WO2001055568A2 - Dispositif d'injection de gaz naturel dans la chambre de combustion d'un cylindre - Google Patents

Dispositif d'injection de gaz naturel dans la chambre de combustion d'un cylindre Download PDF

Info

Publication number
WO2001055568A2
WO2001055568A2 PCT/FR2001/000252 FR0100252W WO0155568A2 WO 2001055568 A2 WO2001055568 A2 WO 2001055568A2 FR 0100252 W FR0100252 W FR 0100252W WO 0155568 A2 WO0155568 A2 WO 0155568A2
Authority
WO
WIPO (PCT)
Prior art keywords
natural gas
valve
chamber
injection
engine
Prior art date
Application number
PCT/FR2001/000252
Other languages
English (en)
Other versions
WO2001055568A3 (fr
Inventor
Jacky Guezet
Gaëtan MONNIER
Jean Van Franck
Original Assignee
Renault
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault filed Critical Renault
Priority to EP01903973A priority Critical patent/EP1250522A2/fr
Publication of WO2001055568A2 publication Critical patent/WO2001055568A2/fr
Publication of WO2001055568A3 publication Critical patent/WO2001055568A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/02Engines characterised by precombustion chambers the chamber being periodically isolated from its cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B43/00Engines characterised by operating on gaseous fuels; Plants including such engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0276Actuation of an additional valve for a special application, e.g. for decompression, exhaust gas recirculation or cylinder scavenging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • F02M21/0224Secondary gaseous fuel storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0248Injectors
    • F02M21/0275Injectors for in-cylinder direct injection, e.g. injector combined with spark plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • the present invention relates to a natural gas injection device.
  • the invention relates more particularly to a device for injecting natural gas into a combustion chamber of an internal combustion engine of a motor vehicle, of the type comprising an intermediate natural gas storage chamber which is equipped with a gas injector which is supplied with natural gas by an upstream supply line, and of the type in which the intermediate chamber communicates with the combustion chamber of the engine via an injection valve which controls the injection of natural gas in the combustion chamber.
  • Natural gas thanks to its properties which make it a clean fuel, is increasingly used as an alternative fuel for the automobile.
  • the most commonly used technology for fueling the engine is the injection of natural gas into the intake ducts.
  • This technique generates a loss of filling, therefore of performance, because natural gas takes on a volume much greater than that of petrol.
  • Document US-A-5 170 766 proposes a direct injection device which is initially intended for operation with petrol but which can also be used with natural gas for low loads.
  • This direct injection device has a chamber mixing system which is equipped with an injector for fuel and an inlet (or an injector) for air intake
  • the mixing chamber communicates with the combustion chamber of the engine via a valve
  • This direct injection device poses a dimensioning problem during operation at high load Indeed, the volume of natural gas to be injected is important and the injection must be carried out in a fairly short time
  • the invention aims to remedy these drawbacks
  • the invention provides a device for injecting natural gas of the type described above, characterized in that it comprises an additional chamber containing natural gas which is connected to the intermediate chamber by a connecting channel provided with a valve whose opening makes it possible to increase the quantity of natural gas stored in the intermediate chamber before its injection into the combustion chamber
  • the valve of the connecting channel is closed during the opening of the injection valve and if the engine is in a high load operating phase the valve is open for the opening of the injection valve,
  • the filling of the complementary chamber is carried out by a downstream supply pipe which connects the upstream supply pipe to the complementary chamber and which comprises a valve,
  • valve of the downstream supply line and the valve of the connecting channel are closed, and if the engine is in a high load operating phase
  • the valve of the downstream supply line is open and the valve of the connecting channel is closed
  • the valve of the line downstream supply is closed and the valve of the connecting channel is open
  • the upstream supply line is an injection manifold which is equipped with pressure and temperature sensors in order to determine the quantity of natural gas likely to be introduced into the complementary chamber via the downstream supply line
  • the gas injector natural gas is controlled by an electronic control unit, so as to introduce into the intermediate chamber an additional quantity of natural gas determined as a function for example of the engine speed; - the natural gas injector is of the “CNG” type.
  • FIG. 1 is a schematic view in axial section which illustrates a cylinder of internal combustion engine equipped with a direct natural gas injection device produced in accordance with the teachings of the invention.
  • FIG. 2 is a view similar to the previous one which shows an alternative embodiment of the invention.
  • the cylinder 10 is supplied with air by an intake circuit 18 which opens into the combustion chamber 12 through an intake valve 20 which may or may not block the communication between the intake circuit 18 and the combustion chamber. combustion 12.
  • An exhaust circuit 22 is provided for evacuating the burnt gases out of the combustion chamber 12 through an exhaust valve 24 which may or may not block the communication between the combustion chamber 12 and the exhaust 22.
  • the cylinder 10 comprises an intermediate chamber 26 for storing natural gas which opens into the combustion chamber 12 through an injection valve 28 which may or may not block the communication between the intermediate chamber 26 and the combustion chamber 12.
  • the intermediate chamber 26 is equipped with an injector 30 of volatile natural gas (CNG).
  • CNG volatile natural gas
  • the CNG injection system 30 can be any system developed for indirect CNG injection, whether it is derived from gasoline injection technologies or whether it has been developed specifically for natural gas.
