WO2001048064A1 - Method for drying and storage of oxygen-scavenging resin or oxygen-scavenging packaging material - Google Patents

Method for drying and storage of oxygen-scavenging resin or oxygen-scavenging packaging material Download PDF

Info

Publication number
WO2001048064A1
WO2001048064A1 PCT/JP1999/007316 JP9907316W WO0148064A1 WO 2001048064 A1 WO2001048064 A1 WO 2001048064A1 JP 9907316 W JP9907316 W JP 9907316W WO 0148064 A1 WO0148064 A1 WO 0148064A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
absorbing
packaging material
resin
container
Prior art date
Application number
PCT/JP1999/007316
Other languages
French (fr)
Japanese (ja)
Inventor
Yuki Miyazawa
Yoshihiro Kobayashi
Toru Ikeda
Shigenobu Harano
Masao Yamane
Original Assignee
Ajinomoto Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co., Inc. filed Critical Ajinomoto Co., Inc.
Priority to PCT/JP1999/007316 priority Critical patent/WO2001048064A1/en
Publication of WO2001048064A1 publication Critical patent/WO2001048064A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds

Definitions

  • the present invention relates to a method for drying and preserving an oxygen-absorbing resin or an oxygen-absorbing packaging material.
  • the composition of the oxygen absorbent is disclosed in Japanese Patent Publication No. 53-141185, which discloses a combination of reduced iron (main agent) and an oxidation promoter such as calcium chloride.
  • an oxidation promoter such as calcium chloride.
  • some calcium chlorides have water of crystallization, and the existence of hexahydrate, tetrahydrate, dihydrate and monohydrate is known. It has been confirmed from the absorption curve of the differential thermal analysis that the water of crystallization is desorbed by heating and becomes an anhydrous salt (anhydrous) at 200 ° C. according to the present inventors.
  • Calcium chloride is also used as a desiccant, and it is known that not only anhydrous salts but also dihydrates have hygroscopicity.
  • the oxygen-absorbing performance of the resin containing oxygen scavenger was improved by mixing and dispersing calcium chloride as an oxidation promoter in addition to the reduced iron as the main agent as the oxygen scavenger.
  • a resin containing an oxygen-absorbing agent in which it is blended and dispersed, a packaging material containing an oxygen-absorbing agent, and a packaging material containing the oxygen-absorbing agent prepared using the resin are processed.
  • the containers containing oxygen absorbers prepared in this way have improved their own hygroscopicity and, consequently, improved their oxygen absorbing function, they have problems with hygroscopicity during storage of them and the secondary problems associated with them. This has led to the problem of preventing moisture absorption.
  • the storage period is also the same.
  • the deoxygenation ability was reduced during storage, and foaming occurred when the stored packaging material was thermoformed into a container or when the content of the stored container was filled and heat sealed.
  • a so-called self-reactive reaction method in which the minimum amount of water necessary for the start of deoxygenation is retained in a storage bag so that it works even in low-moisture environments.
  • a resin containing an oxygen scavenger which is stored by removing oxygen in the head space, enclosed with the oxygen scavenger sachet, made using this resin It is conceivable to maintain the oxygen-absorbing ability (oxygen absorption performance) of the oxygen-absorbing agent-containing packaging material and the oxygen-absorbing agent-containing container made using this packaging material.
  • the oxygen scavenger sachet is enclosed, the oxygen in the head space is completely removed and the oxygen scavenging ability can be maintained, but on the other hand, the water contained in the oxygen scavenger sachet deoxygenates It migrates to resin-containing resin, etc., which causes foaming during thermoforming after storage.
  • packaging materials with deoxygenation performance reaching the practical range have been developed, no storage method suitable for maintaining their performance and performing stable thermoforming has been found at present. It is.
  • the present invention relates to a deoxidizing resin containing a deoxidizing agent, a deoxidizing packaging material formed by laminating the deoxidizing resin with another material, and a deoxidizing container prepared by processing the packaging material.
  • the purpose of the present invention is to provide a dry preservation method which is effective in preventing defoaming capacity (oxygen absorption capacity) from lowering and preventing foaming during the preparation of packaging materials, heat processing molding of containers, or heat sealing.
  • the present inventors have conducted intensive studies to achieve this object, and as a result, have removed by heating the water of crystallization and other water contained in the metal halide salt used as the oxidation promoter in the oxygen scavenger.
  • the present inventors have found that storage in a dry state can prevent the oxygen-absorbing resin and the oxygen-absorbing wrapping material from deteriorating in oxygen-absorbing ability and prevent foaming during thermal processing and the like, and thus completed the present invention.
  • the present invention provides a deoxidizing resin containing a deoxidizing agent composed of at least iron powder and a metal halide, and a deoxidizing packaging material formed by laminating the deoxidizing resin with another material.
  • This packaging material also includes a laminate of an intermediate product that should be completed by laminating with other (laminated) materials.
  • a deoxidizing container made by processing this deoxidizing packaging material The water of crystallization of the metal halide salt is removed and is substantially anhydrous.
  • the present invention relates to a method for drying and preserving an oxygen-absorbing resin or an oxygen-absorbing packaging material, characterized in that the oxygen-absorbing resin or the oxygen-absorbing packaging material is sealed and stored in a water vapor barrier packaging container together with a desiccant.
  • the oxygen scavenger used in the present invention is composed of at least iron powder (main agent) and a metal halide salt.
  • iron powder a fine particle having an average particle diameter of 7 to 20 / i and an apparent density of 2.3 g / cm 3 or more is preferably used, although the particle diameter is not particularly limited.
  • iron powder include iron powder such as reduced iron powder and sprayed iron powder, as well as iron powder obtained by crushing iron, steel chips, ground iron chips and the like.
  • metal halide examples include alkaline earth metal halides and alkali metal halides.
