WO2001052301A1 - Elektronenoptischer korrektor zur beseitigung der bildfehler dritter ordnung - Google Patents

Elektronenoptischer korrektor zur beseitigung der bildfehler dritter ordnung Download PDF

Info

Publication number
WO2001052301A1
WO2001052301A1 PCT/DE2001/000102 DE0100102W WO0152301A1 WO 2001052301 A1 WO2001052301 A1 WO 2001052301A1 DE 0100102 W DE0100102 W DE 0100102W WO 0152301 A1 WO0152301 A1 WO 0152301A1
Authority
WO
WIPO (PCT)
Prior art keywords
hexapole
corrector
lens
round
order
Prior art date
Application number
PCT/DE2001/000102
Other languages
English (en)
French (fr)
Inventor
Harald Rose
Original Assignee
Leo Elektronenmikroskopie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leo Elektronenmikroskopie Gmbh filed Critical Leo Elektronenmikroskopie Gmbh
Priority to DE50103315T priority Critical patent/DE50103315D1/de
Priority to US10/169,995 priority patent/US6861651B2/en
Priority to EP01913504A priority patent/EP1249031B1/de
Priority to JP2001552424A priority patent/JP4745582B2/ja
Publication of WO2001052301A1 publication Critical patent/WO2001052301A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators

Definitions

  • the invention relates to an electron-optical corrector for eliminating third-order image errors, such as aperture errors, field curvature, extra-axial astigmatism and is free of third-order off-axis coma and third-order distortion as well as first-order color errors with a symmetrical structure in the direction of the central plane straight optical axis.
  • third-order image errors such as aperture errors, field curvature, extra-axial astigmatism
  • third-order distortion as well as first-order color errors with a symmetrical structure in the direction of the central plane straight optical axis.
  • the aim is always to construct and adjust the assembly consisting of the imaging lens system and the corrector in its entirety in such a way that the image errors of the overall system which limit the performance are eliminated or at least substantially minimized, the task of the corrector being assigned, on the one hand to achieve an elimination or at least a reduction by means of negative image error coefficients and, on the other hand, not to cause an increase in disadvantageous image error coefficients.
  • the object of the present invention is to create an electron-optical corrector with the aid of which, in addition to the first-order and first-degree color errors, all third-order image errors, such as aperture errors, field curvature, off-axis astigmatism, off-axis coma and distortion, are eliminated, so that no additional off-axis is generated.
  • is selected so that the inner plane of the S 1 comes to lie in the front focal point of the downstream round lens and the center of the hexapoles S 2 and S 3 is arranged in the focal plane and finally other elements of the corrector are connected , which are constructed symmetrically to the central plane Z m of the hexapole S 3 .
  • the distance between adjacent round lenses is 2f, where f means the focal length of the round lens.
  • the hexapoles S 2 , S 4 and S 3 are to be arranged with their center at the focal point of the round lenses.
  • the hexapoles S ⁇ and S 5 are assigned so that their inner plane comes to lie in the focal point of the round lens.
  • the power of the hexapole lenses S ⁇ S 3 and S 5 is the same.
  • the strength of the hexapoles S 1 and S 2 are available as freely and independently selectable parameters to eliminate the opening error and the field curvature as well as the off-axis astigmatism (all errors of the third order). Appropriate settings can be used to eliminate two of the aforementioned image errors in the overall system. For the purposes of lithography, the focus is on eliminating the off-axis astigmatism and the field curvature.
  • the third-order opening error of the corrector is negative and leads to a reduction in the total error, but in the most general case it does not become zero.
  • the corrector itself is otherwise free of distortion and third-order coma and of first-order extra-axial color error, so that when the corrector is installed in a correspondingly error-free electron-optical system, the overall system is also error-free with regard to these errors remains.
  • theoretical considerations indicate that a system is free from off-axis coma and distortion must consist of at least four lenses.
  • the decisive advantages of the proposed corrector are, with the appropriate setting and spatial arrangement, to set the opening error, the field curvature and the off-axis astigmatism (all of the third order) in such a way that the overall system becomes error-free, but also other image errors , namely the distortion of the third order, the off-axis coma and the color error of the first order and first degree by the corrector, since even without errors, there is no increase in the overall system.
  • the hexapoles will always be aligned relative to one another in the same section. If magnetic lenses are used, the magnetic field results in an anisotropic (azimuthal component), which gives rise to an image rotation. To eliminate errors, the sections of the hexapole S 2 (and the sections S, lying in the same section) are rotated relative to the hexapoles S - S 3 and S, - which are also aligned in a common section. The angle of rotation is determined by the size of the anisotropic component determined by the magnetic field.
  • the rotation of the hexapoles can be maintained while maintaining the mechanical orientation to electrostatic
  • Paths occur when a twelve-pole is used to generate the hexapole field, which rotates the cuts by any angle allowed by appropriate polarity reversal of the electrodes. It is therefore possible to rotate the hexapole field by changing the polarity by the required angle after installing the twelve poles.
  • the previously proposed corrector eliminates image errors up to the third order.
  • two of these correctives are arranged one behind the other in series and optically connected to one another via a round lens doublet.
  • the distance between the two round lenses 2f and the distance between the last hexapole of the first corrector and the first round lens and the distance between the second round lens and the subsequent hexapole are also equal to the focal length f.
  • an antisymmetric beam path is obtained in both correctors, which leads to mutual compensation of the fourth-order errors of the two individual correctives. Since the remaining round lenses are free from fourth-order errors, the system then only has fifth-order and higher-order errors.
  • a corrector with these optical properties is called a double anastigmat.
  • the corrector proposed according to the invention is preferably used in a reducing electron-optical system as used in lithography and which is used to reduce certain structures defined by a mask by the electron-optical system and onto the crystal located in the image plane (Wafers) through the impacting electrodes and to describe.
  • the aim is to create electronic components and integrated circuits with the smallest possible dimensions, the electron-optical systems having the advantage of being able to reproduce much finer structures in comparison with light-optical images due to their much shorter wavelength.
  • the corrector is brought into the beam path after the projection lens located behind the object plane and the output side - if necessary by interposing a transfer lens - describes the engagement part (wafer) in the image plane via a lens.
  • the term objective lens is to be understood broadly and can consist of an arrangement composed of several lenses.
  • the proposed corrector has the particular advantage of being able to eliminate the image errors which limit the performance of electron-optically reducing imaging systems. A significant improvement in the image quality is therefore to be expected.
  • the corrector is structured as follows:
  • the first Hexapol S of length 1 ⁇ .
  • the round lens doublet consisting of the round lenses R ⁇ and R 2 , the focal length of the two round lenses R 1 and 2 being the same and their distance equaling 2f, where f is the focal length , was selected so that the round lens doublet in its entirety produces a telescopic beam path.
  • the further hexapole S 2 of length 1 2 is arranged in the focal plane.
  • the inlet-side first Hexapol S-_ is located at such a distance that its inner plane comes to lie in the focal point of the subsequent round lens.
  • the spatial assignment takes place in such a way that the central plane of the hexapole S3 comes to lie in the focal plane Z ⁇ of the round lens.
  • the further construction of the corrector in the direction of the beam path is symmetrical to this central plane Z m , so that reference can be made to the previous statements in order to avoid repetitions both with regard to the spatial arrangement and the selected pole thickness.
  • the corrector described has two freely selectable parameters, namely the strength of the hexapole S 1 (and thus also that of the hexapole S 3 and S 5 ) and the strength of the hexapole S 2 (and thus also that of the hexapole S 4 ). These two parameters allow two of the three image errors mentioned below, namely image field curvature, off-axis astigmatism and third-order aperture errors, to be set as desired, in such a way that a compensation of two of these image errors occurs.
  • the third error (described with reference to the third-order opening error) can also be influenced in the desired manner by appropriate selection of the geometric parameters and in particular the distance, so that extensive compensation of the third image error is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Elektronenoptischer Korrektor zur Beseitigung der Bildfehler dritter Ordnung, wie Öffnungsfehler, Bildfeldwölbung, ausseraxialer Astigmatismus und frei ist von ausseraxialer Koma dritter Ordnung sowie der Verzeichnung dritter Ordnung ebenso wie vom Farbfehler erster Ordnung ersten Grades mit einem zur Mittelebene symmetrischen Aufbau in Richtung der geraden optischen Achse, wobei in Richtung des Strahlenganges zunächst ein Hexapol S1 der Länge l1, dann eine Rundlinse R1, als nächstes ein Hexapol S2 von der Länge l2 und daran anschliessend eine Rundlinse R2 und hieran schliesslich ein dritter Hexapol S3 von der Stärke des Hexapoles S1 sowie dessen doppelter Länge l3=211 folgt, wobei der Abstand der beiden Rundlinsen Ri gleicher Stärke 2f der Brennweite beträgt im Brennpunkt zwischen beiden Rundlinsen B1, R2 der Hexapol S2 angeordnet ist und der Abstand der Rundlinse zum ersten Hexapol S1 so gewält ist, dass die innere Ebene des S1 im vorderen Brennpunkt der nachgeordneten Rundlinse zu liegen kommt und die Mitte der Hexapole S2 und S3 in der Brennebene angeordnet ist und schliesslich sich weitere Elemente des Korrektors anschliessen, die symmetrisch zur Mittelebene Zm des Hexapoles S3 aufgebaut sind.

