WO2001049976A2 - Steueruung eines mehrzylinder-verbrennungsmotors mit individuell ansteuerbaren einlassventilen - Google Patents

Steueruung eines mehrzylinder-verbrennungsmotors mit individuell ansteuerbaren einlassventilen Download PDF

Info

Publication number
WO2001049976A2
WO2001049976A2 PCT/DE2000/004120 DE0004120W WO0149976A2 WO 2001049976 A2 WO2001049976 A2 WO 2001049976A2 DE 0004120 W DE0004120 W DE 0004120W WO 0149976 A2 WO0149976 A2 WO 0149976A2
Authority
WO
WIPO (PCT)
Prior art keywords
internal combustion
combustion engine
cylinders
cylinder internal
cylinder
Prior art date
Application number
PCT/DE2000/004120
Other languages
English (en)
French (fr)
Other versions
WO2001049976A3 (de
Inventor
Ruediger Becker
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP00989784A priority Critical patent/EP1248898A2/de
Publication of WO2001049976A2 publication Critical patent/WO2001049976A2/de
Publication of WO2001049976A3 publication Critical patent/WO2001049976A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0223Variable control of the intake valves only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0005Deactivating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/18Control of the engine output torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for operating a multi-cylinder internal combustion engine with individually controllable intake valves, each cylinder of the multi-cylinder internal combustion engine being assigned at least one intake valve.
  • the invention further relates to a corresponding multi-cylinder internal combustion engine and an engine control for a multi-cylinder internal combustion engine.
  • the object is achieved by a method for operating a multi-cylinder internal combustion engine with individually controllable intake valves according to claim 1, wherein at least one intake valve is assigned to each cylinder of the multi-cylinder internal combustion engine.
  • the inlet valves are actuated by at least two cylinders in such a way that the at least two cylinders emit a different output.
  • the object is further achieved by a multi-cylinder internal combustion engine according to claim 14 and an engine control according to claim 15.
  • a different amount of fuel is supplied to the at least two cylinders.
  • no ignition takes place in at least one of the at least two cylinders.
  • the inlet valve of at least one cylinder remains closed when the torque applied by means of the other cylinders is sufficient to produce the desired torque.
  • the inlet valve of at least one cylinder remains closed when the power applied by the other cylinders is sufficient to produce the desired power.
  • the inlet valve of at least one cylinder remains closed if the torque applied by means of the other cylinders is sufficient to produce the torque for the multi-cylinder internal combustion engine, which torque is predetermined by a traction control system.
  • the exhaust gases of the multi-cylinder internal combustion engine are cleaned by means of a catalyst, with no ignition taking place in at least one of the at least two cylinders if the temperature of the catalyst is less than a lower tolerance value for the temperature of the catalyst.
  • fuel is supplied to the at least one of the at least two cylinders.
  • no fuel is supplied to the at least one of the at least two cylinders if the temperature of the catalytic converter is greater than an upper tolerance value for the temperature of the catalytic converter.
  • the inlet valve of the at least one of the at least two cylinders is controlled in such a way that it admits a maximum possible amount of air into the at least one of the at least two cylinders.
  • the inlet valves of the cylinders of the multi-cylinder internal combustion engine are not closed at the same time when a power setpoint for the multi-cylinder internal combustion engine is reduced.
  • the inlet valves of the cylinders of the multi-cylinder internal combustion engine are closed in succession with a predetermined delay when the power setpoint for the multi-cylinder internal combustion engine is reduced.
  • the closed inlet valves of the cylinders of the multi-cylinder internal combustion engine remain closed as long as the power output of the multi-cylinder internal combustion engine is greater than or equal to the power setpoint for the multi-cylinder internal combustion engine.
  • FIG. 1 shows a multi-cylinder internal combustion engine.
  • FIG. 2 shows a flow chart for improving the efficiency of a multi-cylinder internal combustion engine.
  • FIG. 3 shows a flow chart for improving the efficiency of a multi-cylinder internal combustion engine when a motor torque is specified by a traction control system
  • Fig. 4 is a flow chart for influencing the temperature of a catalyst
  • Fig. 1 shows an embodiment for a multi-cylinder internal combustion engine 1 with individually controllable intake valves 21, 22, 23, 24.
  • the multi-cylinder internal combustion engine 1 has an intake pipe 2, through which air into the, in an exemplary embodiment four, cylinders 61, 62nd , 63, 64 of the multi-cylinder internal combustion engine 1 can be fed.
  • a load sensor 9, which indicates the load state Q of the multi-cylinder internal combustion engine 1, and a temperature sensor 10 for measuring the temperature ⁇ air of the air which is drawn in via the intake pipe 2 are arranged on the intake pipe 2.
  • the multi-cylinder internal combustion engine 1 also has (fuel) injection nozzles 11, 12, 13, 14, by means of which fuel for the cylinders 61, 62, 63, 64 can be supplied individually.
  • the exhaust gases generated during combustion collect in an exhaust pipe 4 and are cleaned in a catalytic converter 5.
  • a lambda probe 7 is arranged in the exhaust pipe 4.
  • a temperature sensor 3 for measuring the temperature ⁇ ⁇ of the catalyst 5 is assigned to the catalyst 5.