  • alkali metal halides such as calcium chloride and magnesium chloride are exemplified. These may be used alone, but may be used as a mixture with each other or with a halogenated alkali metal salt such as sodium chloride.
  • the oxygen scavenger is prepared by milling the fine metal powder (main agent) and the metal halide (oxidation accelerator) under an inert atmosphere such as nitrogen using a dry milling method. It is preferable to coat the iron powder while the powder is being coated, or in some cases, to coat the surface of the iron powder with a metal halide salt while grinding both.
  • the mixing ratio of these two is appropriately adjusted depending on the intended use such as the required oxygen absorption rate, but the oxidation promoter can be, for example, 1 to 40 parts by weight per 1 part by weight of the main agent.
  • the water content of the oxygen absorbent prepared in this manner is preferably not more than 8,000 ppm from the viewpoint of ensuring dehydration in the next dehydration step, and more preferably not more than 3,000 ppm. Particularly preferred is 0 ppm or less.
  • the preparation of the oxygen-absorbing resin containing the oxygen-absorbing agent that can be prepared in this manner.
  • a polyolefin resin heated and melted using a vented twin-screw extruder or the like is used. After dispersing the oxygen scavenger, it is pelletized to obtain a resin having deoxidizing ability, that is, an oxygen scavenging resin.
  • the mixing ratio of the oxygen scavenger and the polyolefin resin may be any of the compound composition, the masterbatch composition, etc., but the oxygen scavenger is, for example, 0.01 to 0.5 parts by weight per 1 part by weight of the resin. Can be.
  • the present invention will be described by taking, as an example, the case where calcium chloride is used as the metal halide salt (oxidation accelerator) of the oxygen scavenger.
  • calcium chloride concentrates as an aqueous solution, it becomes hexahydrate at about 30 ° C or lower, tetrahydrate at about 30-40 ° C, and dihydrate at about 30-40 ° C. Precipitates.
  • dihydrate is further said to be monohydrate at 175 ° C and anhydrous at about 3 ° C, and is said to be Dictionary)), or it is said that it becomes anhydrous at 200 ° C (Iwanami Shoten Publishing Co., Ltd., published in 1998). In the same way as in the latter dictionary, heating at about 200 ° C or more turns it into an anhydride.
  • the dry storage method of the present invention can be advantageously applied to a deoxidized resin prepared by heating and kneading at 200 ° C. or more.
  • the temperature higher than the crystallization water desorption temperature at which the water of crystallization deviates and shifts to an anhydrous salt by more than 20 ° C is 220 ° C.
  • this is an equilibrium temperature, so it takes time to desorb crystallization water and complete desorption is difficult. It is heating.
  • the upper limit of the heating temperature is a temperature at which the quality of the matrix resin does not deteriorate due to heating.
  • the oxygen absorbing agent of the oxygen scavenger according to the present invention has a sufficient hygroscopic power as long as it has the hygroscopic power of calcium chloride anhydride.
  • a desiccant having substantially the same or higher hygroscopicity as a metal halide anhydride to be sealed in a water vapor barrier-compatible packaging container together with an oxygen-absorbing resin to be dried and stored (Hereinafter, it may be simply referred to as "the desiccant”.)
  • hygroscopicity excess adsorption
  • a substantially equivalent or higher hygroscopicity means that it is substantially equivalent to an anhydrous calcium chloride or magnesium chloride indicated within the range of storage conditions (temperature and humidity) of the deoxidizing resin by an isothermal adsorption (hygroscopic) line.
  • hygroscopic isothermal adsorption
  • Examples of such a desiccant include calcium chloride, magnesium chloride, silica gel, zeolite, synthetic zeolite, activated clay, and the like, which have the above-mentioned hygroscopicity.
  • the above-described free water and adsorbed water are removed by enclosing the oxygen-absorbing resin and the present desiccant in a steam-barrier package and hermetically sealing the package.
  • the dry preservation method of the present invention in this manner, the free water existing in the deoxidizing resin and the free water The adsorbed water on the surface of the resin pellets is removed, preventing a decrease in the deoxidizing capacity during storage.
  • the deoxidizing resin is heated and melted, and this is laminated with other materials to deoxygenate packaging. This makes it possible to prevent foaming during processing into materials, which in turn facilitates the production of such deoxidized packaging materials.
  • the drying and preservation method of the present invention prevents the decrease in oxygen-absorbing ability during storage.
  • processing into packaging materials is possible without foaming.
  • the oxygen-absorbing resin containing the above-described oxygen scavenger is heated and melted at a temperature not lower than the temperature at which the water of crystallization of the metal halide salt contained therein becomes free water, and laminated with another material.
  • the dry storage method of the present invention is applied to the oxygen-absorbing packaging material obtained as described above, the free water derived from the water of crystallization of the metal halide salt and the water adsorbed on the surface of the oxygen-absorbing packaging material are It is removed by the present desiccant.
  • the oxygen-absorbing container obtained by molding such an oxygen-absorbing packaging material when the drying and preservation method of the present invention is applied thereto, adsorbed water adhering to the oxygen-absorbing container becomes the present desiccant. To be removed.
  • the oxygen scavenging container can prevent the oxygen scavenging ability from decreasing during storage.
  • foaming is prevented when the content is filled and then sealed by heat sealing, so that the oxygen-absorbing container package has an impact during distribution. Heat seal strength enough to withstand heat is obtained.
  • the oxygen-absorbing packaging material of the present invention is a film-like or sheet-like packaging material.
  • a film-like thickness is approximately 250 in or less, while a sheet-like thickness is a greater thickness.
  • a deoxidizing container means that there is a risk of quality deterioration due to oxidation.
  • the shape There is no particular limitation on the shape as long as the shape is suitable for filling the container, and the shape may be a cup shape, a tray shape, a bag shape, or the like as appropriate depending on the application.