Description

Elektronenoptischer Korrektor zur Beseitigung der Bildfehler dritter Ordnung
Die Erfindung betrifft einen elektronenoptischen Korrektor zur Beseitigung der Bildfehler dritter Ordnung, wie Öffnungsfehler, Bildfeldwölbung, außeraxialer Astigmatismus und frei ist von außeraxialer Koma dritter Ordnung sowie der Verzeichnung dritter Ordnung ebenso wie vom Farbfehler erster Ordnung ersten Grades mit einem zur Mittelebene symmetrischen Aufbau in Richtung der geraden optischen Achse.
Die Leistungsfähigkeit elektronenoptischer Systeme, unter denen im Sinne dieser Erfindung auch mit Ionen abbildende Systeme zu verstehen sind, wird durch ihre Bildfehler begrenzt, wobei in Abhängigkeit vom konkreten Verwendungszweck und dem Umfang der bereits vorgenommenen Korrekturen bestimmte Bildfehler für die Begrenzung der Leistung verantwortlich sind, deren Beseitigung einen erheblichen Fortschritt bei der Verbesserung elektronenopti- scher Systeme bedeutet. Eine systematische Unterteilung und Zusammenfassung der Bildfehler ist ög- lieh in die axialen Bildfehler, die durch die in den beiden Schnitten von der optischen Achse in der Gegeήstandsebene ausgehenden Fundamentalbahnen bestimmt werden, den außeraxialen Bildfehlern, welche ihrerseits von den außerhalb der optischen Achse in der Gegenstandsebene ausgehenden Fundamentalbahnen abhängig sind, sowie durch die chromatischen Fehler, die nur bei unterschiedlichen Geschwindigkeiten der abbildenden Elektronen auftreten. Bei ver- größernden elektronenoptischen Systemen, wie sie in der Elektronenmikroskopie Verwendung finden, steht die Beseitigung der axialen Bildfehler zur Steigerung der Leistungsfähigkeit im Vordergrund. Bei verkleinernden elektronenoptischen Systemen, wie sie in der Lithographie zum Beschreiben von Objekten mit Hilfe von Elektronenstrahlen eingesetzt werden, ist die Beseitigung außeraxialer Bildfehler entscheidend.
Ziel ist stets, die aus dem abbildenden Linsensy- ste sowie dem Korrektor bestehende Anordnung in ihrer Gesamtheit so aufzubauen und einzustellen, daß die die Leistungsfähigkeit begrenzenden Bild- fehler des Gesa tsystemes beseitigt oder doch wesentliche minimiert werden, wobei dem Korrektor die Aufgabe zufällt, einerseits durch negative Bildfehlerkoeffizienten eine Eliminierung bzw. zumindest Verringerung zu erreichen und andererseits keine Erhöhung nachteiliger Bildfehlerkoeffizienten hervorzurufen.
Aufgabe vorliegender Erfindung ist die Schaffung eines elektronenoptischen Korrektors mit dessen Hilfe neben dem Farbfehler erster Ordnung und ersten Grades sämtliche Bildfehler dritter Ordnung, wie Öffnungsfehler, Bildfeldwölbung, außeraxialem Astigmatismus, außeraxialer Koma sowie Verzeichnung beseitigt werden, derart daß kein zusätzlicher au- ßeraxialer erzeugt wird.
Gelöst wird diese Aufgabe erfindungsgemäß durch einen Korrektor, der symmetrisch zur Mittelebene von folgendem Aufbau ist:
In Richtung des Strahlenganges zunächst ein Hexapol S-L der Länge llf dann eine Rundlinse R^ als näch- stes ein Hexapol S2 von der Länge 12 und daran anschließend eine Rundlinse R2 und hieran schließlich ein dritter Hexapol S3 von der Stärke des Hexapoles S1 sowie dessen doppelter Länge 13=211 folgt, wobei der Abstand der beiden Rundlinsen Rj_ gleicher Stärke 2f der Brennweite beträgt im Brennpunkt zwischen beiden Rundlinsen B-^, R2 der Hexapol S2 angeordnet ist und Abstand der Rundlinse zum ersten Hexapol S.^ so gewählt ist, daß die innere Ebene des S1 im vorderen Brennpunkt der nachgeordneten Rund- linse zu liegen kommt und die Mitte der Hexapole S2 und S3 in der Brennebene angeordnet ist und schließlich sich weitere Elemente des Korrektors anschließen, die .symmetrisch zur Mittelebene Zm des Hexapoles S3 aufgebaut sind.
Zur Realisierung des notwendigen teleskopischen Gaußschen Strahlenganges beträgt der Abstand benachbarter Rundlinsen jeweils 2f , wobei f die Brennweite der Rundlinse bedeutet. Die Hexapole S2 , S4 und S3 sind mit ihrer Mitte jeweils im Brennpunkt der Rundlinsen anzuordnen. Die Hexapole S^ und S5 werden so zugeordnet, daß ihre jeweils innere Ebene im Brennpunkt der Rundlinse zu liegen kommt. Um keine Fehler zweiter Ordnung entstehen zu lassen, ist die Stärke der Hexapollinsen S^ S3 und S5 jeweils gleich groß. Zudem werden S2=S4 eingestellt, die jedoch in ihrer Stärke von S-^ S3 und S5 völlig unabhängig wählbar sind. Allerdings ist stets erforderlich eine Symmetrie im Hinblick auf die Mittelebene Zm im Aufbau und Einstellung des Korrektors zu gewährleisten.