  • the injector 30 is supplied with natural gas by an upstream supply line 32, here an injection manifold, which is connected to a main tank (not shown) for storing natural gas.
  • the injector 30 is controlled by an electronic control unit 34.
  • the electronic control unit 34 receives for example signals representative of engine operating parameters such as engine speed, atmospheric pressure, pressure in the cylinder 10, the flow of intake and / or exhaust gases. , the instantaneous torque supplied, etc.
  • the electronic control unit 34 comprises in particular means for storing (not shown) one or more maps of engine operation.
  • the displacement of the intake 20, exhaust 24 and injection 28 valves can be controlled by any known means, for example by the cams of camshafts or by electromagnetic actuators controlled by the electronic unit. 34.
  • the movement of the injection valve 28 is controlled by an electromagnetic actuator 36 and controlled by the electronic control unit 34.
  • an additional chamber 38 is connected to the intermediate chamber 26 by a connecting channel 40 provided with a valve 42
  • the valve 42 is controlled by the electronic control unit 34
  • valve 42 In the operating phase of the engine at low load, the valve 42 is kept closed during the four cycle times, so that natural gas can be stored, before its injection into the combustion chamber 12, only in the intermediate chamber 26
  • the electronic control unit 34 maintains the injection valve 28 in the closed position
  • a quantity of precisely dosed natural gas is then introduced into the intermediate chamber by the injector 30
  • the injection valve 28 then closes and the electronic control unit 34 triggers the ignition of the fuel mixture, composed of air and natural gas, for example by means of a spark plug (not shown).
  • the exhaust valve 24 opens to allow the evacuation of the burnt gases to the exhaust circuit 22
  • valve 42 is kept open during the four stages of the cycle, so that the natural gas is stored, before its injection into the combustion chamber 12, both in the intermediate chamber 26 and in the complementary chamber 38
  • the opening of the valve 42 therefore makes it possible to increase the storage volume of natural gas before injection.
  • the injection valve 28 being closed, the intermediate chamber 26 and the complementary chamber 38 are supplied precisely with natural gas by 1 injector 30
  • the injection valve 28 is opened and the natural gas, which is stored in the intermediate chamber 26 and in the complementary chamber 38, is introduced into the combustion chamber 12
  • the complementary chamber 38 and the connecting channel 40 are dimensioned so as to allow, with the intermediate chamber 26, the injection into the combustion chamber 12 of the quantity of natural gas necessary for the proper functioning of the engine in a operating range from partial loads to heavy loads, in a sufficiently short time
  • This embodiment allows a greater autonomy of the vehicle than that which will be obtained with a direct high pressure injection.
  • This direct natural gas injection device does not need an additional compressor, as would be the case for a high pressure device in order to increase the range of the vehicle.
  • This injection device requires a greater flow rate from the injector 30 because the maximum injection time corresponds to two crankshaft turns minus the opening time of the injection valve 28
  • the critical pressure that is to say the pressure downstream of the injector 30 beyond which the flow rate is subso ⁇ ic, being reached quickly in the intermediate 26 and complementary 38 chambers, the average flow rate is lower and longer injection time Consequently, the use of injectors 30 of the “CNG” type currently available requires limiting the amount of natural gas to be injected.
  • the complementary chamber 38 is filled not by means of the injector 30 which equips the chamber intermediate 26 but by means of a downstream supply line 44 which directly connects the injection manifold 32 to the complementary chamber 38.
  • the downstream supply line 44 includes a valve 46.
  • the injection manifold 32 is here equipped with pressure 48 and temperature 50 sensors, in order to determine the quantity of natural gas which fills the additional chamber 38 when the valve 42 is closed and the valve 46 is open.
  • the direct injection device operates in a similar manner to that of FIG. 1, the valve 42 being closed.
  • the electronic unit 34 controls the closing of the valve 42 and the opening of the valve 46.
  • the complementary chamber 38 is then placed in communication with the injection manifold 32 by the downstream supply line 44.
  • the complementary chamber 38 is filled with a quantity of natural gas which is known thanks to the pressure 48 and temperature 50 sensors. During the filling of the complementary chamber 38, the injector 30 precisely introduces into the intermediate chamber 26 the additional natural gas necessary for the proper functioning of the engine. Then, the valve 46 is closed and the valve 42 is opened which puts the complementary chamber 38 in communication with the intermediate chamber 26
  • the injection valve 28 opens and the natural gas stores in the intermediate chamber 26 and in the complementary chamber 38 enters the combustion chamber 12
  • valve 42 and the valve 46 be able to open and close very quickly, for example in a few milliseconds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention propose un dispositif d'injection de gaz naturel dans une chambre de combustion (12) d'un moteur à combustion interne de véhicule automobile, du type comportant une chambre intermédiaire (26) de stockage de gaz naturel qui est équipée d'un injecteur (30) de gaz naturel qui est alimenté en gaz natureal par une conduite amont (32) d'alimentation, et du type dans lequel la chambre intermédiaire (26) communique avec la chambre de combustion (12) du moteur par l'intermédiaire d'une soupape d'injection (28) qui commande l'injection du gaz naturel dans la chambre de combustion (12), caractérisé en ce qu'il comporte une chambre complémentaire (38) contenant du gaz naturel qui est reliée à la chambre intermédiaire (26) par un canal de liaison (40) muni d'un clapet (42) dont l'ouverture permet d'augmenter la quantité de gaz naturel stocké dans la chambre intermédiaire (26) avant son injection dans la chambre de combustion (12).