  • a deoxidizing resin or a deoxidizing packaging material and a desiccant having a moisture absorption substantially equal to or greater than that of a metal halide anhydride of an oxidation promoter are enclosed, and steam barrier packaging is performed.
  • Package in a container a container.
  • a metal can a container of a metal foil laminate such as aluminum foil, a container of an aluminum vapor deposition film laminate, a container of a ceramic vapor deposition film laminate such as sily or alumina are preferably used.
  • the oxygen-absorbing resin or oxygen-absorbing packaging material of the present invention is dried and stored, for example, when a so-called self-reactive oxygen-desorbing sachet is used instead of the desiccant, the oxygen-absorbing resin or oxygen-absorbing packaging material is removed. Although oxygen capacity can be maintained, moisture is transferred from the oxygen scavenger sachet to them, and foaming occurs during thermal processing. Further, as another method, the oxygen in the packaging container for packaging the oxygen-absorbing resin or the oxygen-absorbing packaging material is replaced with an inert gas such as nitrogen to prevent a decrease in the oxygen-absorbing ability during storage. Although it is conceivable, this is not only costly, but also poses a danger of suffocation and other problems in work safety.
  • the dry storage method of the oxygen-absorbing resin or the oxygen-absorbing packaging material of the present invention is low in cost and high in safety as compared with other storage methods, and is easily stored. It is possible to prevent a decrease in the deoxidizing ability and a trouble during the thermoforming or heat sealing. Furthermore, when the desiccant used in the dry preservation method of the present invention is stored in a moisture-permeable or moisture-permeable and heat-resistant bag-like container and used, the oxygen-absorbing resin, the oxygen-absorbing packaging material, and the oxygen-absorbing container Is preferred in terms of workability when dried and stored.
  • Such a moisture-permeable bag-like container is preferably made of a polyethylene film, a polypropylene film, a polyester film, pulp, paper, or a nonwoven fabric of polyethylene or polypropylene.
  • silica gel, zeolite, When synthetic zeolite, activated clay, etc. is used as a desiccant the container for storing it is made of polypropylene film, polyester film, pulp, paper, or non-woven fabric of polypropylene that has both moisture permeability and heat resistance. Is preferred.
  • the desiccant stored in these moisture-permeable and heat-resistant bag-like containers can be reused by heating, vacuum heating, drying under reduced pressure, etc., after subjecting the oxygen-absorbing resin or oxygen-absorbing packaging material to dry storage. Because it becomes.
  • the present inventor has a feature that an oxygen-absorbing laminated package characterized in that it can have an outer layer from the outside, and is composed of an oxygen barrier layer / a nip layer / an oxygen absorbing layer / a sealant layer.
  • an oxygen-absorbing laminated packaging material particularly such a packaging material, having an intermediate layer between the nylon layer and the oxygen-absorbing layer, and a multilayer including an oxygen barrier layer on the entire surface.
  • the oxygen-absorbing laminated packaging material of this prior invention can have an outer layer from the outside, and is composed of an oxygen barrier layer / nylon layer / oxygen absorbing layer / sealant layer. Is an oxygen-absorbing laminated packaging material.
  • the outer layer which can be provided on the outside is not particularly limited, and examples thereof include a material such as polyethylene terephthalate [PET].
  • the thickness of the nylon layer can be set to 3 to 40 m, assuming that the thickness of the entire packaging material of the prior invention is about 200 ⁇ m or less.
  • the oxygen barrier layer is not particularly limited, but is preferably a layer containing at least a metal foil such as aluminum or a metal deposition film.
  • the oxygen absorber any of the conventionally known oxygen absorbers can be used.In particular, iron powder is the main agent, and alkali metal halides such as sodium chloride and calcium chloride or alkali metal halides are used. Those which are used as oxidation promoters are preferred from the viewpoint of hygiene and oxygen absorption capacity.
  • the oxygen absorbing layer can be formed by kneading an oxygen absorbing agent with polyolefin or the like.
  • the material of the sealant layer can also be polyolefin, and the heat seal layer is preferably colored white.
  • such a polyolefin is preferably a polypropylene or a polybutylene copolymer having a propylene content of 70% or more.
  • a three-layered voucher has a four-layered structure when the drop impact strength is insufficient.
  • nylon and polyester are used (edited by the Japan Food Industry Association, “New Edition of the Food Industry General Encyclopedia” (1993, published by Korin Co., Ltd.)).
  • the operation and effect are also different from those of the prior invention.
  • nylon is usually applied to the outside of the barrier layer such as aluminum foil, etc., and there is no previous example of the structure applied to the inside in relation to the deoxidized packaging material.
  • the iron-based oxygen scavenger component increases its particle size due to the generation of mackerel as it absorbs oxygen. In other words, iron powder ( ⁇ ) protrudes from the deoxidizing agent layer.
  • Nylon has a moderate flexibility (the expression “having a waist” is used), and particularly has excellent piercing strength. This prevents overhang.
  • the salt of the oxidation promoter of the iron-based oxygen scavenger gradually migrates through the material during heat treatment or changes over time, and corrodes the metal foil.
  • Nylon has the effect of preventing the migration of salt. Large, thus preventing corrosion. For this reason, applying Nylon internally has the effect of preventing the laminating packaging material from peeling over time. This effect is large, and this effect is particularly remarkable in retort packaging materials, but it can also be applied to ordinary dry matter (such as seasoning granules). It is one of the greatest features of the present invention by the present inventor that the nylon has such an effect in the oxygen-absorbing laminated packaging material.
  • the laminated packaging material of the prior invention is that a plywood layer is provided between a gas barrier layer and an oxygen-absorbing layer.
