the 1970s and have been applied to films, fibers, and various fields. In particular, R.H. of Cambridge University, UK. Since the first presentation of organic electroluminescent devices using poly (paraphenylenevinylene) (PPV), a polymer having conjugated double bonds, by the Friend team, various PPV derivatives as materials of organic electroluminescent devices Research is being done on.

종래 유기전기 발광소자로는 무기물 반도체의 p-n 접합으로 이루어진 무기계 전기 발광소자가 주로 사용되었으나, 무기계 전기 발광소자의 경우 구동전압이 교류 200V 이상 필요하고, 소자가 진공상태에서 제작되기 때문에 대형화가 어렵고, 특히 고효율의 청색을 얻기 곤란한 문제점이 있다.Conventionally, an organic electroluminescent device composed of a pn junction of an inorganic semiconductor has been mainly used as an organic electroluminescent device. However, in the case of an inorganic electroluminescent device, a driving voltage is required to be AC 200V or more, and the size of the organic electroluminescent device is difficult because the device is manufactured in a vacuum state. In particular, there is a problem that it is difficult to obtain high efficiency blue color.

이런 문제점으로 인하여 유기물질을 이용한 유기전기 발광소자에 대한 연구가 계속 진행되고 있다. 유기물 전기발광 현상은 유기물질에 전기장을 걸어주면 전자(electron) 및 정공(hole)이 각각 음극 및 양극에서 전달되어 유기물질 내에서 결합하고, 이때 생성되는 에너지가 빛으로 방출되는 현상이다. Due to these problems, research on organic electroluminescent devices using organic materials has been ongoing. The organic electroluminescence phenomenon is a phenomenon in which electrons and holes are transferred from the cathode and the anode, respectively, and are combined within the organic material when the electric field is applied to the organic material, and the energy generated is emitted as light.

이런 유기전기 발광 현상을 이용하여 제조되는 유기전기 발광소자는 투명전극과 금속전극 사이에 발광 특성을 갖는 고분자 유기물질을 삽입한 구조를 갖는 단층형 발광소자와, 전자수송층과 정공수송층 사이에 유기물 발광층을 도입하는 다층 형 발광소자로 구분될 수 있는데, 종래의 유기전기 발광소자를 간단히 설명하면 다음과 같다.The organic electroluminescent device manufactured using the organic electroluminescence phenomenon includes a single layer light emitting device having a structure in which a polymer organic material having light emitting characteristics is inserted between a transparent electrode and a metal electrode, and an organic light emitting layer between the electron transport layer and the hole transport layer. It can be divided into a multi-layered light emitting device that introduces, a brief description of a conventional organic electroluminescent device as follows.

도 1은 기판/전극/발광층/전극으로 이루어진 단층 형태의 유기전기 발광소자의 구조를 도시한 단면도를 보여준다. 1 is a cross-sectional view showing the structure of an organic electroluminescent device having a single layer consisting of a substrate / electrode / light emitting layer / electrode.

유기전기 발광소자는 그 하층으로부터 기판(101), 애노드(103), 발광층(emissive layer, 105), 및 캐소드(109)가 순차적으로 형성되어 있다. 상기 기판(101)은 유리 또는 플라스틱으로 제조되며, 통상적으로 상기 애노드(103)는 ITO(indium tin oxide)로 코팅되며, 상기 캐소드(109)는 알루미늄(Al)으로 코팅된다. In the organic electroluminescent device, a substrate 101, an anode 103, an emissive layer 105, and a cathode 109 are sequentially formed from a lower layer thereof. The substrate 101 is made of glass or plastic. Typically, the anode 103 is coated with indium tin oxide (ITO), and the cathode 109 is coated with aluminum (Al).

이러한 구성의 유기전기 발광소자의 구동원리는 다음과 같다. 애노드(103) 및 캐소드(109) 사이에 전압을 인가하면 애노드(103)로부터 주입된 정공은 상기 애노드(103)로부터 상기 발광층(105)으로 이동된다. The driving principle of the organic electroluminescent device of such a configuration is as follows. When a voltage is applied between the anode 103 and the cathode 109, holes injected from the anode 103 are moved from the anode 103 to the light emitting layer 105.

한편, 전자는 상기 캐소드(109)로부터 발광층(105)내로 주입된다. 이와 같이 발광층(105)으로 주입된 전자와 정공과 같은 캐리어(carrier)들이 재결합하여 중성의 엑시톤(exciton)을 형성하게 되며, 이러한 엑시톤은 여기 상태에서 기저상태로 변화되고, 이로 인하여 발광층(105)의 분자가 발광함으로써 화면이 형성되게 되는 것이다. Meanwhile, electrons are injected into the light emitting layer 105 from the cathode 109. As such, carriers such as electrons and holes injected into the light emitting layer 105 recombine to form neutral excitons, and the excitons change from the excited state to the ground state, and thus the light emitting layer 105 The light is emitted to form a screen.

상기 도 1에서는 단층 형태의 유기전기 발광소자를 도시하였으나, 상기 애노드(103)와 발광층(105) 사이에 PEDOT 등으로 코팅되는 정공주입층(105)을 구비하고, 상기 캐소드(109)와 발광층(105) 사이에는 미도시된 전자주입층 또는 전 자수송층을 구비하는 다층 형태의 유기전기 발광소자가 있을 수 있다. In FIG. 1, an organic electroluminescent device having a single layer type is illustrated, but a hole injection layer 105 coated with PEDOT or the like is disposed between the anode 103 and the light emitting layer 105, and the cathode 109 and the light emitting layer ( Between the 105 may be a multi-layer organic electroluminescent device having an electron injection layer or an entire embroidery transport layer not shown.

특히, 최근에는 유기전기 발광소자의 발광층을 이루는 물질로서 고분자를 이용하고 있는데, 고분자는 그 주쇄의 π-전자 파동함수의 중첩에 의하여 에너지 준위가 전도대와 가전도대로 분리되기 때문에 그 에너지 차이에 해당하는 밴드 간격(band gap) 에너지에 의하여 고분자의 반도체적인 성질이 결정되며, 완전 색상(full color)의 구현이 가능하다. In particular, recently, a polymer is used as a material of the light emitting layer of the organic electroluminescent device, and the polymer corresponds to the energy difference because the energy level is separated into the conduction band and the home appliance by the superposition of the π-electron wave function of the main chain. The semiconductor properties of the polymer are determined by the band gap energy, and full color can be realized.

이와 같이 유기전계 발광 고분자중에서 폴리(파라페닐렌비닐렌)(PPV)를 이용한 발광고분자는 주쇄인 PPV의 곁사슬에 알콕시기, 알킬기, 또는 아릴기가 1~2개 치환된 고분자로서, 이를 적용하여 유기전기 발광소자를 제작한다. As such, the light emitting polymer using poly (paraphenylenevinylene) (PPV) in the organic electroluminescent polymer is a polymer in which one or two alkoxy groups, alkyl groups or aryl groups are substituted in the side chain of the main chain PPV. An electroluminescent device is manufactured.

예컨대, 미국특허 제 5,189,136호 (Fred Wudl et al.)에서는 폴리(파라페닐렌비닐렌) 주쇄의 곁사슬에 메톡시기(methoxy group) 및 알콕시기(alkoxy group)가 치환되어 있는 poly[2-methoxy-5-(2'-ethylhexyloxy)-p- phenylenevinylene](MEH-PPV)를 개시하고 있다. 상기 화합물은 homopolymer, copolymer, blends 또는 composite 형태로 가능하다고 기술되어 있다. For example, U.S. Patent No. 5,189,136 (Fred Wudl et al.) Discloses a poly [2-methoxy- substituted with a methoxy group and an alkoxy group in the side chain of a poly (paraphenylenevinylene) main chain. 5- (2'-ethylhexyloxy) -p-phenylenevinylene] (MEH-PPV) is disclosed. The compounds are described as being possible in the form of homopolymers, copolymers, blends or composites.

위에서 언급된 폴리(파라페닐렌비닐렌) 유도체는 유기용매에 대한 용해성이 뛰어나지만 그 전기적 특성이 불충분하고, 특히 단층형 유기전기 발광소자에 사용하는 경우 ITO나 금속 전극과의 접착력이 불량하여 정공과 전자의 주입이 효율적이지 않으며, 다층박막소자에 사용하는 경우 전하 수송층과의 계면 접착력이 떨어져서 소자의 내구성이 감소하는 문제가 있다.The poly (paraphenylenevinylene) derivatives mentioned above have excellent solubility in organic solvents, but their electrical properties are insufficient, and especially when used in single layer organic electroluminescent devices, they have poor adhesion to ITO or metal electrodes. Injection of electrons and electrons is not efficient, and when used in a multilayer thin film device, there is a problem in that the durability of the device is reduced because the interface adhesion with the charge transport layer is reduced.

특히, 대표적인 고분자계 유기전기 발광소자의 재료인 전구체 PPV 유도체를 제조하는 과정에서 용해성의 저하로 인하여 완전히 용해된 고분자 외에 침전물이 일부 생성되는 불균일한 상태의 고분자가 동시에 생성되어 이를 이용한 유기전기 발광소자의 특성이 저하되는 문제점이 있었으며, 용해도의 저하로 인하여 중합과정에서 생성되는 불순물을 제거하기 위해서 요구되는 중합반응 조건을 조절하는데 어려움이 있을 뿐 아니라 대량생산에 한계가 있다.In particular, in the process of preparing the precursor PPV derivative, which is a typical polymer-based organic electroluminescent device, due to the deterioration of solubility, a non-uniform polymer in which a precipitate is partially produced is produced simultaneously with the organic electroluminescent device using the same. There is a problem that the characteristics of the deterioration, there is a difficulty in controlling the polymerization conditions required to remove impurities generated during the polymerization process due to the decrease in solubility, there is a limit to mass production.

또한, 종래 PPV 유도체의 합성방법에서는 PPV 전구체인 설포늄 전구체를 제조하는 중합과정에서 장시간이 소모되고 수율이 낮을 뿐 아니라 고비용이 요구된다. 특히, 완전한 PPV 유도체를 제조하기 위해서는 생성된 설포늄염을 제거하여야 하는데, 완전히 제거하기 곤란할 뿐 아니라, 저전압에서 구동하기 위해서는 발광층을 박막 형태(약 100 nm)로 형성해야 하는데, 이 경우 미반응된 설포늄염이 서서히 제거되면서 핀 홀(pin hole) 등이 생기므로 막의 균일성이 떨어질 뿐 아니라 그 결과 누설전류(leakage current)가 발생하여 발광효율을 저하시킨다. In addition, in the synthesis method of the conventional PPV derivative, a long time is consumed in the polymerization process for preparing the sulfonium precursor, which is a PPV precursor, and the yield is low, and high cost is required. In particular, in order to prepare a complete PPV derivative, it is necessary to remove the sulfonium salt, which is difficult to remove completely, and to form a light emitting layer in the form of a thin film (about 100 nm) in order to operate at a low voltage. As the nium salt is gradually removed, a pin hole is generated, thereby decreasing the uniformity of the film, and as a result, a leakage current is generated to lower the luminous efficiency.

PPV 전구체를 제조하는 또 다른 방법인 Wittig 반응, Heck 반응의 경우에는 최종 합성된 고분자의 분자량이 낮기 때문에 고분자로 인한 박막 형성 능력이 떨어지고, 중합반응에서 많은 금속촉매를 사용하기 때문에, 이를 제거하기 곤란할 뿐 아니라 많은 단계를 경유해야 하는 문제점이 있다.In the Wittig reaction and Heck reaction, another method of preparing the PPV precursor, since the final synthesized polymer has a low molecular weight, the ability to form a thin film due to the polymer is inferior, and many metal catalysts are used in the polymerization reaction. In addition, there are problems that must go through many steps.

이러한 문제점을 해결하기 위하여 미국특허 제5,900,038호 및 제6,177,975호 (Hwang et al.)에서는 2개의 실릴기가 치환된 용해성 PPV 유도체를 발광층에 사용함으로써, 녹색 발광 효율을 증가시킬 수 있음을 개시하고 있다. In order to solve this problem, U.S. Pat.Nos. 5,900,038 and 6,177,975 (Hwang et al.) Disclose that green light emission efficiency can be increased by using a soluble PPV derivative substituted with two silyl groups in the light emitting layer.

그러나 상기 미국특허에 개시되어 있는 PPV 유도체를 포함하는 종래의 PPV 유도체를 이용한 유기전기 발광소자의 경우, 정공의 주입이 전자의 주입보다 용이하여, 정공의 이동속도가 전자의 이동속도에 비하여 월등히 높기 때문에, 주입된 정공과 전자의 불균일성으로 인하여 발광효율이 떨어지고 유기전기 발광소자의 수명이 저하되는 문제점을 가지고 있다. However, in the case of the organic electroluminescent device using the conventional PPV derivative including the PPV derivative disclosed in the US patent, the injection of holes is easier than the injection of electrons, the hole movement speed is significantly higher than the movement speed of electrons Therefore, there is a problem in that the luminous efficiency is lowered and the lifespan of the organic electroluminescent device is lowered due to the nonuniformity of the injected holes and electrons.

따라서 유기용매에 대한 용해성 및 전기 전도도를 그대로 유지하면서 상기와 같은 문제점이 없는 새로운 형태의 발광고분자의 개발이 필요하며 이를 이용한 유기전기 발광소자를 개발할 필요성은 여전히 업계에서 요구되고 있다. Therefore, while maintaining the solubility and electrical conductivity of the organic solvent intact, it is necessary to develop a new type of light emitting polymer without the above problems, and there is still a need in the industry to develop an organic electroluminescent device using the same.

본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로, 본 발명의 첫 번째 목적은 생성된 발광 고분자의 곁사슬에 입체적 장애가 큰 작용기를 치환시켜, 유기전기 발광소자를 구동시킬 때 발생되는 열에 의한 열화문제를 극복하여 박막의 기계적 강도를 크게 향상시킬 수 있는 길치 중합법에 의한 새로운 형태의 발광고분자를 제공하고자 하는 것이다.The present invention has been proposed to solve the above problems, and the first object of the present invention is to deteriorate due to heat generated when driving the organic electroluminescent device by replacing a functional group having a large steric hindrance in the side chain of the produced light emitting polymer. The present invention is to provide a new type of light emitting polymer by the longitudinal polymerization method that can significantly improve the mechanical strength of the thin film.

본 발명의 다른 목적은 유기전기 발광소자에서 정공과 전자의 주입 차이를 감소시켜 발광효율을 크게 향상시킬 수 있는 발광고분자를 제공하고자 하는 것이다. Another object of the present invention is to provide a light emitting polymer that can greatly improve the luminous efficiency by reducing the difference between the injection of holes and electrons in the organic electroluminescent device.

본 발명의 또 다른 목적은 상기 유기전기 발광고분자를 발광층, 정공수송층전자주입층 및 전자수송층 물질을 사용하여 제조되는 고효율의 유기전기 발광소자를 제공하는 것이다.It is still another object of the present invention to provide an organic electroluminescent device having high efficiency, wherein the organic electroluminescent polymer is manufactured using a light emitting layer, a hole transport layer electron injection layer, and an electron transport layer material.

본 발명에 일 관점에 따르면, 내열 특성이 매우 우수한 발광 고분자로서 하기 화학식 1로 구성되는 폴리플로레닐비닐렌 유도체를 제공한다. According to one aspect, the present invention provides a polyfluorenylvinylene derivative composed of the following Chemical Formula 1 as a light emitting polymer having excellent heat resistance.

화학식 1Formula 1

Figure 112006029420715-pat00023
Figure 112006029420715-pat00023

(상기 화학식 1에서 Q는

Figure 112006029420715-pat00024
이고, R은 수소, 또는 탄소수 1~20의 직쇄 또는 측쇄의 지방족 알킬기, 탄소수 1~20의 알콕시기, 또는 방향족 치환기이며; n은 10 ~ 1000 사이의 정수임.)(Q in Formula 1 is
Figure 112006029420715-pat00024
R is hydrogen or a linear or branched aliphatic alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aromatic substituent; n is an integer between 10 and 1000.)

본 발명에 따르는 상기 폴리플로레닐비닐렌 유도체는 그 무게평균 분자량이 5,000 ~ 10,000 사이의 범위인 것을 특징으로 하며, 바람직하게는 탄소수 1 ~ 20의 지방족 알콕시기로 치환된 플로레닐기, 보다 바람직하게는 탄소수 5 ~ 15의 지방족알콕시기로 치환된 플로레닐기 또는 탄소수 1 ~ 20의 직쇄 또는 측쇄의 지방족 알킬기로 치환된 것을 바람직하다. The polyfluorenyl vinylene derivative according to the present invention is characterized in that the weight average molecular weight is in the range of 5,000 to 10,000, preferably a fluorenyl group substituted with an aliphatic alkoxy group having 1 to 20 carbon atoms, more preferably It is preferable that it is substituted by the fluorenyl group substituted by the aliphatic alkoxy group of 5-15, or the linear or branched aliphatic alkyl group of 1-20 carbon atoms.

한편, 본 발명의 다른 관점에 따르면, 상기 화학식 1의 폴리플로레닐비닐렌 유도체를 발광층으로 도핑된 유기 전기 발광소자가 제공된다. On the other hand, according to another aspect of the invention, there is provided an organic electroluminescent device doped with a polyfluorenyl vinylene derivative of the formula (1) as a light emitting layer.

본 발명에 의하여 제조되는 상기 유기전기 발광소자는 제 1 전극/발광층/제 2 전극의 단일층의 유기전기 발광소자일 수 있고, 상기 제 1 전극과 제 2 전극 사이에 정공수송층, 전자주입층, 전자수송층의 적어도 하나를 더욱 포함하여 구성되는 다층 박막 형태의 유기전기 발광소자일 수 있다. The organic electroluminescent device manufactured according to the present invention may be a single layer organic electroluminescent device of a first electrode / light emitting layer / second electrode, a hole transport layer, an electron injection layer, between the first electrode and the second electrode, It may be an organic electroluminescent device of a multilayer thin film form further comprising at least one of the electron transport layer.

이하, 첨부하는 도면을 참조하여 본 발명을 상세하게 설명한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

기술한 것과 같이, 유기전기 발광소자는 애노드 및 캐소드를 통하여 각각 방출된 정공과 전자가 발광층에서 충돌하여 생성된 중성의 엑시톤이 흡수한 에너지를 빛으로 발산하여 발광하도록 구성되는데, 상기 유기전기 발광소자에 있어서 통상적으로 정공의 이동/방출 속도가 전자의 이동/방출 속도에 비하여 훨씬 빨라 발광효율이 저하되는 문제점이 있다. As described above, the organic electroluminescent device is configured to emit light by emitting energy absorbed by neutral excitons generated by the collision of holes and electrons emitted through the anode and the cathode in the light emitting layer, and the organic electroluminescent device In general, there is a problem in that the movement / emission rate of holes is much faster than the movement / emission rate of electrons and thus the luminous efficiency is lowered.