Description

"Dispositif d'injection de gaz naturel dans la chambre de combustion d'un cylindre"
La présente invention concerne un dispositif d'injection de gaz naturel. L'invention concerne plus particulièrement un dispositif d'injection de gaz naturel dans une chambre de combustion d'un moteur à combustion interne de véhicule automobile, du type comportant une chambre intermédiaire de stockage de gaz naturel qui est équipée d'un injecteur de gaz naturel qui est alimenté en gaz naturel par une conduite amont d'alimentation, et du type dans lequel la chambre intermédiaire communique avec la chambre de combustion du moteur par l'intermédiaire d'une soupape d'injection qui commande l'injection du gaz naturel dans la chambre de combustion. Le gaz naturel, grâce à ses propriétés qui en font un carburant propre, est de plus en plus utilisé en tant que carburant de substitution pour l'automobile.
La technologie la plus employée actuellement, pour l'alimentation du moteur en carburant, est l'injection de gaz naturel dans les conduits d'admission.
Cette technique engendre une perte de remplissage, donc de performance, car le gaz naturel prend un volume bien supérieur à celui de l'essence.
L'injection directe de gaz naturel dans la chambre de combustion après la fermeture de la soupape d'admission est la solution la plus efficace pour éviter cette perte de performance.
On connaît déjà des dispositifs d'injection directe de gaz naturel.
Le document US-A-5.771.857 propose par exemple un système qui permet d'alimenter des injecteurs avec une pression qui varie en fonction de la charge du moteur.
Avec ce système, il est nécessaire de disposer d'une injection haute pression lors d'un fonctionnement à forte charge. Si l'on utilise une injection haute pression sans compresseur additionnel, c'est la pression initiale dans le réservoir (environ 200 bars) qui constitue la source de haute pression Par conséquent la consommation du gaz naturel contenu dans le réservoir fait diminuer sa pression initiale et celle-ci descend rapidement en dessous de la pression d'injection II faut alors remplir à nouveau le réservoir
Ce type de fonctionnement diminue donc la quantité de gaz naturel réellement exploitable ce qui est très pénalisant pour l'autonomie du véhicule
Par ailleurs, l'utilisation d'un compresseur additionnel comme source de haute pression pour une injection haute pression est pénalisante notamment en terme de coût et pour le rendement du moteur
Le document US-A-5 170766 propose un dispositif d'injection directe qui est prévu initialement pour un fonctionnement avec de l'essence mais qui peut également être utilisé avec du gaz naturel pour de faibles charges Ce dispositif d'injection directe comporte une chambre de mélange qui est équipée d'un mjecteur pour le carburant et d'une arrivée (ou d'un mjecteur) pour l'admission d air
La chambre de mélange communique avec la chambre de combustion du moteur par l'intermédiaire d'une soupape Ce dispositif d'injection directe pose un problème de dimensionnement lors d'un fonctionnement à forte charge En effet, le volume de gaz naturel à injecter est important et l'injection doit être réalisée dans un temps assez court
Par conséquent, il est nécessaire de disposer d'une chambre de mélange d'un volume plus important pour un fonctionnement au gaz naturel que pour un fonctionnement à l'essence
L'invention vise à remédier a ces inconvénients Dans ce but, l'invention propose un dispositif d'injection de gaz naturel du type décrit précédemment, caractérisé en ce qu'il comporte une chambre complémentaire contenant du gaz naturel qui est reliée à la chambre intermédiaire par un canal de liaison muni d'un clapet dont l'ouverture permet d'augmenter la quantité de gaz naturel stocké dans la chambre intermédiaire avant son injection dans la chambre de combustion
Selon d'autres caractéristiques de l'invention
- si le moteur est dans une phase de fonctionnement a faible charge, le clapet du canal de liaison est ferme pendant l'ouverture de la soupape d'injection et si le moteur est dans une phase de fonctionnement à forte charge le clapet est ouvert pendant l'ouverture de la soupape d'injection ,
- le remplissage de la chambre complémentaire est réalise par une conduite aval d'alimentation qui relie la conduite amont d'alimentation à la chambre complémentaire et qui comporte une vanne ,
- si le moteur est dans une phase de fonctionnement a faible charge, la vanne de la conduite aval d'alimentation et le clapet du canal de liaison sont fermés, et si le moteur est dans une phase de fonctionnement à forte charge
• pendant la fermeture de la soupape d'injection, la vanne de la conduite aval d'alimentation est ouverte et le clapet du canal de liaison est fermé , et • pendant l'ouverture de la soupape d'injection, la vanne de la conduite aval d'alimentation est fermée et le clapet du canal de liaison est ouvert , la conduite amont d'alimentation est une rampe d'injection qui est équipée de capteurs de pression et de température en vue de déterminer la quantité de gaz naturel susceptible d'être introduite dans la chambre complémentaire par la conduite aval d'alimentation ,
- lorsque l'on utilise la chambre complémentaire pour augmenter la quantité de gaz naturel stocke l'injecteur de gaz naturel est piloté par une unité électronique de commande, de manière à introduire dans la chambre intermédiaire une quantité complémentaire de gaz naturel déterminée en fonction par exemple du régime du moteur ; - l'injecteur de gaz naturel est du type « GNV ».