  • the layer configuration is, for example, PET / AL (aluminum) foil / NY (nylon) It is a laminated material of / oxygen absorption layer / searant layer. This can prevent corrosion of aluminum foil (AL foil) due to migration of additives (calcium chloride, sodium chloride, etc.) in the oxygen absorbing layer (using the barrier property of nylon to salt). Also, when the iron powder oxidizes and expands, it can be prevented from contacting the aluminum foil and corroding the aluminum foil or breaking through the aluminum foil (using the high piercing strength of nylon).
  • Such laminates may have an intermediate layer such as polyolefin between the N Y (nylon) layer and the oxygen absorbing layer.
  • the layer structure in this case is, for example, PET / AL foil / N Y / intermediate layer / oxygen absorbing layer / sealant layer.
  • the polyolefin is also a polypropylene or a polypropylene copolymer having a propylene content of 70% or more, which is the same as described above.
  • the ratio of the thickness of the sealant layer to the thickness of the polyolefin intermediate layer disposed between the nip layer and the oxygen absorbing layer is set to be 1: 0.3 to 1: 2.5.
  • the internal pressure of the oxygen-absorbing layer increases when it is oxidized, and the oxygen-absorbing layer attempts to escape to the inside or outside.
  • the sealant layer is too thin, the oxidation reaction of the oxygen-absorbing layer causes the sealant layer to oxidize. A pinhole is generated at the beginning, and the components of the oxygen absorbing layer are transferred to the contents.
  • the sealant layer is too thick, delamination will occur between the nylon layer and the polyolefin intermediate layer opposite to the sealant layer. Problems can be effectively solved.
  • the oxygen-absorbing packaging material of the prior invention by the present inventor is not only used for making retort descendantss used for making high-quality retort foods, but also as a packaging material. Of course, it can be used for other non-retort bouch applications requiring similar performance.
  • This packaging container is an oxygen-absorbing packaging container characterized in that the entire surface is a multilayer material including an oxygen barrier layer, and at least a part thereof is made of the oxygen-absorbing laminated packaging material described above.
  • the shape is that of a bag.
  • This bag is preferable as a retort pouch (flat bouch, pillow-shaped voucher, standing bouch, etc.), but it is not necessarily limited to a retort pouch, and may be exposed to oxygen or light that does not undergo high-temperature, high-pressure retort treatment. Needless to say, it can be used as a packaging container for foods and other foods that deteriorate in quality. Examples of foods to be contained in the packaging container of the prior invention include foods such as semisolid porridge, solid cooked rice, powdery or granular seasonings, and the like.
  • the oxygen-absorbing laminated packaging material of the prior invention by the present inventor is rarely used for thick packaging materials such as sheets, and is useful for retort enjoyments for retort foods. , That is, about 200 ⁇ m or less.
  • the method for producing a packaging container such as a lettuce voucher using the oxygen-absorbing laminated packaging material of the prior invention is not particularly limited per se, and can be appropriately followed by a conventional method.
  • the oxygen-absorbing packaging material and oxygen-absorbing container to which the dry preservation method of the present invention is applied can be prepared according to the oxygen-absorbing laminated packaging material and the oxygen-absorbing packaging container of the prior invention.
  • a deoxidizing packaging material an oxygen-absorbing laminated packaging material having an oxygen-absorbing layer having a thickness of, for example, 10 to 25 m can be mentioned, and this is particularly preferably used for a retort container. it can.
  • FIG. 1 shows the results of the water content of the oxygen-absorbing resin measured by the Karl Fischer water analysis method immediately after its preparation and after storage in moisture-proof packaging for several days.
  • the solid line is the analysis of the sample immediately after preparation, and the dashed line is the analysis of the sample after several days of storage.
  • the measurement of the water content, the measurement of the oxygen absorption performance, and the evaluation of the film-forming property were performed as follows.
  • test sample deoxygenating resin pellet
  • moisture vaporizer ADP-351 manufactured by Kyoto Electronics Manufacturing Co., Ltd.
  • the moisture was measured using the company's “Karl Fisher Moisture Analyzer MKC-210”.
  • the oxygen-absorbing resin pellet was heated at 180 ° C. under a pressure of 100 kg / cm 2 for 5 minutes to form a sheet of 10 cm ⁇ 10 cm ⁇ 0.5 mm.
  • This sheet Place it in a laminated bag (package container with water vapor barrier) composed of polyethylene terephthalate / A1 foil / polypropylene together with 1 ml of water, adjust the head space air volume to 50 ml, and seal with heat seal. After heating at 66 ° C for 90 minutes, the mixture was allowed to cool for 30 minutes.
  • the oxygen concentration in the head space after heating and cooling was measured by gas chromatography, and the oxygen absorption (oxygen absorption performance) was calculated.
  • Example 1 The state of the film formed by extruding the oxygen-absorbing resin pellet with a thickness of 30 m from a T-die heated to 300 ° C. was observed, and the film forming property was evaluated.
  • Example 1 The state of the film formed by extruding the oxygen-absorbing resin pellet with a thickness of 30 m from a T-die heated to 300 ° C. was observed, and the film forming property was evaluated.
  • Example 3 25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 50 kg of anhydrous calcium chloride in a desiccant packaged with a moisture-permeable packaging material (polypropylene nonwoven fabric) were mixed with 3 bags of polyethylene / aluminum foil / polyethylene. The bag was placed in a craft paper bag (package container with a water vapor barrier property) and sealed by heat sealing. After storage at room temperature for one month, the physical properties of the deoxygenated resin (water content, oxygen absorption and film forming properties) were evaluated. The results are shown in Table 1 below.
  • Example 3 The results are shown in Table 1 below.
  • Example 4 25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 50 g of synthetic zeolite (trade name “Zeoram”, manufactured by Tosoh Corporation) are wrapped in a heat- and moisture-permeable packaging material (polypropylene non-woven cloth). The three bags of the desiccant thus obtained were placed in a kraft paper bag containing polyethylene / aluminum foil / polyethylene as an inner bag, and sealed with a heat seal. After storage at room temperature for one month, the physical properties of the deoxidizing resin were evaluated in the same manner as in Example 2. The results are shown in Table 1.