그리고 통상의 폴리(플로렌) 유도체의 경우 소자를 구동하거나 발광층에 열을 가할 경우 엑사이머의 형성 또는 발광고분자의 응집(aggregation)에 의해서 500-600 nm의 범위에서 장파장의 발광색을 나타내고 있으며, 그 결과 색순도가 저하되고 발광효율이 저하되는 원인이다.In the case of a conventional poly (florene) derivative, when the device is driven or heat is applied to the light emitting layer, the emission wavelength of the long wavelength is shown in the range of 500-600 nm due to the formation of excimer or aggregation of the light emitting polymer. As a result, color purity is lowered and luminous efficiency is lowered.

따라서, 본 발명에서는 발광효율을 향상시키기 위해서 캐소드에서 전자의 주입을 향상시킬 수 있도록 전자주입층과 전자전달층을 도입하고 애노드에서 정공의 주입을 용이하도록 하기 위해서 정공주입층이 도입된 다층형 유기전기 발광소자를 제작하였으며, 종래 PPV 유도체를 사용한 유기전기 발광소자의 단점인 기계적 강도를 향상시킬 수 있도록 입체적 장애(steric hinderance)가 큰 다른 작용기로 측쇄가 치환되어 있는 새로운 Spiro-PFV, X₂-Spiro-PFV 및 PFV 유도체를 합성하였다.Therefore, in the present invention, a multi-layered organic material in which an electron injection layer and an electron transport layer are introduced to improve injection of electrons at the cathode to improve luminous efficiency, and a hole injection layer is introduced to facilitate injection of holes at the anode. A new Spiro-PFV, X₂-Spiro, in which side chains are substituted with other functional groups with large steric hinderance to improve the mechanical strength, which is a disadvantage of organic electroluminescent devices using PPV derivatives. -PFV and PFV derivatives were synthesized.

도 2 내지 도 4는 각각 본 발명의 바람직한 실시예에 따라 스파이로바이플로렌의 골격과 지방족 알킬기, 알킬옥시기 또는 방향족 치환기를 갖는 Spiro-PFV, X₂-Spiro-PFV 및 알킬 치환기가 도입된 PFV 유도체의 전구체인 단량체를 합성하는 과정을 도시한 것이다. 2 to 4 are each a spiro- fluorene having a skeleton and an aliphatic alkyl group, an alkyloxy group, or an aromatic substituent group of spirobifluorene, X₂-Spiro-PFV, and PFV introduced with an alkyl substituent according to a preferred embodiment of the present invention. It shows the process of synthesizing a monomer which is a precursor of a derivative.

우선, 본 발명의 제 1 실시예에 따르면, 플로렌을 브롬과 반응시켜 2,7-디브로모플로렌(도 2의 (1))을 합성하고 산화제를 사용하여 2,7-디브로모플로렌-9-온 (도 2의 (2))을 합성한다. First, according to the first embodiment of the present invention, 2,7-dibromoflorene is synthesized by reacting florene with bromine and using 2,7-dibromoflorene using an oxidizing agent. Synthesize -9-one ((2) of FIG. 2).

이어서, 2-브로모비페닐(도 2의 (3))을 마그네슘과 반응하여 그리그나드 시약(도 2의 (4))을 만든 뒤 위에서 합성된 화합물 2,7-브디브로모플로렌-9-온과 반응시켜 2,7-디브로모-9-(2-비페닐)-9-플로렌올(도 2의 (5))을 합성하고 아세트산과 고리화 반응을 통하여 2,7-디브로모-9,9‘-스파이로플로렌(도 2의 (6))을 합성하고 시안화구리 (I)와 반응시켜 2,7-디사아노-9,9‘-스파이로플로렌(도 2의 (7))을 합성한 후 가수분해 반응을 통하여 9,9‘-스파이로플로렌-2,7-디카르복실산(도 2의 (8))을 합성하고 환원반응을 통하여 9,9‘-스파이로플로렌-2,7-디메탄올(도 2의 (9))를 합성한 뒤, 최종적으로 티오닐 클로라이드와 반응하여 실시예 1의 단량체인 2,7-비스(클로로메틸)-9,9’-스파이로바이플로렌(도 2의 (10))을 합성하였다. Subsequently, 2-bromobiphenyl ((3) in FIG. 2) is reacted with magnesium to prepare a Grignard reagent ((4) in FIG. 2), followed by compound 2,7-brobromoflorene-9- synthesized above. 2,7-dibromo-9- (2-biphenyl) -9-florenol ((5) of FIG. 2) by reacting with warm, and synthesized with 2,7-dibro via cyclization reaction with acetic acid Mo-9,9'-spirofluorene ((6) in FIG. 2) was synthesized and reacted with copper cyanide (I) to give 2,7-disaano-9,9'-spiroflorene ((7 in FIG. 2). )) And then 9,9'-spirofluorene-2,7-dicarboxylic acid ((8) of FIG. 2) through a hydrolysis reaction and 9,9'-pyrofloph through a reduction reaction Lauren-2,7-dimethanol ((9) of FIG. 2) was synthesized and finally reacted with thionyl chloride to yield 2,7-bis (chloromethyl) -9,9'- which is the monomer of Example 1. Spirobifluorene (FIG. 2 (10)) was synthesized.

일반적인 유기용매에 대한 발광고분자의 우수한 용해도 특성은 고분자량의 발광고분자를 합성할 수 있을 뿐만 아니라, 유기전기 발광소자를 제작하는데 용이하다. The excellent solubility characteristics of light emitting polymers in general organic solvents can not only synthesize high molecular weight light emitting polymers, but also facilitate the fabrication of organic electroluminescent devices.

실시예 1의 단량체에 의해서 Gilch 중합법으로 후술하는 실시예 4의 발광고분자를 합성하게 되면 용해도가 매우 낮기 때문에 응용에 한계가 있다. 따라서 실시예 1에서 합성된 단량체의 단점을 보완하기 위하여 실시예 2의 단량체를 제 3도와 같이 합성하였다. Synthesis of the light emitting polymer of Example 4 described later by Gilch polymerization method using the monomer of Example 1 has a very low solubility, and thus there is a limit to the application. Therefore, to compensate for the shortcomings of the monomer synthesized in Example 1, the monomer of Example 2 was synthesized as shown in FIG.

우선, 3,3-디메톡시비페닐을 NBS와 반응시켜서 2-브로모-5,3‘-디메톡시비페닐(도 3의 (11))을 합성하고 이를 디메틸 설파이드 화합물과 반응시켜 2-브로모비페닐-3,3-디올(도 3의 (12))을 제조하였다. First, 2-bromo-5,3'-dimethoxybiphenyl ((11) in FIG. 3) is synthesized by reacting 3,3-dimethoxybiphenyl with NBS and reacted with a dimethyl sulfide compound to 2-bromo. Mobiphenyl-3,3-diol (Fig. 3 (12)) was prepared.

이어서, 생성된 실시예 3의 단량체의 용해도를 향상시키기 위해서 1-브로모-3,7-디메틸옥탄과 반응하여 2-브로모-5,3’-비스(3,7-디메틸옥틸옥시)비페닐(도 3의 (13))을 합성하고 2,7-디브로모플로렌-9-온(도 2의 (2))과 반응시켜 9-(5,3'-비스(3,7-디메틸옥틸옥시)-비페닐-2-일)-2,7-디브로모-9H-플루오렌-9올(도 3의 (14))를 합성하고 아세트산과의 고리화반응에 의해서 2,7-디브로모-3‘,6’-비스(3,7-디메틸옥틸옥시)-9,9‘-스파이로바이플로렌(도 3의 (15))을 합성한 후 시안화 구리 (I)와 반응하여 2,7-디시아노-3’,6‘-비스(3,7-디메틸옥틸옥시)-9,9,-스파이로바이플로렌(도 3의 (16))을 합성하고 가수분해 반응을 통하여 3’,6‘-비스(3,7-디메틸옥틸옥시)-9,9,-스파이로바이플로렌-2,7-디카르복실산(도 3의 (17))을 합성하고 환원반응으로 3’,6‘-비스(3,7-디메틸옥틸옥시)-9,9,-스파이로바이플로렌-2,7-디메탄올(도 3의 (18))을 합성한다. Then, 2-bromo-5,3'-bis (3,7-dimethyloctyloxy) ratio was reacted with 1-bromo-3,7-dimethyloctane to improve the solubility of the resulting monomer of Example 3. Phenyl ((13) in FIG. 3) was synthesized and reacted with 2,7-dibromofloren-9-one ((2) in FIG. 2) to give 9- (5,3'-bis (3,7-dimethyl Octyloxy) -biphenyl-2-yl) -2,7-dibromo-9H-fluorene-9ol (Fig. 3 (14)) was synthesized and cyclized with acetic acid to give 2,7- Dibromo-3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene (FIG. 3) is synthesized and then reacted with copper cyanide (I) To synthesize 2,7-dicyano-3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9, -spirobifluorene (FIG. 3) and undergo a hydrolysis reaction. Through 3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9, -spirobifluorene-2,7-dicarboxylic acid (Fig. 3 (17)) to synthesize and reduce 3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9, -spy The synthesized by Florencio-2,7-dimethanol (18 in Fig. 3).

최종적으로 실시예 2의 단량체를 티오닐 클로라이드와 화합물(도 3의 (18))이 반응하여 2,7-비스(클로로메틸)-3’,6‘-비스(3,7-디메틸옥틸옥시)-9,9’-스파이로바이플로렌(도 3의 (19))을 합성하였다. Finally, the monomer of Example 2 reacts with thionyl chloride and the compound (Fig. 3 (18)) to give 2,7-bis (chloromethyl) -3 ', 6'-bis (3,7-dimethyloctyloxy). -9,9'-spirobifluorene (19 in Fig. 3) was synthesized.

플로렌에 1-브로모옥틸을 상전이 촉매하에서 반응시키면, 플로렌의 9번 위치에 옥틸기가 쉽게 도입이 되며(도 4의 (20)), 플로렌의 2번과 7번 위치에 파라포럼알데히드와 HCl을 1,4-dioxane 용매하에서 반응하게 되면 클로로 메틸 그룹이 도입 된 단량체인 2,7-비스(클로로메틸)-9,9'-디옥틸플로렌(도 4의 (21))을 합성하였다. When 1-bromooctyl is reacted to florene under a phase transfer catalyst, octyl groups are easily introduced into the 9th position of florene ((20) of FIG. 4), and paraforumaldehyde at 2nd and 7th positions of florene. When reacted with HCl in a 1,4-dioxane solvent, 2,7-bis (chloromethyl) -9,9'-dioctylfluorene (21 (Fig. 4)), a monomer having a chloromethyl group introduced thereto, was synthesized. .

한편, 상기와 같은 방법에 의하여 제조된 단량체의 단중합에 의하여 제조된 Spiro-PFV, X₂-Spiro-PFV, 및 PFV 유도체는 그 측쇄에 일반적인 알킬 치환기가 아닌 플로렌기 또는 용해도를 증가시킬 수 있는 3,7-디메틸옥틸옥시 치환기를 플로렌과 지방족 알킬 또는 알킬옥시 그리고 방향족 치환기를 도입하였기 때문에 종래 PPV를 포함한 유기전기 발광소자에 있어서 내열성과 소자의 안정성 및 응집(aggregation) 등에 의해서 발생하는 문제를 해결할 수 있다. On the other hand, Spiro-PFV, X₂-Spiro-PFV, and PFV derivatives prepared by the monopolymerization of the monomers prepared by the above method may increase the solubility or the solubility of the monomers other than the general alkyl substituents on the side chain thereof. Since the introduction of 3,7-dimethyloctyloxy substituents with florene, aliphatic alkyl or alkyloxy and aromatic substituents, problems caused by heat resistance, stability and aggregation of organic electroluminescent devices including PPV have been introduced. I can solve it.

도 2, 3 및 4에서 최종적으로 합성된 단량체들은 그 자체로 Gilch 중합반응을 통하여 단중합체를 형성할 수 있다. The monomers finally synthesized in FIGS. 2, 3 and 4 can themselves form homopolymers via Gilch polymerization.

즉, 상기 도 2에서 최종적으로 합성된 단량체로서 바람직하게는 2,7-비스(클로로메틸)-9,9'-스파이로비플로렌은 THF 용매의 존재 하에서 THF에 용해되어 있는 포타슘 t-부톡사이드(t-BuOK)의 존재하에서 하기 반응식 1에서와 같이 반응하여 폴리(9.9'-스파이로비플로레닐-2,7-비닐렌)(Spiro-PFV)을 합성할 수 있다. That is, 2,7-bis (chloromethyl) -9,9'-spirobifluorene as the finally synthesized monomer in FIG. 2 is potassium t-butoxide dissolved in THF in the presence of a THF solvent. In the presence of (t-BuOK) it can be reacted as in Scheme 1 below to synthesize poly (9.9'-spirobiflorenyl-2,7-vinylene) (Spiro-PFV).

반응식 1Scheme 1

Figure 112004047217313-pat00002
Figure 112004047217313-pat00002

(n은 10 ~ 1000의 정수임.)(n is an integer from 10 to 1000.)

한편, 도 3에서 최종적으로 합성된 단량체인 2,7-비스(클로로메틸)-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로비플로렌은 THF 용매의 존재 하에서 THF에 용해되어 있는 포타슘 t-부톡사이드와 반응하여 하기 반응식 2에서 표시한 것과 같은 반복단위를 갖는 폴리(3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로비플로레닐-2,7-비닐렌)(X₂-Spiro-PFV)를 합성할 수 있다. Meanwhile, 2,7-bis (chloromethyl) -3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene, which is a monomer finally synthesized in FIG. 3, is a THF solvent. Poly (3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9 having a repeating unit as shown in Scheme 2 below by reacting with potassium t-butoxide dissolved in THF in the presence of '-Spirobiflorenyl-2,7-vinylene) (X 2 -Spiro-PFV) can be synthesized.

반응식 2Scheme 2

Figure 112004047217313-pat00003
Figure 112004047217313-pat00003

(알킬, 알콕시 및 n은 10 ~ 1000의 정수임.)(Alkyl, alkoxy and n are integers from 10 to 1000.)

한편, 도 4에서 최종적으로 합성된 단량체인 2,7-비스(클로로메틸)-9,9-다이옥틸플로렌은 THF 용매의 존재 하에서 THF에 용해되어 있는 포타슘 t-부톡사이드와 반응하여 하기 반응식 3에서 표시한 것과 같은 반복단위를 갖는 폴리(9,9-다이옥틸플로레닐-2,7-비닐렌)(PFV)를 합성할 수 있다.Meanwhile, 2,7-bis (chloromethyl) -9,9-dioctylfluorene, a monomer finally synthesized in FIG. 4, is reacted with potassium t-butoxide dissolved in THF in the presence of a THF solvent. It is possible to synthesize poly (9,9-dioctylflorenyl-2,7-vinylene) (PFV) having a repeating unit as indicated in.

반응식 3Scheme 3

Figure 112004047217313-pat00004
Figure 112004047217313-pat00004

(R: 알킬, 알킬옥시 또는 방향족 치환기, n은 10 ~ 1000의 정수임.)(R: alkyl, alkyloxy or aromatic substituent, n is an integer from 10 to 1000.)

위에서 기술한 것과 같이 합성된 Spiro-PFV, X₂-Spiro-PFV, 및 PFV 단중합체는 측쇄에 연결된 작용기로 인하여 소자 구동시 발생하는 열에 대한 내열 특성이 뛰어날 뿐 아니라, 특히 플로렌계 발광재료에서 발생하는 녹색 계열의 장파장에서 발생하는 피크를 효과적으로 억제할 수 있기 때문에 색순도를 향상시킬 수 있으며, 유기전기 발광소자의 전극 사이에 코팅되는 발광층으로 사용될 수 있다.As described above, the synthesized Spiro-PFV, X₂-Spiro-PFV, and PFV homopolymers not only have excellent heat resistance to heat generated when the device is driven by the functional groups connected to the side chain, but also occur in the florescent light emitting material. Since it is possible to effectively suppress the peak occurring in the long wavelength of the green series can improve the color purity, it can be used as a light emitting layer coated between the electrodes of the organic electroluminescent device.

도 10은 본 발명의 바람직한 실시예에 의하여 제조된 발광고분자인 Spiro-PFV, X₂-Spiro-PFV 및 PFV를 적용한 유기전기 발광소자를 개략적으로 도시한 단면도이다. 10 is a schematic cross-sectional view of an organic electroluminescent device to which Spiro-PFV, X₂-Spiro-PFV, and PFV, which are light emitting polymers manufactured according to the present invention, are applied.

도시된 것과 같이 유기전기 발광소자는 기판(901), 제 1 전극(1002), 정공수송층(1003), 발광층(1004), 전자전달층(1005), 전자주입층(1006) 및 제 2 전극(1007)으로 구성되는 다층 박막 형태를 취하고 있다. As illustrated, the organic electroluminescent device includes a substrate 901, a first electrode 1002, a hole transport layer 1003, a light emitting layer 1004, an electron transport layer 1005, an electron injection layer 1006, and a second electrode ( It takes the form of a multilayer thin film composed of 1007).

상기 기판(1001)은 유리 또는 플라스틱으로 제조될 수 있으며, 바람직하게는 유리로 제조된다. The substrate 1001 may be made of glass or plastic, and is preferably made of glass.

한편, 상기 제 1 전극(1002) 및 상기 제 2 전극(1007)은 각각 애노드(anode)와 캐소드(cathode)로 기능하는 부분으로서, 상기 제 1 전극(1002)에는 상기 제 2 전극(1007)에 비하여 일함수 (work function)가 큰 물질을 사용한다. Meanwhile, the first electrode 1002 and the second electrode 1007 function as an anode and a cathode, respectively, and the first electrode 1002 is connected to the second electrode 1007. In comparison, materials with a larger work function are used.

상기 제 1 전극(1002)으로는 ITO (indium-tin oxide), 폴리아닐린 (polyaniline), 폴리티오펜 (polythiophene) 등의 물질이 사용될 수 있으며, 바람직하게는 ITO를 사용한다. ITO (indium-tin oxide), polyaniline (polyaniline), polythiophene (polythiophene) and the like may be used as the first electrode 1002, and preferably ITO is used.

한편, 상기 제 2 전극(1007)으로는 금, 알루미늄, 구리, 은 또는 그들의 합금, 칼슘/알루미늄 합금, 마그네슘/은 합금, 알루미늄/리튬 합금 등이 사용될 수 있으며, 바람직하게는 알루미늄, 또는 알루미늄/칼슘 합금이다. Meanwhile, gold, aluminum, copper, silver or alloys thereof, calcium / aluminum alloys, magnesium / silver alloys, aluminum / lithium alloys, and the like may be used as the second electrode 1007, and preferably aluminum or aluminum / It is a calcium alloy.