Zur Beseitigung des Öffnungsfehlers und der Bildfeldwölbung als auch des außeraxialen Astigmatismus (alle Fehler der dritten Ordnung) stehen die Stärke der Hexapole S1 und S2 als frei und unabhängig voneinander wählbare Parameter zur Verfügung. Durch entsprechende Einstellung lassen sich zwei der vorgenannten Bildfehler im Gesamtsystem eliminieren. Für die Zwecke der Lithographie steht im Vordergrund, den außeraxialen Astigmatismus als auch die Bildfeldwölbung zu beseitigen. Der Öffnungsfehler dritter Ordnung des Korrektors ist zwar negativ und führt zu einer Reduzierung des Gesamtfehlers, wird im allgemeinsten Falle jedoch nicht zu Null. Durch geeignete räumliche Anordnung im Gesamtsystem und entsprechender Abstandswahl zu den benachbarten Linsen läßt sich für eine bestimmte Vergrößerung erreichen, daß auch der Öffnungsfehler dritter Ordnung des Gesamtsystemes kompensiert wird.
Neben der Beseitigung der vorgenannten Bildfehler ist der Korrektor selbst im übrigen frei von Verzeichnung und Koma dritter Ordnung sowie vom außeraxialen Farbfehler erster Ordnung ersten Grades, so daß bei einem Einbau des Korrektors in ein entsprechend fehlerfreies elektronenoptisches System das Gesamtsystem im Hinblick auf diese Fehler ebenfalls fehlerfrei bleibt. Für eine Vergrößerung ungleich 1 ergeben theoretische Überlegungen, daß ein System frei von außeraxialer Koma und Verzeichnung aus mindestens vier Linsen bestehen muß.
Die entscheidenden Vorteile des vorgeschlagenen Korrektors bestehen zunächst darin bei entsprechen- der Einstellung und räumlicher Anordnung den Öff- nungsfehler, die Bildfeldwölbung und den außeraxialen Astigmatismus (sämtliche der dritten Ordnung) so einzustellen, daß das Gesamtsystem fehlerfrei wird, sondern darüberhinaus auch weitere Bildfeh- 1er, nämlich die Verzeichnung dritter Ordnung, die außeraxiale Koma und der Farbfehler erster Ordnung und ersten Grades durch den Korrektor, da selbst fehlerfrei, hinsichtlich des Gesa tsystemes keine Erhöhung erfährt.
Im allgemeinsten Fall werden die Hexapole stets im gleichen Schnitt relativ zueinander ausgerichtet sein. Im Falle der Verwendung von Magnetlinsen ergibt sich durch das magnetische Feld ein anisotro- per (azimutaler Anteil) , der zu einer Bilddrehung Anlaß gibt. Zur Fehlerbeseitigung erfolgt eine Drehung der Schnitte des Hexapoles S2 (und den im gleichen Schnitt liegenden S,) relativ zu den ebenfalls in einen gemeinsamen Schnitt ausgerichteten Hexapole S-^ S3 und S,-. Der Drehwinkel bestimmt sich durch die Größe des durch das Magnetfeld bestimmten anisotropen Anteils.
Die Drehung der Hexapole kann unter Beibehaltung der mechanischen Ausrichtung auf elektrostatischen
Wege dann erfolgen, wenn zur Erzeugung des Hexapol- feldes ein Zwölfpol Verwendung findet, der eine Drehung der Schnitte um einen beliebigen Winkel durch entsprechende Umpolung der Elektroden erlaubt. Es wird demnach möglich, nach dem Einbau der Zwölfpole das Hexapolfeld durch entsprechende Änderung der Polung um den gewünschten Winkel zu dre- hen.
Der bisher vorgeschlagene Korrektor beseitigt die Bildfehler bis zur dritten Ordnung. In einer besonders bevorzugten Weiterbildung werden zwei dieser Korrektive hintereinander in Reihe angeordnet und über ein Rundlinsendublett miteinander optisch verbunden. Dabei beträgt der Abstand der beiden Rundlinsen 2f und der Abstand des letzten Hexapoles des ersten Korrektors zur ersten Rundlinse sowie den Abstand zwischen zweiter Rundlinse und dem anschließenden Hexapol ebenfalls gleich der Brennweite f. Durch eine solche Verknüpfung erhält man in beiden Korrektoren eine antisymmetrischen Strahlenverlauf der zu einer gegenseitigen Kompensation der Fehler vierter Ordnung der beiden Einzelkorrektive führt. Das System hat dann, da die verbleibenden Rundlinsen frei sind von Fehler vierter Ordnung, nur noch Fehler fünfter und höherer Ordnung. Einen Korrektor mit diesen optischen Eigenschaften wird als Doppelanastigmat bezeichnet.