  • Example 4 25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 50 g of synthetic zeolite (trade name “Zeoram”, manufactured by Tosoh Corporation) are wrapped in a heat- and moisture-permeable packaging material (polypropylene non-woven cloth). The three bags of the desiccant thus obtained were placed in a kraft paper bag containing polyethylene / aluminum foil / polyethylene as an inner bag
  • Example 5 When the weight of the desiccant used for storing the oxygen-absorbing resin in Example 3 was measured, a weight increase of 11 g was recognized.
  • the desiccant contained in the heat-resistant and moisture-permeable packaging material is regenerated by heating at 130 ° C for 2 days under vacuum, and stored in the same manner as in Example 2 using the new deoxidizing resin prepared in Example 1. Later, its physical properties were evaluated. The results are shown in Table 1.
  • Example 6 25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 50 bags of anhydrous calcium chloride were packaged in a moisture-permeable packing material (polypropylene nonwoven fabric) and 3 bags of a desiccant were deposited on silica-deposited polyethylene terephthalate Z polyethylene. And sealed with a heat seal. After storage at room temperature for one month, the physical properties of the deoxidizing resin were evaluated in the same manner as in Example 2. The results are shown in Table 1.
  • Example 6 25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 50 bags of anhydrous calcium chloride were packaged in a moisture-permeable packing material (polypropylene nonwoven fabric) and 3 bags of a desiccant were deposited on silica-deposited polyethylene terephthalate Z polyethylene. And sealed with a heat seal. After storage at room temperature for one month, the physical properties of the deoxidizing resin were evaluated in the same manner as in Example 2. The results are shown in Table 1.
  • Polyethylene / aluminum foil / polyethylene were mixed with 25 kg of the oxygen-absorbing resin pellet prepared in Example 7 and 3 bags of desiccant obtained by packing 50 g of anhydrous calcium chloride with a moisture-permeable packaging material (nonwoven polypropylene fabric). It was placed in an inner kraft paper bag and sealed by heat sealing. After storage at room temperature for one month, the dried oxygen-absorbing resin pellets were mixed well with 50 kg of polypropylene resin pellets, and the physical properties were evaluated in the same manner as in Example 2. The results are shown in Table 1. Comparative Example 1
  • Example 2 25 kg of the oxygen-absorbing resin pellet prepared in Example 1 was placed in a kraft paper bag having a polyethylene / aluminum foil / polyethylene inner bag without enclosing a desiccant and sealed with a heat seal. After storage at room temperature for one month, the deoxygenated tree was treated as in Example 2. The physical properties of the fat were evaluated. The results are shown in Table 1. Comparative Example 2
  • Example 2 25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 3 bags of a self-reactive oxygen absorbent small bag (trade name “Ageless Z-500”, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and polyethylene / A 1 foil / polyethylene inside It was placed in a kraft paper bag and sealed by heat sealing. After storage at room temperature for one month, the physical properties of the deoxidizing resin were evaluated in the same manner as in Example 2. The results are shown in Table 1. Comparative Example 3
  • Example 2 the oxygen-absorbing resin pellets dried and stored in Example 2 were placed between unstretched polypropylene [CPP] (30 jm) and titanium oxide-containing white unstretched polypropylene [CPPw] (30 rn).
  • the deoxidized layer (2) was formed by extruding at 300 ° C from a T-die and sandwich laminating. Subsequently, the CPP surface of the laminate was laminated with a urethane-based adhesive by a usual dry lamination method.
  • Detoxified polyethylene terephthalate [PET] / aluminum foil Deoxygenated laminate by laminating with a urethane-based adhesive using a normal dry laminating method with a stretched nylon (15 mm) nylon surface
  • the obtained oxygen-absorbing packaging material was wound into a roll with a width of 900 mm and a length of 1,000 m ⁇ on a vinyl chloride pipe.
  • Drying agent prepared by packing 50 g of anhydrous calcium chloride with a moisture-permeable packing material (polyethylene non-woven fabric) on both sides of the roll-shaped deoxidizing packing material prepared in Example 9 was placed in each of two bags, and PET / aluminum foil was used. It was packaged with a gum tape using a packaging material made of polypropylene (water vapor barrier property) and stored at room temperature for one month. Was opened one month later, create an inner area that is 3 3 0 cm 2 three-way Shirupauchi, after containing water 1 m 1 in Pauchi, the air amount of dead space to further heat sealed opening 5 0 A four-sided heat seal patch adjusted to ml was prepared.
  • a moisture-permeable packing material polyethylene non-woven fabric
  • Example 1 After storing the roll of the oxygen-absorbing packaging material prepared in Example 9 at room temperature for one month in the same manner as in Example 10 except that no desiccant was used, It was prepared and subjected to oxygen concentration measurement and pressure resistance test in the head space. As a result, the oxygen concentration in the headspace was 6.3%, and the oxygen absorption was 7.8 ml, indicating a decrease in oxygen absorption capacity. In the pressure test, 25 out of 100 bags were broken. Observation of the state of bag breakage revealed that slight foaming was observed in the oxygen-absorbing resin layer in all the heat-sealed portions of the four-side heat sealed pouch.
  • a standing patch was prepared from the deoxidized packaging material prepared in Example 9 (internal area: 330 cm 2 ). Put 2,400 bags of standing pouch and 1 bag of 50 g of anhydrous calcium chloride in a desiccant packed with moisture-permeable packing material (polyethylene non-woven fabric) in a bag made of PET / aluminum foil / polyethylene. And stored at room temperature for 1 month. One month later, the package was opened, 1 ml of water was put in the standing patch, and the opening was heat-sealed to prepare a patch in which the air volume in the head space was adjusted to 50 ml. After the patch was retorted at 121 ° C.