그리고 전자주입층(1006)은 바람직하게 LiF 또는 BaF2이고 전자전달층(1005)은 Alq3 및 BAlq3이다.The electron injection layer 1006 is preferably LiF or BaF 2 and the electron transport layer 1005 is Alq 3 and BAlq 3 .

한편, 상기 발광층(1004)으로는 본 발명에 따라 합성된 Spiro-PFV, X₂-Spiro-PFV, 및 PFV 유도체 단중합체를 적절한 유기용매, 바람직하게는 클로로벤젠에 용해시켜 사용한다. On the other hand, as the light emitting layer 1004, Spiro-PFV, X₂-Spiro-PFV, and PFV derivative homopolymers synthesized according to the present invention are used by dissolving in a suitable organic solvent, preferably chlorobenzene.

특히, 상기 제 1 전극(1001)으로 ITO를 코팅하여 사용하는 경우 ITO 표면의 균일성과 ITO 및 발광층(1004)에 주입된 발광 고분자인 Spiro-PFV, X₂-Spiro-PFV, 및 PFV 유도체 계면의 접착 능력에 따라 유기전기 발광소자의 구동전압과 발광 효율이 영향받을 수 있으므로, 바람직하게는 상기 제 1 전극(1002)과 상기 발광층 (1004) 사이에 유기 물질로 코팅되는 정공수송층(1003)을 포함할 수 있다. In particular, when ITO is coated with the first electrode 1001, the uniformity of the surface of ITO and adhesion between Spiro-PFV, X₂-Spiro-PFV, and PFV derivative interfaces, which are light emitting polymers injected into the ITO and the light emitting layer 1004, are used. Since the driving voltage and the luminous efficiency of the organic electroluminescent device may be affected according to the capability, a hole transport layer 1003 coated with an organic material is preferably included between the first electrode 1002 and the light emitting layer 1004. Can be.

상기 정공수송층(1003)으로는 poly(3,4-ethylenedioxythiophene) -polystyrenesulfonate(PEPOT/PSS)가 제 1 전극상부에 코팅된 형태로 사용될 수 있다. As the hole transport layer 1003, poly (3,4-ethylenedioxythiophene) -polystyrenesulfonate (PEPOT / PSS) may be used in a form coated on the first electrode.

또한, 발광효율을 향상시키기 위하여 전자와 정공의 균형을 맞추기 위해서 발광층(1004)으로 효과적으로 전자를 이동시킬 수 있는 전자주입층(1006)과 전자전달층(1005)을 발광층(1004)과 제 2전극(1007) 사이에 형성하여야 된다.In addition, in order to balance the electrons and holes in order to improve the luminous efficiency, an electron injection layer 1006 and an electron transport layer 1005 capable of effectively moving electrons to the light emitting layer 1004 are provided to the light emitting layer 1004 and the second electrode. It should be formed between (1007).

도 10에서는 발광층(1004)과 전극(1001, 1007) 사이에 캐리어 주입층 또는 캐리어 전달층 등을 포함하는 다층 박막 형태의 전기 발광 소자를 기술하였으나, 기판(1001), 제 1 전극(1002), 발광층(1004) 및 제 2 전극(1007)으로만 구성돼는 단층 형태의 유기 전기 발광소자가 가능하다는 점은 당업자에게는 자명한 사실이다. In FIG. 10, the electroluminescent device in the form of a multilayer thin film including a carrier injection layer or a carrier transfer layer between the light emitting layer 1004 and the electrodes 1001 and 1007 is described. However, the substrate 1001, the first electrode 1002, It is apparent to those skilled in the art that a single layer organic electroluminescent device composed of only the light emitting layer 1004 and the second electrode 1007 is possible.

이하, 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 다만, 하기 실시예는 본 발명을 예증하기 위한 것에 불과하고 본 발명이 하기 실시예에 의하여 한정되는 것이 아님은 물론이다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited by the following examples.

실시예1 2,7-비스(클로로메틸)-9,9'-스파이로바이플로렌의 제조Example 1 Preparation of 2,7-bis (chloromethyl) -9,9'-spirobifluorene

(1) step 1: 2,7-디브로모플로렌의 제조(1) step 1: Preparation of 2,7-dibromoflorene

삼구 플라스크에 플로렌 (30 g, 180 mmol)을 투입하고, 디클로로메탄 (300 ml)을 넣고 교반 하였다. 플라스크에 빛을 차단하고, 0 ℃ 이하로 냉각 시킨 뒤, 플라스크의 온도가 충분히 냉각되었을 때, 디클로로메탄에 브롬 (58 g, 364 mmol)을 희석 시켜 플라스크에 아주 천천히 떨어뜨렸다. In a three-neck flask, florene (30 g, 180 mmol) was added thereto, and dichloromethane (300 ml) was added thereto, followed by stirring. The flask was blocked by light, cooled to 0 ° C. or lower, and when the temperature of the flask was sufficiently cooled, bromine (58 g, 364 mmol) was diluted in dichloromethane and dropped into the flask very slowly.

0 ℃ 이하에서 2시간 이상 교반 한 뒤, 상온에서 24시간 동안 더 교반 시키고. 반응이 끝난 후에 소디움카보네이트 용액을 조금씩 넣어 pH를 중성으로 맞추어 주었다. 황산나트륨 수용액에 넣어 과량의 브로민과 브롬산을 제거한 뒤, 유기층을 세 번 추출하고 황산마그네슘을 이용하여 건조 시킨 뒤 헥산과 디클로로메탄을 이용하여 재결정 하여 흰색의 파우더인 2,7-디브로모플로렌 (50 g, 수율: 80 %)을 얻었다. After stirring for 2 hours or more at 0 ℃ or less, and further stirred at room temperature for 24 hours. After the reaction, sodium carbonate solution was added little by little to adjust the pH to neutral. The excess bromine and bromic acid were removed in an aqueous sodium sulfate solution, the organic layer was extracted three times, dried over magnesium sulfate, and recrystallized with hexane and dichloromethane to give a white powder of 2,7-dibromoflorene. (50 g, yield: 80%) were obtained.

mp: 164-166 ℃mp: 164-166 ° C.

1H-NMR (CDCl3): (ppm) 7.68 (d, J=1.1Hz, 2H), 7.64 (s, 1H), 7.59 (s, 1H), 7.54 (t, J=0.91, 1H), 7.49 (t, J=0.73Hz, 1H), 3.87 (s, 2H). 1 H-NMR (CDCl 3 ): (ppm) 7.68 (d, J = 1.1 Hz, 2H), 7.64 (s, 1H), 7.59 (s, 1H), 7.54 (t, J = 0.91, 1H), 7.49 (t, J = 0.73 Hz, 1H), 3.87 (s, 2H).

13C-NMR (CDCl3): (ppm) 144.65, 139.53, 130.00, 128.15, 121.05, 120.82, 36.47. 13 C-NMR (CDCl 3 ): (ppm) 144.65, 139.53, 130.00, 128.15, 121.05, 120.82, 36.47.

Anal. Calcd for C13H8Br2: C, 48.19; H, 2.49; Br; 49.32. Found : C, 48.30; H, 2.58Anal. Calcd for C 13 H 8 Br 2 : C, 48.19; H, 2.49; Br; 49.32. Found: C, 48.30; H, 2.58

(2) step 2: 2,7-디브로모플로렌-9-온의 제조(2) step 2: Preparation of 2,7-dibromofloren-9-one

삼구 플라스크에 2,7-디브로모플로렌 (20 g, 61 mmol)과 아세트산 (300 ml)을 넣고 K2Cr2O7 (18 g, 61.70 mmol)과 세륨(III)카보네이트 하이드레이트 (1.00 g, 소량)를 80 ℃ 정도에서 첨가하였다. In a three-neck flask, 2,7-dibromoflorene (20 g, 61 mmol) and acetic acid (300 ml) were added, K 2 Cr 2 O 7 (18 g, 61.70 mmol) and cerium (III) carbonate hydrate (1.00 g, Small amount) was added at around 80 ° C.

그 반응의 혼합물을 120 ℃에서 12시간 동안 교반 하였다. 그 후에 반응물을 실온으로 냉각시키고, 증류수로 희석 시킨 뒤 여과 하였다. 얻어진 고체를 10% 소디움카보네이트 수용액에서 30분 동안 씻어주고, 80 ℃의 소디움비설파이트 용액에서 30분간 몇 차례 씻어주었다. The mixture of reaction was stirred at 120 ° C for 12 h. The reaction was then cooled to room temperature, diluted with distilled water and filtered. The obtained solid was washed in 10% aqueous sodium carbonate solution for 30 minutes, and washed several times in 80% sodium bisulfite solution for 30 minutes.

그 후 얻어진 노란색의 고체를 염산 (100ml)에 넣고, 80 ℃에서 한시간 동안 교반 시킨 뒤, 고체를 거르고 증류수로 씻어 준 다음 아세톤으로 재결정 하여 노란색의 고체인 2,7-디브로모플로렌-9-온(19g, 수율: 91%)을 얻었다. The resulting yellow solid was added to hydrochloric acid (100 ml), stirred at 80 ° C. for one hour, filtered, washed with distilled water and recrystallized with acetone to give a yellow solid of 2,7-dibromofluorene-9- Warm (19 g, yield: 91%) was obtained.

mp: 203-205 ℃mp: 203-205 ° C

1H-NMR (CDCl3): (ppm) 7.76 (d, J=1.8Hz, 2H), 7.68 (d, J=1.8Hz, 1H), 7.62 (d, J=1.8Hz), 7.40 (s, 1H), 7.36 (s, 1H). 1 H-NMR (CDCl 3 ): (ppm) 7.76 (d, J = 1.8 Hz, 2H), 7.68 (d, J = 1.8 Hz, 1H), 7.62 (d, J = 1.8 Hz), 7.40 (s, 1H), 7.36 (s, 1 H).

13C-NMR (CDCl3): (ppm) 142.327, 137.539, 135.406, 127.943, 123.484, 121.942. 13 C-NMR (CDCl 3 ): (ppm) 142.327, 137.539, 135.406, 127.943, 123.484, 121.942.

IR (KBr): 3061 (C=O overtone), 1726 (C=O stretch), 1556-1416 (aromatic C=C stretch), 1245, 1184, 1056, 818, 782, 684, 465, 410 cm-1.IR (KBr): 3061 (C = O overtone), 1726 (C = O stretch), 1556-1416 (aromatic C = C stretch), 1245, 1184, 1056, 818, 782, 684, 465, 410 cm-1 .

Anal. Calcd for C13H6Br2O : C, 46.20; H, 1.79; Br, 47.28; O, 4.73. Found: C, 46.32; H, 1.83.Anal. Calcd for C 13 H 6 Br 2 O: C, 46.20; H, 1.79; Br, 47.28; 0, 4.73. Found: C, 46.32; H, 1.83.

(3) step 3: 2,7-디브로모-9-(2-비페닐)-9-플로렌올의 제조(3) step 3: preparation of 2,7-dibromo-9- (2-biphenyl) -9-florenol

삼구 플라스크에 마그네슘 (1.4 g, 54 mmol)을 넣고 감압과 질소 주입을 통해 수분을 제거한 뒤, 무수 에테르 (20 ml)를 넣어주었다. 1,2-디브로에탄을 소량 넣고 가열하여 마그네슘을 활성화 시켜준 다음, 무수 에테르에 묽힌 2-브로모비페닐 (10.49 g, 45 mmol) 용액을 플라스크에 천천히 떨어뜨리고, 2-3시간 정도 환류 시켜 그리그나드 시약을 제조하였다. Magnesium (1.4 g, 54 mmol) was added to a three-necked flask, and water was removed by decompression and nitrogen injection. Anhydrous ether (20 ml) was added thereto. A small amount of 1,2-dibroethane was added to activate magnesium, and a 2-bromobiphenyl (10.49 g, 45 mmol) solution diluted in anhydrous ether was slowly dropped into the flask and refluxed for 2-3 hours. Grignard reagents were prepared.

다른 삼각 플라스크를 준비하여, 2,7-디브로모플로렌-9-온 (15 g, 44.40 mmol)과 무수 에테르를 넣고 환류 시키면서, 그 플라스크에 앞서 제조한 그리그나드 시약을 천천히 떨어뜨렸다. 12시간 이상 환류 시킨 뒤 반응이 끝나면 실온으로 냉각시키고, 침전물인 노란색 고체를 거른 뒤에 차가운 에테르로 씻어 주었다. Another Erlenmeyer flask was prepared, and 2,7-dibromofloren-9-one (15 g, 44.40 mmol) and anhydrous ether were added under reflux, and the Grignard reagent prepared in advance was slowly dropped into the flask. After refluxing for 12 hours or more, the reaction was cooled to room temperature, and the yellow solid, which was precipitated, was filtered and washed with cold ether.

그 뒤 10% 염화암모늄 용액에 넣어 10시간 동안 교반 시키고, 거른 후 증류수로 씻고, 에탄올에 재결정 하여 2,7-디브로모-9-(2-비페닐)-9-플로렌올(13 g, 수율: 60 %)을 얻었다. Then, put into 10% ammonium chloride solution, stirred for 10 hours, filtered, washed with distilled water, recrystallized from ethanol and 2,7-dibromo-9- (2-biphenyl) -9-florenol (13 g , Yield: 60%).

(4) step 4: 2,7-디브로모-9,9'-스파이로바이플로렌의 제조(4) step 4: preparation of 2,7-dibromo-9,9'-spirobifluorene

2,7-디브로모-9-(2-비페닐)-9-플로렌올(11.89 g, 24.20 mmol)을 아세트산 (200 ml)에 넣고 120 ℃에서 12시간 동안 교반 시켰다. 그 뒤에 염산 (2-3 ml)을 반응 용기에 떨어뜨리고 1-2시간 동안 더 교반 시켰다. 2,7-dibromo-9- (2-biphenyl) -9-florenol (11.89 g, 24.20 mmol) was added to acetic acid (200 ml) and stirred at 120 ° C. for 12 hours. Subsequently, hydrochloric acid (2-3 ml) was dropped into the reaction vessel and further stirred for 1-2 hours.

반응의 중간에 반응물이 흰색의 고체로 떨어지는 현상을 확인 할 수 있었고, 반응이 완전히 끝난 후에는 흰색의 고체가 침전되는 것을 볼 수 있었다. 그 후에 반응물을 충분히 식히고, 고체를 걸러낸 다음 아세트산과 물로 충분히 씻어 주었다. 얻어진 생성물을 에탄올에 재결정 하여 흰색의 고체인 2,7-디브로모-9,9'-스파이로비플로렌 (10.4 g, 수율: 90%)을 얻었다. In the middle of the reaction, it was confirmed that the reactant falls to a white solid, and after the reaction was completed, a white solid precipitated. After that time the reaction was cooled sufficiently, the solid was filtered off and washed well with acetic acid and water. The resulting product was recrystallized in ethanol to obtain 2,7-dibromo-9,9'-spirobibirene (10.4 g, yield: 90%) as a white solid.

(5) step 5: 2,7-디시아노-9,9'-스파이로바이플로렌의 제조(5) step 5: Preparation of 2,7-dicyano-9,9'-spirobifluorene

2,7-디브로모-9,9'-스파이로비플로렌 (10 g, 21 mmol)과 시안화구리(I) (4.54 g, 50.60 mmol)를 디메틸포름아미드 (200 ml)에 넣고, 10시간 동안 환류 시켰다. FeCl3(수화물, 25 g)과 진한 염산 (1 5ml), 증류수 (150 ml)를 비이커에 준비하고, 반응이 끝난 후에 반응의 혼합물을 비이커에 붓고, Cu complex를 제거하기 위해 비이커 속 혼합물의 온도를 60-70 ℃로 30분간 유지 해주었다. 2,7-Dibromo-9,9'-spirobibifluorene (10 g, 21 mmol) and copper cyanide (I) (4.54 g, 50.60 mmol) were added to dimethylformamide (200 ml) and 10 hours It was refluxed during. FeCl 3 (hydrate, 25 g), concentrated hydrochloric acid (1 5 ml) and distilled water (150 ml) were prepared in a beaker, after the reaction was completed, the mixture of the reaction was poured into the beaker, and the temperature of the mixture in the beaker to remove the Cu complex It was kept for 30 minutes at 60-70 ℃.

뜨거운 용액을 에틸아세테이트로 2번 추출하고, 얻어진 유기 층을 묽은 염산과 물, 10% 수산화나트륨으로 씻어주었다. 황산마그네슘으로 건조하고, 여과한 뒤 감압한 상태에서 용매를 제거하여 진한갈색의 생성물을 얻었는데, 이렇게 얻어진 생성물을 메탄올에 재결정 하여 노란색 고체인 2,7-디시아노-9,9'-스파이로비플로렌 (5.3 g, 수율: 70 %)을 얻었다.The hot solution was extracted twice with ethyl acetate and the resulting organic layer was washed with dilute hydrochloric acid, water and 10% sodium hydroxide. After drying over magnesium sulfate, filtration and removing the solvent under reduced pressure, a dark brown product was obtained. The obtained product was recrystallized in methanol to give a yellow solid, 2,7-dicyano-9,9'-spirobibi. Florene (5.3 g, yield: 70%) was obtained.

(6) step 6: 9,9'-스파이로바이플루오렌-2,7-디카르복실산의 제조(6) step 6: Preparation of 9,9'-spirobifluorene-2,7-dicarboxylic acid

2,7-디시아노-9,9'-스파이로비플로렌 (5,10 g, 3.92 mmol)을 30% 수산화나트륨 (30 ml)과 에탄올 (35 ml)에 넣고 6시간 이상 환류 시켰다. 반응이 끝난 후에 용매를 감압하여 제거한 결과, 디카르복시산의 디소디움 솔트가 노란색의 고체로써 침전이 되었다. 2,7-dicyano-9,9'-spirobibifluorene (5,10 g, 3.92 mmol) was added to 30% sodium hydroxide (30 ml) and ethanol (35 ml) and refluxed for at least 6 hours. After the reaction was completed, the solvent was removed under reduced pressure, and the disodium salt of dicarboxylic acid precipitated as a yellow solid.

노란색의 침전물을 걸러 25%의 염산 수용액에 넣고 1-2시간 정도 환류 시켜서 밝은 노란색의 고체를 얻었는데, 이를 다시 아세트산을 이용하여 재결정 하여 노란색의 결정인 9,9'-스파이로비플로렌-2,7-디카르복실산 (5.5 g, 수율: 98 %)을 얻었다. The yellow precipitate was filtered and placed in 25% aqueous hydrochloric acid solution and refluxed for 1-2 hours to obtain a light yellow solid. , 7-dicarboxylic acid (5.5 g, yield: 98%) was obtained.