  • the multi-cylinder internal combustion engine 1 in the present exemplary embodiment has a temperature sensor 8 for measuring the temperature u m of the coolant of the multi-cylinder internal combustion engine 1.
  • the signals ö k , ö m , ü A j. r , Q and ⁇ of the temperature sensors 3, 8 and 10, the load sensor 9 and the lambda probe 7 are fed to an engine control 6.
  • the multi-cylinder internal combustion engine 1 is controlled or regulated by means of the engine control 6.
  • the signal ti controls the injector 11, the signal t 2 the injector 12, the signal t the injector 13 and the injection signal t 4 the injector 14.
  • the data connections between the engine control 6 and the injectors 11, 12 , 13, 14 not shown.
  • the signal x controls the inlet valve 21, the signal v 2 the inlet valve 22, the signal v 3 the inlet valve 23 and the signal v 4 the inlet valve 24.
  • the data connections between the engine control 6 and the inlet valves 21, 22, 23, 24 are not shown for reasons of clarity.
  • the inlet valves 21, 22, 23, 24 are, for. B. executed according to the intake valves according to DE 195 11 320 2.
  • each cylinder 61, 62, 63, 64 is assigned an intake valve 21, 22, 23, 24. However, the cylinders 61, 62, 63, 64 can each be assigned more than one inlet valve.
  • one or more cylinders can thus be operated by means of the control of the intake valves.
  • the inlet valves are closed. These cylinders do not participate in the combustion. The remaining cylinders take over the delivery of the moment and are operated at an unthrottled operating point. This results in an improved overall efficiency.
  • the inlet valves can be closed in order to reduce cooling of the catalytic converter, since the air flow is interrupted.
  • the motor controller 6 has an interface to a traction control system (ASR).
  • a setpoint torque M * is supplied to the engine control from the traction control system. Further details on a traction control system can, for. B. the article "FDR - die
  • FIG. 2 shows a flowchart which is implemented in an exemplary embodiment on the engine control 6 in FIG. 1.
  • a first step 30 the position of the accelerator pedal is determined and converted into a target torque M *.
  • n opt of the cylinders is determined, which is necessary to achieve the desired target torque M * when the cylinders are operated at their optimal operating point.
  • the optimum operating point is to be understood as the operating point at which the efficiency of the multi-cylinder internal combustion engine 1 is greatest.
  • n oU ⁇ cylinders which should not contribute to the performance of the multi-cylinder internal combustion engine 1 are selected with N is the number of cylinders 61, 62, 63, 64.
  • step 33 there is a step 33 in which n opt the cylinder of the multi-cylinder internal combustion engine be operated in such a sawn in conventional manner 1 that the multi-cylinder internal combustion engine 1 reaches the target torque M *.
  • Step 33 is followed by step 34, in which the discharge valves of (n out ) cylinders of the multi-cylinder internal combustion engine 1 are closed and in which no fuel is injected for the other (n out ) cylinders.
  • FIG. 3 shows a flow chart that is implemented in the exemplary embodiment on the motor controller 6 in FIG. 1.
  • a target torque M * is read in by a traction control system. Steps 31, 32, 33 and 34 follow, which correspond to steps 31, 32, 33 and 34 in FIG. 2.
  • FIG. 4 shows a flow chart for influencing the temperature of the catalytic converter 5. This flow chart is implemented on the engine control 6 in an exemplary embodiment.
  • the temperature u " ⁇ of the catalyst 5 is read in in a step 40.
  • no temperature sensor 3 is provided for measuring the temperature ⁇ " ⁇ of the catalyst 5.
  • the temperature t) ⁇ of the catalytic converter 5 is calculated in step 40 using a temperature model.
  • Step 40 is followed by a query 41, in which a query is made as to whether
  • a step 43 then follows.
  • a cylinder for example cylinder 61, is selected in which no ignition takes place.
  • fuel is added to the selected cylinder 61 by means of an injection nozzle 11.
  • the inlet valve 21 of the selected cylinder 61 is controlled in such a way that it admits air, in particular a maximum possible amount of air, to the selected cylinder 61.
  • the ratio of air (opening of the intake valve) and injection time can be adapted to the needs.
  • this can be regulated with the lambda probe 7.
  • the cylinder for air / fuel control can be exchanged in rotation in order to achieve better mixing. This procedure is preferably used after a cold start.
  • step 44 follows.
  • a cylinder e.g. Cylinder 61 selected, with no ignition. No fuel is added to the selected cylinder 61.
  • the inlet valve 21 of the selected cylinder 61 is controlled in such a way that it admitted air, in particular a maximum possible amount of air, into the selected cylinder 61.
  • a step 46 follows in which the multi-cylinder internal combustion engine 1 is operated in a conventional manner.
  • steps 30, 31, 32, 33 and 34 according to FIG. 2 or steps 35, 31, 32, 33 and 34 according to FIG. 3 take place in step 46.
  • Steps 43 and 44 are followed by a step 45 in which the unselected cylinders 62, 63, 64 are operated normally the.
  • the non-selected cylinders 62, 63, 64 in step 45 are analogous to steps 30, 31, 32, 33 and 34 according to FIG. 2 or steps 35, 31, 32, 33 and 34 3 are operated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

Steuerung eines Mehrzylinder-Verbrennungsmotors mit individuell ansteuerbaren EinlaSSventilen, wobei jedem Zylinder des Mehrzylinder-Verbrennungsmotors zumindest ein Einlassventil zugeordnet ist, wobei die Einlassventil von zumindest zwei Zylindern derart angesteuert werden, dass die zumindest zwei Zylinder eine unterschiedliche Leistung abgeben.