  • Example 12 After storing the standing vouches prepared in the same manner as in Example 11 except that no desiccant was used, the oxygen concentration in the head space was measured in the same manner as in Example 11 after storage as in Example 11 And a pressure test. As a result, the oxygen concentration in the head space was 6.5%, and the oxygen absorption amount was 7.7 ml, indicating a decrease in the oxygen absorption capacity. In the pressure test, 20 bags of 100 bags were broken. When observing the state of bag breakage, slight foaming was observed only in the deoxidized resin layer in the portion that was filled with water in the standing patch and finally heat-sealed.
  • Example 12 Example 12
  • Example 14 25 kg of the oxygen-absorbing resin pellet prepared in Example 12 and 50 g of anhydrous calcium chloride in a desiccant packaged with a moisture-permeable packaging material (polypropylene nonwoven fabric) were mixed with 3 bags of polyethylene / aluminum foil / polyethylene. It was placed in a craft paper bag (steam barrier container) and sealed by heat sealing. After storage at room temperature for one month, the water content of the deoxygenating resin was measured and found to be 250 ppm.
  • a moisture-permeable packaging material polypropylene nonwoven fabric
  • Example 13 The dried oxygen-absorbing resin pellets of Example 13 were extruded at 300 ° C. from a T-die using an extruder on titanium oxide-containing white low-density polyethylene [LD P Ew] (30 m). A deoxygenation layer (20 ⁇ m) was formed to obtain a laminate.
  • the layer structure of this laminate is as follows.
  • the deoxidizing layer (20 m) / LDP Ew (30 m).
  • the PET / aluminum foil stretched nylon (15 zm) laminated with a urethane-based adhesive by a normal dry lamination method and a urethane-based adhesive By dry laminating with the agent, an oxygen-absorbing packaging material as an oxygen-absorbing laminate was obtained.
  • the resulting deoxidized packaging material was wound into a vinyl chloride pipe with a width of 900 mm and a length of 1000 m in a roll.
  • the layer configuration of this laminate is as follows. PET / aluminum foil / stretched nylon (15 m) / deoxidation layer (20 m) / LDPE w (30 m).
  • a roll of oxygen-absorbing wrapping material prepared in Example 14 was placed on both sides with a desiccant packed with 50 g of anhydrous calcium chloride in a moisture-permeable packing material (polyethylene non-woven fabric).
  • PET / aluminum foil / polypropylene It was packaged with a wrapping material (steam barrier property) using gum tape and stored at room temperature for one month.
  • the oxygen concentration of the gas in the patch was measured.
  • the patch after storage for 6 months was visually observed to confirm corrosion of the aluminum foil. The results are shown in Table 2 below. Table 2
  • the deoxidation performance (oxygen absorption performance) is good, and at the same time, the nylon layer is disposed between the aluminum foil, which is a gas barrier layer, and the deoxidizing layer, so that the corrosion of the aluminum foil is reduced.
  • a PET / aluminum foil laminated with a urethane-based adhesive by a usual dry lamination method and dry-laminated with a urethane-based adhesive were used to obtain a deoxidized packaging material as a deoxidized laminate.
  • the obtained oxygen-absorbing packaging material was wound into a vinyl chloride pipe in a roll shape at a width of 900 mm and a length of 1,000 m.
  • the layer structure of this laminate is as follows.
  • Example 16 The same evaluation as in Example 15 was performed for the laminate obtained in Comparative Example 7. The results are also shown in Table 2 above. As shown in this table, the oxygen scavenging ability was good, but the nylon layer was not disposed between the aluminum foil, which is a layer of gas, and the oxygen scavenging layer (oxygen absorbing layer). Temporary corrosion of the aluminum foil was observed.
  • Example 16 The same evaluation as in Example 15 was performed for the laminate obtained in Comparative Example 7. The results are also shown in Table 2 above. As shown in this table, the oxygen scavenging ability was good, but the nylon layer was not disposed between the aluminum foil, which is a layer of gas, and the oxygen scavenging layer (oxygen absorbing layer). Temporary corrosion of the aluminum foil was observed.
  • Example 16 The same evaluation as in Example 15 was performed for the laminate obtained in Comparative Example 7. The results are also shown in Table 2 above. As shown in this table, the oxygen scavenging ability was good, but the nylon layer was not disposed between the aluminum foil,
  • Example 17 An oxygen-absorbing packaging material was obtained in exactly the same manner as in Example 9 except that the thickness of the oxygen-absorbing layer in Example 9 was changed from 2 to 20 m.
  • Example 17 An oxygen-absorbing packaging material was obtained in exactly the same manner as in Example 9 except that the thickness of the oxygen-absorbing layer in Example 9 was changed from 2 to 20 m.
  • Example 9 When the oxygen-absorbing packaging material of Example 16 was used in the same manner as in Example 11, the oxygen concentration was 5.1%, the oxygen absorption amount was 8.3 ml, and the pressure resistance test was all satisfactory. . An opening test was performed from the notch of the standing bouch. But there was no problem. Comparative Example 9
  • Example 9 An oxygen-absorbing packaging material was obtained in exactly the same manner as in Example 9 except that the thickness of the oxygen-absorbing layer in Example 9 was changed from 27 zm to 40 ⁇ m. Comparative Example 1 1
  • Example 17 When the deoxidizing packaging material of Comparative Example 10 was carried out in the same manner as in Example 11, the oxygen concentration was 4.3%, the oxygen absorption amount was 8.7 ml, and all the pressure resistance tests were not problematic. An opening test was conducted from the notch of the standing patch, but it took a considerable amount of force to open.
  • the results of Example 17 and Comparative Example 11 show that even if the thickness of the oxygen-absorbing layer (oxygen-absorbing layer) was doubled, the oxygen-absorbing ability was hardly improved, and the thickness of the oxygen-absorbing layer was 25 / m2. Even with the above thickness, the oxygen scavenger is not effectively used, indicating that the oxygen scavenging ability is hardly improved.