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels : - la figure 1 est une vue schématique en coupe axiale qui illustre un cylindre de moteur à combustion interne équipé d'un dispositif d'injection directe de gaz naturel réalisé conformément aux enseignements de l'invention ; et
- la figure 2 est une vue similaire à la précédente qui représente une variante de réalisation de l'invention.
Dans la description qui va suivre, pour faciliter la compréhension de l'invention, on la décrira dans le cadre d'un moteur comportant un seul cylindre, une seule soupape d'échappement et une seule soupape d'admission. On a représenté schématiquement à la figure 1 un cylindre
10 d'un moteur à combustion interne à quatre temps et dont la partie supérieure forme une chambre de combustion 12 délimitée par un piston mobile 14 et par une culasse 16.
Le cylindre 10 est alimenté en air par un circuit d'admission 18 qui débouche dans la chambre de combustion 12 au travers d'une soupape d'admission 20 qui peut obturer ou non la communication entre le circuit d'admission 18 et la chambre de combustion 12.
Un circuit d'échappement 22 est prévu pour l'évacuation des gaz brûlés hors de la chambre de combustion 12 au travers d'une soupape d'échappement 24 qui peut obturer ou non la communication entre la chambre de combustion 12 et le circuit d'échappement 22. Le cylindre 10 comporte une chambre intermédiaire 26 de stockage de gaz naturel qui débouche dans la chambre de combustion 12 au travers d'une soupape d'injection 28 qui peut obturer ou non la communication entre la chambre intermédiaire 26 et la chambre de combustion 12.
La chambre intermédiaire 26 est équipée d'un injecteur 30 de gaz naturel volatil (GNV).
Le système d'injection 30 de GNV peut être tout système développé pour l'injection indirecte de GNV, qu'il soit dérivé des technologies d'injection d'essence ou qu'il ait été développé spécifiquement pour le gaz naturel.
L'injecteur 30 est alimenté en gaz naturel par une conduite amont 32 d'alimentation, ici une rampe d'injection, qui est reliée à un réservoir principal (non représenté) de stockage du gaz naturel.
De préférence, l'injecteur 30 est piloté par une unité électronique de commande 34.
L'unité électronique de commande 34 reçoit par exemple des signaux représentatifs de paramètres de fonctionnement du moteur tels que le régime du moteur, la pression atmosphérique, la pression dans le cylindre 10, le débit des gaz d'admission et/ou d'échappement, le couple instantané fourni, etc.
L'unité électronique de commande 34 comporte notamment des moyens de mémorisation (non représentés) d'une ou plusieurs cartographies de fonctionnement du moteur.
On note que le déplacement des soupapes d'admission 20, d'échappement 24 et d'injection 28 peut être commandé par tout moyen connu, par exemple par les cames d'arbres à cames ou par des actionπeurs électromagnétiques pilotés par l'unité électronique de commande 34.
Avantageusement, le déplacement de la soupape d'injection 28 est commandé par un actionneur électromagnétique 36 et piloté par l'unité électronique de commande 34. Conformément aux enseignements de l'invention, une chambre complémentaire 38 est reliée à la chambre intermédiaire 26 par un canal de liaison 40 muni d'un clapet 42
Le clapet 42 est piloté par l'unité électronique de commande 34
Selon le principe bien connu du cycle à quatre temps d'un moteur à combustion, celui-ci s'effectue en deux rotations du vilebrequin et en quatre courses du piston, les quatre temps du cycle étant l'admission, la compression, la combustion et l'échappement
On expliquera maintenant le fonctionnement du dispositif d injection de gaz naturel selon l'invention
En phase de fonctionnement du moteur à faible charge, le clapet 42 est maintenu fermé pendant les quatre temps du cycle, de manière que le gaz naturel ne puisse être stocké, avant son injection dans la chambre de combustion 12, que dans la chambre intermédiaire 26
Avant l'admission du carburant dans la chambre de combustion 12, l' unité électronique de commande 34 maintient la soupape d'injection 28 en position fermée
Une quantité de gaz naturel dosée précisément est alors introduite dans la chambre intermédiaire par l'injecteur 30
En phase d admission, après avoir laissé entrer une quantité d'air appropriée dans la chambre de combustion 12, la soupape d'admission 20 se ferme
Des la fermeture de la soupape d'admission 20, la soupape d'injection 28 est ouverte et le gaz naturel pénètre dans la chambre de combustion 12
La soupape d'injection 28 se referme alors et l'unité électronique de commande 34 déclenche l'allumage du mélange carburé, composé d'air et de gaz naturel, au moyen par exemple d'une bougie d'allumage (non représentée) Après la combustion du mélange, la soupape d'échappement 24 s'ouvre pour permettre l'évacuation des gaz brûles vers le circuit d'échappement 22
Le cycle reprend ensuite de la même façon On note que la chambre intermédiaire 26 et la soupape d'injection 28 sont dimensionnées de façon a introduire la quantité de carburant nécessaire dans un temps suffisamment court
Le processus est similaire, lorsque le moteur fonctionne à faible charge, mais il est nécessaire d'introduire une plus grande quantité de gaz naturel dans la chambre de combustion 12
Pour cela, le clapet 42 est maintenu ouvert pendant les quatre temps du cycle, de manière que le gaz naturel soit stocké, avant son injection dans la chambre de combustion 12, à la fois dans la chambre intermédiaire 26 et dans la chambre complémentaire 38
L'ouverture du clapet 42 permet donc d'augmenter le volume de stockage de gaz naturel avant l'injection
La soupape d'injection 28 étant fermée, la chambre intermédiaire 26 et la chambre complémentaire 38 sont alimentées précisément en gaz naturel par 1 mjecteur 30