Description

Beschreibung
Steuerung eines Mehrzylinder-Verbrennungsmotors mit individuell ansteuerbaren Einlaßventilen
Die Erfindung betrifft ein Verfahren zum Betrieb eines Mehrzylinder-Verbrennungsmotors mit individuell ansteuerbaren Einlaßventilen, wobei jedem Zylinder des Mehrzylinder- Verbrennungsmotors zumindest ein Einlaßventil zugeordnet ist. Die Erfindung betrifft ferner einen entsprechenden Mehrzylinder-Verbrennungsmotor sowie eine Motorsteuerung für einen Mehrzylinder-Verbrennungsmotor .
Es ist Aufgabe der Erfindung, den Betrieb eines Mehrzylinder- Verbrennungsmotors mit individuell ansteuerbaren Einlaßventilen zu verbessern.
Die Aufgabe wird durch ein Verfahren zum Betrieb eines Mehrzylinder-Verbrennungsmotors mit individuell ansteuerbaren Einlaßventilen gemäß Anspruch 1 gelöst, wobei jedem Zylinder des Mehrzylinder-Verbrennungsmotors zumindest ein Einlaßventil zugeordnet ist. Dabei werden die Einlaßventile von zumindest zwei Zylindern derart angesteuert, daß die zumindest zwei Zylinder eine unterschiedliche Leistung abgeben. Die Aufgabe wird ferner durch einen Mehrzylinder- Verbrennungsmotor gemäß Anspruch 14 sowie eine Motorsteuerung gemäß Anspruch 15 gelöst.
In vorteilhafter Ausgestaltung der Erfindung wird den zumin- dest zwei Zylindern eine unterschiedliche Menge an Kraftstoff zugeführt . In weiterhin vorteilhafter Ausgestaltung der Erfindung erfolgt bei zumindest einem der zumindest zwei Zylinder keine Zündung.
In weiterhin vorteilhafter Ausgestaltung der Erfindung bleibt das Einlaßventil zumindest eines Zylinders geschlossen, wenn das mittels der übrigen Zylinder aufgebrachte Drehmoment ausreicht, das gewünschte Drehmoment zu erbringen.
In weiterhin vorteilhafter Ausgestaltung der Erfindung bleibt das Einlaßventil zumindest eines Zylinders geschlossen, wenn die mittels der übrigen Zylinder aufgebrachte Leistung ausreicht, die gewünschte Leistung zu erbringen.
In weiterhin vorteilhafter Ausgestaltung der Erfindung bleibt das Einlaßventil zumindest eines Zylinders geschlossen, wenn das mittels der übrigen Zylinder aufgebrachte Drehmoment ausreicht, das von einer Antriebschlupfregelung vorgegebene Drehmoment für den Mehrzylinder-Verbrennungsmotor zu erbrin- gen.
In weiterhin vorteilhafter Ausgestaltung der Erfindung werden die Abgase des Mehrzylinder-Verbrennungsmotors mittels eines Katalysators gereinigt, wobei bei zumindest einem der zumin- dest zwei Zylinder keine Zündung erfolgt, wenn die Temperatur des Katalysators kleiner ist als ein unterer Toleranzwert für die Temperatur des Katalysators.
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird dem zumindest einem der zumindest zwei Zylinder Kraftstoff zugeführt. In weiterhin vorteilhafter Ausgestaltung der Erfindung wird dem zumindest einem der zumindest zwei Zylinder kein Kraftstoff zugeführt, wenn die Temperatur des Katalysators größer ist als ein oberer Toleranzwert für die Temperatur des Kata- lysators .
In weiterhin vorteilhafter Ausgestaltung der Erfindung wird das Einlaßventil des zumindest einen der zumindest zwei Zylinder derart gesteuert, daß es eine maximal mögliche Menge Luft in den zumindest einen der zumindest zwei Zylinder einläßt.
In weiterhin vorteilhafter Ausgestaltung der Erfindung werden die Einlaßventile der Zylinder des Mehrzylinder- Verbrennungsmotors bei Verringerung eines Leistungssollwertes für den Mehrzylinder-Verbrennungsmotor nicht gleichzeitig geschlossen.
In weiterhin vorteilhafter Ausgestaltung der Erfindung werden die Einlaßventile der Zylinder des Mehrzylinder- Verbrennungsmotors bei Verringerung des Leistungssollwertes für den Mehrzylinder-Verbrennungsmotor mit einer vorgegebenen Verzögerung nacheinander geschlossen.
In weiterhin vorteilhafter Ausgestaltung der Erfindung die geschlossenen Einlaßventile der Zylinder des Mehrzylinder- Verbrennungsmotors so lange geschlossen bleiben wie die Leistungsabgabe des Mehrzylinder-Verbrennungs otors größer oder gleich dem Leistungssollwert für den Mehrzylinder- Verbrennungsmotor ist. Weitere Einzelheiten und Vorteile ergeben sich aus nachfolgender Beschreibung von Ausführungsbeispielen. Im einzelnen zeigen :
