WO2001051860A2 - Chauffe-eau electrique a forte isolation thermique - Google Patents

Chauffe-eau electrique a forte isolation thermique Download PDF

Info

Publication number
WO2001051860A2
WO2001051860A2 PCT/FR2001/000090 FR0100090W WO0151860A2 WO 2001051860 A2 WO2001051860 A2 WO 2001051860A2 FR 0100090 W FR0100090 W FR 0100090W WO 0151860 A2 WO0151860 A2 WO 0151860A2
Authority
WO
WIPO (PCT)
Prior art keywords
tank
water heater
panels
outer casing
envelope
Prior art date
Application number
PCT/FR2001/000090
Other languages
English (en)
Other versions
WO2001051860A3 (fr
Inventor
Charles Toulemonde
Denis Clodic
Assad Zoughaig
Original Assignee
Electricite De France - Service National
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite De France - Service National filed Critical Electricite De France - Service National
Priority to DE60119887T priority Critical patent/DE60119887D1/de
Priority to AU2001231882A priority patent/AU2001231882A1/en
Priority to EP01903926A priority patent/EP1247049B1/fr
Publication of WO2001051860A2 publication Critical patent/WO2001051860A2/fr
Publication of WO2001051860A3 publication Critical patent/WO2001051860A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/181Construction of the tank
    • F24H1/182Insulation

Definitions

  • the present invention relates to electric water heaters and relates more particularly to improving the thermal insulation of electric water heaters.
  • Water heaters generally include a tank and a heater for the water in the tank.
  • the tank is placed in an outer envelope between the inner wall of which and the outer wall of the tank is arranged a thermal insulating material such as polyurethane whose thermal conductivity is of the order of 0.023 W / mK for polyurethane foams rigid currently marketed, using gases such as cyclopentane or mixtures of cyclopentane and n-pentane as blowing agent.
  • a thermal insulating material such as polyurethane whose thermal conductivity is of the order of 0.023 W / mK for polyurethane foams rigid currently marketed, using gases such as cyclopentane or mixtures of cyclopentane and n-pentane as blowing agent.
  • CFC-11 which was the blowing agent for rigid polyurethane foams, made it possible to obtain a thermal conductivity of the order of 0.017 W / m.K.
  • the new polyurethane foams have a much lower amount of insulation (around 30%) compared to rigid polyurethan
  • the invention aims to remedy the degradation of the thermal conductivity of the polyurethane due to the change in the expansion gases by creating a water heater whose thermal insulation is improved compared to conventional insulation. It therefore relates to an electric water heater comprising a tank and a device for heating the water located in the tank, the latter being arranged in an outer envelope with the interposition of a thermal insulating material, characterized in that the the outer casing is of generally square section, the thermal insulating material comprises vacuum insulating panels provided along the flat walls of the outer casing, an insulating foam material being placed in the voids formed between the tank, the vacuum insulating panels and the outer casing, and the vacuum insulating panels are arranged over at least the upper half of the height of the tank. According to particular characteristics: - The heating device includes regulation means with very low reaction inertia.
  • - Fig.1 is an elevational and sectional view of a water heater according to the invention.
  • - Fig.2 is a cross-sectional view of the water heater of Figure 1;
  • - Fig.3 is a graph showing a test of the thermomechanical regulation of a water heater;
  • - Fig.4 is a graph showing a test of the electronic regulation with low thermal inertia according to the invention.
  • the electric water heater shown in Figure 1 has a tank 1 for containing the water to be heated.
  • a heating device 2 in the form of an electrical resistance supplied from the sector by means of a regulation device 3 connected to a sensor 4 of the temperature prevailing in the lower part of the tank.
  • the device for regulating the supply of the electrical resistance is associated with a temperature sensor 4 with very low reaction inertia.
  • the tank 1 is surrounded by an outer casing 5 of square section. Between the tank and the envelope are arranged along the flat walls of the envelope, for example rectangular panels 6 of vacuum insulating material.
  • a panel of vacuum insulating material is made of a cellular material placed in a sealed envelope. Before closing the envelope, the cellular material is subjected to a vacuum enabling vacuum to be produced in said cellular material.
  • the materials usually used in vacuum insulation panels allow the panels to have a thermal conductivity which varies between 0.005 and 0, 0010 W / mK for internal panel pressures between 10 and 100 Pa abs.
  • the side panels 6 of vacuum insulating material extend over at least the upper half of the height of the tank 1 so that the lower part of the tank is not isolated by the panels 6 above.
  • the panels 6 arranged along the side walls of the casing 5 are separated by intervals 8 located at the corners of the casing 5 and in which are arranged shims 9 polyurethane for positioning the tank 1 in the casing 5.
  • a polyurethane foaming operation is carried out in order to fill the voids formed between the tank 1, the panels 6 and 7 and the casing 5 with foam.
  • the polyurethane foam stiffens the assembly and fills the void due to the cylindrical shape of the tank 1.
  • the square envelope allows the use of insulating panels such as panels 6 of greater width.
  • the width of the panels of vacuum insulating material is calculated to allow free passage for the polyurethane foam during foaming.
  • a water heater produced in the manner described above has a number of advantages.
  • the insulation is asymmetrical between the top and the bottom, because in use the lower part of the water heater usually only contains cold water.
  • Insulation is economical in vacuum insulation panels to limit the additional cost.
  • a square geometry with rounded corners is adapted to generate an energy saving as such and allows easy integration of vacuum insulating panels which are not very deformable.
  • An electronic regulation with low reaction inertia makes it possible to reduce the inertia of the reaction of the heating device to the information given by the temperature sensor 4.
  • the dimensions of the panels of vacuum insulating material are given below.
  • the tank is centered inside the envelope 5 using shims 9 cut from polyurethane and placed in the corners of the envelope.
  • the panels of vacuum insulating material are fixed tangentially to the tank using double-sided adhesive material.
  • the polyurethane foam is injected into the gaps left free between the tank 1, the panels 6,7 and the casing 5.
  • the high and low thermostat set points of 61 ° C and 67 ° C respectively, the thermostat probe located at the bottom of the water heater and the ambient temperature equal to 20 ° C.
  • the distribution of losses by wall can be calculated using the global exchange coefficients.
  • Table 2 groups the results for the four above-mentioned water heaters.
  • Another approach to compare the four options is to base yourself on an identical end state and to vary the set temperature to obtain the same end temperature.
  • Table 3 summarizes the results obtained for the four above-mentioned water heaters with identical setpoint, the setpoint being the same as for the static loss regime (61/67 ° C) and the ambient temperature being equal to 20 ° C.
  • Table 4 illustrates the results of these simulations and indicates the racking performance at constant final temperature.
  • the losses are equal to the losses in static loss regime since the initial temperature and the final temperature are identical.
  • the water heater according to the invention allows a considerable energy saving.
  • a total cost analysis has made it possible to verify that the water heater according to the invention allows significant energy savings and that its manufacturing cost associated with its cost of use is lower than that of conventional water heaters.
  • the temperature sensor of the thermomechanical system although measuring highly variable temperatures during withdrawals as indicated by the dotted curves, generates a delay which causes an average temperature rise at the top of the heater. water from 67 to 72 ° C. These 5 additional degrees are useless and cause an overconsumption of energy of the order of 30 to 40%.
  • the regulation when the regulation is without delay, it is possible to maintain an average temperature of 65 ° C ⁇ 2 ° C. This unnecessary phenomenon of overheating of the water at the top of the tank is all the more marked as the insulation is effective. Regulation without delay or with low inertia of reaction is therefore all the more necessary as the insulation is carried out with particularly insulating vacuum insulation panels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Details Of Fluid Heaters (AREA)

Abstract

Chauffe-eau électrique comprenant une cuve (1) et un dispositif (2) de chauffage de l'eau située dans la cuve, celle-ci étant disposée dans une enveloppe extérieure (5) avec interposition d'un matériau isolant thermique, caractérisé en ce que l'enveloppe extérieure (5) est de section générale carrée et le matériau isolant thermique comporte des panneaux (6, 7) d'isolant sous vide disposés le long des parois planes de l'enveloppe extérieure (5), un matériau en mousse isolante (10) étant disposé dans les vides ménagés entre la cuve (1), les panneaux d'isolants sous vide et l'enveloppe (5).

Description

Chauffe-eau électrique à forte isolation thermique
La présente invention est relative aux chauffe-eau électriques et se rapporte plus particulièrement à l'amélioration de l'isolation thermique des chauffe-eau électriques.
Les chauffe-eau comprennent généralement une cuve et un dispositif de chauffage de l'eau se trouvant dans la cuve.
La cuve est placée dans une enveloppe extérieure entre la paroi intérieure de laquelle et la paroi extérieure de la cuve est disposé un matériau isolant thermique tel que du polyuréthanne dont la conductivité thermique est de l'ordre de 0,023 W/m.K pour les mousses de polyuréthanne rigide commercialisées ac- tuellement, utilisant des gaz comme le cyclopentane ou des mélanges de cyclopentane et de n-pentane comme agent d'expansion. Avant l'application du protocole de Montréal, le CFC-11 qui était l'agent d'expansion des mousses de polyurétanne rigide permettait d'obtenir une conductivité thermique de l'ordre de 0,017 W/m.K. Les nouvelles mousses de polyuréthanne ont une quantité d'isolation bien inférieure (de l'ordre de 30%) comparativement aux mousses de polyuréthanne rigide utilisant les CFC qui sont désormais interdits. Les chauffe-eau classiques sont de forme cylindrique. On connaît également les chauffe-eau à enveloppe de section carrée et permettant un gain énergétique par rapport aux enveloppes de chauffe-eau cylindriques.
L'invention vise à remédier à la dégradation de la conductivité thermique du polyuréthanne due au changement des gaz d'expansion en créant un chauffe-eau dont l'isolation thermique est améliorée par rapport à l'isolation classique. Elle a donc pour objet un chauffe-eau électrique comprenant une cuve et un dispositif de chauffage de l'eau située dans la cuve, celle-ci étant disposée dans une enveloppe extérieure avec interposition d'un matériau isolant thermique, caractérisé en ce que l'enveloppe extérieure est de section générale carrée, le matériau isolant thermique comporte des panneaux d'isolant sous vide dispo- ses le long des parois planes de l'enveloppe extérieure, un matériau en mousse isolante étant disposé dans les vides ménagés entre la cuve, les panneaux d'isolant sous vide et l'enveloppe extérieure, et les panneaux d'isolant sous vide sont disposés sur au moins la moitié supérieure de la hauteur de la cuve. Suivant des caractéristiques particulières : - le dispositif de chauffage comporte des moyens de régulation à très faible inertie de réaction.
L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :
- la Fig.1 est une vue en élévation et en coupe d'un chauffe-eau suivant l'invention ;
- la Fig.2 est une vue en coupe transversale du chauffe-eau de la figure 1 ; - la Fig.3 est un graphique représentant un essai de la régulation thermomécanique d'un chauffe-eau ; et
- la Fig.4 est un graphique représentant un essai de la régulation électronique à faible inertie thermique suivant l'invention.
Le chauffe-eau électrique représenté à la figure 1 comporte une cuve 1 destinée à contenir l'eau à chauffer.
Dans cette cuve est logé un dispositif de chauffage 2 sous la forme d'une résistance électrique alimentée à partir du secteur par l'intermédiaire d'un dispositif de régulation 3 connecté à un capteur 4 de la température régnant dans la partie inférieure de la cuve 1. De façon avantageuse, le dispositif de régulation d'alimentation de la résistance électrique est associé à un capteur de température 4 à très faible inertie de réaction.
La cuve 1 est entourée par une enveloppe extérieure 5 de section carrée. Entre la cuve et l'enveloppe sont disposés le long des parois planes de l'enveloppe, des panneaux par exemple rectangulaires 6 de matériau isolant sous vide.
La partie supérieure de la cuve 1 est également séparée du dessus de l'enveloppe extérieure 5 par un panneau de matériau isolant sous vide 7. Un panneau d'isolant sous vide est réalisé en un matériau cellulaire disposé dans une enveloppe étanche. Avant de refermer l'enveloppe, on soumet le matériau cellulaire à une dépression permettent de faire le vide dans ledit matériau cellulaire. Les matériaux usuellement utilisés dans les panneaux d'isolation sous vide (fibre de verre, perlite, poudre de silice, polystyrène, polyuréthanne à cellule ouverte ...) permettent aux panneaux de disposer d'une conductivité thermique qui varie entre 0,005 et 0,0010 W/m.K pour des pressions internes au panneau se situant entre 10 et 100 Pa abs.
Les panneaux latéraux 6 de matériau isolant sous vide s'étendent sur au moins la moitié supérieure de la hauteur de la cuve 1 de sorte que la partie inférieure de la cuve n'est pas isolée par les panneaux 6 précités.
Ainsi qu'on le voit mieux à la figure 2, les panneaux 6 disposés le long des parois latérales de l'enveloppe 5 sont séparés par des intervalles 8 situés au niveau des angles de l'enveloppe 5 et dans lesquels sont disposées des cales 9 en polyuréthanne de positionnement de la cuve 1 dans l'enveloppe 5.
Une fois les cales 9 mises en place, on procède à une opération de moussage de polyuréthanne afin de remplir de mousse les vides ménagés entre la cuve 1 , les panneaux 6 et 7 et l'enveloppe 5.
La mousse de polyuréthanne rigidifie l'ensemble et remplit le vide dû à la forme cylindrique de la cuve 1.
L'enveloppe carrée permet l'utilisation de panneaux isolants tels que les panneaux 6 de plus grande largeur. La largeur des panneaux de matériau isolant sous vide est calculée pour laisser libre le passage pour la mousse de polyuréthanne pendant le mous- sage.
Certains espaces entre les panneaux tels que les intervalles 8 d'angles n'engendrent pas de perte puisque l'isolation de polyuréthanne est épaisse dans les régions des angles de l'enveloppe 5.
Un chauffe-eau réalisé de la manière décrite précédemment présente un certain nombre d'avantages.
L'isolation est dissymétrique entre le haut et le bas, car en régime d'utilisation la partie basse du chauffe-eau ne contient la plupart du temps que de l'eau froide.
L'isolation est économique en panneaux d'isolant sous vide pour limiter le surcoût. Une géométrie carrée avec des arrondis aux coins est adaptée jusqu'à générer un gain énergétique en tant que tel et permet une intégration aisée des panneaux d'isolants sous vide qui sont peu déformables.
Une régulation électronique à faible inertie de réaction permet de ré- duire l'inertie de la réaction du dispositif de chauffage aux informations données par le capteur de température 4.
A titre d'exemple, on donne ci-après les dimensions des panneaux de matériau isolant sous vide.
Panneaux latéraux 6 : 20 mm x 1000 mm x 400 mm. Panneau du dessus 7 : 20 mm x 450 mm x 450 mm.
Dimension de l'enveloppe 5 : 525 mm x 525 mm.
Dans l'exemple décrit précédemment, la cuve est centrée à l'intérieur de l'enveloppe 5 à l'aide des cales 9 taillées dans du polyuréthanne et disposées dans les coins de l'enveloppe. Les panneaux en matériau isolant sous vide sont fixés tangentielle- ment à la cuve à l'aide de matériau autocollant double face.
Ensuite, la mousse de polyuréthanne est injectée dans les interstices laissés libres entre la cuve 1 , les panneaux 6,7 et l'enveloppe 5.
Afin d'évaluer les performances du chauffe-eau suivant l'invention, on va comparer les déperditions de chauffe-eau suivant l'invention réalisé avec des panneaux de matériau à isolation sous vide de conductivité équivalente de 13 mW/m.K et 10 mW/m.K à celle d'un chauffe-eau carré classique sans considérer le vieillissement de la mousse ainsi qu'à celle d'un chauffe-eau de référence de 200 I. A cet effet, on utilise un logiciel tel que par exemple le logiciel Ch - mod qui a déjà été validé pour plusieurs scénarios thermiques.
Les paramètres considérés pour les différentes simulations sont :
- la puissance de la résistance (2000 W)
- les consignes haute et basse du thermostat respectivement de 61 °C et 67°C, la sonde du thermostat située au bas du chauffe-eau et la température ambiante égale à 20°C.
Les performances calculées sont synthétisées dans le tableau 1 de performances comparées en régime de déperdition pure. TABLEAU 1
Figure imgf000007_0001
Le calcul montre qu'avant même de considérer le vieillissement du polyuréthanne, un gain supplémentaire non négligeable est obtenu avec le concept de chauffe-eau suivant l'invention.
La répartition des déperditions par paroi peut être calculée en utilisant les coefficients d'échanges globaux.
Le tableau 2 regroupe les résultats pour les quatre chauffe-eau précités.
TABLEAU 2
Figure imgf000007_0002
Le pont thermique observé sur le haut du chauffe-eau représente une partie non négligeable des pertes totales.
En éliminant ce pont thermique et en isolant le haut avec une épaisseur minimale égale à l'isolation latérale de la cuve, on gagne 8 W.
La simulation en régime de déperdition stationnaire a montré que le chauffe-eau suivant l'invention permet un gain énergétique considérable.
L'évaluation du chauffe-eau suivant l'invention en scénario réaliste de soutirage permet de mettre en évidence les gains associés aux moyens de régulation électronique 3. Les déperditions des quatre chauffe-eau précités n'étant pas identiques, pour une même température de consigne, la température finale sur 24 heures ne sera pas la même. Donc l'interprétation du calcul des pertes n'est rigoureuse que si la température finale est identique pour tous les chauffe-eau.
Une autre approche pour comparer les quatre options est de se baser sur un état final identique et de faire varier la température de consigne pour obtenir cette même température finale.
Le tableau 3 résume des résultats obtenus pour les quatre chauffe- eau précités à consigne identique, la consigne étant la même que pour le régime statique de déperdition (61/67°C) et la température ambiante étant égale à 20°C.
TABLEAU 3
Figure imgf000008_0001
La variation de la consigne pour chaque option thermique permet d'obtenir une même température finale du volume chaud pour les quatre chauffe- eau.
Le tableau 4 illustre les résultats de ces simulations et indique les performances en soutirage à température finale constante. TABLEAU 4
Figure imgf000009_0001
On notera que dans ce cas, les pertes sont égales aux pertes en régime statique de déperdition puisque la température initiale et la température finale sont identiques.
Du point de vue technique, le chauffe-eau suivant l'invention permet un gain considérable d'énergie.
Une analyse en coût total a permis de vérifier que le chauffe-eau suivant l'invention permet des gains énergétiques non négligeables et que son coût de fabrication associé à son coût d'utilisation est inférieur à ceux des chauffe- eau classiques.
Ainsi qu'on peut le voir en comparant les graphiques expérimentaux des figures 3 et 4, sur lesquels les courbes en trait plein représentent la température en haut du chauffe-eau et les courbes en pointillés, la température en bas du chauffe-eau, la régulation sans délai du cycle marche/arrêt de la résistance électrique 2 du chauffe-eau permet d'éviter la montée en température inutile de l'eau chaude stockée en haut du chauffe-eau pendant et après les cycles de soutirage.
Comme l'indique la figure 3, la sonde de température du système thermomécanique, bien que mesurant des températures fortement variables lors des soutirages comme l'indiquent les courbes en pointillés, génère un retard qui entraîne une élévation de température moyenne en haut du chauffe-eau de 67 à 72°C. Ces 5 degrés supplémentaires sont inutiles et entraînent une surconsommation d'énergie de l'ordre de 30 à 40%. Au contraire, comme l'indique la figure 4, lorsque la régulation est sans délai, il est possible de maintenir une température moyenne de 65°C ± 2°C. Ce phénomène de surchauffe inutile de l'eau en haut du ballon est d'autant plus marqué que l'isolation est efficace. La régulation sans délai ou à faible inertie de réaction est donc d'autant plus nécessaire que l'isolation est réalisée avec des panneaux d'isolation sous vide particulièrement isolants.

Claims

REVENDICATIONS
1. Chauffe-eau électrique comprenant une cuve (1) et un dispositif (2) de chauffage de l'eau située dans la cuve, celle-ci étant disposée dans une enveloppe extérieure (5) avec interposition d'un matériau isolant thermique, carac- térisé en ce que l'enveloppe extérieure (5) est de section générale carrée, le matériau isolant thermique comporte des panneaux (6,7) d'isolant sous vide disposés le long des parois planes de l'enveloppe extérieure (5), un matériau en mousse isolante (10) étant disposé dans les vides ménagés entre la cuve (1 ), les panneaux d'isolant sous vide et l'enveloppe extérieure (5) et les panneaux (6,7) d'isolant sous vide sont disposés sur au moins la moitié supérieure de la hauteur de la cuve (1 ).
2. Chauffe-eau suivant la revendication 1 , caractérisé en ce que le dispositif de chauffage comporte des moyens de régulation (3,4) à très faible inertie de réaction.
3. Chauffe-eau suivant l 'une des revendications 1 et 2, caractérisé en ce que le matériau en mousse (10) est du polyuréthanne.
4. Chauffe-eau suivant l'une des revendications 1 à 3, caractérisé en ce que la cuve (1 ) est centrée dans l'enveloppe extérieure (5) par des cales (9) , disposées dans les angles de l'enveloppe extérieure (5) et en ce que le matériau en mousse (10) remplit les interstices (8) entre les cales (9).
5. Chauffe-eau suivant l'une des revendications 1 à 4, caractérisé en ce que les moyens de régulation (3,4) du dispositif de chauffage sont des moyens de régulation sans délai électroniques.
PCT/FR2001/000090 2000-01-12 2001-01-11 Chauffe-eau electrique a forte isolation thermique WO2001051860A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE60119887T DE60119887D1 (de) 2000-01-12 2001-01-11 Elektrischer wasserheizer mit hoher wärmeisolierung
AU2001231882A AU2001231882A1 (en) 2000-01-12 2001-01-11 Electric water heater with high thermal insulation
EP01903926A EP1247049B1 (fr) 2000-01-12 2001-01-11 Chauffe-eau electrique a forte isolation thermique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0000359A FR2803652B1 (fr) 2000-01-12 2000-01-12 Chauffe-eau electrique a forte isolation thermique
FR00/00359 2000-01-12

Publications (2)

Publication Number Publication Date
WO2001051860A2 true WO2001051860A2 (fr) 2001-07-19
WO2001051860A3 WO2001051860A3 (fr) 2002-01-17

Family

ID=8845844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000090 WO2001051860A2 (fr) 2000-01-12 2001-01-11 Chauffe-eau electrique a forte isolation thermique

Country Status (5)

Country Link
EP (1) EP1247049B1 (fr)
AU (1) AU2001231882A1 (fr)
DE (1) DE60119887D1 (fr)
FR (1) FR2803652B1 (fr)
WO (1) WO2001051860A2 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069237A1 (fr) * 2002-02-11 2003-08-21 Saes Getters S.P.A. Procede d'introduction d'un systeme isolant dans un interstice
AT503131B1 (de) * 2006-03-28 2007-08-15 Teufel Arnold Wärmespeicher
US7621238B2 (en) 2005-11-23 2009-11-24 Bradford White Corporation Water heater and system for insulating same
JP2015175530A (ja) * 2014-03-13 2015-10-05 三菱電機株式会社 貯湯式給湯機
JP2016003835A (ja) * 2014-06-18 2016-01-12 三菱電機株式会社 貯湯式給湯機
JP2016205648A (ja) * 2015-04-16 2016-12-08 三菱電機株式会社 貯湯式給湯機
JP2018162933A (ja) * 2017-03-27 2018-10-18 パナソニックIpマネジメント株式会社 貯湯タンクユニットおよびそれを備えた給湯機

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2902858A1 (fr) * 2006-06-27 2007-12-28 Air Liquide Installation comprenant au moins un equipement a isoler thermiquement
US9086235B2 (en) * 2006-11-30 2015-07-21 Praxair Technology, Inc. Insulation arrangement
JP4920468B2 (ja) * 2007-03-26 2012-04-18 ニチアス株式会社 断熱容器及びその製造方法
DE202011050315U1 (de) * 2011-05-31 2012-09-03 Christoph Jaeger Pufferspeicher
EP2700886A3 (fr) * 2012-08-23 2016-09-07 Vaillant GmbH Accumulateur d'eau chaude
DE102015221562A1 (de) * 2015-11-04 2017-05-04 Robert Bosch Gmbh Wärmespeicher
DE102019001629A1 (de) * 2019-03-08 2020-09-10 Stiebel Eltron Gmbh & Co. Kg Warmwasser-Kleinspeicher

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8630582U1 (fr) * 1986-11-14 1987-01-08 Joh. Vaillant Gmbh U. Co, 5630 Remscheid, De
DE4418108A1 (de) * 1994-05-24 1995-11-30 Stiebel Eltron Gmbh & Co Kg Warmwasserspeicher mit geschäumtem Dämmantel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8630582U1 (fr) * 1986-11-14 1987-01-08 Joh. Vaillant Gmbh U. Co, 5630 Remscheid, De
DE4418108A1 (de) * 1994-05-24 1995-11-30 Stiebel Eltron Gmbh & Co Kg Warmwasserspeicher mit geschäumtem Dämmantel

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003069237A1 (fr) * 2002-02-11 2003-08-21 Saes Getters S.P.A. Procede d'introduction d'un systeme isolant dans un interstice
US7226552B2 (en) 2002-02-11 2007-06-05 Saes Getters S.P.A. Process for introducing an insulating system in an interspace
CN100557289C (zh) * 2002-02-11 2009-11-04 工程吸气公司 在间隙中引入绝热系统的方法
US7621238B2 (en) 2005-11-23 2009-11-24 Bradford White Corporation Water heater and system for insulating same
AT503131B1 (de) * 2006-03-28 2007-08-15 Teufel Arnold Wärmespeicher
JP2015175530A (ja) * 2014-03-13 2015-10-05 三菱電機株式会社 貯湯式給湯機
JP2016003835A (ja) * 2014-06-18 2016-01-12 三菱電機株式会社 貯湯式給湯機
JP2016205648A (ja) * 2015-04-16 2016-12-08 三菱電機株式会社 貯湯式給湯機
JP2018162933A (ja) * 2017-03-27 2018-10-18 パナソニックIpマネジメント株式会社 貯湯タンクユニットおよびそれを備えた給湯機

Also Published As

Publication number Publication date
FR2803652A1 (fr) 2001-07-13
EP1247049B1 (fr) 2006-05-24
EP1247049A2 (fr) 2002-10-09
DE60119887D1 (de) 2006-06-29
AU2001231882A1 (en) 2001-07-24
WO2001051860A3 (fr) 2002-01-17
FR2803652B1 (fr) 2002-06-14

Similar Documents

Publication Publication Date Title
WO2001051860A2 (fr) Chauffe-eau electrique a forte isolation thermique
Ritchie et al. The effect of sample size on the heat release rate of charring materials
EP0688421B1 (fr) Dispositif d'echange thermique et procede de refroidissement de l'enceinte d'un tel dispositif
Xu et al. Three‐dimensional modeling of gas purge in a polymer electrolyte membrane fuel cell with co‐flow and counter‐flow pattern
Mgbemene et al. Investigation of parametric performance of the hybrid 3D CPC/TEM system due to thermoelectric irreversibilities
Delichatsios et al. Upward fire spread: key flammability properties, similarity solutions and flammability indices
Mzad et al. On the effect of the transversal aspect ratio on the double‐glazed solar air heater performance
EP0547936B1 (fr) Procédé et installation pour la génération de rafales d'air à haute enthalpie non pollué
Singh et al. Heat transfer enhancement in a solar air heater with roughened duct having arc-shaped elements as roughness element on the absorber plate
EP0076759A1 (fr) Installation de mesure en continu du pouvoir calorifique d'un gaz
WO1981001457A1 (fr) Appareil de chauffage electrique a accumulation
FR2954816A1 (fr) Dispositif de chauffage central solaire a accumulation d'energie
Naji et al. Thermal behavior of a porous electric heater
EP2770269A1 (fr) Appareil de chauffage et de production d'eau chaude
Li et al. Theoretical and Experimental Investigation about the Influence of Peltier Effect on the Temperature Loss and Performance Loss of Thermoelectric Generator
Ahmmed et al. Thermal effects on the hydrogen passivation of silicon wafers during diode laser annealing
EP3191857B1 (fr) Dispositif de régulation de la température d'un module de pilotage d'un composant électronique
Alsayed et al. Measurement of Heat Flow for Contact Resistance and Thermal Conductivity in Fuel Cell Material
Yigit et al. Transient thermal modeling and performance analysis of photovoltaic panels
Ahmad et al. Exergy analysis of double tube heat exchanger for parallel flow arrangement.
Lykov et al. Transient processes and thermoacoustic effects in surface boiling of a liquid
Lawson et al. Thermal stability of binary gas mixtures in a porous medium
FR2641063A1 (en) Novel use of a composite material with a heating structure and its method of implementation
EP4351274A1 (fr) Appareil de chauffage avec élément chauffant à inertie
Mohammadi et al. Numerical investigation of the effects of divergence angle, pre-heating zone length on the combustion and emission of pollutant in the porous media burner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001903926

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001903926

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2001903926

Country of ref document: EP