(7) step 7: 9.9'-스파이로바이플루오렌-2,7-디메탄올의 제조(7) step 7: Preparation of 9.9'-spirobifluorene-2,7-dimethanol

N2 분위기 하에서 둥근 바닥 플라스크안에 9,9'-스파이로비플로렌-2,7-디카르복실산(5.60 g, 13.80 mmol)과 정제된 벤젠 (120 ml)를 넣고 교반 시킨 뒤, 톨루엔에 녹아 있는 65 wt%의 소디움비스(2-메틸옥시에틸옥시)알루미늄 하이드라이드 (RED-Al, 38.6 ml)를 플라스크 안으로 서서히 적가 하였다. In a round bottom flask under N 2 atmosphere, 9,9'-spirobifluorene-2,7-dicarboxylic acid (5.60 g, 13.80 mmol) and purified benzene (120 ml) were added thereto, stirred, and dissolved in toluene. 65 wt% sodium bis (2-methyloxyethyloxy) aluminum hydride (RED-Al, 38.6 ml) was slowly added dropwise into the flask.

2-3시간 정도 환류 시킨 다음 과량의 환원제를 제거하기 위해 차가운 증류수에 반응물을 붓고, 진한 염산을 이용하여 산성화 시킨 뒤, 클로로포름으로 추출하여 유기 층을 분리 하였다. After refluxing for 2-3 hours, the reactant was poured into cold distilled water to remove excess reducing agent, acidified with concentrated hydrochloric acid, and extracted with chloroform to separate the organic layer.

분리된 유기 층을 증류수로 세척하고, 황산마그네슘을 이용하여 건조한 뒤, 용매를 감압하여 제거하고, 벤젠을 이용하여 재결정 하여 9.9'-스파이로비플로렌- 2,7-디메탄올 (5 g, 수율: 96 %)를 얻었다. The separated organic layer was washed with distilled water, dried over magnesium sulfate, the solvent was removed under reduced pressure, and recrystallized with benzene to give 9.9'-spirobifluorene-2,7-dimethanol (5 g, yield). : 96%).

(8) step 8: 2,7-비스(클로로메틸)-9,9'-스파이로바이플로렌의 제조(8) step 8: Preparation of 2,7-bis (chloromethyl) -9,9'-spirobifluorene

N2 분위기 하에서 둥근 바닥 플라스크안에 9.9'-스파이로비플로렌-2,7-디메탄올(6 g, 15.90 mmol)과 정제된 벤젠 (150 ml)을 넣고, SOCl2 (39.8 g, 318 mmol)를 실온에서 플라스크 안으로 서서히 적가 하였다. In a round bottom flask under N 2 atmosphere, 9.9'-spirobifloren-2,7-dimethanol (6 g, 15.90 mmol) and purified benzene (150 ml) were added, and SOCl 2 (39.8 g, 318 mmol) was added. It was slowly added dropwise into the flask at room temperature.

적가가 끝나면 플라스크의 온도를 120 ℃에서 12시간 이상 환류 시켰다. 반응이 끝난 뒤에 용매인 벤젠과 과량의 SOCl2를 감압 하에서 제거 하고, 반응물을 과량의 증류수에 붓고, 클로로포름으로 추출 하여 유기 층을 분리하였다. After dropping, the flask was refluxed at 120 ° C. for at least 12 hours. After the reaction was completed, the solvent benzene and excess SOCl 2 was removed under reduced pressure, the reaction was poured into excess distilled water, extracted with chloroform to separate the organic layer.

분리된 유기 층을 증류수로 여러 차례 씻어 주고. 무수 황산마그네슘을 이용하여 건조한 뒤, 거르고 용매를 갑압하여 제거 하였다. 생성물을 헥산/디클로로메탄 (9:1)계를 사용한 칼럼 크로마토그래피를 이용하여 분리한 결과 흰색의 파우더인 2,7-비스(클로로메틸)-9,9'-스파이로비플로렌 (5.2 g, 수율: 80 %)을 얻었다. The separated organic layer was washed several times with distilled water. After drying using anhydrous magnesium sulfate, it was filtered and the solvent was removed by pressure. The product was separated by column chromatography using a hexane / dichloromethane (9: 1) system. As a result, a white powder, 2,7-bis (chloromethyl) -9,9'-spirobibifluorene (5.2 g, Yield: 80%).

실시예 2. 2,7-비스(클로로메틸)-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌의 제조Example 2. Preparation of 2,7-bis (chloromethyl) -3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene

(1) step 9: 2-브로모-5,3'-디메톡시비페닐의 제조(1) step 9: Preparation of 2-bromo-5,3'-dimethoxybiphenyl

3.3-디메톡시비페닐 (10 g, 46.70 mmol)을 100 ml의 디메틸포름아미드에 녹인 후 0 ℃까지 냉각시켰다. 디메틸포름아미드에 희석 시킨 N-브로모숙신이미드 (NBS, 8.3 g, 46.7 mmol)를 0 ℃에서 서서히 적가 하였다. 3.3-dimethoxybiphenyl (10 g, 46.70 mmol) was dissolved in 100 ml of dimethylformamide and cooled to 0 ° C. N-bromosuccinimide (NBS, 8.3 g, 46.7 mmol) diluted in dimethylformamide was slowly added dropwise at 0 ° C.

상온에서 약 12시간 동안 교반 하고, 증류수를 첨가한 후 약 10분 정도 더 교반 하고, 헥산을 이용하여 추출한 다음 증류수로 여러 차례 씻어 주고, 무수 황산마그네슘을 이용하여 건조한 뒤 감압 하에서 헥산을 제거하여 2-브로모-5,3'-디메톡시비페닐 (13 g, 수율: 95 %)을 얻었다. Stir at room temperature for about 12 hours, add distilled water, and then stir for about 10 minutes, extract with hexane, wash with distilled water several times, dry with anhydrous magnesium sulfate, and remove hexane under reduced pressure. Bromo-5,3'-dimethoxybiphenyl (13 g, yield: 95%) was obtained.

1H-NMR (CDCl3): (ppm) 7.55-7.51 (d, 1H), 7.34-7.30 (m, 1H), 7.00-6.91(m, 4H), 6.88-6.74 (m, 1H), 3.90-3.80 (d, 6H). 1 H-NMR (CDCl 3 ): (ppm) 7.55-7.51 (d, 1H), 7.34-7.30 (m, 1H), 7.00-6.91 (m, 4H), 6.88-6.74 (m, 1H), 3.90- 3.80 (d, 6 H).

Anal. Calcd for C14H13BrO2: C, 57.36; H, 4.47; Br, 27.26; O, 10.92. Found : C, 58.01; H, 4.82.Anal. Calcd for C 14 H 13 BrO 2 : C, 57.36; H, 4. 47; Br, 27.26; O, 10.92. Found: C, 58.01; H, 4.82.

(2) step 10: 2-브로모-비페닐-3,3'-디올의 제조(2) step 10: preparation of 2-bromo-biphenyl-3,3'-diol

500 ml 삼구 플라스크에 2-브로모-5,3'-디메톡시비페닐 (12.40 g, 42.30 mmol)과 150 ml 디클로로메탄, AlCl3 (56.40 g, 423 mmol)을 넣고, 0 ℃이하로 냉각 시켰다. 2-bromo-5,3'-dimethoxybiphenyl (12.40 g, 42.30 mmol), 150 ml dichloromethane and AlCl 3 (56.40 g, 423 mmol) were added to a 500 ml three-necked flask, and cooled to 0 ° C. or lower. .

플라스크안으로 메틸설파이드 (31.5 g, 508 mmol)를 0 ℃에서 30분간 천천히 적가 하였다. 반응이 진행되면서 TLC를 통하여 출발 물질이 완전히 사라지는 것을 확인한 후 반응을 종결시켰다. Methyl sulfide (31.5 g, 508 mmol) was slowly added dropwise into the flask at 0 ° C. for 30 minutes. As the reaction progressed, the starting material was completely disappeared through TLC, and the reaction was terminated.

반응 후에 염화암모늄 수용액에 생성물을 아주 천천히 부어서 20 분 정도 교반 시켜 준 다음 에테르로 추출 하여 유기 층을 분리 하였다. 분리된 유기 층을 무 후 황산마그네슘을 이용하여 건조하고, 감압 하에서 용매를 제거하여 2-브로모-비페닐-3,3'-디올 (11 g, 수율: 98 %)를 얻었다.After the reaction, the product was poured into the aqueous ammonium chloride solution very slowly, stirred for about 20 minutes, extracted with ether, and the organic layer was separated. The separated organic layer was then dried over magnesium sulfate, and the solvent was removed under reduced pressure to obtain 2-bromo-biphenyl-3,3'-diol (11 g, yield: 98%).

mp: 109-111 ℃mp: 109-111 ° C.

1H-NMR (CDCl3): (ppm) 7.50-7.46 (d, 1H), 7.28 (m, 1H), 7.04-6.91 (m, 4H), 6.86-6.70 (m, 1H). 1 H-NMR (CDCl 3 ): (ppm) 7.50-7.46 (d, 1H), 7.28 (m, 1H), 7.04-6.91 (m, 4H), 6.86-6.70 (m, 1H).

13C-NMR (CDCl3): (ppm) 155.0, 154.9, 143.1, 142.3, 133.9, 129.2, 121.8, 118.1, 116.3, 116.2, 114.7, 112.8. 13 C-NMR (CDCl 3 ): (ppm) 155.0, 154.9, 143.1, 142.3, 133.9, 129.2, 121.8, 118.1, 116.3, 116.2, 114.7, 112.8.

IR (KBr): 3443 (br, O-H stretch), 1581-1459, 1314, 1219, 771 cm-1.IR (KBr): 3443 (br, OH stretch), 1581-1459, 1314, 1219, 771 cm -1 .

Anal. Calcd for C12H9BrO2: C, 54.37; H, 3.42; Br, 30.14; O, 12.07. Found : C, 54.31: H, 3.52.Anal. Calcd for C 12 H 9 BrO 2 : C, 54.37; H, 3. 42; Br, 30.14; O, 12.07. Found: C, 54.31: H, 3.52.

(3) step 11: 2-브로모-5,3'-비스(3,7-디메틸옥틸옥시)-비페닐의 제조 (3) step 11: Preparation of 2-bromo-5,3'-bis (3,7-dimethyloctyloxy) -biphenyl

2-브로모-비페닐-3,3'-디올 (10.88 g, 41.04 mmol), 탄산칼륨 (34 g, 246.24 mmol), 요오드화칼륨 (6.81 g, 41.04 mmol)을 디메틸포름아미드 (150 ml)에 녹인 후, 약 120 ℃의 온도를 유지하면서 2 시간 동안 가열 하였다. 2-bromo-biphenyl-3,3'-diol (10.88 g, 41.04 mmol), potassium carbonate (34 g, 246.24 mmol), potassium iodide (6.81 g, 41.04 mmol) in dimethylformamide (150 ml) After melting, it was heated for 2 hours while maintaining the temperature of about 120 ℃.

그 후에 반응 혼합물을 실온까지 식히고 1-브로모-3,7-디메틸옥탄 (19.97 g, 90.29 mmol)을 적가 하였다. 반응물의 온도를 약 150 ℃ 정도로 유지하면서 18 시간 동안 환류 시켰다. The reaction mixture was then cooled to room temperature and 1-bromo-3,7-dimethyloctane (19.97 g, 90.29 mmol) was added dropwise. The reaction was refluxed for 18 hours while maintaining the temperature of about 150 ℃.

반응 후에 증류수와 헥산을 이용하여 추출하고, 분리된 유기 층을 무수 황산마그네슘을 이용하여 건조 하고 용매를 감압하여 제거하였다. 헥산에 4% 디클로로메탄 계를 이용한 실리카겔에서 크로마토그래피 정제로 2-브로모-5,3'-비스(3,7-디메틸옥틸옥시)-비페닐 (13 g, 수율: 60 %)을 얻었다. After the reaction, the mixture was extracted with distilled water and hexane, the separated organic layer was dried over anhydrous magnesium sulfate, and the solvent was removed under reduced pressure. Chromatographic purification on silica gel using 4% dichloromethane in hexanes gave 2-bromo-5,3'-bis (3,7-dimethyloctyloxy) -biphenyl (13 g, yield: 60%).

1H-NMR (CDCl3): (ppm) 7.53-7.49 (d, J=8.8Hz, 1H), 7.30 (t, J=11.0Hz), 6.98-6.79 (m, 4H), 6.77-6.74 (dd, J=5.5Hz, 1H), 3.99-3.96 (m, 4H), 1.63-1.53 (m, 10H), 1.32-1.13 (m, 11H), 0.95-0.84 (m, 17H). 1 H-NMR (CDCl 3 ): (ppm) 7.53-7.49 (d, J = 8.8 Hz, 1H), 7.30 (t, J = 11.0 Hz), 6.98-6.79 (m, 4H), 6.77-6.74 (dd , J = 5.5 Hz, 1H), 3.99-3.96 (m, 4H), 1.63-1.53 (m, 10H), 1.32-1.13 (m, 11H), 0.95-0.84 (m, 17H).

Anal. Calcd for C32H49BrO2: C, 70.44; H, 9.05; Br, 14.64; O, 5.86. Found : C, 70.56; H, 9.12.Anal. Calcd for C 32 H 49 BrO 2 : C, 70.44; H, 9.05; Br, 14.64; O, 5.86. Found: C, 70.56; H, 9.12.

(4)step 12: 9-(5,3'-비스(3,7-디메틸옥틸옥시)-비페닐-2-일)-2,7-디브로모-9H-플로렌-9올의 제조(4) step 12: Preparation of 9- (5,3'-bis (3,7-dimethyloctyloxy) -biphenyl-2-yl) -2,7-dibromo-9H-floren-9ol

N2 분위기 하에서 2-브로모-5,3'-비스(3,7-디메틸옥틸옥시)-비페닐 (10.80 g, 19.79 mmol)과 건조된 테트라하이드로퓨란 (150 ml)을 삼구 플라스크에 담고 -78 ℃로 냉각 시킨 후 3차 부틸리튬 (1.7M, 27.94 ml, 47.50 mmol)을 매우 천천히 가하였다. 2 -bromo-5,3'-bis (3,7-dimethyloctyloxy) -biphenyl (10.80 g, 19.79 mmol) and dried tetrahydrofuran (150 ml) were placed in a three-necked flask under N 2 atmosphere. After cooling to 78 ° C. tert-butyllithium (1.7M, 27.94 ml, 47.50 mmol) was added very slowly.

얻어진 결과물을 -78 ℃의 온도를 계속 유지하면서 1시간 동안 교반 하고, 1시간 뒤 상온까지 서서히 온도를 올려주면서 1시간 동안 더 교반 하였다. 그 후에 다시 반응물의 온도를 -78 ℃까지 떨어드리고, 건조된 테트라하이드로퓨란 (70ml) 에 녹은 2,7-디브로모플루오렌-9-온 (8.03 g, 23.8 mmol)을 매우 천천히 적가 하였다. The resulting product was stirred for 1 hour while maintaining the temperature of -78 ℃, and further stirred for 1 hour while gradually raising the temperature to room temperature after 1 hour. Then the temperature of the reaction was again lowered to -78 ° C and 2,7-dibromofluorene-9-one (8.03 g, 23.8 mmol) dissolved in dried tetrahydrofuran (70 ml) was added very slowly dropwise.

1시간 동안 교반 한 후에 서서히 온도를 상온까지 올려서 6시간 정도 더 교반 하였다. 증류수를 첨가하여 반응을 종결 시킨 후, 클로로포름이나 디클로로메탄을 이용하여 추출하고, 분리된 유기 층을 황산마그네슘으로 건조한 후 감압하여 용매를 제거 하였다. After stirring for 1 hour, the temperature was gradually raised to room temperature and stirred for about 6 hours. After the reaction was terminated by adding distilled water, the mixture was extracted using chloroform or dichloromethane, and the separated organic layer was dried over magnesium sulfate, and the solvent was removed under reduced pressure.

헥산에 30-40% 디클로로메탄계를 이용한 실리카 겔에서 크로마토그래피 정제로 노란색의 고체를 얻을 수 있었다. 얻어진 생성물을 다시 메탄올을 이용하여 여러 차례 재결정 하여 흰색의 파우더인 9-(5,3'-비스(3,7-디메틸옥틸옥시)-비페닐-2-일)-2,7-디브로모-9H-플로렌-9올(9.5 g, 수율: 60 %)을 얻었다. Chromatographic purification on silica gel using 30-40% dichloromethane in hexane yielded a yellow solid. The obtained product was recrystallized several times using methanol to obtain 9- (5,3'-bis (3,7-dimethyloctyloxy) -biphenyl-2-yl) -2,7-dibromo as a white powder. -9H-Floren-9ol (9.5 g, yield: 60%) was obtained.

mp: 104-105 ℃mp: 104-105 ° C.

1H-NMR (CDCl3): (ppm) 8.28 (d, J=8.8Hz, 1H), 7.35-7.29 (m, 4H), 7.07-7.02 (m, 3H), 6.57 (t, J=7.9Hz, 1H), 6.53 (d, J=2.8Hz, 1H), 6.41 (dd, J=2.6Hz, 1.0Hz, 1H), 5.68-5.65 (m, 2H), 3.99 (t, J=6.6Hz, 2H), 3.55 (t, J=6.6Hz, 2H), 1.82 (m, 1H), 1.76-1.46 (m, 6H), 1.38-1.24 (m, 6H), 1.22-1.1 (m, 6H), 0.94 (d, J=5.9Hz, 7H), 0.90-0.87 (dd, J=8.6Hz, 9.7Hz, 12H). 1 H-NMR (CDCl 3 ): (ppm) 8.28 (d, J = 8.8 Hz, 1H), 7.35-7.29 (m, 4H), 7.07-7.02 (m, 3H), 6.57 (t, J = 7.9 Hz , 1H), 6.53 (d, J = 2.8Hz, 1H), 6.41 (dd, J = 2.6Hz, 1.0Hz, 1H), 5.68-5.65 (m, 2H), 3.99 (t, J = 6.6Hz, 2H ), 3.55 (t, J = 6.6 Hz, 2H), 1.82 (m, 1H), 1.76-1.46 (m, 6H), 1.38-1.24 (m, 6H), 1.22-1.1 (m, 6H), 0.94 ( d, J = 5.9 Hz, 7H), 0.90-0.87 (dd, J = 8.6Hz, 9.7Hz, 12H).