Dès la fermeture de la soupape d'admission 20, la soupape d'injection 28 est ouverte et le gaz naturel, qui est stocké dans la chambre intermédiaire 26 et dans la chambre complémentaire 38, est introduit dans la chambre de combustion 12
Le fonctionnement continue alors de manière similaire au fonctionnement à faible charge explique précédemment
On note que la chambre complémentaire 38 et le canal de liaison 40 sont dimensionnés de façon a permettre, avec la chambre intermédiaire 26, l'injection dans la chambre de combustion 12 de la quantité de gaz naturel nécessaire a la bonne marche du moteur dans une plage de fonctionnement allant des charges partielles aux fortes charges, et ceci dans un temps suffisamment court Ce mode de réalisation autorise une autonomie du véhicule plus importante que celle qui seran obtenue avec une injection directe haute pression
En effet, la pression de gaz naturel nécessaire a ce dispositif d'injection directe étant beaucoup plus faible qu'avec un dispositif à haute pression, la capacité de stockage des réservoirs de gaz naturel comprimé est beaucoup mieux exploitée
Ce dispositif d'injection directe de gaz naturel n'a pas besoin de compresseur additionnel, comme ce serait le cas pour un dispositif à haute pression en vue d'augmenter l'autonomie du véhicule
Cependant, pour des raisons techniques, le débit maximal des injecteurs 30 du type « GNV » disponibles actuellement est limité Dans le cas d'une injection directe du gaz naturel par un mjecteur dans la chambre de combustion 12, cette limitation du débit est compensée par la possibilité d'augmenter fortement le temps d'injection tout en restant en débit soπique En effet le temps d'injection peut dans ce cas être étendu jusqu'à celui correspondant à deux tours de vilebrequin
Le fait d'injecter au préalable le gaz naturel dans la chambre intermédiaire 26 et d'alimenter aussi la chambre complémentaire 38 est plus contraignant
Ce dispositif d'injection nécessite un débit plus important de l'injecteur 30 car le temps d'injection maximal correspond à deux tours de vilebrequin diminué du temps d'ouverture de la soupape d'injection 28
De plus, la pression critique, c'est à dire la pression en aval de l'injecteur 30 au-delà de laquelle le débit est subsoπique, étant atteinte rapidement dans les chambres intermédiaire 26 et complémentaire 38, le débit moyen est plus faible et le temps d'injection plus long Par conséquent, l'utilisation des injecteurs 30 du type « GNV » actuellement disponibles nécessite de limiter la quantité de gaz naturel à injecter.
On décrira maintenant une variante de réalisation de l'invention, en référence à la figure 2, qui vise notamment à remédier à l'inconvénient mentionné ci-dessus.
Dans la suite de la description on ne décrira que les éléments qui diffèrent par rapport au mode de réalisation de la figure 1. Selon la variante de réalisation, on remplit la chambre complémentaire 38 non pas au moyen de l'injecteur 30 qui équipe la chambre intermédiaire 26 mais au moyen d'une conduite aval 44 d'alimentation qui relie directement la rampe d'injection 32 à la chambre complémentaire 38. La conduite aval 44 d'alimentation comporte une vanne 46.
La rampe d'injection 32 est équipée ici de capteurs de pression 48 et de température 50, en vue de déterminer la quantité de gaz naturel qui remplit la chambre complémentaire 38 lorsque le clapet 42 est fermé et la vanne 46 est ouverte. En phase de fonctionnement du moteur à faible charge, le dispositif d'injection directe fonctionne de manière similaire à celui de la figure 1, le clapet 42 étant fermé.
En phase de fonctionnement du moteur à forte charge, le processus d'injection de gaz naturel se décompose en différentes phases au cours d'un cycle.
Dès que la soupape d'injection 28 se ferme, l'unité électronique 34 commande la fermeture du clapet 42 et l'ouverture de la vanne 46.
La chambre complémentaire 38 est alors mise en communication avec la rampe d'injection 32 par la conduite aval d'alimentation 44.
La chambre complémentaire 38 se remplit d'une quantité de gaz naturel qui est connue grâce aux capteurs de pression 48 et de température 50. Pendant le remplissage de la chambre complémentaire 38, l'injecteur 30 introduit de façon précise dans la chambre intermédiaire 26 le complément de gaz naturel nécessaire au bon fonctionnement du moteur Ensuite, la vanne 46 est fermée et le clapet 42 est ouvert ce qui met la chambre complémentaire 38 en communication avec la chambre intermédiaire 26
Dès la fermeture de la soupape d'admission 20, la soupape d'injection 28 s'ouvre et le gaz naturel stocke dans la chambre intermédiaire 26 et dans la chambre complémentaire 38 pénètre dans la chambre de combustion 12
Le fonctionnement du moteur se poursuit comme on l'a expliqué précédemment, la chambre complémentaire 38 étant de nouveau mise en communication avec la rampe d injection 32 dès la fermeture de la soupape d'injection 28
On note que, dans cette variante de réalisation, le fonctionnement optimal du dispositif d'injection de gaz naturel nécessite que le clapet 42 et la vanne 46 soient capables de s'ouvrir et de se refermer très rapidement, par exemple en quelques millisecondes
Les principes mis en œuvre dans le cadre du procédé selon l'invention, qui ont été expliqués en considérant un seul cylindre comportant lui-même une seule soupape d'admission et une seule soupape d'échappement, s'appliquent bien entendu à un moteur à plusieurs cylindres dont chacun comporte le cas échéant plusieurs soupapes d'admission et plusieurs soupapes d'échappement