Fig. 1 einen Mehrzylinder-Verbrennungsmotor Fig. 2 einen Ablaufplan zur Verbesserung des Wirkungsgrades eines Mehrzylinder-Verbrennungsmotors Fig. 3 einen Ablaufplan zur Verbesserung des Wirkungsgrades eines Mehrzylinder-Verbrennungsmotors bei Vorgabe eines Motormomentes durch eine Antriebsschlupfrege- lung
Fig. 4 einen Ablaufplan zur Beeinflussung der Temperatur eines Katalysators
Fig. 1 zeigt ein Ausführungsbeispiel für einen Mehrzylinder- Verbrennungsmotor 1 mit individuell steuerbaren Einlaßventilen 21, 22, 23, 24. Der Mehrzylinder-Verbrennungsmotor 1 weist ein Ansaugrohr 2 auf, über das Luft in die, in beispielhafter Ausgestaltung vier, Zylinder 61, 62, 63, 64 des Mehrzylinder-Verbrennungsmotors 1 zuführbar ist. Am Ansaug- röhr 2 sind ein Lastsensor 9, der den Lastzustand Q des Mehrzylinder-Verbrennungsmotors 1 anzeigt, sowie ein Temperatursensor 10 zum Messen der Temperatur öAir der Luft, die über das Ansaugrohr 2 angesaugt wird, angeordnet. Der Mehrzylinder-Verbrennungsmotor 1 weist zudem (Kraftstoff- ) Einspritzdüsen 11, 12, 13, 14 auf, mittels der Kraftstoff für die Zylinder 61, 62, 63, 64 individuell zuführbar ist. Die bei der Verbrennung entstehenden Abgase sammeln sich in einem Abgasrohr 4 und werden in einem Katalysator 5 gereinigt. Im Abgasrohr 4 ist eine Lambdasonde 7 angeordnet. Dem Katalysator 5 ist ein Temperatursensor 3 zur Messung der Temperatur ύκ des Katalysators 5 zugeordnet. Zudem weist der Mehrzylinder-Verbrennungsmotor 1 im vorliegendem Ausführungsbeispiel einen Temperatursensor 8 zur Messung der Temperatur üm des Kühlmittels des Mehrzylinder-Verbrennungsmotors 1 auf. Die Signale ök, öm, üAj.r, Q sowie λ der Temperatursensoren 3, 8 und 10, des Lastsensors 9 sowie der Lambdasonde 7 werden einer Motorsteuerung 6 zugeführt. Mittels der Motorsteuerung 6 wird der Mehrzylinder- Verbrennungsmotor 1 gesteuert bzw. geregelt. Die Motorsteuerung 6 gibt ein Einspritzsignal ti mit i=l,2,3,4 zur indivi- duellen Ansteuerung der Einspritzdüsen 11, 12, 13, 14 aus. Dabei steuert das Signal ti die Einspritzdüse 11, das Signal t2 die Einspritzdüse 12, das Signal t die Einspritzdüse 13 und das Einspritzsignal t4 die Einspritzdüse 14. Aus Gründen der Übersichtlichkeit sind die datentechnischen Verbindungen zwischen der Motorsteuerung 6 und den Einspritzdüsen 11, 12, 13, 14 nicht dargestellt.
Die Motorsteuerung 6 gibt zudem ein Ventilsignal V^ mit i=l,2,3,4 zur individuellen Ansteuerung der Einlaßventile 21, 22, 23, 24 aus. Dabei steuert das Signal x das Einlaßventil 21, das Signal v2 das Einlaßventil 22, das Signal v3 das Einlaßventil 23 und das Signal v4 das Einlaßventil 24. Die datentechnischen Verbindungen zwischen der Motorsteuerung 6 und den Einlaßventilen 21, 22, 23, 24 sind aus Gründen der Über- sichtlichkeit nicht dargestellt. Die Einlaßventile 21, 22, 23, 24 sind z. B. entsprechend den Einlaßventilen gemäß der DE 195 11 320 2 ausgeführt. In Fig. 1 ist jedem Zylindern 61, 62, 63, 64 ein Einlaßventil 21, 22, 23, 24 zugeordnet. Es können den Zylinder 61, 62, 63, 64 jedoch je mehr als ein Einlaßventil zugeordnet sein.
Bei Vorgabe eines kleinen Motormomentes können somit ein oder mehrere Zylinder mittels der Steuerung der Einlaßventile betrieben werden. Die Einlaßventile sind zu. Diese Zylinder nehmen nicht an der Verbrennung teil. Die restlichen Zylinder übernehmen die Lieferung des Momentes und werden bei einem ungedrosselten Arbeitspunkt betrieben. Es ergibt sich somit ein verbesserter Gesamtwirkungsgrad. Beim Betrieb ohne Momentenwunsch können die Einlaßventile geschlossen werden um ein Auskühlen des Katalysators zu verringern, da der Luftstrom unterbrochen ist. Optional ist vorgesehen, daß die Motorsteuerung 6 eine Schnittstelle zu einer Antriebsschlupfreglung (ASR) aufweist. Dabei wird der Motorsteuerung von der Antriebsschlupfreglung ein Sollmoment M* zugeführt. Nähere Einzelheiten zu einer An- triebsschlupfreglung können z. B. dem Artikel "FDR - die
Fahrdynamikreglung von Bosch", von A. van Zanten, R. Erhardt und G. Pfäff, ATZ Automobiltechnische Zeitschrift 96 (1994) 11 Seiten 674 bis 689 entnommen werden.
Fig. 2 zeigt einen Ablaufplan, der in beispielhafter Ausgestaltung auf der Motorsteuerung 6 in Fig. 1 implementiert ist. Dabei wird in einem ersten Schritt 30 die Stellung des Gaspedals ermittelt und in ein Sollmoment M* umgerechnet.