13C-NMR (CDCl3): (ppm) 158.43, 157.63, 152.75, 152.70, 142.11, 141.40, 138.25, 138.23, 132.05, 130.07, 128.06, 127.94, 127.79, 127.60, 122.15, 122.04, 121.64, 121.51, 117.47, 113.78, 113.69, 113.46, 113.31, 82.13, 66.55, 66.04, 65.93, 39.51, 39.45, 37.65, 37.56, 37.49, 36.48, 30.17, 30.07, 28.23, 28.20, 24.94, 24.87, 22.96, 22.93, 22.85, 22.83, 20.05, 19.90. 13 C-NMR (CDCl 3 ): (ppm) 158.43, 157.63, 152.75, 152.70, 142.11, 141.40, 138.25, 138.23, 132.05, 130.07, 128.06, 127.94, 127.79, 127.60, 122.15, 122.04, 121.64, 121.51, 121.51, 121.51, 121.51 113.78, 113.69, 113.46, 113.31, 82.13, 66.55, 66.04, 65.93, 39.51, 39.45, 37.65, 37.56, 37.49, 36.48, 30.17, 30.07, 28.23, 28.20, 24.94, 24.87, 22.96, 22.93, 22.85, 22.83, 20.83 19.90.

IR (KBr): 3530 (O-H stretch), 3054, 2928 (sp3 C-H stretch), 2358, 1596 (CH2 bend), 1570 (CH3 bend), 1469-1383, 1301, 1247 (C-O stretch), 1225, 1186, 1132, 1027, 836, 788, 702, 677, 454 cm-1.IR (KBr): 3530 (OH stretch), 3054, 2928 (sp 3 CH stretch), 2358, 1596 (CH 2 bend), 1570 (CH 3 bend), 1469-1383, 1301, 1247 (CO stretch), 1225 , 1186, 1132, 1027, 836, 788, 702, 677, 454 cm -1 .

Anal. Calcd for C45H56Br2O3: C, 67.16; H, 7.01; Br, 19.86; O, 5.96. Found : C, 67.21; H, 7.916.Anal. Calcd for C 45 H 56 Br 2 O 3 : C, 67.16; H, 7.01; Br, 19.86; O, 5.96. Found: C, 67.21; H, 7.916.

(5) step 13: 2,7-디브로모-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로비플로렌의 제조(5) step 13: Preparation of 2,7-dibromo-3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobibifluorene

250 ml 삼구 플라스크에 9-(5,3'-비스(3,7-디메틸옥틸옥시)-비페닐-2-일)-2,7-디브로모-9H-플로렌-9올 (5.30 g, 6.59 mmol)과 아세트산 (150 ml), 염산 (3 ml)를 넣고, 상온에서 24 시간 동안 교반 하였다. 반응 후에 아세트산을 감압하여 제거하고, 얻어진 생성물을 클로로포름 혹은 디클로로메탄으로 추출하였다. 9- (5,3'-bis (3,7-dimethyloctyloxy) -biphenyl-2-yl) -2,7-dibromo-9H-floren-9ol (5.30 g) in a 250 ml three-neck flask , 6.59 mmol), acetic acid (150 ml) and hydrochloric acid (3 ml) were added and stirred at room temperature for 24 hours. After the reaction, acetic acid was removed under reduced pressure, and the obtained product was extracted with chloroform or dichloromethane.

얻어진 유기 층을 황산마그네슘으로 건조하고, 용매를 감압하여 제거한 뒤 헥산에 4% 디클로로메탄 계를 이용한 실리카 겔에서 크로마토그래피로 정제하고, 얻어진 생성물을 헥산으로 재결정 하여 2,7-디브로모-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로비플로렌(4.8 g, 수율: 93 %)을 얻었다. The obtained organic layer was dried over magnesium sulfate, the solvent was removed under reduced pressure, purified by chromatography on silica gel using 4% dichloromethane in hexane, and the obtained product was recrystallized from hexane to give 2,7-dibromo-3. ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobibifluorene (4.8 g, yield: 93%) was obtained.

mp: 82-85 ℃mp: 82-85 ° C.

1H-NMR (CDCl3): (ppm) 7.67-7.63 (d, J=8.4Hz, 2H), 7.49 (d, J=1.5Hz, 2H), 7.32 (d, J=2.2Hz, 2H), 6.86 (d, J=1.8Hz, 2H), 6.72-6.68 (dd, J=8.1Hz, J=2.2Hz, 2H) 6.60 (d, J=8.4Hz), 4.10 (t, J=6.5Hz, 4H), 1.91-1.82 (m, 2H), 1.68-1.53 (m, 5H), 1.36-1.19 (m, 12H), 1.00-0.87 (m, 19H). 1 H-NMR (CDCl 3 ): (ppm) 7.67-7.63 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 1.5 Hz, 2H), 7.32 (d, J = 2.2 Hz, 2H), 6.86 (d, J = 1.8Hz, 2H), 6.72-6.68 (dd, J = 8.1Hz, J = 2.2Hz, 2H) 6.60 (d, J = 8.4Hz), 4.10 (t, J = 6.5Hz, 4H ), 1.91-1.82 (m, 2H), 1.68-1.53 (m, 5H), 1.36-1.19 (m, 12H), 1.00-0.87 (m, 19H).

13C-NMR (CDCl3): (ppm) 159.75, 151.15, 147.95, 144.16, 142.96, 139.56, 139.39, 133.97, 132.46, 130.90, 127.27, 124.60, 121.82, 121.27, 114.68, 105.93, 101.12, 68.61, 66.60, 64.43, 39.25, 37.03, 36.32, 32.33, 29.86, 27.99, 24.68, 22.72, 22.62, 20.53, 19.69. 13 C-NMR (CDCl 3 ): (ppm) 159.75, 151.15, 147.95, 144.16, 142.96, 139.56, 139.39, 133.97, 132.46, 130.90, 127.27, 124.60, 121.82, 121.27, 114.68, 105.93, 101.12, 68.61, 68.61 64.43, 39.25, 37.03, 36.32, 32.33, 29.86, 27.99, 24.68, 22.72, 22.62, 20.53, 19.69.

IR (KBr): 2926 (sp3 C-H stretch), 1882, 1607, 1583, 1469, 1396, 1307, 1276, 1237, 1089, 1015, 1006, 944, 827, 731, 656 cm-1.IR (KBr): 2926 (sp 3 CH stretch), 1882, 1607, 1583, 1469, 1396, 1307, 1276, 1237, 1089, 1015, 1006, 944, 827, 731, 656 cm -1 .

Anal. Calcd for C45H54Br2O2: C, 68.70; H, 6.92; Br, 20.31; O, 4.07. Found : C, 69.96; H, 7.911.Anal. Calcd for C 45 H 54 Br 2 O 2 : C, 68.70; H, 6.92; Br, 20.31; O, 4.07. Found: C, 69.96; H, 7.911.

(6) step 14: 2,7-디시아노-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌의 제조(6) step 14: Preparation of 2,7-dicyano-3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene

2,7-디브로모-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로비플로렌(8.20 g,10.40 mmol)과 시안화구리(I) (2.24 g, 25 mmol)를 디메틸포름아미드 (200 ml)에 넣고, 10시간 동안 환류 시켰다. 2,7-dibromo-3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene (8.20 g, 10.40 mmol) and copper cyanide (I) (2.24 g , 25 mmol) was added to dimethylformamide (200 ml) and refluxed for 10 hours.

FeCl3 (수화물, 25 g)과 진한 염산 (10 ml), 증류수 (100 ml)를 비이커에 준비하고, 반응이 끝난 후에 반응의 혼합물을 비이커에 붓고, Cu complex를 제거하기 위해 비이커 속 혼합물의 온도를 60-70 ℃로 30 분간 유지 해주었다. 뜨거운 용액을 에틸아세테이트로 2번 추출하고, 얻어진 유기 층을 묽은 염산과 물, 10 % 수산화나트륨으로 씻어주었다. FeCl 3 (hydrate, 25 g), concentrated hydrochloric acid (10 ml), distilled water (100 ml) were prepared in a beaker, after the reaction was completed, the mixture of the reaction was poured into the beaker, and the temperature of the mixture in the beaker to remove the Cu complex It was kept for 30 minutes at 60-70 ℃. The hot solution was extracted twice with ethyl acetate and the resulting organic layer was washed with dilute hydrochloric acid, water and 10% sodium hydroxide.

황산마그네슘으로 건조하고, 여과한 뒤 감압한 상태에서 용매를 제거하여 진한갈색의 생성물을 얻었는데, 이렇게 얻어진 생성물을 메탄올에 재결정 하여 노란색 고체인 2,7-디시아노-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌 (5 g, 수율: 70 %)을 얻었다. After drying over magnesium sulfate, filtration and removing the solvent under reduced pressure, a dark brown product was obtained. The obtained product was recrystallized in methanol to give 2,7-dicyano-3 ', 6'-bis as a yellow solid. (3,7-dimethyloctyloxy) -9,9'-spirobifluorene (5 g, yield: 70%) was obtained.

mp: 116-117 ℃mp: 116-117 ° C.

1H-NMR (CDCl3): (ppm) 7.97-7.93 (d, J=8.1Hz, 2H), 7.72-7.68 (d, 8.1Hz, 2H), 7.36 (s, 2H), 7.08 (s, 2H), 6.73-6.69 (d, J=8.8Hz, 2H), 6.56-6.52 (d, J=8.8Hz), 4.10 (t, J=6.6Hz, 4H), 1.98-1.48 (m, 7H), 1.46-1.09 (m, 12H), 0.99 (d, J=5.8Hz, 7H), 0.90 (dd, J=8.6Hz, 9.7Hz, 12H). 1 H-NMR (CDCl 3 ): (ppm) 7.97-7.93 (d, J = 8.1 Hz, 2H), 7.72-7.68 (d, 8.1 Hz, 2H), 7.36 (s, 2H), 7.08 (s, 2H ), 6.73-6.69 (d, J = 8.8 Hz, 2H), 6.56-6.52 (d, J = 8.8 Hz), 4.10 (t, J = 6.6 Hz, 4H), 1.98-1.48 (m, 7H), 1.46 -1.09 (m, 12H), 0.99 (d, J = 5.8 Hz, 7H), 0.90 (dd, J = 8.6 Hz, 9.7 Hz, 12H).

13C-NMR (CDCl3): (ppm) 160.29, 151.205, 143.833, 143.328, 137.847, 132.296, 128.226, 124.45, 121.745, 118.686, 115.248, 112.872, 106.618, 67.052, 64.848, 39.645, 37.694, 36.668, 30.302, 28.396, 25.095, 23.139, 23.037, 20.130. 13 C-NMR (CDCl 3 ): (ppm) 160.29, 151.205, 143.833, 143.328, 137.847, 132.296, 128.226, 124.45, 121.745, 118.686, 115.248, 112.872, 106.618, 67.052, 64.848, 39.645, 37.694, 36.668, 30.302, 28.396, 25.095, 23.139, 23.037, 20.130.

IR (KBr): 3060, 2926 (sp3 C-H stretch), 2225 (CN stretch), 1606 (CH2 bend), 1581 (CH3 bend), 1494, 1462, 1413, 1306, 1244-1174, 1020, 883, 831, 769, 722, 642 cm-1.IR (KBr): 3060, 2926 (sp 3 CH stretch), 2225 (CN stretch), 1606 (CH 2 bend), 1581 (CH 3 bend), 1494, 1462, 1413, 1306, 1244-1174, 1020, 883 , 831, 769, 722, 642 cm -1 .

Anal. Calcd for C47H54N2O2 : C, 83.14; H, 8.02; N, 4.13; O, 4.71. Found : C, 84.38; H, 9.326, N; 4.208.Anal. Calcd for C 47 H 54 N 2 O 2 : C, 83.14; H, 8.02; N, 4.13; 0, 4.71. Found: C, 84.38; H, 9.326, N; 4.208.

(7) step 15: 3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌-2,7-디카르복실산의 제조(7) step 15: Preparation of 3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene-2,7-dicarboxylic acid

2,7-디시아노-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로비플로렌 (5 g, 7.40 mmol)을 30 % 수산화나트륨 (30 ml)과 에탄올 (30 ml)에 넣고 6 시간 이상 환류 시켰다. 반응이 끝난 후에 용매를 감압하여 제거한 결과, 디카르복시산의 디소디움 솔트가 노란색의 고체로써 침전이 되었다. 2,7-dicyano-3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene (5 g, 7.40 mmol) was mixed with 30% sodium hydroxide (30 ml). It was added to ethanol (30 ml) and refluxed for 6 hours or more. After the reaction was completed, the solvent was removed under reduced pressure, and the disodium salt of dicarboxylic acid precipitated as a yellow solid.

노란색의 침전물을 여과 후 25 %의 염산 수용액에 넣고 1-2시간 정도 환류 시켜서 밝은 노란색의 고체를 얻었는데, 이를 다시 아세트산을 이용하여 재결정 하여 노란색의 결정인 3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌-2,7-디카르복실산 (5.1 g, 수율: 97 %)을 얻었다. The yellow precipitate was filtered and then placed in 25% aqueous hydrochloric acid solution and refluxed for 1-2 hours to obtain a light yellow solid, which was recrystallized using acetic acid again to obtain yellow crystals 3 ', 6'-bis (3, 7-dimethyloctyloxy) -9,9'-spirobifluorene-2,7-dicarboxylic acid (5.1 g, yield: 97%) was obtained.

mp: 280-284 ℃, decomposition at 285 ℃.mp: 280-284 ° C, decomposition at 285 ° C.

1H-NMR (DMSO-d6): (ppm) 8.30 (d, J=8.1Hz, 2H), 8.12 (d, J=8.1Hz), 7.80 (s, 2H), 7.24 (s, 2H), 6.82-6.78 (d, J=8.8Hz, 2H), 6.60 (d, J=8.8Hz, 2H), 4.20 (s, 4H), 1.98-1.50 (m, 7H), 1.46-1.05 (m, 12H), 1.01 (d, J=5.7Hz, 7H), 0.95 (dd, J=8.6Hz, 9.7Hz, 12H). 1 H-NMR (DMSO-d 6 ): (ppm) 8.30 (d, J = 8.1 Hz, 2H), 8.12 (d, J = 8.1 Hz), 7.80 (s, 2H), 7.24 (s, 2H), 6.82-6.78 (d, J = 8.8 Hz, 2H), 6.60 (d, J = 8.8 Hz, 2H), 4.20 (s, 4H), 1.98-1.50 (m, 7H), 1.46-1.05 (m, 12H) , 1.01 (d, J = 5.7 Hz, 7H), 0.95 (dd, J = 8.6 Hz, 9.7 Hz, 12H).

13C-NMR (DMSO-d6): (ppm) 167.302, 159.875, 150.537, 144.733, 143.434, 139.581, 131.674, 103.077, 124.839, 124.601, 122.068, 115.592, 107.129, 66.855, 64.767, 37.462, 36.617, 30.166, 28.23, 24.969, 23.361, 23.260, 20.328. 13 C-NMR (DMSO-d 6 ): (ppm) 167.302, 159.875, 150.537, 144.733, 143.434, 139.581, 131.674, 103.077, 124.839, 124.601, 122.068, 115.592, 107.129, 66.855, 64.767, 37.462, 36.617, 30.166, 28.23, 24.969, 23.361, 23.260, 20.328.

IR (KBr): 3175-2553 (O-H stretch), 2927 (sp3 C-H stretch), 1687 (C=O stretch), 1607, 1494-1365 (aromatic C=C stretch), 1293, 1245, 1178 (C-O stetch), 1024, 838, 755, 664, 503 cm-1. IR (KBr): 3175-2553 (OH stretch), 2927 (sp 3 CH stretch), 1687 (C = O stretch), 1607, 1494-1365 (aromatic C = C stretch), 1293, 1245, 1178 (CO stetch ), 1024, 838, 755, 664, 503 cm -1 .

Anal. Calcd for C47H56O6: C, 78.74; H, 7.87; O, 13.39. Found : C, 77.36; H, 8.063Anal. Calcd for C 47 H 56 O 6 : C, 78.74; H, 7.87; O, 13.39. Found: C, 77.36; H, 8.063

(8) step 16: 3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌-2,7-디메탄올의 제조(8) step 16: Preparation of 3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene-2,7-dimethanol

N2 분위기 하에서 둥근 바닥 플라스크안에 3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌-2,7-디카르복실산 (4.50 g, 6.30 mmol)과 정제된 벤젠 (130 ml)를 넣고 교반 시킨 뒤, 톨루엔에 녹아 있는 65 wt%의 소디움 비스(2-메틸옥시에틸옥시)-알루미늄 하이드라이드(RED-Al, 30ml)를 플라스크 안으로 서서히 적가 하였다. 3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene-2,7-dicarboxylic acid (4.50 g, 6.30 mmol) in a round bottom flask under N2 atmosphere And purified benzene (130 ml) was added thereto, followed by stirring. Then, 65 wt% of sodium bis (2-methyloxyethyloxy) -aluminum hydride (RED-Al, 30 ml) dissolved in toluene was slowly added dropwise into the flask.

2-3시간 정도 환류 시킨 다음 과량의 환원제를 제거하기 위해 차가운 증류수에 반응물을 붓고, 진한 염산을 이용하여 산성화 시킨 뒤, 클로로포름으로 추출하여 유기 층을 분리 하였다. After refluxing for 2-3 hours, the reactant was poured into cold distilled water to remove excess reducing agent, acidified with concentrated hydrochloric acid, and extracted with chloroform to separate the organic layer.

분리된 유기 층을 증류수로 세척하고, 황산마그네슘을 이용하여 건조한 뒤, 용매를 감압하여 제거하고, 벤젠과 메탄올을 이용하여 재결정 하여 3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌-2,7-디메탄올 (4 g, 수율: 93 %)를 얻었다.The separated organic layer was washed with distilled water, dried over magnesium sulfate, the solvent was removed under reduced pressure, and recrystallized with benzene and methanol to obtain 3 ', 6'-bis (3,7-dimethyloctyloxy)-. 9,9'-Spyrobifluorene-2,7-dimethanol (4 g, yield: 93%) was obtained.

mp: 47-50 ℃mp: 47-50 ° C.

1H-NMR (CDCl3): (ppm) 7.83-7.75 (t, J=7.3Hz, J=8.8Hz, 2H), 7.40-7.23 (m, 4H), 6.74-6.52 (m, 6H), 4.54 (d, J=9.5Hz, 4H, -CH2OH), 4.08 (t, J=7.3Hz, 4H, -OCH2-), 1.95-1.47 (m, 7H), 1.44-1.07 (m, 12H), 0.98 (d, J=6.6Hz, 7H), 0.88 (dd, J=8.6Hz, 9.7Hz, 12H). 1 H-NMR (CDCl 3 ): (ppm) 7.83-7.75 (t, J = 7.3 Hz, J = 8.8 Hz, 2H), 7.40-7.23 (m, 4H), 6.74-6.52 (m, 6H), 4.54 (d, J = 9.5 Hz, 4H, -CH2OH), 4.08 (t, J = 7.3 Hz, 4H, -OCH2-), 1.95-1.47 (m, 7H), 1.44-1.07 (m, 12H), 0.98 ( d, J = 6.6 Hz, 7H), 0.88 (dd, J = 8.6Hz, 9.7Hz, 12H).