Claims

REVENDICATIONS
1. Dispositif d'injection de gaz naturel dans une chambre de combustion (12) d'un moteur à combustion interne de véhicule automobile, du type comportant une chambre intermédiaire (26) de stockage de gaz naturel qui est équipée d'un injecteur (30) de gaz naturel qui est alimenté en gaz naturel par une conduite amont (32) d'alimentation, et du type dans lequel la chambre intermédiaire (26) communique avec la chambre de combustion (12) du moteur par l'intermédiaire d'une soupape d'injection (28) qui commande l'injection du gaz naturel dans la chambre de combustion (12), caractérisé en ce qu'il comporte une chambre complémentaire (38) contenant du gaz naturel qui est reliée à la chambre intermédiaire (26) par un canal de liaison (40) muni d'un clapet (42) dont l'ouverture permet d'augmenter la quantité de gaz naturel stocké dans la chambre intermédiaire (26) avant son injection dans la chambre de combustion (12).
2. Dispositif selon la revendication précédente, caractérisé en ce que, si le moteur est dans une phase de fonctionnement à faible charge, le clapet (42) du canal de liaison (40) est fermé pendant l'ouverture de la soupape d'injection (28), et si le moteur est dans une phase de fonctionnement à forte charge, le clapet (42) est ouvert pendant l'ouverture de la soupape d'injection (28).
3. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le remplissage de la chambre complémentaire (38) est réalisé par une conduite aval (44) d'alimentation qui relie la conduite amont (32) d'alimentation à la chambre complémentaire (38) et qui comporte une vanne (46).
4. Dispositif selon la revendication précédente, caractérisé en ce que, si le moteur est dans une phase de fonctionnement à faible charge, la vanne (46) de la conduite aval (44) d'alimentation et le clapet (42) du canal de liaison (40) sont fermés, et si le moteur est dans une phase de fonctionnement à forte charge : - pendant la fermeture de la soupape d'injection (28), la vanne (46) de la conduite aval (44) d'alimentation est ouverte et le clapet (42) du canal de liaison (40) est fermé , et
- pendant l'ouverture de la soupape d'injection (28), la vanne (46) de la conduite aval (44) d'alimentation est fermée et le clapet (42) du canal de liaison (40) est ouvert
5 Dispositif selon l'une quelconque des revendications 3 ou 4, caractérisé en ce que la conduite amont (32) d'alimentation est une rampe d'injection qui est équipée de capteurs de pression (48) et de température (50) en vue de déterminer la quantité de gaz naturel susceptible d'être introduite dans la chambre complémentaire (38) par la conduite aval (44) d'alimentation
6 Dispositif selon l'une quelconque des revendications 3 à 5, caractérisé en ce que lorsque l'on utilise la chambre complémentaire (38) pour augmenter la quantité de gaz naturel stocké, l'injecteur (30) de gaz naturel est pilote par une unité électronique de commande (34), de manière à introduire dans la chambre intermédiaire (26) une quantité complémentaire de gaz naturel déterminée en fonction par exemple du régime du moteur 7 Dispositif selon l'une quelconque des revendications précédentes, caractérise en ce que l'injecteur (30) de gaz naturel est du type « GNV »
PCT/FR2001/000252 2000-01-27 2001-01-26 Dispositif d'injection de gaz naturel dans la chambre de combustion d'un cylindre WO2001055568A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01903973A EP1250522A2 (fr) 2000-01-27 2001-01-26 Dispositif d'injection de gaz naturel dans la chambre de combustion d'un cylindre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/01030 2000-01-27
FR0001030A FR2804475B1 (fr) 2000-01-27 2000-01-27 Dispositif d'injection de gaz naturel dans la chambre de combustion d'un cylindre