In einem zweiten Schritt 31 wird die Anzahl nopt der Zylinder ermittelt, die notwendig ist, um das gewünschte Sollmoment M* zu erreichen, wenn die Zylinder in ihrem optimalen Betriebspunkt betrieben werden. Dabei ist unter optimalem Betriebspunkt der Betriebspunkt zu verstehen, an dem der Wir- kungsgrad des Mehrzylinder-Verbrennungsmotors 1 am größten ist.
In einem dritten Schritt 32 erfolgt eine Auswahl der naUΞ Zylinder, die nicht zur Leistung des Mehrzylinder- Verbrennungsmotors 1 beitragen sollen, mit
Figure imgf000007_0001
Dabei ist n die Anzahl der Zylinder 61, 62, 63, 64.
Es folgt ein Schritt 33, in dem nopt der Zylinder des Mehrzylinder-Verbrennungsmotors 1 in herkömmlicher Weise derart be- trieben werden, daß der Mehrzylinder-Verbrennungsmotor 1 das Sollmoment M* erreicht.
Dem Schritt 33 folgt ein Schritt 34, in dem die Enlaßventile von (naus) Zylindern des Mehrzylinder-Verbrennungsmotors 1 ge- schlössen werden und in dem für die übrigen (naus) Zylinder keine Einspritzung von Kraftstoff erfolgt. Fig. 3 zeigt einen Ablaufplan, der m beispielhafter Ausgestaltung auf der Motorsteuerung 6 m Fig. 1 implementiert ist. Dabei wird m einem ersten Schritt 35 ein Sollmoment M* von einer Antriebsschlupfregelung eingelesen. Es folgen Schritte 31, 32, 33 und 34, die den Schritten 31, 32, 33 und 34 in Fig. 2 entsprechen.
Fig. 4 zeigt einen Ablaufplan zur Beeinflussung der Temperatur des Katalysators 5. Dieser Ablaufplan ist m beispielhaf- ter Ausgestaltung auf der Motorsteuerung 6 implementiert. In einem Schritt 40 wird dabei die Temperatur u"κ des Katalysators 5 eingelesen. In alternativer Ausgestaltung ist kein Temperatursensor 3 zur Messung der Temperatur ϋ" κ des Katalysators 5 vorgesehen. In diesem Fall wird im Schritt 40 die Temperatur t)κ des Katalysators 5 mittels eines Temperaturmodells berechnet.
Dem Schritt 40 folgt eine Abfrage 41, in der abgefragt wird, ob
UV < ÜKmin
wobei UKmm ein unterer Toleranzwert f r die Temperatur \SK des Katalysators 5 ist. Gilt
UR < ÜKmin/
dann folgt ein Schritt 43. Im Schritt 43 wird ein Zylinder, z.B. Zylinder 61, ausgewählt, bei dem keine Zündung erfolgt. Dem ausgewählten Zylinder 61 wird jedoch mittels einer Einspritzdüse 11 Kraftstoff zugefugt. Ferner wird das Einlaßventil 21 des ausgewählten Zylinders 61 derart gesteuert, daß es Luft, insbesondere eine maximal mögliche Menge Luft m den ausgewählten Zylinder 61 einlaßt. Zur optimalen Steuerung kann das Verhältnis Luft (Öffnung des Einlaßventils) und Einspritzzeit den Bedurfnissen angepaßt werden. Als Ausfuhrungs- beispiel kann dies mit der Lambdasonde 7 geregelt werden. Weiterhin kann der Zylinder zur Luft/Kraftstoff-Steuerung rotierend ausgetauscht werden, um eine bessere Durchmischung zu erzielen. Dieses Vorgehen wird vorzugsweise nach einem Kaltstart angewandt.
Ist
Figure imgf000009_0001
so folgt eine weitere Abfrage 42, in der abgefragt wird, ob
ist, wobei ÜYax e^-n oberer Toleranzwert für die Temperatur üκ des Katalysators 5 ist. Ist
Üκ > θ Kmax
so folgt ein Schritt 44. Im Schritt 44 wird ein Zylinder, z.B. Zylinder 61, ausgewählt, bei dem keine Zündung erfolgt. Dem ausgewählten Zylinder 61 wird kein Kraftstoff zugefügt. Das Einlaßventil 21 des ausgewählten Zylinders 61 wird derart gesteuert, daß es Luft, insbesondere eine maximal mögliche Menge Luft in den ausgewählten Zylinder 61 einläßt.
Ist dagegen
UR ≤ U"ma
so folgt ein Schritt 46, in dem der Mehrzylinder- Verbrennungsmotor 1 in herkömmlicher Weise betrieben wird. In vorteilhafter Ausgestaltung ist vorgesehen, daß im Schritt 46 die Schritte 30, 31, 32, 33 und 34 gemäß Fig. 2 oder die Schritte 35, 31, 32, 33 und 34 gemäß Fig. 3 ablaufen.
Den Schritten 43 und 44 folgt ein Schritt 45, in dem die nicht ausgewählten Zylinder 62, 63, 64 normal betrieben wer- den. In vorteilhafter Ausgestaltung ist vorgesehen, daß die nicht ausgewählten Zylinder 62, 63, 64 im Schritt 45 in analoger Weise zu den Schritten 30, 31, 32, 33 und 34 gemäß Fig, 2 oder den Schritten 35, 31, 32, 33 und 34 gemäß Fig. 3 be- trieben werden.
Mittels des Vorgehens gemäß dem Ablaufplan gemäß Fig. 4 ist es möglich, eine Sekundärluftpumpe, wie sie z. B. in der DE 41 41 946 AI offenbart ist, einzusparen.