13C-NMR (CDCl3): (ppm) 159.536, 150.022, 143.136, 141.209, 140.911, 140.739, 126.73, 124.753, 122.706, 120.132, 114.733, 105.911, 66.926, 65.596, 64.939, 39.645, 37.709, 36.758, 30.308, 28.381, 25.08, 23.118, 23.017, 20.115. 13 C-NMR (CDCl 3 ): (ppm) 159.536, 150.022, 143.136, 141.209, 140.911, 140.739, 126.73, 124.753, 122.706, 120.132, 114.733, 105.911, 66.926, 65.596, 64.939, 39.645, 37.709, 36.758, 30.308, 28.381, 25.08, 23.118, 23.017, 20.115.

IR (KBr): 3389 (O-H stretch), 2926 (sp3 C-H stretch), 2868, 1607, 1581, 1467, 1383, 1303, 1219 (C-O stretch), 1172, 1024, 818, 771, 668, 641 cm-1. IR (KBr): 3389 (OH stretch), 2926 (sp 3 CH stretch), 2868, 1607, 1581, 1467, 1383, 1303, 1219 (CO stretch), 1172, 1024, 818, 771, 668, 641 cm - 1 .

Anal. Calcd for C47H60O4: C, 81.93; H, 8.78; O, 9.29. Found : C, 82.64; H, 8.163Anal. Calcd for C 47 H 60 O 4 : C, 81.93; H, 8.78; O, 9.29. Found: C, 82.64; H, 8.163

(9) step 17: 2,7-비스(클로로메틸)-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌의 제조(9) step 17: Preparation of 2,7-bis (chloromethyl) -3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene

N2 분위기 하에서 둥근 바닥 플라스크안에 3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌-2,7-디메탄올 (3.50 g, 5.08 mmol)과 정제된 벤젠 (50 ml)을 넣고, SOCl2 (12.10 g, 101.60 mmol)를 실온에서 플라스크 안으로 서서히 적가 하였다. 3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorene-2,7-dimethanol (3.50 g, 5.08 mmol) in a round bottom flask under N 2 atmosphere Purified benzene (50 ml) was added and SOCl 2 (12.10 g, 101.60 mmol) was slowly added dropwise into the flask at room temperature.

적가가 끝나면 플라스크의 온도를 120 ℃에서 12시간 이상 환류 시켰다. 반응이 끝난 뒤에 용매인 벤젠과 과량의 SOCl2를 감압 하에서 제거 하고, 반응물을 과량의 증류수에 붓고, 클로로포름으로 추출 하여 유기 층을 분리하였다. After dropping, the flask was refluxed at 120 ° C. for at least 12 hours. After the reaction was completed, the solvent benzene and excess SOCl 2 was removed under reduced pressure, the reaction was poured into excess distilled water, extracted with chloroform to separate the organic layer.

분리된 유기 층을 증류수로 여러 차례 씻어 주고. 무수 황산 마그네슘을 이용하여 건조한 뒤, 거르고 용매를 감압하여 제거 하였다. 생성물을 헥산/디클로로메탄 (9:1)계를 사용한 칼럼 크로마토그래피를 이용하여 분리한 결과 흰색의 파우더인 2,7-비스(클로로메틸)-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플 로렌(2.9 g, 수율: 80 %)을 얻었다. The separated organic layer was washed several times with distilled water. After drying with anhydrous magnesium sulfate, the mixture was filtered and the solvent was removed under reduced pressure. The product was separated by column chromatography using a hexane / dichloromethane (9: 1) system. As a result, a white powder, 2,7-bis (chloromethyl) -3 ', 6'-bis (3,7-dimethyl Octyloxy) -9,9'-spirobibirene (2.9 g, yield: 80%) was obtained.

mp: 89-89 ℃mp: 89-89 ° C

1H-NMR (CDCl3): (ppm) 7.83-7.79 (d, J=7.3Hz, 2H), 7.44-7.40 (dd, J=8.1Hz, 1.5Hz, 2H), 7.35 (d, J=2.2Hz, 2H), 6.74-6.58 (m, 6H), 4.45 (s, 4H, -CH2Cl), 4.09 (t, J=7.3Hz, 4H, -OCH2-), 1.98-1.47 (m, 7H), 1.44-1.09 (m, 12H), 0.99 (d, J=5.9Hz, 7H), 0.89 (d, J=6.6Hz, 12H). 1 H-NMR (CDCl 3 ): (ppm) 7.83-7.79 (d, J = 7.3 Hz, 2H), 7.44-7.40 (dd, J = 8.1 Hz, 1.5Hz, 2H), 7.35 (d, J = 2.2 Hz, 2H), 6.74-6.58 (m, 6H), 4.45 (s, 4H, -CH2Cl), 4.09 (t, J = 7.3 Hz, 4H, -OCH2-), 1.98-1.47 (m, 7H), 1.44 -1.09 (m, 12H), 0.99 (d, J = 5.9 Hz, 7H), 0.89 (d, J = 6.6 Hz, 12H).

13C-NMR (CDCl3): (ppm) 159.52, 150.14, 142.98, 141.11, 140.43, 137.25, 128.61, 128.53, 128.38, 124.74, 124.65, 124.14, 120.43, 120.31, 114.57, 105.74, 66.54, 64.52, 46.30, 46.24, 39.24, 39.20, 37.31, 36.33, 29.86, 27.98, 24.67, 22.71, 22.60, 22.55, 19.70. 13 C-NMR (CDCl 3 ): (ppm) 159.52, 150.14, 142.98, 141.11, 140.43, 137.25, 128.61, 128.53, 128.38, 124.74, 124.65, 124.14, 120.43, 120.31, 114.57, 105.74, 66.54, 64.52, 46.30, 46.30 46.24, 39.24, 39.20, 37.31, 36.33, 29.86, 27.98, 24.67, 22.71, 22.60, 22.55, 19.70.

IR (KBr): 2926 (sp3 C-H stretch), 2868, 1617, 1581, 1493, 1467, 1306, 1267, 1242, 1225, 1175, 1021, 834, 733, 698, 638, 571, 427, 358 cm-1.IR (KBr): 2926 (sp 3 CH stretch), 2868, 1617, 1581, 1493, 1467, 1306, 1267, 1242, 1225, 1175, 1021, 834, 733, 698, 638, 571, 427, 358 cm - 1 .

Anal. Calcd for C47H58Cl2O2: C, 77.77; H, 8.05; Cl, 9.77; O, 4.41. Found : C, 76.90; H, 7.633.Anal. Calcd for C 47 H 58 Cl 2 O 2 : C, 77.77; H, 8.05; Cl, 9.77; O, 4.41. Found: C, 76.90; H, 7.633.

실시예 3. 2,7-비스(클로로메틸)-9,9-다이옥틸플로렌의 제조Example 3. Preparation of 2,7-bis (chloromethyl) -9,9-dioctylfluorene

(1) step 18: 9,9-다이옥틸플로렌의 제조(1) step 18: preparation of 9,9-dioctylfluorene

250 ml 삼구 플라스크에 용매로 dimethyl sulfoxide (100 ml)를 넣고 여기에 플로렌 (3 g, 18.04 mmol), sodium hydroxide (4.3 g, 1.1 mol, 50 %w/w) 수용액, 상전이 촉매로 소량의 tetrabutylammonium bromide (TABA)를 넣어 교반시킨다. In a 250 ml three-necked flask, dimethyl sulfoxide (100 ml) was added as a solvent, followed by aqueous solution of florene (3 g, 18.04 mmol), sodium hydroxide (4.3 g, 1.1 mol, 50% w / w) and a small amount of tetrabutylammonium as a phase transfer catalyst. Add bromide (TABA) and stir.

여기에 1-브로모옥탄 (8.7 g, 45.1 mmol)를 천천히 첨가 후 실온에서 24시간 반응시킨다. 반응이 종결되면 물과 ethyl acetate로 추출하여 유기층을 받아서 무수 황산 마그네슘을 넣어 건조 여과 후, 용매를 제거한다. 1-bromooctane (8.7 g, 45.1 mmol) was slowly added thereto, followed by reaction at room temperature for 24 hours. After the reaction is completed, the mixture is extracted with water and ethyl acetate, an organic layer is added, anhydrous magnesium sulfate is added, the filtrate is dried and the solvent is removed.

이렇게 얻어진 반응 혼합물을 TLC(eluent: hexane)로 확인하여 헥산을 전개용매로 사용하여 칼럼 크로마토그래피로 9,9-다이옥틸플로렌을 정제한다. 수율은 70% 이고 구조는 1H-NMR을 통해 확인했다. The reaction mixture thus obtained was identified by TLC (eluent: hexane), and 9,9-dioctylfluorene was purified by column chromatography using hexane as a developing solvent. The yield was 70% and the structure was confirmed by 1 H-NMR.

1H-NMR (CDCl3): (ppm) 7.62 (t, 2H), 7.40-7.18 (m, 6H), 1.90 (m, 4H), 1.26-1.05 (m, 16H), 0.83 (t, 6H), 0.58 (m, 4H). 1 H-NMR (CDCl 3 ): (ppm) 7.62 (t, 2H), 7.40-7.18 (m, 6H), 1.90 (m, 4H), 1.26-1.05 (m, 16H), 0.83 (t, 6H) , 0.58 (m, 4 H).

(2) step 19: 2,7-비스(클로로메틸)-9,9-다이옥틸플로렌의 제조(2) step 19: Preparation of 2,7-bis (chloromethyl) -9,9-dioctylfluorene

250 ml 삼구 플라스크에 용매로 1,4-dioxane을 넣고 여기에 9,9-다이옥틸플로렌 (4 g, 10.24 mmol)과 과량의 HCl , 포럼알데히드를 넣는다. 반응 혼합물을 90 ℃에서 72 시간 정도 반응시킨다. In a 250 ml three-necked flask, 1,4-dioxane is added as a solvent, and 9,9-dioctylfluorene (4 g, 10.24 mmol), excess HCl and forumaldehyde are added thereto. The reaction mixture is reacted at 90 ° C. for about 72 hours.

반응이 종결 되면 물과 ethylacetate로 추출하고 용매를 제거하여 칼럼 크로마토그래피로 2,7-비스(클로로메틸)-9,9-다이옥틸플로렌을 정제한다. 수율은 70% 이고 구조는 1H-NMR을 통해 확인했다. After completion of the reaction, the mixture was extracted with water and ethylacetate, and the solvent was removed to purify 2,7-bis (chloromethyl) -9,9-dioctylfluorene by column chromatography. The yield was 70% and the structure was confirmed by 1 H-NMR.

1H-NMR (CDCl3): (ppm) 7.69 (d, 2H), 7.38 (d, 4H), 4.7 (s, 4H), 1.90 (m, 4H), 1.26-1.0 5(m, 16H), 0.8 3(t, 6H), 0.58 (m, 4H). 1 H-NMR (CDCl 3 ): (ppm) 7.69 (d, 2H), 7.38 (d, 4H), 4.7 (s, 4H), 1.90 (m, 4H), 1.26-1.0 5 (m, 16H), 0.8 3 (t, 6H), 0.58 (m, 4H).

실시예 4. 폴리(9,9'-스파이로바이플로레닐-2,7-비닐렌) (Spiro-PFV)의 제조Example 4 Preparation of Poly (9,9'-Spirobiflorenyl-2,7-vinylene) (Spiro-PFV)

질소 분위기 하에서 포타슘 t-부톡사이드(1.0 M THF solution, 6 mmol) 4.5 ml를 무수 톨루엔 (20 ml)에 녹아 있는 2,7-비스(클로로메틸)-9,9'-스파이로바이플로렌 (0.30 g, 1 mmol) 용액에 실린지 펌프를 이용하여 10분 정도 상온에서 천천히 적가 하였다. 2,7-bis (chloromethyl) -9,9'-spirobifluorene (4.5 ml of potassium t-butoxide (1.0 M THF solution, 6 mmol) dissolved in anhydrous toluene (20 ml) under nitrogen atmosphere) 0.30 g, 1 mmol) was slowly added dropwise at room temperature for about 10 minutes using a syringe pump.

적가가 끝나면 상온에서 24 시간 정도 교반 하고, 24시간 후에 4-t-부틸벤질 브로마이드를 아주 소량 첨가하여 2 시간 정도 더 교반 하여 고분자 말단을 4-t-부틸벤질기로 치환하였다. After the dropwise addition, the mixture was stirred at room temperature for 24 hours. After 24 hours, a very small amount of 4-t-butylbenzyl bromide was added, followed by further stirring for 2 hours to replace the polymer terminal with 4-t-butylbenzyl group.

중합 용액을 600 ml 메탄올에 떨어 부어 고분자를 침전 시킨 뒤, 고분자를 팀블에 걸러 메탄올, 이소프로필 알코올, 헥산을 이용하여 Soxhlet을 하여, 반응 하지 않고 남아 있는 모노머와 불순물, 올리고머 등을 효과적으로 제거 하였다. The polymer solution was dropped into 600 ml of methanol to precipitate the polymer, and then the polymer was filtered through a thimble to remove the monomer, impurities, oligomers, etc. that remained without reaction by Soxhlet using methanol, isopropyl alcohol, and hexane.

그 뒤 멤브레인 필터에 톨루엔에 녹인 고분자 용액을 넣고 톨루엔 용액 하에서 일주일 정도 방치하여 분자량이 낮은 고분자들을 제거 하였다. 그 뒤 다시 500 ml 메탄올에 침전 시키고, 필터 하여 건조 시켜서 밝은 노란색의 고분자인 폴리(9.9'-스파이로바이플로레닐-2,7-비닐렌)을 40%의 수율로 얻을 수 있었다. After that, the polymer solution dissolved in toluene was put into the membrane filter, and left in the toluene solution for about one week to remove low molecular weight polymers. Thereafter, the resultant was precipitated in 500 ml of methanol, and the resultant was filtered and dried to obtain poly (9.9'-spirobifluorenyl-2,7-vinylene) as a light yellow polymer in a yield of 40%.

실시예5. 폴리(3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로레닐-2,7-비닐렌) (X₂-Spiro-PFV)의 제조Example 5. Preparation of Poly (3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobiflorenyl-2,7-vinylene) (X₂-Spiro-PFV)

질소 분위기 하에서 포타슘 t-부톡사이드 (1.0 M THF solution, 6 mmol) 2.5 ml를 무수 THF (20 ml)에 녹아 있는 2,7-비스(클로로메틸)-3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로렌 (0.30 g, 1 mmol) 용액에 실린지 펌프를 이용하여 30 분 이상 상온에서 천천히 적가 하였다. 2,7-bis (chloromethyl) -3 ', 6'-bis (3,7) in 2.5 ml of potassium t-butoxide (1.0 M THF solution, 6 mmol) in anhydrous THF (20 ml) under nitrogen atmosphere To a solution of -dimethyloctyloxy) -9,9'-spirobifluorene (0.30 g, 1 mmol) was slowly added dropwise at room temperature for 30 minutes or more using a syringe pump.

적가가 끝나면 상온에서 24 시간 정도 교반 하고, 24 시간 후에 4-t-부틸벤질 브로마이드를 아주 소량 첨가하여 2 시간 정도 더 교반 하여 고분자 말단을 4-t-부틸벤질기로 치환하였다. After the dropwise addition, the mixture was stirred at room temperature for 24 hours, and after 24 hours, a very small amount of 4-t-butylbenzyl bromide was added and stirred for about 2 hours to replace the polymer terminal with 4-t-butylbenzyl group.

중합 용액을 600 ml 메탄올에 떨어 부어 고분자를 침전 시킨 뒤, 고분자를 팀블에 걸러, 메탄올, 이소프로필 알코올, 헥산을 이용하여 Soxhlet을 하여 반응 하지 않고 남아 있는 모노머와 불순물, 올리고머 등을 효과적으로 제거 하였다. The polymer solution was dropped in 600 ml of methanol to precipitate the polymer, and the polymer was filtered through a thimble to remove monomers, impurities, oligomers, etc. that remained without reacting with Soxhlet using methanol, isopropyl alcohol, and hexane.

그 뒤 멤브레인 필터에 클로로포름에 녹인 고분자 용액을 넣고 클로로포름 용액 하에서 일주일 정도 방치하여 분자량이 낮은 고분자들을 제거 하였다. 그 뒤 다시 500 ml 메탄올에 침전 시키고, 필터 하여 건조 시켜서 밝은 노란색의 고분자인 폴리(3',6'-비스(3,7-디메틸옥틸옥시)-9,9'-스파이로바이플로레닐-2,7-비닐렌)을 70 %의 수율로 얻을 수 있었다. Then, the polymer solution dissolved in chloroform was added to the membrane filter, and left for one week under the chloroform solution to remove low molecular weight polymers. It was then precipitated again in 500 ml methanol, filtered and dried to give poly (3 ', 6'-bis (3,7-dimethyloctyloxy) -9,9'-spirobifluorenyl-2, a light yellow polymer. , 7-vinylene) was obtained in a yield of 70%.

1H-NMR (CDCl3): (ppm) 7.64-6.56 (br, 12H, aromatic protons), 6.53-6.33 (br, 2H, vinylic protons), 4.00 (br, 4H), 2.56 (TBB), 1.85-0.80 (br, 38H). 1 H-NMR (CDCl 3 ): (ppm) 7.64-6.56 (br, 12H, aromatic protons), 6.53-6.33 (br, 2H, vinylic protons), 4.00 (br, 4H), 2.56 (TBB), 1.85- 0.80 (br, 38H).

Anal. Calcd for (C49H62O2)n: C, 86.17; H, 9.15; O, 4.68. Found: C, 87.64; H, 11.20.Anal. Calcd for (C 49 H 62 O 2 ) n: C, 86.17; H, 9. 15; 0, 4.68. Found: C, 87.64; H, 11.20.

실시예 6. 폴리(9,9-다이옥틸플로레닐-2,7-비닐렌) (PFV)의 제조Example 6. Preparation of Poly (9,9-Dioctylfluorenyl-2,7-vinylene) (PFV)

100 ml 중합 플라스크에 2,7-비스(클로로메틸)-9,9-다이옥틸플로렌 (0.377 g, 0.873 mmol)을 준비하고 Schlenk line으로 수분을 완전히 제거한다. 그 후 정제된 THF (50 ml)를 첨가하여 ice-bath에서 약 30분간 교반한다.  Prepare 2,7-bis (chloromethyl) -9,9-dioctylfluorene (0.377 g, 0.873 mmol) in a 100 ml polymerization flask and remove the water completely with Schlenk line. Then purified THF (50 ml) is added and stirred for about 30 minutes in an ice-bath.

충분히 온도가 내려가면 포타슘 t-부톡사이드 5.24 ml (1.0 M THF solution, 5.24 mmol)를 30분간 떨어뜨린다. 과량의 포타슘 t-부톡사이드가 다 주입되고 나면 실온에서 18 시간 동안 교반 후 고분자 반응물을 500 ml 메탄올에 교반하면서 스포이드로 서서히 떨어뜨려 침전시킨다. When the temperature is low enough, drop 5.24 ml (1.0 M THF solution, 5.24 mmol) of potassium t-butoxide for 30 minutes. After the excess potassium t-butoxide was injected, the mixture was stirred for 18 hours at room temperature, and then the polymer reactant was slowly dropped into the dropper while stirring in 500 ml of methanol to precipitate.