Publications (2)

Publication Number Publication Date
WO2001055568A2 true WO2001055568A2 (fr) 2001-08-02
WO2001055568A3 WO2001055568A3 (fr) 2001-12-20

Family

ID=8846363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000252 WO2001055568A2 (fr) 2000-01-27 2001-01-26 Dispositif d'injection de gaz naturel dans la chambre de combustion d'un cylindre

Country Status (4)

Country Link
EP (1) EP1250522A2 (fr)
AR (1) AR027314A1 (fr)
FR (1) FR2804475B1 (fr)
WO (1) WO2001055568A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107810317A (zh) * 2015-06-30 2018-03-16 Ge延巴赫两合无限公司 用于调节内燃机的方法
FR3085718A1 (fr) * 2018-09-10 2020-03-13 Vianney Rabhi Dispositif de rappel magnetique de clapet
CN112943486A (zh) * 2019-12-11 2021-06-11 通用汽车环球科技运作有限责任公司 用于泵辅助以最大化天然气动力总成中的燃料消耗的系统和方法
US11352968B1 (en) * 2021-06-29 2022-06-07 Ford Global Technologies, Llc Methods and systems for reducing catalyst cooling during fuel cut via pre-chamber ignition system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPI20090143A1 (it) * 2009-11-18 2011-05-19 Univ Pisa Sistema di iniezione diretta di idrogeno per motori ad ac

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210105A (en) * 1978-01-17 1980-07-01 Toyota Jidosha Kogyo Kabushiki Kaisha Internal combustion engine injected accumulation chamber
US4248192A (en) * 1977-05-05 1981-02-03 Lampard Robert D Internal combustion engine and method of operation thereof with isolated combustion initiation
JPH0633785A (ja) * 1992-07-15 1994-02-08 Isuzu Ceramics:Kenkyusho:Kk 弁開度制御装置付き遮熱型ガスエンジン
JPH06159062A (ja) * 1992-11-19 1994-06-07 Isuzu Ceramics Kenkyusho:Kk 副燃焼室を持つガスエンジン
JPH07127530A (ja) * 1993-10-29 1995-05-16 Isuzu Motors Ltd 副室を有するガスエンジン
JPH07127529A (ja) * 1993-10-29 1995-05-16 Isuzu Motors Ltd 2層副室を有する遮熱型ガスエンジン
EP1054142A2 (fr) * 1999-05-21 2000-11-22 Stefanie Dosch Moteur

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5170766A (en) 1992-01-16 1992-12-15 Orbital Walbro Corporation Fuel and air injection for multi-cylinder internal combustion engines
US5771857A (en) 1996-11-06 1998-06-30 Caterpillar Inc. Direct injected gas engine with variable gas pressure control apparatus and method of operation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4248192A (en) * 1977-05-05 1981-02-03 Lampard Robert D Internal combustion engine and method of operation thereof with isolated combustion initiation
US4210105A (en) * 1978-01-17 1980-07-01 Toyota Jidosha Kogyo Kabushiki Kaisha Internal combustion engine injected accumulation chamber
JPH0633785A (ja) * 1992-07-15 1994-02-08 Isuzu Ceramics:Kenkyusho:Kk 弁開度制御装置付き遮熱型ガスエンジン
JPH06159062A (ja) * 1992-11-19 1994-06-07 Isuzu Ceramics Kenkyusho:Kk 副燃焼室を持つガスエンジン
JPH07127530A (ja) * 1993-10-29 1995-05-16 Isuzu Motors Ltd 副室を有するガスエンジン
JPH07127529A (ja) * 1993-10-29 1995-05-16 Isuzu Motors Ltd 2層副室を有する遮熱型ガスエンジン
EP1054142A2 (fr) * 1999-05-21 2000-11-22 Stefanie Dosch Moteur