Claims

Patentansprüche
1. Verfahren zum Betrieb eines Mehrzylinder- Verbrennungsmotors (1) mit individuell ansteuerbaren Einlaß- ventilen (21, 22, 23, 24), wobei jedem Zylinder (61, 62, 63, 64) des Mehrzylinder-Verbrennungsmotors (1) zumindest ein Einlaßventil (21, 22, 23, 24) zugeordnet ist, d a d u r c h g e k e n n z e i c h n e t, daß die Einlaßventile (21, 22, 23, 24) von zumindest zwei Zy- lindern (61, 62, 63, 64) derart angesteuert werden, daß die zumindest zwei Zylinder (61, 62, 63, 64) eine unterschiedliche Leistung abgeben.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß den zumindest zwei Zylindern (61, 62, 63, 64) eine unterschiedliche Menge an Kraftstoff zugeführt wird.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß bei zumindest einem der zumindest zwei Zylinder (61, 62, 63, 64) keine Zündung erfolgt.
4. Verfahren nach Anspruch 1, 2 oder 3, d a d u r c h g e k e n n z e i c h n e t, daß das Einlaßventil (21, 22, 23, 24) zumindest eines Zylinders geschlossen bleibt, wenn das mittels der übrigen Zylinder (61, 62, 63, 64) aufgebrachte Drehmoment ausreicht, ein gewünschtes Drehmoment (M*) zu erbringen.
5. Verfahren nach Anspruch 1, 2, 3 oder 4, d a d u r c h g e k e n n z e i c h n e t, daß das Einlaßventil (21, 22, 23, 24) zumindest eines Zylinders (61, 62, 63, 64) geschlossen bleibt, wenn die mittels der übrigen Zylinder (61, 62, 63, 64) aufgebrachte Leistung ausreicht, eine gewünschte Leistung zu erbringen.
6. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß das Einlaßventil (21, 22, 23, 24) zumindest eines Zylinders geschlossen bleibt, wenn das mittels der übrigen Zylin- der (61, 62, 63, 64) aufgebrachte Drehmoment ausreicht, das von einer Antriebschlupfregelung vorgegebene Drehmoment (M*) für den Mehrzylinder-Verbrennungsmotor (1) zu erbringen.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Abgase des Mehrzylinder-Verbrennungsmotors (1) mittels eines Katalysators (5) gereinigt werden, d a d u r c h g e k e n n z e i c h n e t, daß bei zumindest einem der zumindest zwei Zylinder (61, 62, 63, 64) keine Zündung erfolgt, wenn die Temperatur (ϋκ) des Katalysators (5) kleiner ist als ein unterer Toleranzwert (öκmin) für die Temperatur (ü~ κ) des Katalysators (5) .
8. Verfahren nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t, daß dem zumindest einem der zumindest zwei Zylinder (61, 62, 63, 64) Kraftstoff zugeführt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Abgase des Mehrzylinder-Verbrennungsmotors (1) mittels eines Katalysator (5) gereinigt werden, d a d u r c h g e k e n n z e i c h n e t, daß dem zumindest einem der zumindest zwei Zylinder (61, 62, 63, 64) kein Kraftstoff zugeführt wird, wenn die Temperatur (üκ) des Katalysators (5) größer ist als ein oberer Toleranzwert ('6'κiuax) für die Temperatur (öκ) des Katalysators (5).
10. Verfahren nach Anspruch 7, 8 oder 9, d a d u r c h g e k e n n z e i c h n e t, daß das Einlaßventil (21, 22, 23, 24) des zumindest einen der zumindest zwei Zylinder (61, 62, 63, 64) derart gesteuert wird, daß es eine maximal mögliche Menge Luft in den zumindest einen der zumindest zwei Zylinder (61, 62, 63, 64) einläßt.