Bevorzugte Verwendung findet der erfindungsgemäß vorgeschlagene Korrektor in einem verkleinernden elektronenoptischen System wie es in der Lithogra- phie Verwendung findet und die dazu genutzt werden bestimmte durch eine Maske definierte Strukturen durch das elektronenoptische System zu verkleinern und auf den in der Bildebene befindlichen Kristall (Wafer) durch die auftreffenden Elektroden einzuprägen und zu beschreiben. Es geht um die Schaffung elektronischer Bauelemente und integrierter Schaltkreise mit möglichst geringen Abmessungen, wobei die elektronenoptischen Systeme im Vergleich mit lichtoptischen Abbildungen aufgrund ihrer wesentlich geringeren Wellenlänge den Vorteil haben wesentlich feinere Strukturen wiedergeben zu können. Hierbei wird der Korrektor nach der hinter der Ge- genstandsebene befindlichen Projektionslinse in den Strahlengang gebracht und ausgangsseitig - ggf. über Zwischenschalten einer Transferlinse - über ein Objektiv in der Bildebene den Eingriffsteil (Wafer) beschreibt. Der Begriff Objektivlinse ist weit zu fassen und kann aus einer aus mehreren Linsen zusammengesetzten Anordnung bestehen. Der vorgeschlagene Korrektor hat gerade den Vorteil, die die Leistungsfähigkeit von elektronenoptisch verkleinernden Abbildungssystemen begrenzenden Bild- fehler beseitigen zu können. Eine wesentliche Verbesserung der Abbildungsgualität steht demnach zu erwarten.
Weitere Einzelheiten, Merkmale und Vorteile der Erfindung lassen sich dem nachfolgenden Beschreibungsteil entnehmen, in dem anhand der Zeichnung ein erfindungsgemäßer Korrektor beschrieben wird. Es zeigen:
Figur 1 einen Schnitt entlang der optischen Achse und Wiedergabe der Gaußschen Fundamentalbahnen. Die zeichnerische Wiedergabe ist in prinzipieller Darstellung gehalten. Die Hexapole sind hierbei mit S^, ihre Länge mit 1^ und die Rundlinsen mit R^ be- zeichnet. Der Korrektor ist wie folgt aufgebaut:
Einlaßseitig befindet sich der erste Hexapol S, von der Länge 1^ Hieran schließen sich das aus den Rundlinsen R^ und R2 bestehende Rundlinsendublett an, wobei die Brennweite beider Rundlinsen R1 und 2 übereinstimmt und ihr Abstand gleich 2f, wobei f die Brennweite ist, gewählt wurde, so daß das Rund- linsenduplett- in seiner Gesamtheit einen teleskopi- schen Strahlengang erzeugt. Zwischen den beiden Rundlinsen R1, R2 ist in der Brennebene der weitere Hexapol S2 von der Länge 12 angeordnet. Der einlaß- seitige erste Hexapol S-_ befindet sich in einem solchen Abstand, daß dessen innere Ebene im Brennpunkt der nachfolgenden Rundlinse zu liegen kommt. Der in Richtung des Strahlenganges nachfolgende Hexapol S3 ist in seiner Stärke gleich dem Hexapol S-^ gewählt, jedoch von dem gegenüber doppelter Länge 13 = 21-^ . Die räumliche Zuordnung erfolgt in der Weise, daß die Mittelebene des Hexapoles S3 in die Brennebene Z^ der Rundlinse zu liegen kommt.
Der weitere Aufbau des Korrektors in Richtung des Strahlenganges ist symmetrisch zu dieser Mittelebene Zm, so daß sowohl im Hinblick auf die räumli- ehe Anordnung als auch auf die gewählte Polstärke auf die bisherigen Ausführungen zur Vermeidung von Wiederholungen Bezug genommen werden kann. Der beschriebene Korrektor besitzt zwei frei wählbare Parameter, nämlich die Stärke des Hexapoles S1 (und damit auch die des Hexapoles S3 und S5) als auch die Stärke des Hexapoles S2 (und somit auch die des Hexapoles S4) . Diese beiden Parameter erlauben es zwei der nachfolgend genannten drei Bildfehler, nämlich Bildfeldwölbung, außeraxialer Astigmatismus und Öffnungsfehler dritter Ordnung, beliebig einzustellen, und zwar derart, daß eine Kompensation zweier dieser Bildfehler eintritt. Wie bereits beschrieben läßt sich der dritte Fehler (beschrieben anhand des Öffnungsfehlers dritter Ordnung) durch entsprechende Wahl der geometrischen Parameter und insbesondere des Abstandes ebenfalls in der gewünschten Weise beeinflussen, so daß eine weitgehende Kompensation des dritten Bildfehlers möglich ist.

Claims

P A T E N T A N S P RÜ C H E
1. Elektronenoptischer Korrektor zur Beseitigung der Bildfehler dritter Ordnung, wie Öffnungsfehler, Bildfeldwölbung, außeraxialer Astigmatismus und frei ist von außeraxialer Koma dritter Ordnung sowie der Verzeichnung dritter Ordnung ebenso wie vom Farbfehler erster Ordnung ersten Grades mit einem zur Mittelebene symmetrischen Aufbau in Richtung der geraden optischen Achse, dadurch gekennzeichnet, daß in Richtung des Strahlenganges zunächst ein Hexapol S^ der Länge 1^ , dann eine Rundlinse R^ als nächstes ein Hexapol S2 von der Länge 12 und daran anschließend eine Rundlinse R2 und hieran schließlich ein dritter Hexapol S3 von der Stärke des Hexapoles S-]^ sowie dessen doppelter Länge 12=21 folgt, wobei der Abstand der beiden Rundlinsen Rj_ gleicher
Stärke 2f der Brennweite beträgt im Brennpunkt zwischen beiden Rundlinsen B^ , R2 der Hexapol S2 angeordnet ist und der Abstand der Rundlinse zum ersten Hexapol S-L so gewählt ist, daß die innere Ebene des S-L im vorderen Brennpunkt der nachgeordneten Rundlinse zu liegen kommt und die Mitte der Hexapole S2 und S3 in der Brennebene angeordnet ist und schließlich sich weitere Elemente des Korrektors anschließen, die symmetrisch zur Mittelebene Zm des Hexapoles S3 aufgebaut sind.
2. Korrektor nach Anspruch 1, dadurch gekennzeich- net, daß die Hexapolstärken S-^, S2 jeweils so gewählt sind, daß der außeraxiale Astigmatismus als auch die Bildfeldwölbung des Gesamtsystems beseitigt werden und der Abstand zu den benachbarten Linsen des Gesa tsystemes so gewählt ist, daß der Öffnungsfehler dritter Ordnung bis hin zur Kompensation beeinflußbar ist.
3. Korrektor nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß der Schnitt der Hexapole S-^ S4 gegenüber den durch die anderen Hexapole S-,, S3, S^ gebildeten Schnittes um die optische Achse azimutal gedreht ist.
4. Korrektor nach Anspruch 3 , dadurch gekennzeichnet, daß die Hexapole in einem aus 12 Elektroden oder Polschuhen bestehenden Zwölfpolelement erzeugt sind.
5. Elektronenoptisches Korrektiv nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwei der oben genannten Korrektoren über ein
Rundlinsendublett hintereinander angeordnet sind, wobei der Abstand der beiden Rundlinse das Zweifache von deren Brennweite entspricht und der Abstand des letzten Hexapols des ersten Korrktors zur er- sten Rundlinse und ebenso der Abstand der zweiten
Rundlinse des Rundlinsendubletts zum ersten Hexapol des zweiten Korrektors jeweils der Brennweite f der Rundlinse entspricht.
6. Verwendung eines elektronenoptischen Korrektors nach einem der vorhergehenden Ansprüche in einem verkleinernden elektronenoptischen System, insbesondere der Lithographie mit einer in Richtung des Strahlenganges hinter der in der Regel durch die . abzubildende Maske gebildeten Gegenstandsebene befindliche Projektionslinse und einer der in der Re- gel durch einen Wafer definierten Bildebene vorgeschalteten Objektivlinse, dadurch gekennzeichnet, daß in Richtung des Strahlenganges nach der Projektionslinse der Korrektor in den Strahlengang eingebracht ist.
7.. Verwendung eines elektronenoptischen Korrektors nach einem der vorhergehenden Ansprüche in einem verkleinernden elektronenoptischen System, insbe- sondere der Lithographie mit einer in Richtung des Strahlenganges hinter der in der Regel durch die abzubildende Maske gebildeten Gegenstandsebene befindliche Projektionslinse und einer der in der Regel durch einen Wafer definierten Bildebene vorge- schalteten Objektivlinse, gekennzeichnet durch eine Transferlinse zwischen Korrektor und Objektivlinse.
PCT/DE2001/000102 2000-01-14 2001-01-12 Elektronenoptischer korrektor zur beseitigung der bildfehler dritter ordnung WO2001052301A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50103315T DE50103315D1 (de) 2000-01-14 2001-01-12 Elektronenoptischer korrektor zur beseitigung der bildfehler dritter ordnung
US10/169,995 US6861651B2 (en) 2000-01-14 2001-01-12 Electron-optical corrector for eliminating third-order aberations
EP01913504A EP1249031B1 (de) 2000-01-14 2001-01-12 Elektronenoptischer korrektor zur beseitigung der bildfehler dritter ordnung
JP2001552424A JP4745582B2 (ja) 2000-01-14 2001-01-12 3次収差を除く電子光学補正器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10001277A DE10001277A1 (de) 2000-01-14 2000-01-14 Elektronenoptischer Korrektor zur Beseitigung der Bildfehler dritter Ordnung
DE10001277.9 2000-01-14

Publications (1)

Publication Number Publication Date
WO2001052301A1 true WO2001052301A1 (de) 2001-07-19

Family

ID=7627472

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000102 WO2001052301A1 (de) 2000-01-14 2001-01-12 Elektronenoptischer korrektor zur beseitigung der bildfehler dritter ordnung

Country Status (5)

Country Link
US (1) US6861651B2 (de)
EP (1) EP1249031B1 (de)
JP (1) JP4745582B2 (de)
DE (2) DE10001277A1 (de)
WO (1) WO2001052301A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065388A2 (de) * 2005-10-24 2007-06-14 Ceos Corrected Electron Optical Systems Gmbh Elektronenoptischer korrektor für aplanatische abbildungssysteme

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10159308A1 (de) * 2001-12-04 2003-06-12 Ceos Gmbh Teilchenoptischer Korrektor
GB2413397A (en) * 2004-04-24 2005-10-26 Camdeor Technology Co Ltd Focussing means for a video camera
JP4721798B2 (ja) * 2005-07-21 2011-07-13 日本電子株式会社 電子線装置
JP4848017B2 (ja) * 2005-12-06 2011-12-28 ツェーエーオーエス コレクテッド エレクトロン オプチカル システムズ ゲーエムベーハー 3次の開口収差及び1次1グレード(Grade)の軸上色収差を除去するための補正装置
US7405402B1 (en) 2006-02-21 2008-07-29 Kla-Tencor Technologies Corporation Method and apparatus for aberration-insensitive electron beam imaging
DE102006017686A1 (de) * 2006-04-15 2007-10-18 Ceos Corrected Electron Optical Systems Gmbh Elektronenoptischer Korrektor für aplanatische Abbildungssysteme
US7224135B1 (en) * 2006-09-07 2007-05-29 Acutechnology Semiconductor Inc. Imposed current motor drive
KR100767599B1 (ko) * 2006-11-13 2007-10-17 (주)제이브이엠 약제 자동 포장기의 정전보상 운전방법 및 장치
JP5226367B2 (ja) * 2007-08-02 2013-07-03 日本電子株式会社 収差補正装置
JP5623719B2 (ja) * 2008-10-06 2014-11-12 日本電子株式会社 荷電粒子線装置の色収差補正装置及びその補正方法
EP2325862A1 (de) * 2009-11-18 2011-05-25 Fei Company Korrektor für axiale Aberrationen einer teilchenoptischen Linse
EP2339608B1 (de) 2009-12-22 2014-05-07 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Elektrostatischer Korrektor
JP5545869B2 (ja) * 2010-11-16 2014-07-09 日本電子株式会社 荷電粒子線の軸合わせ方法及び荷電粒子線装置
JP6224717B2 (ja) * 2013-09-30 2017-11-01 株式会社日立ハイテクノロジーズ 荷電粒子ビーム装置
JP6843794B2 (ja) * 2018-03-30 2021-03-17 日本電子株式会社 収差補正装置および荷電粒子線装置
DE102019122013B3 (de) 2019-08-15 2021-01-14 Ceos Corrected Electron Optical Systems Gmbh Teilchenoptischer Korrektor frei von axialen Fehlern sechster Ordnung und Elektronenmikroskop mit Korrektor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919381A (en) * 1956-07-25 1959-12-29 Farrand Optical Co Inc Electron lens
US4389571A (en) * 1981-04-01 1983-06-21 The United States Of America As Represented By The United States Department Of Energy Multiple sextupole system for the correction of third and higher order aberration

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03289035A (ja) * 1990-04-03 1991-12-19 Jeol Ltd 電子顕微鏡における収差及び開き角補正装置
JP2706192B2 (ja) * 1991-11-06 1998-01-28 富士通株式会社 電子ビーム露光装置
DE4310559A1 (de) * 1993-03-26 1994-09-29 Zeiss Carl Fa Abbildendes Elektronenenergiefilter
US5793048A (en) * 1996-12-18 1998-08-11 International Business Machines Corporation Curvilinear variable axis lens correction with shifted dipoles
US5757010A (en) * 1996-12-18 1998-05-26 International Business Machines Corporation Curvilinear variable axis lens correction with centered dipoles
DE19739290A1 (de) * 1997-09-08 1999-03-11 Ceos Gmbh Verfahren zur Beseitigung axialer Bildfehler erster, zweiter und dritter Ordnung bei Korrektur des Öffnungsfehlers dritter Ordnung in elektronen-optischen Systemen
EP0960429A1 (de) * 1997-12-11 1999-12-01 Philips Electron Optics B.V. Korrektiv zur korrektur von sphärischen fehler in einem korpuskularstrahloptisches gerät
DE19828741A1 (de) * 1998-06-27 1999-12-30 Leo Elektronenmikroskopie Gmbh Elektronenmikroskop mit einem abbildenden magnetischen Energiefilter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2919381A (en) * 1956-07-25 1959-12-29 Farrand Optical Co Inc Electron lens
US4389571A (en) * 1981-04-01 1983-06-21 The United States Of America As Represented By The United States Department Of Energy Multiple sextupole system for the correction of third and higher order aberration

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CREWE A V: "A system for the correction of axial aperture aberrations in electron lenses", OPTIK, 1982, WEST GERMANY, vol. 60, no. 3, 1982, pages 271 - 281, XP002168452, ISSN: 0030-4026 *
CREWE A V: "The sextupole corrector. I. Algebraic calculations", OPTIK, 1984, WEST GERMANY, vol. 69, no. 1, 1984, pages 24 - 29, XP002168451, ISSN: 0030-4026 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007065388A2 (de) * 2005-10-24 2007-06-14 Ceos Corrected Electron Optical Systems Gmbh Elektronenoptischer korrektor für aplanatische abbildungssysteme
WO2007065388A3 (de) * 2005-10-24 2007-08-23 Ceos Gmbh Elektronenoptischer korrektor für aplanatische abbildungssysteme

Also Published As

Publication number Publication date
DE10001277A1 (de) 2001-07-19
EP1249031B1 (de) 2004-08-18
JP2003520427A (ja) 2003-07-02
DE50103315D1 (de) 2004-09-23
US6861651B2 (en) 2005-03-01
JP4745582B2 (ja) 2011-08-10
EP1249031A1 (de) 2002-10-16
US20030034457A1 (en) 2003-02-20

Similar Documents

Publication Publication Date Title
EP1249031B1 (de) Elektronenoptischer korrektor zur beseitigung der bildfehler dritter ordnung
EP1318539B1 (de) Korrektor zur Korrektion von Farbfehlern erster Ordnung, ersten Grades
EP1057204B1 (de) Anordnung zur korrektur des öffnungsfehlers dritter ordnung einer linse, insbesondere der objektivlinse eines elektronenmikroskops
EP1012866B1 (de) Verfahren zur beseitigung axialer bildfehler erster, zweiter und dritter ordnung bei korrektur des öffnungsfehlers dritter ordnung in elektronenoptischen systemen
EP1958231A1 (de) Korrektiv zur beseitigung des öffnungsfehlers 3. ordnung und des axialen farbfehlers 1. ordnung 1. grades
DE4310559A1 (de) Abbildendes Elektronenenergiefilter
EP2008294B1 (de) Elektronenoptischer korrektor für aplanatische abbildungssysteme
EP1941531B1 (de) Elektronenoptischer korrektor für aplanatische abbildungssysteme
EP2068344A2 (de) Teilchenoptischer Korrektor für axialen und ausseraxialen Strahlengang
EP2051279B1 (de) Korrektor
EP2482302B1 (de) Korrektor
EP3780064B1 (de) Teilchenoptischer korrektor frei von axialen fehlern sechster ordnung und elektronenmikroskop mit korrektor
EP1451847B1 (de) Teilchenoptischer korrektor
EP1190433B1 (de) Elektrostatischer korrektor zur beseitigung des farbfehlers von teilchenlinsen
EP2466613B1 (de) Korrektor
EP1352410B1 (de) Elektrostatischer korrektor

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001913504

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 552424

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10169995

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001913504

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001913504

Country of ref document: EP