팀블로 침전된 고분자를 걸러내고 250 ml 메탄올에 12시간 Soxhlet 과정으로 불순물과 올리고머를 제거하여 1차로 발광고분자를 정제하고 다시 250 ml 클로로포럼으로 고분자를 녹여낸다. The precipitated polymer was filtered out, and impurities and oligomers were removed in 250 ml methanol by Soxhlet for 12 hours to purify the luminescent polymer first, and then the polymer was dissolved in 250 ml chloroforum.

다시 메탄올에 재침전시킨 후 최소량의 클로로포럼에 녹인 후 멤브레인 필터에 주입 후 분자량 8만 미만을 제거하기 위해서 고분자 절단 과정을 4일간 실시하고 다시 500 ml 메탄올에 첫번째 침전하는 방법과 동일하게 침전 시키고 감압 필터 하여 순수한 폴리(9,9-다이옥틸플로레닐-2,7-비닐렌) 중합체를 얻는다.After reprecipitation in methanol again, it was dissolved in a minimum amount of chloroforum, injected into a membrane filter, and then subjected to a polymer cutting process for 4 days to remove the molecular weight of less than 80,000, and then precipitated in the same manner as the first precipitation in 500 ml methanol. Filter to obtain pure poly (9,9-dioctylflorenyl-2,7-vinylene) polymer.

표 1. 합성된 Spiro-PFV, X₂-Spiro-PFV 및 PFV의 물리적 성질Table 1. Physical Properties of Synthesized Spiro-PFV, X₂-Spiro-PFV, and PFV

중합체polymer Mwa(×10-4)Mw a (× 10 -4 ) PDIa PDI a 수율(%)yield(%) DSC(Tg)(℃)DSC (Tg) (° C) TGAb(℃)TGA b (℃) Spiro-PFVSpiro-PFV -- -- 4040 171171 407407 X₂-Spiro-PFVX₂-Spiro-PFV 4.34.3 2.82.8 7070 170170 420420 PFVPFV 22.222.2 2.12.1 8282 173173 415415

a: 중합체의 분자량 (Mw) 및 다분산도 (PDI)는 폴리스틸렌 표준을 사용하는 GPC에 의하여 결정되었다 a : Molecular weight (Mw) and polydispersity (PDI) of the polymer were determined by GPC using polystyrene standards

b: TGA (thermaogravimetric analysis)는 중합체의 중량이 5% 감소하는 온도이다. b : thermogravimetric analysis (TGA) is a temperature at which the weight of the polymer is reduced by 5%.

실시예 7: Membrane filter를 이용한 발광고분자의 분자량 절단 및 고순도 정제Example 7: Molecular weight cleavage and high purity purification of luminescent polymer using Membrane filter

상기 실시예 4 내지 6에서 각각 합성된 발광 고분자인 Spiro-PFV, X₂-Spiro-PFV 및 PFV 각각을 소량의 클로로포럼에 녹인 후, polyvinylidene fluoride (PVDF) 재질의 membrane tube (Spectrum, USA)에 넣었다. Spiro-PFV, X₂-Spiro-PFV and PFV, each of the light emitting polymers synthesized in Examples 4 to 6, were dissolved in a small amount of chloroforum, and then placed in a membrane tube (Spectrum, USA) made of polyvinylidene fluoride (PVDF). .

800 mL의 chloroform이 있는 1 L 용량의 비이커에 상기 membrane tube를 넣은 후 magnetic bar로 교반하면서 약 일주일 동안 삼투압 방법에 의해서 저분자량의 고분자를 제거하였다. 그리고 membrane tube에 있는 발광고분자는 다시 methanol에 침전시킨 후 여과와 건조를 하여 고순도화된 발광고분자를 수득하였다. The membrane tube was placed in a 1 L beaker with 800 mL of chloroform and low molecular weight polymer was removed by osmosis for about a week while stirring with a magnetic bar. The luminescent polymer in the membrane tube was again precipitated in methanol, filtered and dried to obtain highly purified luminescent polymer.

실시예 8: 발광고분자 필름의 FT-IR 측정Example 8: FT-IR measurement of light emitting polymer film

상기 실시예 5에서 합성된 X₂-Spiro-PFV에 대한 FT-IR을 측정하였다. 측정은 통상의 방법에 따라 수행되었으며, 그 결과가 도 6에 도시되어 있다. The FT-IR of the X₂-Spiro-PFV synthesized in Example 5 was measured. The measurement was performed according to a conventional method and the results are shown in FIG.

실시예 9: 발광고분자 필름의 UV-visible 흡수 스펙트럼 측정Example 9: UV-visible absorption spectrum measurement of luminescent polymer film

상기 실시예 4 내지 6에서 각각 합성되어 실시예 7을 통하여 정제된 발광고분자인 Spiro-PFV, X₂-Spiro-PFV, 및 PFV 용액들을 유리기판 위에 스핀코팅하여 고분자 박막을 형성한 후, UV-visible 흡광도를 측정하였다. Spiro-PFV, X₂-Spiro-PFV, and PFV solutions, which are synthesized in Examples 4 to 6, respectively, and purified through Example 7, were spin-coated on a glass substrate to form a polymer thin film, and then UV-visible. Absorbance was measured.

각각의 합성된 고분자는 0.5 wt%의 농도로 클로로벤젠에 용해되었으며 quartz 기판 위에 약 80 nm의 두께로 spin coating된 뒤, Shimadzu UV-3100 spectrometer를 사용하여 UV-visible 흡수스펙트럼을 측정하였다. Each synthesized polymer was dissolved in chlorobenzene at a concentration of 0.5 wt%, spin coated to a thickness of about 80 nm on a quartz substrate, and UV-visible absorption spectra were measured using a Shimadzu UV-3100 spectrometer.

각각의 합성된 발광고분자에 대한 UV 흡수 피크는 표 2에 표시되어 있으며, Spiro-PFV, X₂-Spiro-PFV, 및 PFV의 UV 흡수 피크는 도 7에 도시하였다. 비교를 위하여 각각의 결과는 normalize되었다. The UV absorption peaks for each synthesized luminescent polymer are shown in Table 2, and the UV absorption peaks of Spiro-PFV, X 2 -Spiro-PFV, and PFV are shown in FIG. For comparison, each result was normalized.

도시한 것과 같이 위 실시예에서 합성된 Spiro-PFV, X₂-Spiro-PFV, 및 PFV의 UV 최대 흡수 피크는 약 372 nm와 409 ~ 419 nm에서 일어났다. 특히, 입체적 장애가 적은 치환기가 도입된 PFV의 경우 Spiro-PFV와 X₂-Spiro-PFV 보다 장파장에서 흡수가 일어남을 알 수 있다. 이는 유효공액길이가 상대적으로 증가했음을 알 수 있다.As shown, the maximum UV absorption peaks of Spiro-PFV, X₂-Spiro-PFV, and PFV synthesized in the above examples occurred at about 372 nm and 409 to 419 nm. In particular, in the case of PFV introduced with less steric hindrance, the absorption occurs at longer wavelengths than Spiro-PFV and X₂-Spiro-PFV. It can be seen that the effective conjugate length increased relatively.

실시예 10: 발광고분자 필름의 photoluminescence (PL) 및 electroluminescence (EL) 측정 Example 10 Measurement of photoluminescence (PL) and electroluminescence (EL) of luminescent polymer films

본 실시예에서는 상기 실시예 4 내지 6에서 각각 합성되고 실시예 7에서 정제된 발광고분자인 Spiro-PFV, X₂-Spiro-PFV, 및 PFV에 대한 PL 및 EL을 측정하였다. 우선, PL을 측정하기 위해서 합성된 발광고분자는 클로로벤젠에 0.5 wt%의 농도로 용해되고, quartz 기판의 상면으로 약 80 nm의 두께로 spin-coating 된 뒤, Hitachi F-4500과 Minolta CS-1000으로 측정하였다. In the present Example, PL and EL were measured for Spiro-PFV, X₂-Spiro-PFV, and PFV, which were synthesized in Examples 4 to 6 and purified in Example 7, respectively. First, the synthesized luminescent polymer was dissolved in chlorobenzene at a concentration of 0.5 wt%, spin-coated to a thickness of about 80 nm on the upper surface of the quartz substrate, and then Hitachi F-4500 and Minolta CS-1000. Measured by.

이어서, 각각의 발광고분자에서 측정된 UV 최대 흡수파장을 여기파장으로 하여, 여기 빔 (excitation beam) 방향에 대하여 45 도의 각도를 갖는 quartz 기판 위에 형성된 박막 상에서 고체 상태 방출 측정이 수행되었다. 각각의 고분자에 대한 PL 및 EL 값은 표 2에 표시되어 있다. Subsequently, a solid state emission measurement was performed on a thin film formed on a quartz substrate having an angle of 45 degrees with respect to the excitation beam direction using the UV maximum absorption wavelength measured in each light emitting polymer as the excitation wavelength. PL and EL values for each polymer are shown in Table 2.

도 8은 각각 Spiro-PFV, X₂-Spiro-PFV, 및 PFV의 PL 스펙트럼을 도시한 것으로 비교를 위하여 normalized 되었다. 8 shows PL spectra of Spiro-PFV, X₂-Spiro-PFV, and PFV, respectively, and were normalized for comparison.

도시한 것과 같이 대략 466 nm에서 최대의 발광 피크가 형성되고 shoulder 피크가 500과 530 nm 근처에서 생성됨을 알 수 있다. 특히 UV-visible 흡수 스펙트럼과는 달리 플로렌의 9번 위치에 입체적 장애가 다른 치환기가 도입되어도 발광 피크의 위치에는 크게 변화가 없음을 알 수 있다. As shown, the maximum emission peak is formed at approximately 466 nm and the shoulder peak is generated near 500 and 530 nm. In particular, unlike the UV-visible absorption spectrum, even if a substituent having different steric hindrance is introduced at the position 9 of floren, it can be seen that there is no significant change in the position of the emission peak.

한편, 도 9는 각각 본 실시예에 따라 합성된 Spiro-PFV, X₂-Spiro-PFV, 및 PFV를 대상으로 하여 측정된 EL값을 도시한 것으로 비교를 위하여 측정값은 normalize되어 있다. 도시한 것과 같이 EL 스펙트럼은 PL 스펙트럼과 거의 동일하게 나타나고 있음을 알 수 있다.9 shows EL values measured for Spiro-PFV, X₂-Spiro-PFV, and PFV synthesized according to the present embodiment, respectively, and the measured values are normalized for comparison. As shown in the figure, it can be seen that the EL spectrum is almost identical to the PL spectrum.

실시예 11: 유기전기 발광소자의 제작Example 11 Fabrication of Organic Electroluminescent Device

실시예 4, 5 및 6에서 제조된 발광고분자의 평균 분자량은 5,000 ~ 1,000,000인 piro-PFV, X₂-Spiro-PFV, 및 PFV 유도체를 이용하여 유기전기 발광소자를 제작하였다. An organic electroluminescent device was manufactured using piro-PFV, X₂-Spiro-PFV, and PFV derivatives having an average molecular weight of 5,000 to 1,000,000 in the light emitting polymers prepared in Examples 4, 5, and 6.

도 10은 본 실시예에 따라 제작된 유기전기 발광소자의 단면도이다. 10 is a cross-sectional view of an organic electroluminescent device manufactured according to this embodiment.

유기전기발광소자는 유리 기판 상에 ITO (indium-tin oxide)로 코팅한 투명 전극 기판을 깨끗이 세정한 후, 상기 ITO로 코팅된 투명 전극 기판을 감광성 수지 (photoresist resin)와 에천트를 이용하여 미세가공 공정을 이용하여 에노드를 형성한 후 다시 깨끗이 세정하였다. The organic electroluminescent device cleans a transparent electrode substrate coated with indium tin oxide (ITO) on a glass substrate, and then finely cleans the transparent electrode substrate coated with ITO using photoresist resin and etchant. The anode was formed using a processing process and then washed again.

정공주입층으로는 전도성고분자인 폴리티오펜 유도체인 poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT)를 100Å의 두께로 코팅한 후 110 ℃에서 약 50분 동안 베이킹하였다. The hole injection layer was coated with a polythiophene derivative, poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonate) (PEDOT), 100 μm thick, and baked at 110 ° C. for about 50 minutes.

클로로벤젠에 용해시켜 제조된 각각의 발광고분자인 Spiro-PFV, X₂-Spiro-PFV, 및 PFV 용액을 정공주입층 위에 스핀코팅하고 baking 처리 후에 진공 오븐 내에서 용매를 완전히 제거하여 고분자 박막의 발광층을 형성시켰다. 고분자 용액은 0.2 ㎛ 필터로 필터링하여 스핀코팅 하였으며, 발광고분자 두께는 약 80~200 nm로 하였다. Spiro-PFV, X₂-Spiro-PFV, and PFV solutions, each of which were prepared by dissolving in chlorobenzene, were spin-coated on the hole injection layer, and after the baking process, the solvent was completely removed in a vacuum oven to remove the light emitting layer of the polymer thin film. Formed. The polymer solution was spin-coated by filtering with a 0.2 ㎛ filter, the thickness of the light emitting polymer was about 80 ~ 200 nm.

그리고 전자의 전달을 용이하게 할 수 있는 Alq3를 전자전달층과 전자주입층 인 LiF를 진공증착으로 박막을 순차적으로 형성한 후 캐소드인 Al 전극을 형성시킨 것과 전자전달층인 Alq3를 도입하지 않고 전자주입층인 LiF를 도입하고 바로 캐소드인 Al 전극을 도입한 형태의 다층형 유기전기 발광소자를 제작하였다. In addition, Alq 3 can easily transfer electrons, and a thin film is sequentially formed by vacuum deposition of LiF, an electron transport layer and an electron injection layer, and then an Al electrode, a cathode, is formed, and Alq 3 , an electron transport layer, is not introduced. A multi-layered organic electroluminescent device was fabricated in which LiF, an electron injection layer, and Al electrode, a cathode, were introduced.

진공증착을 위한 진공도는 4×10-6 torr 이하로 유지하면서 증착시켜 박막을 형성하였다. 증착시 막두께 및 막의 성장속도는 crystal sensor를 이용하여 조절하였고 발광면적은 4 ㎟이고 구동전압은 직류전압으로 forward bias voltage를 사용하였다. The vacuum degree for vacuum deposition was deposited while maintaining the 4 × 10 -6 torr or less to form a thin film. During deposition, the film thickness and growth rate were controlled by using a crystal sensor. The emission area was 4 ㎜ and the driving voltage was a direct bias voltage.

표 2. 합성된 발광고분자의 광학적, 전기적 성질 측정Table 2. Measurement of optical and electrical properties of synthesized light emitting polymers

발광고분자 Light emitting polymer 최대흡광도 (nm)Absorbance (nm) 최대 PL (nm) Max PL (nm) 최대 PL (nm)  Max PL (nm) Eg (eV)a Eg (eV) a HOMO (eV)b HOMO (eV) b LUMO (eV)   LUMO (eV) Spiro-PFV  Spiro-PFV 372    372 466, 500, 533  466, 500, 533 469, 499c, 535c 469, 499 c , 535 c 2.62    2.62 -     - -     - X2-Spiro- PFVX 2 -Spiro- PFV 409,377c 409,377 c 467, 500, 533  467, 500, 533 467, 500c, 533c 467, 500 c , 533 c 2.65    2.65 5.25    5.25 2.60    2.60 PFV     PFV 419     419 466, 500, 533  466, 500, 533 469c, 499, 535c 469 c , 499, 535 c 2.6    2.6 5.3    5.3 2.7    2.7

a: 흡광 스펙트럼의 에지에서 결정 a : crystal at the edge of the absorption spectrum

b: cyclic voltammetry의 anodic scan의 onset으로부터 결정 b : determined from onset of anodic scan of cyclic voltammetry

c: shoulder c : shoulder

실시예 12: 전기발광소자의 전기광학 특성 측정Example 12 Measurement of Electro-optical Properties of Electroluminescent Devices

상기 실시예 11을 통하여 각각의 발광고분자가 코팅되어 있는 유기전기 발광소자로부터 전기 광학적 특성을 측정하였다.In Example 11, electro-optical properties were measured from organic electroluminescent devices coated with respective light emitting polymers.

위 실시예 11에 따라 제작된 유기전기 발광소자의 전압의 증가에 따른 전류 밀도 및 휘도는 Keithley 236 Source Measurement와 Minolta LS-100을 사용하여 측정되었으며, 각각의 고분자가 발광층에 코팅되어 있는 유기전기 발광소자의 시작 구동 전압, 최대 발광, 최대 발광 효율 및 CIE는 표 3에 표시하였다. The current density and luminance of the organic electroluminescent device fabricated according to Example 11 were measured using Keithley 236 Source Measurement and Minolta LS-100, and the organic electroluminescence with each polymer coated on the light emitting layer. The starting drive voltage, maximum light emission, maximum light emission efficiency and CIE of the device are shown in Table 3.

도 11은 X₂-Spiro-PFV가 코팅된 유기전기 발광소자의 인가된 전압에 따른 전류 밀도와 발광휘도의 세기를 도시한 그래프이고, 도 12는 X₂-Spiro-PFV가 코팅된 유기전기 발광소자의 인가된 전류밀도에 따른 발광효율을 도식한 그래프이다.11 is a graph showing the current density and the intensity of the light emitting luminance according to the applied voltage of the X₂-Spiro-PFV coated organic electroluminescent device, Figure 12 is a graph of the organic electroluminescent device coated with X₂-Spiro-PFV It is a graph showing the luminous efficiency according to the applied current density.

도시한 것과 같이 본 발명에 따라 합성된 발광고분자가 코팅된 유기전기 발광소자는 대략 7V의 전압에서 구동이 시작되었으며, 전압이 증가함에 따라 주입되는 캐리어의 양이 증가하고, 그 결과 전류 밀도 (current density)가 기하급수적으로 증가함을 알 수 있었다. As shown, the organic light emitting diode coated with the light emitting polymer synthesized according to the present invention starts to operate at a voltage of approximately 7V, and as the voltage increases, the amount of carrier injected is increased, and as a result, the current density (current It can be seen that density increases exponentially.

특히, 도 13a와 도 13b는 인가 전압에 따른 X₂-Spiro-PFV와 PFV의 EL 스펙트럼의 변화를 도식한 것이며 X₂-Spiro-PFV는 인가 전압에 대해서 EL 스펙트럼의 변화를 관측하기 어렵기 때문에 작동 전압 및 소자 구동시 발생하는 열에 대해서 매우 안정함을 알 수 있다. In particular, FIGS. 13A and 13B illustrate changes in EL spectra of X₂-Spiro-PFV and PFV according to the applied voltage, and X₂-Spiro-PFV is difficult to observe the change in the EL spectrum with respect to the applied voltage. And it can be seen that it is very stable against the heat generated when driving the device.