11. Verfahren nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, daß die Einlaßventile (21, 22, 23, 24) der Zylinder (61, 62, 63, 64) des Mehrzylinder-Verbrennungsmotors (1) bei Verringerung eines Leistungssollwertes (B*) für den Mehrzylinder- Verbrennungsmotor (1) nicht gleichzeitig geschlossen werden.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, daß die Einlaßventile (21, 22, 23, 24) der Zylinder (61, 62, 63, 64) des Mehrzylinder-Verbrennungsmotors (1) bei Verringe- rung des Leistungssollwertes (B*) für den Mehrzylinder- Verbrennungsmotor (1) mit einer vorgegebenen Verzögerung nacheinander geschlossen werden.
13. Verfahren nach Anspruch 11 oder 12, d a d u r c h g e k e n n z e i c h n e t, daß die geschlossenen Einlaßventile (21, 22, 23, 24) der Zylinder (61, 62, 63, 64) des Mehrzylinder-Verbrennungsmotors (1) so lange geschlossen bleiben wie die Leistungsabgabe des Mehrzylinder-Verbrennungsmotors (1) größer oder gleich dem Leistungssollwert (B*) für den Mehrzylinder-Verbrennungsmotor
(1) ist.
14. Mehrzylinder-Verbrennungsmotor (1), insbesondere gemäß einem Verfahren nach einem der vorhergehenden Ansprüche betreibbarer Mehrzylinder-Verbrennungsmotor (1), mit individuell ansteuerbaren Einlaßventilen (21, 22, 23, 24) , wobei je- dem Zylinder (61, 62, 63, 64) des Mehrzylinder- Verbrennungsmotors (1) zumindest ein Einlaßventil (21, 22, 23, 24) zugeordnet ist, d a d u r c h g e k e n n z e i c h n e t, daß die Einlaßventile (21, 22, 23, 24) von zumindest zwei Zy- lindern (61, 62, 63, 64) derart ansteuerbar sind, daß die zumindest zwei Zylinder (61, 62, 63, 64) eine unterschiedliche Leistung abgeben.
15. Motorsteuerung (6) für einen Mehrzylinder- Verbrennungsmotor, insbesondere für einen gemäß einem Verfahren nach einem der vorhergehenden Ansprüche betreibbaren Mehrzylinder-Verbrennungsmotor, mit individuell ansteuerbaren Einlaßventilen (21, 22, 23, 24), wobei jedem Zylinder (61, 62, 63, 64) des Mehrzylinder-Verbrennungsmotors (1) zumindest ein Einlaßventil (21, 22, 23, 24) zugeordnet ist, d a d u r c h g e k e n n z e i c h n e t, daß die Einlaßventile (21, 22, 23, 24) von zumindest zwei Zylindern (61, 62, 63, 64) mittels der Motorsteuerung (6) derart ansteuerbar sind, daß die zumindest zwei Zylinder (61, 62, 63, 64) eine unterschiedliche Leistung abgeben.
PCT/DE2000/004120 2000-01-05 2000-11-22 Steueruung eines mehrzylinder-verbrennungsmotors mit individuell ansteuerbaren einlassventilen WO2001049976A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP00989784A EP1248898A2 (de) 2000-01-05 2000-11-22 Steueruung eines mehrzylinder-verbrennungsmotors mit individuell ansteuerbaren einlassventilen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10000216A DE10000216A1 (de) 2000-01-05 2000-01-05 Steuerung eines Mehrzylinder-Verbrennungsmotors mit individuell ansteuerbaren Einlaßventilen
DE10000216.1 2000-01-05

Publications (2)

Publication Number Publication Date
WO2001049976A2 true WO2001049976A2 (de) 2001-07-12
WO2001049976A3 WO2001049976A3 (de) 2002-04-04

Family

ID=7626799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004120 WO2001049976A2 (de) 2000-01-05 2000-11-22 Steueruung eines mehrzylinder-verbrennungsmotors mit individuell ansteuerbaren einlassventilen

Country Status (3)

Country Link
EP (1) EP1248898A2 (de)
DE (1) DE10000216A1 (de)
WO (1) WO2001049976A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170468A2 (de) * 2000-07-06 2002-01-09 Ford Global Technologies, Inc. Vorrichtung und Verfahren zur Ventilsteuerung
EP2072788A1 (de) * 2007-12-21 2009-06-24 Ford Global Technologies, LLC Motorsystem und Verfahren zur Regenerierung des abgeführten Gases einer Abgasbehandlungsvorrichtung in einem solchen System

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141946A1 (de) 1991-12-19 1993-06-24 Bosch Gmbh Robert Verfahren und vorrichtung zur steuerung des betriebs einer sekundaerluftpumpe

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4391095A (en) * 1981-07-02 1983-07-05 Texaco Inc. Internal combustion engine with exhaust filter rejuvenation
JPH0381542A (ja) * 1989-08-24 1991-04-05 Mazda Motor Corp エンジンの制御装置
US5205152A (en) * 1991-02-19 1993-04-27 Caterpillar Inc. Engine operation and testing using fully flexible valve and injection events
JP3733786B2 (ja) * 1999-05-21 2006-01-11 トヨタ自動車株式会社 電磁駆動弁を有する内燃機関

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4141946A1 (de) 1991-12-19 1993-06-24 Bosch Gmbh Robert Verfahren und vorrichtung zur steuerung des betriebs einer sekundaerluftpumpe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. VAN ZANTEN,R.ERHARDT.G PFAFF: ""fdr-die fahrdynamikreglung von bosch"", ATZ AUTOMOBILTECHNISCHE ZEITSCHRIFT, 1994, pages 674-689, XP000000096

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170468A2 (de) * 2000-07-06 2002-01-09 Ford Global Technologies, Inc. Vorrichtung und Verfahren zur Ventilsteuerung
EP1170468A3 (de) * 2000-07-06 2003-11-26 Ford Global Technologies, Inc. Vorrichtung und Verfahren zur Ventilsteuerung
EP2072788A1 (de) * 2007-12-21 2009-06-24 Ford Global Technologies, LLC Motorsystem und Verfahren zur Regenerierung des abgeführten Gases einer Abgasbehandlungsvorrichtung in einem solchen System
US8448425B2 (en) 2007-12-21 2013-05-28 Volvo Car Corporation Engine system and a method for a regeneration of an exhaust gas treatment device in such a system

Also Published As

Publication number Publication date
WO2001049976A3 (de) 2002-04-04
EP1248898A2 (de) 2002-10-16
DE10000216A1 (de) 2001-07-12

Similar Documents

Publication Publication Date Title
DE19630053B4 (de) Verfahren und Vorrichtung zur kontinuierlichen und variablen Regelung einer Ventileinstellung eines Verbrennungsmotors
DE69823269T2 (de) Drosselklappenkontrolleinrichtung für einen Verbrennungsmotor
DE19630213C1 (de) Verfahren und Vorrichtung zur Motormomenteinstellung bei einem Verbrennungsmotor
EP2147205B1 (de) Verfahren zur zylindergleichstellung einer brennkraftmaschine
DE19947037C1 (de) Verfahren zum Steuern einer Brennkraftmaschine
DE19748018C2 (de) Kraftstoff-Direkteinspritzsteuergerät für einen Verbrennungsmotor
DE102006019894B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE112008001903B4 (de) Fahrzeugsteuerungsverfahren und Fahrzeugsteuerungsvorrichtung
DE10046597B4 (de) Steuersystem für Motoren mit Direkteinspritzung
DE102009017743A1 (de) Steuerung für einen Dieselmotor nach dem Start
DE60222608T2 (de) Vorrichtung und Methode zur Bestimmung der Einlassluftmenge im Kolben einer Brennkraftmaschine
EP1703110A1 (de) Verfahren zur Optimierung der Kalibrierung eines Verbrennungsmotors
EP1129279B1 (de) Verfahren zur bestimmung von stellgrössen bei der steuerung von benzindirekteinspritzmotoren
DE19705463A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
WO1998025015A2 (de) Verfahren zum steuern einer direkteinspritzenden brennkraftmaschine
DE10259846B3 (de) Verfahren zur Zylindergleichstellung
DE69914571T2 (de) Verfahren zur Steuerung der Einspritzung und der Zündung in einer Brennkraftmaschine zum aufheizen eines Abgaskatalysators
EP1190167B1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine mit benzindirekteinspritzung
EP1269010B1 (de) Verfahren zum starten einer brennkraftmaschine und starteinrichtung für eine brennkraftmaschine
EP1420157B1 (de) Verfahren zur Ermittlung der Einspritzmenge einer Brennkraftmaschine
DE10340062A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE19727793C2 (de) Verfahren zum Steuern einer Brennkraftmaschine
DE112016004781T5 (de) Vorrichtung zur Steuerung von Kraftstoffeinspritzung für einen Motor
DE102006016020B3 (de) Verfahren zur Bestimmung zylinderindividueller Füllungsluftunterschiede
WO2001049976A2 (de) Steueruung eines mehrzylinder-verbrennungsmotors mit individuell ansteuerbaren einlassventilen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): HU JP PL US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): HU JP PL US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000989784

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000989784

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000989784

Country of ref document: EP