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 249 (M-1604), 12 mai 1994 (1994-05-12) & JP 06 033785 A (ISUZU CERAMICS:KENKYUSHO:KK), 8 février 1994 (1994-02-08) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 491 (M-1672), 13 septembre 1994 (1994-09-13) & JP 06 159062 A (ISUZU CERAMICS KENKYUSHO:KK), 7 juin 1994 (1994-06-07) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 08, 29 septembre 1995 (1995-09-29) & JP 07 127529 A (ISUZU MOTORS LTD), 16 mai 1995 (1995-05-16) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 08, 29 septembre 1995 (1995-09-29) & JP 07 127530 A (ISUZU MOTORS LTD), 16 mai 1995 (1995-05-16) *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107810317A (zh) * 2015-06-30 2018-03-16 Ge延巴赫两合无限公司 用于调节内燃机的方法
US10837351B2 (en) 2015-06-30 2020-11-17 Innio Jenbacher Gmbh & Co Og Method for regulating an internal combustion engine
CN107810317B (zh) * 2015-06-30 2021-08-27 Ge延巴赫两合无限公司 用于调节内燃机的方法
FR3085718A1 (fr) * 2018-09-10 2020-03-13 Vianney Rabhi Dispositif de rappel magnetique de clapet
WO2020053501A1 (fr) * 2018-09-10 2020-03-19 Vianney Rabhi Dispositif de rappel magnetique de clapet
CN112654773A (zh) * 2018-09-10 2021-04-13 V·拉比 电磁阀复位装置
CN112654773B (zh) * 2018-09-10 2023-11-21 V·拉比 电磁阀复位装置
CN112943486A (zh) * 2019-12-11 2021-06-11 通用汽车环球科技运作有限责任公司 用于泵辅助以最大化天然气动力总成中的燃料消耗的系统和方法
CN112943486B (zh) * 2019-12-11 2023-01-13 通用汽车环球科技运作有限责任公司 用于泵辅助以最大化天然气动力总成中的燃料消耗的系统和方法
US11352968B1 (en) * 2021-06-29 2022-06-07 Ford Global Technologies, Llc Methods and systems for reducing catalyst cooling during fuel cut via pre-chamber ignition system

Also Published As

Publication number Publication date
WO2001055568A3 (fr) 2001-12-20
EP1250522A2 (fr) 2002-10-23
FR2804475B1 (fr) 2002-03-15
AR027314A1 (es) 2003-03-19
FR2804475A1 (fr) 2001-08-03

Similar Documents

Publication Publication Date Title
FR2704600A1 (fr) Installation d'injection de carburant pour moteur thermique.
FR2459884A1 (fr) Moteur a combustion interne
FR2909718A1 (fr) Moteur a combustion interne suralimente
FR2819020A1 (fr) Installation d'injection de carburant
FR2617240A1 (fr) Dispositif et methode d'introduction sous pression de melange carbure dans le cylindre d'un moteur
EP0750102B1 (fr) Procédé et dispositif de contrôle de l'air à l'admission d'un moteur 4 temps à allumage commandé
FR2473115A1 (fr) Moteur a combustion interne du type divise
FR2879662A1 (fr) Procede de gestion d'un moteur a combustion interne
EP0961880B1 (fr) Procede et dispositif de regeneration d'un filtre a vapeurs de carburant pour un moteur a injection directe
WO2001055568A2 (fr) Dispositif d'injection de gaz naturel dans la chambre de combustion d'un cylindre
EP0691472B1 (fr) Moteur à combustion interne ayant un réservoir de stockage de pression d'utilisation spécifique
FR2472086A1 (fr) Moteur a combustion interne du type divise
EP0577451B1 (fr) Dispositif de contrÔle de l'injection pneumatique d'un mélange carburé dans un moteur à combustion interne à deux temps et utilisation associée
FR2643943A1 (fr) Systeme d'emprisonnement d'air pour cylindre, equipe d'un ressort pneumatique
FR2791090A1 (fr) Procede de commande d'un moteur a combustion interne
EP1346141B1 (fr) Dispositif et methode d'injection d'un carburant gazeux sous forme liquide pour moteur a combustion interne
EP1614894A1 (fr) Dispositif d'injection a rampe commune avec amortissement des ondes de pression
EP1438497B1 (fr) Rampe a carburant comportant un element expansible
WO2001051786A1 (fr) Procede et dispositif pour ameliorer le fonctionnement a bas regime des moteurs thermiques suralimentes
FR3126736A1 (fr) Pompe à haute pression d’un système de carburation à injection directe de carburant liquide d’un moteur à combustion interne à bicarburation d’un véhicule automobile
FR3132124A1 (fr) Système d’alimentation à haute pression pour l’injection directe de carburant liquide dans un moteur à combustion interne à bicarburation
FR2799797A1 (fr) Procede et dispositif d'alimentation d'un moteur a combustion interne, en particulier pour vehicule automobile
EP2044312A2 (fr) Procede de reduction des emissions d'hydrocarbures d'un moteur froid a injection indirecte d'essence
EP1448887B1 (fr) Systeme d'injection pour moteur a combustion interne
FR2927955A3 (fr) Culasse comportant un dispositif de refroidissement par injection d'eau et moteur a combustion interne comportant une telle culasse.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): BR CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): BR CN JP KR MX US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001903973

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001903973

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001903973

Country of ref document: EP