표 3. 고분자가 코팅된 유기전기 발광소자의 전기 광학적 성질Table 3. Electro-optical Properties of Polymer-coated Organic Electroluminescent Devices

발광고분자   Light emitting polymer 구동전압 (V)   Drive voltage (V) 최대 휘도 (cd/m2)Brightness (cd / m 2 ) 발광 효율 (cd/A)   Luminous Efficiency (cd / A) CIE (x, y)a CIE (x, y) a Spiro-PFV   Spiro-PFV -       - -       - -       - -       - X2-Spiro- PFVX 2 -Spiro- PFV 7.0       7.0 4065      4065 1.2       1.2 (0.25, 0.40)  (0.25, 0.40) PFV      PFV 2.5      2.5 760      760 0.16      0.16

a: EL spectrum으로부터 계산됨. a : calculated from the EL spectrum.

비교 실시예: MEH-PPV로 제조된 유기전기 발광소자의 물리적 성질 측정Comparative Example: Measurement of Physical Properties of Organic Electroluminescent Device Made of MEH-PPV

본 발명에서 합성된 Spiro-PFV, X₂-Spiro-PFV, 및 PFV 유도체 대신에 종래 공개된 (미국특허 제 5,189,136호) MEH-PPV의 광학적 성질 및 MEH-PPV를 발광층에 코팅 처리한 유기전기 발광소자의 전기광학적 성질을 측정하였다. Instead of Spiro-PFV, X₂-Spiro-PFV, and PFV derivatives synthesized in the present invention, the optical properties of the previously disclosed (US Pat. No. 5,189,136) MEH-PPV and an organic electroluminescent device coated with the MEH-PPV on the light emitting layer The electro-optical properties of were measured.

도 14a는 전압을 10V로 고정시킨 상태에서 MEH-PPV의 UV 흡광, PL 스펙트럼 및 EL 스펙트럼을 측정한 결과로서, 도시한 것과 같이 MEH-PPV는 적색 영역(약 600 ㎚ 파장)에서 발광함을 알 수 있다. 14A is a result of measuring the UV absorption, PL spectrum, and EL spectrum of MEH-PPV with the voltage fixed at 10V. As shown in FIG. 14A, the MEH-PPV emits light in the red region (about 600 nm wavelength). Can be.

도 14b는 MEH-PPV를 발광층으로 사용한 전기 발광소자의 인가된 전압에 따른 전류밀도를 도시한 그래프로서, 구동전압 약 3V 정도에서 서서히 전류가 흐름을 알 수 있다.FIG. 14B is a graph showing current density according to an applied voltage of an electroluminescent device using MEH-PPV as a light emitting layer, and it can be seen that current gradually flows at a driving voltage of about 3V.

상기에서는 본 발명의 바람직한 실시예에 대하여 기술하였으나, 이는 어디까지나 예시에 불과한 것으로 본 발명에 대한 다양한 변형과 변경이 가능하며, 그와 같은 변형과 변경은 본 발명의 정신을 훼손하지 않는 범위라면 본 발명의 권리범위에 속한다는 점은 첨부하는 청구의 범위를 통하여 보다 분명해질 것이다. In the above description of the preferred embodiment of the present invention, but this is only an example, and various modifications and changes to the present invention are possible, and such modifications and changes as long as it does not impair the spirit of the present invention It will be apparent from the appended claims that they belong to the scope of the invention.

본 발명에서 합성된 발광고분자는 기존의 PPV계 고분자보다도 분자량이 매우 높고 유기용매에 쉽게 용해됨으로 인해서 대면적의 발광면적을 형성할 수 있으며, 플로렌기에 처음으로 비닐렌기를 도입한 Spiro-PFV, X₂-Spiro-PFV 및 PFV 유도체를 Gilch 중합법으로 처음 합성하였으며 폴리(플로렌)계에서 발생하는 소자 구동시의 장파장 발광을 억제하기 위하여 스파이로바이플로레닐비닐렌 형태의 발광고분자 구조를 개발하였고 ITO 표면과의 접착성이 우수하도록 방향족 알킬 또는 알킬옥시 치환기 또는 방향족 치환기를 도입됨으로써, 애노드 전극으로 사용되는 ITO 표면과의 접착성을 향상시켰다.  The light emitting polymer synthesized in the present invention has a higher molecular weight than the conventional PPV-based polymer and can be easily dissolved in an organic solvent to form a large area light emitting area. X₂-Spiro-PFV and PFV derivatives were synthesized for the first time by Gilch polymerization method. In order to suppress the long-wavelength light emission during device driving in poly (Florene) system, spirobifluorenylvinylene-type light emitting polymer structure was developed. By introducing an aromatic alkyl or alkyloxy substituent or an aromatic substituent so as to have excellent adhesion with the surface of the ITO, the adhesion with the surface of the ITO used as the anode electrode was improved.

또한 전자주입층과 전자전달층을 발광층과 캐소드 전극사이에 도입함으로 인하여 유기전기 발광소자의 발광효율이 크게 향상되었다. In addition, the luminous efficiency of the organic electroluminescent device is greatly improved by introducing the electron injection layer and the electron transport layer between the light emitting layer and the cathode electrode.

특히, 기존의 PV계 발광고분자보다 다음과 같은 효과를 얻을 수 있다.In particular, the following effects can be obtained than conventional PV-based light emitting polymers.

첫째, 기존의 PPV 유도체보다 스파이로바이플로레닐비닐렌 유도체를 도입한 Spiro-PFV, X₂-Spiro-PFV 및 PFV 유도체 이므로 내열 특성이 매우 우수한 발광고분자임을 확인하였다.First, it was confirmed that the Spiro-PFV, X₂-Spiro-PFV and PFV derivatives, which introduced spirobiflorenylvinylene derivatives, than the conventional PPV derivatives, were excellent light-emitting polymers.

둘째, 본 발명의 발광고분자는 고분자골격의 측쇄에 방향족 알킬 또는 알킬옥시 치환기가 도입된 X₂-Spiro-PFV 및 PFV 유도체이기 때문에 일반적인 유기용매에 매우 가용성이며 내열 특성이 향상될 뿐만 아니라 전극과의 계면 특성이 매우 우수하며 박막 형성능력이 매우 우수한 발광고분자이다.Second, since the luminescent polymer of the present invention is X₂-Spiro-PFV and PFV derivatives in which aromatic alkyl or alkyloxy substituents are introduced into the side chain of the polymer skeleton, they are very soluble in general organic solvents and have improved heat resistance and interface with electrodes. It is a light emitting polymer with excellent characteristics and very good thin film formation ability.

셋째, 본 발명의 발광고분자는 플로레닐비닐렌 골격의 9번 위치에 지방족 알킬 또는 알콕시 그리고 방향족 치환기를 도입함으로 인해서 폴리(플로렌) 유도체 보다도 유리전이 온도가 높고 전극과의 계면 특성이 매우 우수하며 박막 형성능력이 매우 우수한 발광고분자임을 알 수 있었다.Third, the luminescent polymer of the present invention has higher glass transition temperature and excellent interfacial characteristics with the electrode due to the introduction of aliphatic alkyl or alkoxy and aromatic substituent at position 9 of the florenylvinylene skeleton. It was found that the thin film formation ability was very good light emitting polymer.

넷째, 본 발명의 발광고분자의 구동전압은 약 2.5-7V 이며 녹-청색을 발광하며 작동 전압에 따른 EL 스펙트럼의 변화가 기존의 폴리(플로렌) 보다 월등히 안정함을 알 수 있었다.Fourth, the driving voltage of the light emitting polymer of the present invention is about 2.5-7V and emits green-blue, and it can be seen that the change of the EL spectrum according to the operating voltage is much more stable than the conventional poly (florene).

다섯째, 본 발명의 발광 고분자는 전자재료로서 갖추어야 할 광투과성, 내환경성, 기판에 대한 접착력, 박막 형성능력 그리고 전계에 대한 안정성 등이 우수한 고분자이다. Fifth, the light emitting polymer of the present invention is a polymer having excellent light transmittance, environmental resistance, adhesion to a substrate, thin film formation ability and electric field stability to be provided as an electronic material.

Claims (12)

하기 화학식 1로 구성되는 폴리플로레닐 비닐렌 유도체.Polyfluorenyl vinylene derivative consisting of the following formula (1). 화학식 1Formula 1
Figure 112006029420715-pat00025
Figure 112006029420715-pat00025
(상기 화학식 1에서 Q는
Figure 112006029420715-pat00026
이고, R은 수소, 또는 탄소수 1~20의 직쇄 또는 측쇄의 지방족 알킬기, 탄소수 1~20의 알콕시기, 또는 방향족 치환기이며; n은 10 ~ 1000 사이의 정수임)
(Q in Formula 1 is
Figure 112006029420715-pat00026
R is hydrogen or a linear or branched aliphatic alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aromatic substituent; n is an integer between 10 and 1000)
제1항에 있어서,The method of claim 1, 상기 폴리플로레닐 비닐렌 유도체의 무게평균분자량은 5,000 ~ 1,000,000 사이인 것을 특징으로 하는 폴리플로레닐 비닐렌 유도체.Polyfluorenyl vinylene derivative, characterized in that the weight average molecular weight of the polyfluorenyl vinylene derivative is between 5,000 and 1,000,000. 제1항에 있어서,The method of claim 1, 상기 화학식 1의 R은 1 ~ 20의 지방족 알콕시기, 또는 탄소수 1 ~ 20의 지방족 알킬기인 것을 특징으로 하는 폴리플로레닐 비닐렌 유도체. . R in Formula 1 is an aliphatic alkoxy group of 1 to 20, or a polyfluorenyl vinylene derivative, characterized in that an aliphatic alkyl group of 1 to 20 carbon atoms. . 제1항에 있어서,The method of claim 1, 상기 화학식 1의 R은 탄소수 1 ~ 20의 측쇄형 지방족 알콕시기, 또는 탄소수 1~20의 지방족 알킬기인 것을 특징으로 하는 폴리플로레닐 비닐렌 유도체. R in Formula 1 is a C 1-20 branched aliphatic alkoxy group, or a C 1-20 aliphatic alkyl group polyfluorenyl vinylene derivative, characterized in that. 제1항에 있어서,The method of claim 1, 상기 화학식 1의 R은 지방족 알콕시기, 또는 옥틸기인 폴리플로레닐 비닐렌 유도체. R in Formula 1 is an aliphatic alkoxy group or octyl group. 제1항에 있어서,The method of claim 1, 상기 화학식 1의 R은 벤젠, 나프탈렌, 안트라센, 톨루엔, 티오펜, 덴드리머로부터 선택되는 방향족 치환기인 것을 특징으로 하는 폴리프로필렌 비닐렌 유도체. R in Formula 1 is an aromatic substituent selected from benzene, naphthalene, anthracene, toluene, thiophene, dendrimer, polypropylene vinylene derivatives. 하기 화학식 1로 구성되는 폴리플로레닐 비닐렌 유도체를 포함하는 유기전기 발광소자. An organic electroluminescent device comprising a polyfluorenyl vinylene derivative of Formula 1 below. 화학식 1Formula 1
Figure 112006029420715-pat00027
Figure 112006029420715-pat00027
(상기 화학식 1에서 Q는
Figure 112006029420715-pat00028
이고, R은 수소, 또는 탄소수 1~20의 직쇄 또는 측쇄의 지방족 알킬기, 탄소수 1~20의 알콕시기, 또는 방향족 치환기이며; n은 10 ~ 1000 사이의 정수임.)
(Q in Formula 1 is
Figure 112006029420715-pat00028
R is hydrogen or a linear or branched aliphatic alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an aromatic substituent; n is an integer between 10 and 1000.)
제7항에 있어서,The method of claim 7, wherein 상기 유기전기 발광소자는 제 1 전극/발광층/제 2 전극을 포함하는 유기전기 발광소자. The organic electroluminescent device includes an first electrode / light emitting layer / second electrode. 제8항에 있어서,The method of claim 8, 상기 제 1 전극과 상기 제 2 전극 사이에 캐리어 수송층과 주입층을 더욱 포함하는 유기전기 발광소자. An organic electroluminescent device further comprising a carrier transport layer and an injection layer between the first electrode and the second electrode. 제9항에 있어서,The method of claim 9, 상기 제 1 전극과 발광층 사이에 정공전달층으로 전도성 고분자인 폴리티오펜, 폴리아닐린 유도체를 사용한 유기전기 발광소자.An organic electroluminescent device using polythiophene and polyaniline derivatives, which are conductive polymers, as a hole transport layer between the first electrode and the light emitting layer. 제9항에 있어서,The method of claim 9, 상기 발광층과 제 2 전극 사이에 전자전달층으로 Alq3, BAlq3 등의 Al 금속착체 유도체를 사용한 유기전기 발광소자. An organic electroluminescent device using Al metal complex derivatives such as Alq 3 and BAlq 3 as electron transfer layers between the light emitting layer and the second electrode. 제11항에 있어서,The method of claim 11, 상기 전자전달층과 제 2 전극 사이에 전자주입층으로 LiF, BaF2 등을 사용한 유기전기 발광소자. An organic electroluminescent device using LiF, BaF 2 or the like as an electron injection layer between the electron transport layer and the second electrode.
KR1020040083169A 2004-10-18 2004-10-18 Polyspirobifluorenyl-2,7-vinylene and Polydialkylfluorenyl-2,7-vinylene Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same KR100604196B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020040083169A KR100604196B1 (en) 2004-10-18 2004-10-18 Polyspirobifluorenyl-2,7-vinylene and Polydialkylfluorenyl-2,7-vinylene Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020040083169A KR100604196B1 (en) 2004-10-18 2004-10-18 Polyspirobifluorenyl-2,7-vinylene and Polydialkylfluorenyl-2,7-vinylene Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same

Publications (2)

Publication Number Publication Date
KR20060034042A KR20060034042A (en) 2006-04-21
KR100604196B1 true KR100604196B1 (en) 2006-07-25

Family

ID=37142984

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020040083169A KR100604196B1 (en) 2004-10-18 2004-10-18 Polyspirobifluorenyl-2,7-vinylene and Polydialkylfluorenyl-2,7-vinylene Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same

Country Status (1)

Country Link
KR (1) KR100604196B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807974A (en) 1996-05-16 1998-09-15 Korea Institute Of Science And Technology Fluorene-based alternating copolymers for electroluminescence element and electroluminescence element using such copolymers as light emitting materials
KR20020042175A (en) * 2000-11-30 2002-06-05 유승렬 Fluorenylene vinylene-based Light Emitting Polymers and Electroluminescent Device Prepared Using the Same
KR20030032306A (en) * 2001-10-17 2003-04-26 한화석유화학 주식회사 Fluorene-vinylene based copolymers, preparing method thereof and electroluminescence element using the same
JP2003192770A (en) 2001-08-17 2003-07-09 Merck Patent Gmbh Mono-, oligo- and polyalkylidene fluorenes and their use as electron transfer material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5807974A (en) 1996-05-16 1998-09-15 Korea Institute Of Science And Technology Fluorene-based alternating copolymers for electroluminescence element and electroluminescence element using such copolymers as light emitting materials
KR20020042175A (en) * 2000-11-30 2002-06-05 유승렬 Fluorenylene vinylene-based Light Emitting Polymers and Electroluminescent Device Prepared Using the Same
JP2003192770A (en) 2001-08-17 2003-07-09 Merck Patent Gmbh Mono-, oligo- and polyalkylidene fluorenes and their use as electron transfer material
KR20030032306A (en) * 2001-10-17 2003-04-26 한화석유화학 주식회사 Fluorene-vinylene based copolymers, preparing method thereof and electroluminescence element using the same

Also Published As

Publication number Publication date
KR20060034042A (en) 2006-04-21

Similar Documents

Publication Publication Date Title
JP5301157B2 (en) Polymers used in organic electroluminescent devices
US5741921A (en) Conjugated polymers containing hetero-spiro atoms and their use as electroluminescence materials
JP4050988B2 (en) Substituted fluorene polymer, method for producing the same, and optical apparatus using the same
JP4065521B2 (en) Deuterated organic semiconductor compounds for optoelectronic devices
US20060094859A1 (en) Class of bridged biphenylene polymers
US6887972B2 (en) Blue electroluminescent materials for polymer light-emitting diodes
JP5048995B2 (en) Method for controlling glass transition temperature of polymer and polymer using the same
JP2003530476A (en) Soluble poly (fluorene-oxadiazole) conjugated polymer
KR20010050735A (en) Electroluminescent devices having phenylanthracene-based polymers
KR20020094735A (en) White Electroluminescent Polymer And Organic Electroluminescent Device Using Thereof
US5859211A (en) Conjugated polymers containing heterospiro atoms and their use as electroluminescence materials
JP5819581B2 (en) Polymer and production method thereof
US6841268B2 (en) Blue electroluminescent polymer and organic electroluminescence device using the same
KR100730454B1 (en) Blue light emitting polymers containing 9,10-diphenylanthracene moiety and the electroluminescent device prepared using the same
KR100528323B1 (en) Blue Electroluminescent Polymer And Organo-electroluminescent Device Manufactured By Using The Same
KR101350744B1 (en) Electriluminescent polymer containing benzothiadiazole derivatives and organoelectriluminescent device emloying the same
KR100604196B1 (en) Polyspirobifluorenyl-2,7-vinylene and Polydialkylfluorenyl-2,7-vinylene Derivatives Having High Thermal Stability, Luminescence Property and Light Emitting Diodes Using the Same
KR100411184B1 (en) Highly luminescent polymer and red electroluminescent device
KR100394509B1 (en) High Functional Light Emitting Polymers Containing Tetra-substituted Phenylene unit for Use in Electroluminescent Devices
KR100710987B1 (en) Organic Electroluminescent Polymer with Polyarylenic Backbone Containing 1,2-Difluorenyl-substituted Ethylene Moiety and Electroluminescent Device Prepared Using the Same
KR100505962B1 (en) Polyphenylenevinylene-based polymer luminescent material and electroluminescent device comprising same
KR100718793B1 (en) Organic electroluminescent polymers having 9,9-di3,3'-bicarbazyl-2,7-fluorenyl unit and the electroluminescent device prepared using the same
Kim et al. Increased efficient copolymers with PFV and PPDFV for light emitting diodes
KR20070016594A (en) Distyrylbenzene Derivatives, Organic Electroluminescent Polymer Prepared Therefrom, and Electroluminescent Device Manufactured Using the Same
KR20050073075A (en) Preparation method of organic light-emitting polymer having irregular structure for improving color purity and electroluminescent efficiency

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100702

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee