WO2001051209A1 - Labortemperiergerät mit temperaturgeregeltem temperierblock - Google Patents

Labortemperiergerät mit temperaturgeregeltem temperierblock Download PDF

Info

Publication number
WO2001051209A1
WO2001051209A1 PCT/EP2001/000101 EP0100101W WO0151209A1 WO 2001051209 A1 WO2001051209 A1 WO 2001051209A1 EP 0100101 W EP0100101 W EP 0100101W WO 0151209 A1 WO0151209 A1 WO 0151209A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
block
laboratory
cooling
heating
Prior art date
Application number
PCT/EP2001/000101
Other languages
English (en)
French (fr)
Inventor
Matthias Baumgartner
Dietmar Jodies
Original Assignee
Eppendorf Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eppendorf Ag filed Critical Eppendorf Ag
Priority to DE10190053T priority Critical patent/DE10190053B4/de
Publication of WO2001051209A1 publication Critical patent/WO2001051209A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor

Definitions

  • the invention relates to a laboratory temperature device of the type mentioned in the preamble of claim 1
  • the temperature block can carry a larger vessel to be tempered like a laboratory thermostat such as a hotplate Have a surface area with a number of wells into which small quantities of reaction mixture are emitted for temperature control or which are intended for holding reaction vessels
  • the temperature control block is to bring the reaction mixtures as quickly as possible to the target temperature that can be set on the control device and to keep them at precisely this temperature for the desired time. Temperature accuracies below 1/10 ° C must be observed.
  • the temperature control block is usually made of a good heat-conductive material in order to maintain uniform temperatures at all points of the temperature control block.
  • gradient blocks are also known which are heated at one end and cooled at the other end in order to bring reaction mixtures which come into contact at different points to precisely different temperatures.
  • the temperature control block is to maintain a temperature which can be predetermined via the control device.
  • temperature control units for PCR Polymerase Chain Reaction
  • different temperatures at about 40 ° C, 70 ° C and 90 ° C must be run through for a certain time in each cycle. What is important here is a very rapid change in the block temperature and precise setting of the respective target temperature for the desired period.
  • a setpoint temperature is set in a generic laboratory temperature control unit with the control device, this temperature should be reached very quickly and then kept constant immediately without an overshoot or undershoot.
  • This can only be calibrated with the generic construction in which the temperature control block can be acted upon in a controlled manner by both a cooling device and a heating device.
  • the setpoint temperature can be reached very quickly by the control device, for example when heating up with high heating power, and can then be set constant very quickly by counter-cooling.
  • US Pat. No. 5,038,852 shows in FIG. 2 a generic construction of a laboratory temperature device in which the temperature control block is alternately connected to a supply of hot water or cold water via a liquid circuit with changeover valves. The heat transport for heating and cooling takes place here in the case of liquid transport
  • a disadvantage of this construction is the considerable construction effort, especially with regard to the size and the valve arrangements to be provided, and the low heating and cooling capacity which can be achieved by means of liquid transport, which is not sufficient for very rapid temperature changes
  • the object of the present invention is to design a generic laboratory temperature device with a simpler construction with better temperature performance This problem is solved with the features of claim 1
  • Kapillai pumped two-phase heat transport systems are heat transport elements that contain a ve vaporizable liquid, e.g. water. If one end of the device is heated, vee steams there. The steam spreads to the other cooled end and condenses there The condensed water is transported back to the heated end. This is done by the capillary pumping action of capillary material.
  • Such attitudes are available as simple, rewarding heat pipes and also as memorable systems (capillary pumped loop), in which the water supply is separated from the Steam guidance takes place With all of these devices, the heat of vaporization introduced at one end is given off as condensation heat at the other end.
  • the heat transfer performance or the thermal conductivity is several orders of magnitude higher than, for example, with a heat conducting rod made of copper with very little construction effort NEN very high amounts of heat are transferred, such as are required for very rapid heating or cooling of the temperature block.
  • the main advantage here is that heating or cooling equipment can be arranged separately from the temperature block, with a simple heat pipe having a narrow cross-section Heat transport is sufficient. Eme return piping, as required with a water circuit, can be omitted. This gives greater design freedom when building the laboratory temperature device. For example, this can be constructed in a very flat manner.
  • the actual heating and cooling equipment can be built larger and more efficiently and are free of design restrictions , as given in the immediate arrangement on the Tempe ⁇ erblock smd
  • the features of claim 2 are provided.
  • cooling devices which usually consist of a vewed cooling block with an air blower and are therefore large in volume
  • the connection to the tempener block gives great heat advantages
  • the temperature block can be connected, for example, via a heat pipe to a cooling device with coarse control of the cooling capacity.
  • the temperature block can be conventionally coupled to a heating device, which is designed, for example, as a hole in the temperature block that is inserted in a conventional design.
  • the temperature can be fine-tuned then precise control of the heating device against cooling by the heat pipe is advantageous, however, the features of claim 3 are provided.
  • Possibilities for controlling the heat transport performance or the heat resistance and a capillary-pumped two-phase heat transport device are known from the lite case, for example from US Pat. No. 5,417,686 , FIG.
  • the temperature block is freed from all heating and cooling devices and is used for all temperature purposes with extremely high power, for example heat Pipes supplied Heating and cooling devices can be operated separately or preferably coupled according to claim 5 via a heat pump, which provides the waste heat generated by a cooling device to supply the heating device. In this way, energy can be saved.
  • Peltier elements are preferably used as the heat pump , which enable a particularly favorable construction and, given the situation given here, essentially constant conditions and also have a sufficiently long service life
  • Capillary-pumped two-phase heat transport devices can contact a separate temperature control block in the usual way, for example, they can be inserted in the form of a tube in a bore of the block.
  • the features of claim 7 are preferably provided.
  • the tube wall of a heat pipe can hereby directly form the surface of the temperature block contacting the reaction mixtures extremely rapid temperature changes can be achieved
  • the invention is shown for example and schematically 1 in section through a temperature block a first embodiment of the invention with a controllable heat pipe,
  • FIG. 4 is a perspective view of an embodiment with a heat pipe with heating and cooling at the ends and with a temperature block design in the middle area and
  • Fig 5 eme another embodiment with two heat pipes and with heating and cooling devices connected by a heat pump
  • a laboratory temperature device with a temperature block 1 which in the exemplary embodiment shown has several depressions 2 on its surface, into which reaction mixtures to be heated directly or, as shown, fit into the depression 2 as shown Reaction vessel 3 can be used
  • the Tempenei block 1 has a conventional electrical heating device 4, which is connected via a line 5 for control to a control device 6.
  • a temperature sensor 7 is also inserted in the temperature block 1, and a line 8 is connected to the control device 6
  • the temperature block 1 is connected to a cooling device in the form of a cooling block 9 with a ventilation blown by a fan 10.
  • a cooling device in the form of a cooling block 9 with a ventilation blown by a fan 10.
  • Other, for example water-cooled, cooling devices can also be provided
  • the connection between the cooling block 9 and the temperature control block 1 takes place via an heat pipe 11, which is designed as a tube, which is inserted with its end regions into bores of the cooling block 9 and the temperature control block 1 with good thermal conductivity. Good contacting of the end regions of the heat pipe 11 with the cooling block 9 or the temperature control block 1 can also be ensured in other ways. In these areas, the heat pipe 11 can, for example, also be flattened to create larger thermal contact areas.
  • the heat pipe 11 is constructed using conventional technology, as shown in FIG. 2 in cross section.
  • the heat pipe is designed as a simple pipe that is closed at the ends.
  • a capillary material 12 runs inside between the end regions of the heat pipe 11.
  • a larger cross section of the heat pipe 11 is continuously gas-permeable.
  • a lot of vaporizable liquid, for example water, is filled into the heat pipe 11.
  • the temperature control block 1 is when and the cooling block 9 is cold. Water is evaporated at the end of the heat pipe 1 1 on the temperature control block. The steam flows through the heat pipe to the end of the cooling block and condenses there. The water obtained during the condensation is transported through the capillary material 12 in the opposite direction, as shown in FIG. 2 with arrows. The heat of evaporation drawn off in the temperature control block 1 for cooling is released at the other end in the cooling block 9 as heat of condensation. There is a very high heat transfer.
  • heat can be continuously drawn off from the temperature control block 1 with the heat pipe 11 and the heating device 4 can be counter-heated by means of appropriate control of the control device 6 in such a way that the desired constant temperature of the temperature control block 1 results.
  • the heat pipe can be designed to be controllable, with a valve 14 which is controlled by the control device 6 via the line 13 and which is shown only schematically there.
  • FIG. 2 shows a possible embodiment of the valve 14
  • the gas-carrying cross section of the heat pipe 11 is blocked by a perforated diaphragm 15, the hole 16 of which can be closed by a valve body 17, which is guided by a valve rod 18, which is slowly displaceable and sealed through the wall of the heat pipe 11, with an actuating device (not shown) adjustable for opening and closing the valve 16, 17
  • This valve can be used to control the gas flow rate and thus the heat transport capacity or the heat resistance of the heat pipe 11
  • the cooling can be switched off for rapid heating up of the temperature block 1 to a desired target temperature and only switched on again when necessary
  • FIG. 3 shows an embodiment of a laboratory temperature device in which a temperature block 31, only schematically indicated, is connected to the cooling block 9 with the controlled heat pipe 11 as shown in FIG. 1, but an additional heat pipe 32 is provided for heating, which forms a heating block 33
  • the heat pipe 32 can be controlled via a valve 34.
  • the control device 6 described in FIG. 1 with the temperature sensor 7 in the temperature block 31 is used for control
  • the temperature block 31 for heating and cooling via heat pipes 11 and 32 is connected to heating and cooling devices, which can be arranged as desired in the form of blocks 9 and 33.
  • the heating and cooling devices do not have to be provided directly on the cooling block 31.
  • the heat pipes 11 and 32 can also be laid over long distances without significant loss of performance
  • FIG. 3 also shows the possibility of providing yet another heat pipe 32 'with valve 34' to a further heating block 33 'at a different temperature
  • FIG. 4 shows another embodiment of a laboratory temperature device with only one heat pipe, which, in its central region 41, widened in a plate-like manner and provided with recesses 42 on its upper side, itself forms the temperature block.
  • the heat pipe leads with a pipe piece 43 to a cooling block 44 and from the other end of the central region 41 with a pipe piece 45 to a heating block 46
  • a valve 47 is provided in each of the pipe pieces 43 and 44
  • the one with leie. area 41 serving as a temperature block are heated or cooled.
  • the direct contacting of the reaction mixtures to be temperature-controlled in the recesses 42 while saving on a separate temperature block enables extremely fast heating and cooling times
  • FIG. 5 shows a further embodiment of a laboratory temperature control device according to the invention with a temperature control block 51 indicated in a highly schematic manner, which is connected via a heat pipe 52 with valve 53 to a cooling block 54 and via a second heat pipe 55 with valve 56 to a heating block 57 Waste heat generated in the cooling block 54 is recovered via two Peltier elements 58 with an intermediate intermediate block 59 for heating the heating block 57.
  • the intermediate block 59 can be seen with a heating 60 and a cooling 61 in order to adapt its temperature to the desired temperature level, the optimal temperature of the temperature block 51 to the desired temperature
  • a heating 60 and a cooling 61 in order to adapt its temperature to the desired temperature level, the optimal temperature of the temperature block 51 to the desired temperature
  • other known capillary-pumped two-phase heat transport devices can also be used, in which gas and liquid are transported, for example, according to the "capillary pumped loop" principle, and in which, for example, the Control of the Wai'met transport performance via pressure or temperature-controlled expansion vessels is carried out.
  • Such complex devices are particularly advantageous for very high heat transport performance

Abstract

Ein Labortemperiergerät zum Temperieren von Reaktionsgemischen mit einem Temperierblock, der an wenigstens einer Kühleinrichtung und an wenigstens einer Heizeinrichtung angeschlossen ist, wobei der Temperierblock einen Temperatursensor aufweist, der über eine Regelvorrichtung die Temperierung des Temperierblockes steuert, ist dadurch gekennzeichnet, dass wenigstens eine der Einrichtungen über eine kapillar gepumpte Zweiphasen-Wärmetransporteinrichtung thermisch mit dem Temperierblock verbunden ist.

Description

Labortempeπergerat mit temperaturgeregeltem Tempeπerblock
Die Erfindung betrifft em Labortempeπergerat der im Oberbegriff des Anspruchs 1 genannten Art
Derartige Gerate dienen im chemischen, klinischen oder biologischen Labor der Temperierung von Reaktionsgemischen auf die gewünschte Reaktionstemperatur Dei Tempeπerblock kann im einfachsten Falle emes Laborthermostaten wie eine Kochplatte ein zu temperierendes größeres Gefäß tragen Er kann selbst als Gefäß zur Aufnahme einer Flüssigkeit ausgebildet sein oder kann an einer Oberflache eme Anzahl von Mulden aufweisen, in die kleme Mengen von Reaktionsgemisch unmitteibai' zur Temperierung emgegeben werden oder die zur Aufnahme von Reaktionsgefäßen bestimmt sind Der Temperierblock soll die Reaktionsgemische möglichst schnell auf die an der Regelvorrichtung einstellbare Solltemperatur bringen und für die gewünschte Zeit auf genau dieser Temperatur halten. Dabei sind Temperaturgenauigkeiten unter 1/10° C einzuhalten. Üblicherweise wird der Temperierblock, zur Einhaltung gleichmäßiger Temperaturen an allen Stellen des Temperierblockes, aus gut wärmeleitfähigem Material ausgebildet. Es sind jedoch auch Gradientenblöcke bekannt, die an einem Ende geheizt und am anderen Ende gekühlt werden, um an unterschiedlichen Stellen kontaktierende Reaktionsgemische auf genau bestimmte unterschiedliche Temperaturen zu bringen.
Bei einfachen Laborthermostaten soll der Temperierblock dauernd eine über die Regeleinrichtung vorgebbare Temperatur halten. Bei Temperiergeräten für die PCR (Polymerase Chain Reaction) müssen in einem Zyklus unterschiedliche Temperaturen bei etwa 40°C, 70°C und 90°C für jeweils eine bestimmte Zeit durchlaufen werden. Hierbei kommt es auf sehr rasche Änderung der Blocktemperatur und präzise Einstellung der jeweiligen Solltemperatur für den gewünschten Zeitraum an.
Wird bei einem gattungsgemäßen Labortemperiergerät mit der Regelvorrichtung eine Solltemperatur eingestellt, so soll diese Temperatur sehr schnell erreicht und dann sofort ohne Über- oder Unterschwinger konstant gehalten werden. Dies läßt sich nur mit der gattungsgemäßen Konstruktion eπeichen, bei der der Temperierblock sowohl von einer Kühleinrichtung als auch von einer Heizeinrichtung geregelt beaufschlagbar ist. Durch die Regelvorrichtung kann z.B. beim Aufheizen mit hoher Heizleistung die Solltemperatur sehr schnell erreicht werden und anschließend durch Gegenkühlen sehr schnell konstant eingestellt werden. Die US-PS 5,038,852 zeigt in ihrer Figur 2 eine gattungsgemaße Konstruktion eines Labortempeπergerates, bei der dei Temperierblock über einen Flussigkerts- kreislauf mit Umschaltventilen abwechselnd an einen Voπat von Heißwasser odei Kaltwasser anschließbai ist Der Warmetransport zum Heizen und Kuhlen geschieht hiei ubei Flussigkeitstransport
Nachteilig bei dieser Konstruktion ist der erhebliche Bauaufwand, insbesondere auch hinsichtlich dei Baugroße und der vorzusehenen Ventilanordnungen sowie die geringe, mittels Flussigkeitstransport erreichbare Heiz- und Kühlleistung, die fui sehr rasche Temperaturanderungen nicht ausreichend ist
Aus dei DE 31 22 008 AI sowie der WO 89/12502 ist es bekannt, den Tempeπerblock durch unmitteibai kontaktierende Peltiermodule zu heizen und zu kühlen Dies stellt eine konstruktiv sehr einfache und bequem regelbare Losung dar, wobei die Peltiermodule durch Stromnchtungsumkehr abwechselnd zum Heizen und Kuhlen verwendbai sind Peltiermodule haben jedoch nur eine niedπge Tempeπerleistung Sie sind außerdem teuer und bei häufigen Temperaturwechseln störanfällig Sie sind zudem wenig effektiv beim Abkühlen auf niedrige Temperaturen
Aus der US-PS 4,950,608 ist es bekannt, m einem Tempeπerblock mit stark zerklüfteter Formgebung mittels innerhalb des Blockes angeordneter Heat Pipes ubeiall im Block gleichmäßige Temperatur einzustellen Die Heizung und Kühlung dieses Tempeπerblockes erfolgt in üblicher Weise durch unmittelbaren Kontakt mit Heiz- und Kuhleinrichtungen
Die Aufgabe der vorliegenden Erfindung besteht darin, em gattungsgemaßes Labortempeπergerat bei einfacherer Konstruktion mit besserer Tempeπerleistung auszubilden Diese Aufgabe wπd mit den Merkmalen des Anspruches 1 gelost
Kapillai gepumpte Zweiphasen-Warmetransportemπchtungen (CPHTS = Capillary Pumped Heat Transportation Systems) sind Warmetransportelemente, die eine vei dampfbare Flüssigkeit, z B Wasser, enthalten Wird ein Ende der Einrichtung beheizt, so vei dampft dort Wasser Der Dampf breitet sich bis zum anderen gekühlten Ende aus und kondensiert dort Das kondensierte Wasser wird zum beheizten Ende zurucktransportiert Dies geschieht durch die Kapillar- pumpwirkung von Kapillarmateπal Solche E πchtungen sind als einfache ein- lohnge Heat Pipes verfugbar sowie auch als memroπge Systeme (Capillary Pumped Loop), bei denen die Wasserführung getrennt von der Dampffuhrung erfolgt Bei all diesen Einrichtungen wird die am einen Ende eingebrachte Verdampfungswarme am anderen Ende als Kondensationswarme abgegeben Die Warmeüansportleistung bzw das Wärmeleitvermögen ist um mehrere Zehnerpotenzen hoher als beispielsweise bei einem aus Kupfer bestehenden Warme- leitstab Mit sehr geringem Bauaufwand können sehr hohe Wärmemengen übertragen werden, wie sie zum sehr schnellen Aufheizen odei Abkühlen des Tempe- πerblockes erforderlich sind Dabei ergibt sich der wesentliche Vorteil, daß eine Heiz- oder Kuhleinπchtung vom Tempenerblock getrennt angeordnet werden kann, wobei schon eme einfache Heat Pipe geπngen Querschnittes zum Warme- transport ausreicht Eme Ruckleitung, wie bei einem Wasserkreislauf erforderlich, kann entfallen Es entstehen somit größere konstruktive Freiheiten beim Bau des Labortempeπergerates Dieses kann beispielsweise sehr flach konstruiert weiden Die eigentlichen Heiz- und Kuhleinπchtungen können großer und leistungsfähiger gebaut werden und sind von konstruktiven Beschrankungen befreit, wie sie bei der unmittelbaren Anordnung am Tempeπerblock gegeben smd Vorteilhaft sind dabei die Merkmale des Anspruches 2 vorgesehen Insbesondere bei Kuhiemrichtungen, die üblicherweise aus einem vemppten Kuhlblock mit einem Luftgeblase bestehen und daher großvolumig sind, ergibt der Anschluß an den Tempenerblock ubei eme Heat Pipe große konstraktive Vorteile
Dei Tempeπei block kann beispielsweise über eine Heat Pipe an eme Kuhlem- πchtung mit Grobregelung der Kühlleistung angeschlossen sein Der Temperierblock kann mit einer Heizeimichtung konventionell gekoppelt sem, die z B als m eine Bohrung des Tempeπerblockes eingesteckte Heizeinrichtung üblicher Bauweise ausgebildet ist Die Feinregelung der Temperatur kann dann über genaue Regelung dei Heizeinrichtung gegen die Kühlung durch die Heat Pipe erfolgen Vorteilhaft sind jedoch die Meikmale des Anspruches 3 vorgesehen Möglichkeiten zui Steuerung dei Warmetransportleistung bzw des Warmewiderstandes emei kapillar gepumpten Zweiphasen-Warmetransporteinπchtung sind aus der Liteiatui bekannt, z B aus US-PS 5,417,686, Figur 6 m Form eines Gasventiles m emei Heat Pipe Hierdurch wud die Möglichkeit geschaffen, unmitteibai" durch Steuerung einer Heat Pipe in sehr effektiver und schneller Weise die Steuerung dei Heizung bzw Kühlung des Tempeπerblockes über die Regel vorn chtung zu ermöglichen Auch bei mebrrohπgen Hochleistungsemπchtungen nach dem System dei "Capillary Pumped Loop" sind solche Steuerungen der Warmetransportleistung möglich, beispielsweise vermittels druck- bzw temperaturgeregeltei Ausgleichsgefaße
Wie bereits erwähnt, können einzelne Heiz- oder Kuhleinπchtungen über Heat Pipes an den Tempeπerblock angeschlossen werden Vorteilhaft sind jedoch die Meikmale des Anspruches 4 vorgesehen Hierdurch wird der Tempeπerblock von allen Heiz- und Kuhiemrichtungen befreit und wird für alle Tempeπerzwecke mit hochstei Leistung ubei z B Heat Pipes versorgt Heiz- und Kuhiemrichtungen können gesondert betneben werden oder vorzugsweise gemäß Anspruch 5 über eme Wärmepumpe gekoppelt sein, die die bei einer Kuhleinπchtung anfallende Abwarme zur Voi'versorgung der Heizeinrichtung bei eitstellt Auf diese Weise kann Energie gespart werden Vorzugsweise werden als Wärmepumpe gemäß Anspruch 6 Peltierelemente verwendet, die einen besonder gunstigen Aufbau ermöglichen und bei dem hier gegebenen Betneb untei im wesentlichen konstanten Bedingungen auch ausreichend langlebig smd
Kapillar gepumpte Zweiphasen- Warmetransporteinπchtungen können auf übliche Weise einen gesonderten Temperierblock kontaktieren, beispielsweise rohrfbrmig in eme Bohrung des Blockes eingesteckt sein Vorzugsweise smd jedoch die Merkmale des Anspruches 7 vorgesehen Die Rohrwand einer Heat Pipe kann unmittelbar die die Reaktionsgemische kontaktierende Oberflache des Tempe- nerblockes ausbilden Hiermit lassen sich extrem schnelle Temperaturanderungen erreichen
Vorteilhaft sind die Merkmale des Anspruches 8 vorgesehen. Dies schafft eme sehi einfache und kostengünstige Konstruktion, bei der eine einzige kapillar gepumpte Zweiphasen-Warmetransporteinπchtung, z B eme Heat Pipe, in einem mittleren Bereich mit dem Tempeπerblock kontaktiert ist bzw diesen selbst mit ihrer Oberflache ausbildet und an ihren Enden geheizt und gekühlt wird Eine Durchsatzsteuerung in den beiden Verbindungsstrecken zwischen dem mittleren Bei eich und den Endbereichen sorgt dafür, daß der mittlere Bereich wahlweise geheizt oder gekühlt werden kann, um über die Regelung sehr schnell die Solltemperatur einzustellen und dann konstant zu halten
In den Zeichnungen ist die Erfindung beispielsweise und schematisch dargestellt Es zeigen Fig 1 im Schnitt durch einen Tempeπerblock eine erste Ausmhrungsform dei Erfindung mit einer steuerbaren Heat Pipe,
Fig 2 im Schnitt durch eme Heat Pipe em Steuerventil,
Fig 3 in veiemfachter Darstellung entsprechend Fig 1 eine Ausfuhrungsform mit drei Heat Pipes,
Fig 4 eine die perspektivische Darstellung emer Ausfuhrungsform mit emei Heat Pipe mit Heizung und Kühlung an den Enden und mit Ausbildung als Tempeπei block im mittleren Bereich und
Fig 5 eme weitere Ausfuhrungsform mit zwei Heat Pipes und mit durch eine Wärmepumpe verbundenen Heiz- und Kuhleinrichtungen
Fig 1 zeigt in einer ersten Ausfuhrungsform der Erfindung ein Labortempeπerge- rat mit einem Tempeπerblock 1, der im dargestellten Ausfuhrungsbeispiel an sei- nei Oberflache mehrere Vertiefungen 2 aufweist, in die zu tempeπerende Reaktionsgemische direkt odei, wie dargestellt, in emem in die Vertiefung 2 passenden Reaktionsgefaß 3 einsetzbai sind
Der Tempenei block 1 weist eme herkömmliche elektnsche Heizeinrichtung 4 auf, die über eme Leitung 5 zur Steuerung an eine Regelvornchtung 6 angeschlossen ist Im Tempeπerblock 1 ist ferner em Temperatursensor 7 eingesteckt, dei ubei eine Leitung 8 an die Regelvornchtung 6 angeschlossen ist
Zum Kuhlen ist der Tempeπerblock 1 an eme Kuhlemnchtung angeschlossen m Form eines Kuhlblockes 9 mit von einem Ventilator 10 angeblasener Verπppung Es kann auch eme andeie, z B wassergekühlte Kuhlemnchtung vorgesehen sein Die Verbindung zwischen dem Kühlblock 9 und dem Temperierblock 1 erfolgt über eme Heat Pipe 1 1, die als Rohr ausgebildet ist, das mit seinen Endbereichen in Bohrungen des Kühlblockes 9 und des Temperierblockes 1 gut wärmeleitend eingesteckt ist. Für gute Kontaktierung der Endbereiche der Heat Pipe 1 1 mit dem Kühlblock 9 bzw. dem Temperierblock 1 kann auch auf andere Weise Sorge getragen werden. In diesen Bereichen kann die Heat Pipe 11 beispielsweise auch abgeplattet ausgebildet sein zur Schaffung größerer Wärmekontaktflächen.
Die Heat Pipe 11 ist in üblicher Technologie ausgebildet, wie Fig. 2 im Querschnitt zeigt. Die Heat Pipe ist als einfaches Rohr ausgebildet, das an den Enden geschlossen ist. Im Inneren verläuft zwischen den Endbereichen der Heat Pipe 11 ein Kapillarmateπal 12. Ein größerer Querschnitt der Heat Pipe 11 ist durchgehend gasdurchlässig offen. In die Heat Pipe 11 ist eine Menge verdampfbarer Flüssigkeit, beispielsweise Wasser, eingefüllt.
Der Temperierblock 1 ist wann und der Kühlblock 9 ist kalt. Am temperierblock- seitigen Ende der Heat Pipe 1 1 wird Wasser verdampft. Der Dampf strömt durch die Heat Pipe bis zum kühlblockseitigen Ende und kondensiert dort. Das bei der Kondensation anfallende Wasser wird durch das Kapillarmaterial 12 in umgekehrter Richtung transportiert, wie in Fig. 2 mit Pfeilen dargestellt. Die im Temperierblock 1 zur Kühlung abgezogene Verdampfungswärme wird am anderen Ende im Kühlblock 9 als Kondensationswärme frei. Es entsteht ein sehr hoher Wärmetransport.
Bei einer ungeregelten Heat Pipe kann ständig mit der Heat Pipe 11 Wärme vom Temperierblock 1 abgezogen werden und über entsprechende Steuerung der Re- gelvoπichtung 6 die Heizeinrichtung 4 derart gegenheizen, daß sich die gewünschte konstante Temperatur des Temperierblockes 1 ergibt. Wie Fig 1 zeigt, kann die Heat Pipe steuerbar ausgebildet sein, mit einem von der Regeleinrichtung 6 über die Leitung 13 gesteuerten Ventil 14. das dort nur schematisch dargestellt ist In Fig 2 ist eme mögliche Ausfuhrungsform des Ventiles 14 dargestellt
Dabei ist der gasführende Querschnitt der Heat Pipe 11 von einer Lochblende 15 versperrt, deren Loch 16 von einem Ventilkorper 17 verschließbar ist, der mit einei Ventilstange 18, die langsverschiebbar, abgedichtet durch die Wand der Heat Pipe 11 geführt ist, mit einer nicht dargestellten Stellemnchtung zum Offnen und Verschließen des Ventiles 16, 17 verstellbar ist Durch dieses Ventil laßt sich die Gasstromungsrate und somit die Warmetransportleistung bzw der War- mewidei stand der Heat Pipe 1 1 steuern
Mit Hilfe des Ventiles 14 laßt sich zum raschen Hochheizen des Tempenerblok- kes 1 auf eine gewünschte Solltemperatur die Kühlung abschalten und erst bei Bedarf wieder einschalten
Fig 3 zeigt eine Aus vrungsform eines Labortempeπergerates, bei dem em nur schematisch angedeuteter Tempeπerblock 31 wie gemäß Fig 1 mit der gesteuerten Heat Pipe 11 an den Kuhlblock 9 angeschlossen ist, jedoch zur Heizung eme weitere Heat Pipe 32 vorgesehen ist, die zu einem Heizblock 33 fuhrt Die Heat Pipe 32 ist über em Ventil 34 regelbar Z Regelung dient die in Fig 1 beschriebene Regelvornchtung 6 mit dem Temperatursensor 7 im Tempeπerblock 31
Mit der in soweit beschriebenen Konstruktion der Fig 1 wird der Tempeπerblock 31 zui Heizung und Kühlung über Heat Pipes 11 und 32 an Heiz- und Kuhiemrichtungen angeschlossen, die in Form der Blocke 9 und 33 beliebig angeordnet werden können Insbesondere müssen die Heiz- und Kuhleinrichtungen nicht unmittelbar am Kuhlblock 31 vorgesehen sein Die Heat Pipes 11 und 32 können auch über längere Wege ohne wesentliche Leistungsverluste verlegt sem
Fig 3 zeigt auch die Möglichkeit, noch eine weitere Heat Pipe 32' mit Ventil 34' zu einem weiteren Heizblock 33' anderei Temperatur vorzusehen
Fig 4 zeigt eme weiteie Ausfuhrungsform emes Labortempeπergerates mit nui einer Heat Pipe, die, in ihrem mittleren Bereich 41 plattenformig verbreitert und an ihrei Oberseite, mit Vertiefungen 42 versehen, selbst den Tempeπerblock ausbildet Die Heat Pipe fuhrt mit einem Rohrstuck 43 zu einem Kuhlblock 44 und vom anderen Ende des mittleren Bereiches 41 mit emem Rohrstuck 45 zu einem Heizblock 46 In den Rohrstucken 43 und 44 ist jeweils ein Ventil 47 vorgesehen
Durch abwechselndes Offnen des einen odei anderen der Ventile 47 kann der mit leie. als Tempeπeiblock dienende Bereich 41 geheizt oder gekühlt werden Die unmittelbare Kontaktierung dei zu temperierenden Reaktionsgemische in den Vertiefungen 42 unter Einsparung eines gesonderten Tempeπerblockes ermöglicht extrem schnelle Aufheiz- und Abkuhlzeiten
Fig 5 zeigt eine weiteie Ausftihrungsform eines erflndungsgemaßen Labortempe- πeigerates mit einem stark schematisiert angedeuteten Temperierblock 51, der über eine Heat Pipe 52 mit Ventil 53 an einen Kuhlblock 54 sowie über eine zweite Heat Pipe 55 mit Ventil 56 an emen Heizblock 57 angeschlossen ist Die beim Kuhlblock 54 anfallende Abwarme wird über zwei Peltierelemente 58 mit dazwischenliegendem Zwischenblock 59 zur Heizung des Heizblockes 57 ruckgewonnen Der Zwischenblock 59 kann mit einer Heizung 60 und emer Kühlung 61 vei sehen sein, um seine Temperatur dem gewünschten Temperaturniveau anzupassen, das eme optimale Tempenerung des Tempeπerblockes 51 auf die gewünschte Temperatur ermöglicht An Stelle der in den beschi'iebenen Ausfuhπmgsbeispielen verwendeten Heat Pipes können auch andere bekannte kapillar gepumpte Zweiphasen- Warmetransportemπchtungen verwendet werden, bei denen z B nach dem "Capillary Pumped Loop" -Prinzip Gas und Flüssigkeit über getrennte Rohrleitungen transportiert werden und bei denen beispielsweise die Steuerung dei Wai'metransportleistung über druck- bzw temperaturgeregelte Ausgleichsgefäße erfolgt Solche aufwendige Einrichtungen sind msbesondere für sehr hohe War- metransporfleistungen vorteilhaft

Claims

Eppendorf AG
PATENTANSPRÜCHE
1 Labortempeπergerat zum Tempeneren von Reaküonsgemischen (3) mit einem Temperierblock ( 1, 31, 41, 51), der an wenigstens einer Kuhlemnchtung (9, 44, 54) und an wenigstens einer Heizeinπchtung (4, 33, 33', 46, 57) angeschlossen ist, wobei der Tempeπerblock einen Temperatui- sensoi (7) aufweist, dei über eme Regelvornchtung (6) die Temperierung des Tempeπerblockes steuert, dadurch gekennzeichnet, daß wenigstens eine dei Einrichtungen (9, 33, 33', 44, 46. 54, 57) über eme kapillar gepumpte Zweiphasen- Warmetransporteinπchtung ( 11, 32, 32' 43, 45, 52, 55) thermisch mit dem Temperierblock ( 1, 31, 41, 51) verbunden ist
2 Labortempenergerat nach Ansprach 1, dadurch gekennzeichnet, daß die Kuhlemnchtung (9, 44, 54) über die kapillar gepumpte Zweiphasen- Warmetransporteinπchtung ( 11, 43, 52) angeschlossen ist
J Labortempeπergerat nach Anspruch 1, dadurch gekennzeichnet, daß die kapillar gepumpte Zweiphasen- Warmetransporteinπchtung (11, 32, 32' 43, 45, 52, 55) von dei Regelvornchtung (6) in ihrer Wärmeleitfähigkeit steuerbar ausgebildet ist Labortempenergerat nach Ansprach 1, dadurch gekennzeichnet, daß alle Heiz- und Kuhiemrichtungen über kapillar gepumpte Zweiphas en- Warme - transportemπchtungen an den Tempeπerblock ( 1, 31, 41, 51) angeschlos¬
Labortempenergerat nach Ansprach 4, dadurch gekennzeichnet, daß die Heizeinrichtung (57) und die Kuhlemnchtung (54) über eme Wärmepumpe (58) gekoppelt sind
Labortempenergerat nach Ansprach 5, dadurch gekennzeichnet, daß die Wärmepumpe als Peltierelement (58) ausgebildet ist.
Labortempenergerat nach Anspruch 1, dadurch gekennzeichnet, daß em Abschnitt (41) dei kapillar gepumpten Zweiphasen-Warmetransportem- πchtung mit semei Wandung den Tempeπerblock ausbildet
Labortempenergerat nach den Ansprachen 3 und 4, dadurch gekennzeichnet, daß eme durchgehende kapillar gepumpte Zweiphasen- Warme- transporteinπchtung (43, 41, 45) in emem mittleren Bereich an den Temperierblock (41) und m ihren Endbereichen an eine Heizeinnchtung (46) und an eme Kuhlemnchtung (44) angeschlossen ist
PCT/EP2001/000101 2000-01-15 2001-01-08 Labortemperiergerät mit temperaturgeregeltem temperierblock WO2001051209A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10190053T DE10190053B4 (de) 2000-01-15 2001-01-08 Labortemperiergerät mit temperaturgeregeltem Temperierblock

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10001520.4 2000-01-15
DE10001520 2000-01-15

Publications (1)

Publication Number Publication Date
WO2001051209A1 true WO2001051209A1 (de) 2001-07-19

Family

ID=7627642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/000101 WO2001051209A1 (de) 2000-01-15 2001-01-08 Labortemperiergerät mit temperaturgeregeltem temperierblock

Country Status (2)

Country Link
DE (1) DE10190053B4 (de)
WO (1) WO2001051209A1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024330A2 (en) * 2002-09-12 2004-03-25 Quanta Biotech Limited Thermocycler and sample holder
WO2006105919A1 (en) 2005-04-04 2006-10-12 Roche Diagnostics Gmbh Thermocycling of a block comprising multiple sample
JP2007503217A (ja) * 2003-05-23 2007-02-22 バイオ−ラッド ラボラトリーズ,インコーポレイティド 反応培地の空間配列に対し局部化した温度制御
EP1956318A2 (de) 2007-02-09 2008-08-13 Juan Jose Rojo Sastre Wärmeableiter für Sonnenkollektoren
WO2011031377A1 (en) 2009-09-09 2011-03-17 Helixis, Inc. Optical system for multiple reactions
EP2353722A1 (de) 2010-02-09 2011-08-10 F. Hoffmann-La Roche AG Wärmeableitung von Kraftelektrogeräten für Thermocycler
CN102164674A (zh) * 2008-09-23 2011-08-24 皇家飞利浦电子股份有限公司 热循环设备
US20110256616A1 (en) * 2006-06-23 2011-10-20 Life Technologies Corporation Cooling in a Thermal Cycler Using Heat Pipes
DE212010000039U1 (de) 2009-04-03 2012-02-02 Helixis, Inc. Geräte zum erhitzen biologischer proben
CN103992938A (zh) * 2014-05-19 2014-08-20 苏州东胜兴业科学仪器有限公司 基因扩增装置
CN104190490A (zh) * 2014-08-04 2014-12-10 广东机电职业技术学院 一种热回收式恒温槽循环设备及其恒温方法
ITTO20130873A1 (it) * 2013-10-29 2015-04-30 Alenia Aermacchi Spa Circuito di raffreddamento/riscaldamento a fluido bifase con valvole di controllo del flusso sensibili alla temperatura

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934643A (en) * 1971-07-26 1976-01-27 Nikolaus Laing Controllable heat pipe
WO1989012502A1 (en) * 1988-06-23 1989-12-28 Lep Scientific Limited Biochemical reaction machine
US4950608A (en) * 1989-04-25 1990-08-21 Scinics Co., Ltd. Temperature regulating container
US5161609A (en) * 1989-01-20 1992-11-10 Bertin & Cie Method and apparatus for high speed regulation of a wall temperature
US5417686A (en) * 1990-07-10 1995-05-23 The Texas A&M University System Temperature control mechanisms for a micro heat pipe catheter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7209936A (de) * 1972-07-19 1974-01-22
JPS58153535A (ja) * 1982-03-05 1983-09-12 Hitachi Ltd 試料回転装置
JPH1163722A (ja) * 1997-08-11 1999-03-05 Daikin Ind Ltd 流体冷却装置
DE29817402U1 (de) * 1998-09-29 1999-01-28 Freitag Lutz Dr Vorrichtung zum Temperieren medizinischer Flüssigkeiten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3934643A (en) * 1971-07-26 1976-01-27 Nikolaus Laing Controllable heat pipe
WO1989012502A1 (en) * 1988-06-23 1989-12-28 Lep Scientific Limited Biochemical reaction machine
US5161609A (en) * 1989-01-20 1992-11-10 Bertin & Cie Method and apparatus for high speed regulation of a wall temperature
US4950608A (en) * 1989-04-25 1990-08-21 Scinics Co., Ltd. Temperature regulating container
US5417686A (en) * 1990-07-10 1995-05-23 The Texas A&M University System Temperature control mechanisms for a micro heat pipe catheter

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004024330A3 (en) * 2002-09-12 2004-05-13 Quanta Biotech Ltd Thermocycler and sample holder
WO2004024330A2 (en) * 2002-09-12 2004-03-25 Quanta Biotech Limited Thermocycler and sample holder
JP4705035B2 (ja) * 2003-05-23 2011-06-22 バイオ−ラッド ラボラトリーズ,インコーポレイティド 反応培地の空間配列に対し局部化した温度制御
US9623414B2 (en) 2003-05-23 2017-04-18 Bio-Rad Laboratories, Inc. Localized temperature control for spatial arrays of reaction media
JP2007503217A (ja) * 2003-05-23 2007-02-22 バイオ−ラッド ラボラトリーズ,インコーポレイティド 反応培地の空間配列に対し局部化した温度制御
US8945881B2 (en) 2003-05-23 2015-02-03 Bio-Rad Laboratories, Inc. Localized temperature control for spatial arrays of reaction media
EP2495046A3 (de) * 2005-04-04 2013-05-22 F. Hoffmann-La Roche AG Thermocycleranordnung mit Dampfkammer
US11285488B2 (en) * 2005-04-04 2022-03-29 Roche Molecular Systems, Inc. Thermocycling of a block comprising multiple sample
WO2006105919A1 (en) 2005-04-04 2006-10-12 Roche Diagnostics Gmbh Thermocycling of a block comprising multiple sample
EP2495046A2 (de) 2005-04-04 2012-09-05 F. Hoffmann-La Roche AG Thermocycleranordnung mit Dampfkammer
US11638920B2 (en) 2005-04-04 2023-05-02 Roche Molecular Systems, Inc. Thermocycling of a block comprising multiple sample
US9468927B2 (en) 2006-06-23 2016-10-18 Applied Biosystems, Llc Cooling in a thermal cycler using heat pipes
US20110256616A1 (en) * 2006-06-23 2011-10-20 Life Technologies Corporation Cooling in a Thermal Cycler Using Heat Pipes
EP2520667A1 (de) * 2006-06-23 2012-11-07 Applied Biosystems, LLC Kühlung in einem Thermocycler unter Verwendung von Heizrohren
EP2076605B2 (de) 2006-06-23 2020-08-26 Applied Biosystems, LLC Kühlung in einem thermocycler mit heizrohren
EP1956318B1 (de) * 2007-02-09 2015-04-08 Juan Jose Rojo Sastre Sonnenkollektor mit Wärmeableiter
EP1956318A2 (de) 2007-02-09 2008-08-13 Juan Jose Rojo Sastre Wärmeableiter für Sonnenkollektoren
CN102164674B (zh) * 2008-09-23 2014-07-16 皇家飞利浦电子股份有限公司 热循环设备
CN102164674A (zh) * 2008-09-23 2011-08-24 皇家飞利浦电子股份有限公司 热循环设备
DE212010000039U1 (de) 2009-04-03 2012-02-02 Helixis, Inc. Geräte zum erhitzen biologischer proben
WO2011031377A1 (en) 2009-09-09 2011-03-17 Helixis, Inc. Optical system for multiple reactions
EP2301666A1 (de) 2009-09-09 2011-03-30 Helixis Inc. Optisches System für Mehrfachreaktionen
EP2353722A1 (de) 2010-02-09 2011-08-10 F. Hoffmann-La Roche AG Wärmeableitung von Kraftelektrogeräten für Thermocycler
ITTO20130873A1 (it) * 2013-10-29 2015-04-30 Alenia Aermacchi Spa Circuito di raffreddamento/riscaldamento a fluido bifase con valvole di controllo del flusso sensibili alla temperatura
EP2869014A1 (de) * 2013-10-29 2015-05-06 Alenia Aermacchi S.p.A. Zweiphasiger Flüssigkeitsheiz-/-kühlkreislauf mit temperaturmessenden Strömungssteuerungsventilen
US10337803B2 (en) 2013-10-29 2019-07-02 Alenia Aermacchi S.P.A. Dual-phase fluid heating/cooling circuit provided with temperature-sensing flow control valves
CN103992938B (zh) * 2014-05-19 2016-05-25 苏州东胜兴业科学仪器有限公司 基因扩增装置
CN103992938A (zh) * 2014-05-19 2014-08-20 苏州东胜兴业科学仪器有限公司 基因扩增装置
CN104190490A (zh) * 2014-08-04 2014-12-10 广东机电职业技术学院 一种热回收式恒温槽循环设备及其恒温方法

Also Published As

Publication number Publication date
DE10190053D2 (de) 2003-03-27
DE10190053B4 (de) 2012-04-19

Similar Documents

Publication Publication Date Title
DE102006045028B4 (de) Konstanttemperatur-Flüssigkeitszirkuliervorrichtung und Verfahren zur Steuerung der Temperatur in der Vorrichtung
EP2891396B1 (de) Kühlanordnung für in einem innenraum eines schaltschranks angeordnete komponenten
WO2001051209A1 (de) Labortemperiergerät mit temperaturgeregeltem temperierblock
WO1990005947A1 (de) Thermostatisiergerät
EP3369803B1 (de) Verfahren zur befeuchtung eines inkubators und inkubator
CH704462B1 (de) Flüssigkeit-Luft-Wärmeaustauschgerät mit Peltierelementen.
EP3601906B1 (de) Kältegerät und betriebsverfahren dafür
DE102011119174A1 (de) Vapor Chamber
EP1308504B1 (de) Inkubations-und Lagervorrichtung, insbesondere für Proben aus organischem Material
DE3229779C2 (de)
DE60126589T2 (de) Thermisches kontrollsystem für substrate
DE2358754A1 (de) Verfahren und vorrichtung zur steuerung einer heizungsanlage
AT516385B1 (de) Temperiereinheit für ein gasförmiges oder flüssiges Medium
EP2696159A1 (de) Wärmeaustauscher und Verfahren zur Benetzung von Wärmeaustauschern
DE102011007768A1 (de) Kaskadiertes Kühlsystem für einen Probeninjektor eines Probentrenngeräts
AT516611B1 (de) Temperiereinheit für ein gasförmiges oder flüssiges Medium
EP3601902B1 (de) Kältegerät und betriebsverfahren dafür
EP3608607A1 (de) Kühlgerät mit mindestens zwei verdampfern
EP2195718B1 (de) Temperiereinrichtung
EP3988881A1 (de) Verfahren zum betrieb einer wärmeübertrageranordnung
DE102008052898B4 (de) Vorrichtung und Verfahren zum Temperieren von Bauteilen
DE102015100272B3 (de) Temperieranordnung für Messgeräte
EP3098522B1 (de) Warmwasserzirkulationssystem mit einem sma gesteuerten ventil
EP1009079B1 (de) Vorrichtung zur Begrenzung der Temperatur einer Lichtwellen emittierenden Laser-Diode
CH695464A5 (de) Wärmepumpe.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607