  • the standing patch in Comparative Example 11 had a larger film thickness than that of Example 17, so that the opening property was deteriorated.
  • the oxygen-absorbing packaging material obtained by laminating the same with other materials, and the method for drying and storing an oxygen-absorbing container prepared using this packaging material, Moisture absorption by the metal halide salt used as an accelerator is prevented, which in turn prevents a decrease in the oxygen-absorbing capacity during storage, and furthermore, the oxygen-absorbing resin or the oxygen-absorbing packaging material is used as it is.
  • the oxygen-absorbing resin or the oxygen-absorbing packaging material is used as it is.

Abstract

A method for the drying and storage of an oxygen-scavenging resin or an oxygen-scavenging packaging material, characterized in that an oxygen-scavenging resin containing an oxygen-scavenging agent comprising iron powder and a metal halide salt, an oxygen-scavenging packaging material manufactured by laminating the oxygen-scavenging resin and another material or an oxygen-scavenging container fabricated by using the oxygen-scavenging packaging material is subjected to a heat treatment at a temperature which is 20°C or more higher than the crystal water release temperature of the metal halide salt, which is a temperature at which the crystal water of the metal halide salt is released to form a substantially anhydrous salt, and then the rein, the packaging material or the container is stored in a sealed state together with a drying agent having an absorptivity for moisture substantially equal to or more than that of the anhydrous salt of the metal halide salt in a packaging container having moisture barrier properties. This method allows preventing with ease the oxygen-scavenging ability of the above oxygen-scavenging resin, oxygen-scavenging packaging material or oxygen-scavenging container from lowering during the storage thereof and easily preventing them from foaming when subjected to heat forming or heat sealing.

Description

明細書 脱酸素性樹脂又は脱酸素性包材の乾燥保存方法  Description Dry storage method of deoxidizing resin or deoxidizing packaging material
(技術分野) (Technical field)
本発明は、 脱酸素性樹脂又は脱酸素性包材の乾燥保存方法に、 さらに詳しくは 、 微細な鉄粉 (主剤) およびハロゲン化金属塩 (酸化促進剤) からなる脱酸素剤 を樹脂に分散せしめた脱酸素性樹脂、 この脱酸素性樹脂を他の材料と積層して作 成した脱酸素性包装材料、 又はこの脱酸性包装材料を加工して作成した脱酸素性 容器 (後二者をまとめて、 本明細書においては、 "脱酸素性包材" と総称するこ とがある) の乾燥保存方法に関する。  The present invention relates to a method for drying and preserving an oxygen-absorbing resin or an oxygen-absorbing packaging material. Oxygen-absorbing resin, oxygen-absorbing packaging material made by laminating this oxygen-absorbing resin with another material, or oxygen-absorbing container made by processing this oxygen-absorbing packaging material. Collectively, in this specification, it may be collectively referred to as "deoxidized packaging material").
(背景技術) (Background technology)
酸素吸収剤の構成は、 特閧昭 5 3 - 1 4 1 8 5号公報にで還元鉄 (主剤) と塩 化カルシウム等の酸化促進剤との組み合わせの開示がある。 一方、 塩化カルシゥ ムについては、 結晶水を有するものがあり、 6水塩、 4水塩、 2水塩及び 1水塩 の存在が知られている。 これらの結晶水は、 加熱により脱離し、 本発明者によれ ば 2 0 0 °Cで無水塩 (無水物) になることが示差熱分析の吸収曲線から確認され ている。 また、 塩化カルシウムは乾燥剤としても用いられており、 無水塩のみな らず 2水塩でも吸湿能を有することが知られている。  The composition of the oxygen absorbent is disclosed in Japanese Patent Publication No. 53-141185, which discloses a combination of reduced iron (main agent) and an oxidation promoter such as calcium chloride. On the other hand, some calcium chlorides have water of crystallization, and the existence of hexahydrate, tetrahydrate, dihydrate and monohydrate is known. It has been confirmed from the absorption curve of the differential thermal analysis that the water of crystallization is desorbed by heating and becomes an anhydrous salt (anhydrous) at 200 ° C. according to the present inventors. Calcium chloride is also used as a desiccant, and it is known that not only anhydrous salts but also dihydrates have hygroscopicity.
一方、 従来、 フィルム、 シート、 容器等の一部に脱酸素剤 (酸素吸収剤) を樹 脂中に分散させた脱酸素剤含有樹脂層を用い、 包装材料自体に酸素吸収能力 (脱 酸素能力) を持たせる技術が特公昭 6 1 - 3 2 3 4 8号公報、 特公昭 6 2 - 1 8 2 4号公報および特公平 6— 5 7 3 1 9号公報等に提案されている。 しかしなが ら、 これら従来技術のものは、 酸素吸収速度が緩慢であり、 しかも酸素吸収能力 が低く、 実用的な脱酸素機能が得られないという大きな問題点があった。 On the other hand, in the past, an oxygen-absorbing agent-containing resin layer in which an oxygen-absorbing agent (oxygen-absorbing agent) was dispersed in resin was used for a part of films, sheets, containers, etc. ) Is proposed in Japanese Patent Publication No. 6-32 348, Japanese Patent Publication No. 62-1842, and Japanese Patent Publication No. 6-57319. However, these prior arts have a slow oxygen absorption rate and a high oxygen absorption capacity. And there was a major problem that a practical deoxygenation function could not be obtained.
その後、 脱酸素剤含有樹脂は、 脱酸素剤として主剤の還元鉄に加えて塩化カル シゥムを酸化促進剤として配合分散せしめることによりその酸素吸収性能が改良 されてその性能が向上した。 しかしながら、 塩化カルシウムの吸湿性を活用すベ くこれを配合分散せしめた脱酸素剤含有樹脂、 これを材料に用いて作成した脱酸 素剤含有包装材料およびこの脱酸素剤含有包装材料を加工して作成した脱酸素剤 含有容器は、 それら自体の吸湿性が高まり、 延いては脱酸素機能も向上したもの の、 一方ではそれらを保管中の吸湿性の問題及びこれに伴う副次的問題が生じ、 延いてはこの吸湿防止の問題が生じた。  After that, the oxygen-absorbing performance of the resin containing oxygen scavenger was improved by mixing and dispersing calcium chloride as an oxidation promoter in addition to the reduced iron as the main agent as the oxygen scavenger. However, in order to take advantage of the hygroscopicity of calcium chloride, a resin containing an oxygen-absorbing agent in which it is blended and dispersed, a packaging material containing an oxygen-absorbing agent, and a packaging material containing the oxygen-absorbing agent prepared using the resin are processed. Although the containers containing oxygen absorbers prepared in this way have improved their own hygroscopicity and, consequently, improved their oxygen absorbing function, they have problems with hygroscopicity during storage of them and the secondary problems associated with them. This has led to the problem of preventing moisture absorption.
すなわち、 吸湿性の、 例えば塩化カルシウムを酸化促進剤として配合した脱酸 素剤をポリオレフィン樹脂に分散した脱酸素剤含有樹脂の場合、 樹脂中に存在す る水分を完全に除去することは難しく、 単に金属箔積層体袋等の水蒸気バリァー 性容器 (保存袋) に密封するという対策を講じただけでは、 保存期間中に徐々に 袋内へッドスペースの酸素を吸収し脱酸素能が低下するという問題が生じた。 さ らには、 脱酸素剤含有樹脂内の水分量が多くなると、 これをフィルム等の脱酸素 剤含有包装材料に熱成形する際に発泡が生じるという問題が生じた。 また、 この ような脱酸素剤含有樹脂を用いて作成した脱酸素剤含有包装材料およびこの脱酸 素剤含有包装材料を加工して作成した脱酸素剤含有容器の場合も同様に、 保存期 間中に脱酸素能が低下し、 また保存後の包装材料を容器に熱成形加工する時にあ るいは保存後の容器に内容物を充填して熱シールする時に発泡する問題が生じた 前記の脱酸素能の低下を防止して酸素吸収性能を維持する方法として、 低水分 環境下でも作用するように保存袋内に、 脱酸素作用開始に必須な最少限の水分を 保持させたいわゆる自力反応型脱酸素剤小袋を同封し、 そのへッドスペース中の 酸素を除去することにより保存中の脱酸素剤含有樹脂、 この樹脂を用いて作成し た脱酸素剤含有包装材料およびこの包装材料を用いて作成した脱酸素剤含有容器 の脱酸素能 (酸素吸収性能) を維持することが考えられる。 確かに、 脱酸素剤小 袋を同封すればへッドスペース中の酸素は完全に除去され、 脱酸素能を維持する ことは可能になるが、 一方では脱酸素剤小袋中に含まれる水分が脱酸素剤含有樹 脂等に移行してしまうため、 保存後の熱成型加工時等に発泡の原因となる。 上述のように、 実用域に達した脱酸素性能を持つ包装材料等が開発されても、 その性能維持および安定した熱成形加工等をするのに適した保存方法が見いださ れていないのが現状である。 In other words, in the case of a resin containing a deoxidizing agent in which a deoxidizing agent containing, for example, calcium chloride as an oxidation promoter is dispersed in a polyolefin resin, it is difficult to completely remove water present in the resin. Simply taking measures to seal in a steam barrier container (storage bag), such as a metal foil laminate bag, will gradually absorb the oxygen in the headspace in the bag during the storage period, resulting in a decrease in deoxygenation capacity. Occurred. Further, when the amount of water in the oxygen-absorbing agent-containing resin increases, a problem arises that foaming occurs when the resin is thermoformed into a film-containing oxygen-absorbing agent-containing packaging material. Similarly, in the case of a packaging material containing an oxygen scavenger prepared using such a resin containing an oxygen scavenger and a container including the oxygen scavenger produced by processing the packaging material including the oxygen scavenger, the storage period is also the same. The deoxygenation ability was reduced during storage, and foaming occurred when the stored packaging material was thermoformed into a container or when the content of the stored container was filled and heat sealed. A so-called self-reactive reaction method in which the minimum amount of water necessary for the start of deoxygenation is retained in a storage bag so that it works even in low-moisture environments. A resin containing an oxygen scavenger, which is stored by removing oxygen in the head space, enclosed with the oxygen scavenger sachet, made using this resin It is conceivable to maintain the oxygen-absorbing ability (oxygen absorption performance) of the oxygen-absorbing agent-containing packaging material and the oxygen-absorbing agent-containing container made using this packaging material. Certainly, if the oxygen scavenger sachet is enclosed, the oxygen in the head space is completely removed and the oxygen scavenging ability can be maintained, but on the other hand, the water contained in the oxygen scavenger sachet deoxygenates It migrates to resin-containing resin, etc., which causes foaming during thermoforming after storage. As mentioned above, even though packaging materials with deoxygenation performance reaching the practical range have been developed, no storage method suitable for maintaining their performance and performing stable thermoforming has been found at present. It is.
(発明の開示) (Disclosure of the Invention)
本発明は、 脱酸素剤を含有する脱酸素性樹脂、 この脱酸素性樹脂を他の材料と 積層して作成した脱酸素性包装材料、 及びこの包装材料を加工して作成した脱酸 素性容器を保存するにあたり、 脱酸素能 (酸素吸収能) の低下および包装材料の 作成時や容器の熱加工成型時またはヒートシール時の発泡を防止するに有効な乾 燥保存方法を提供することを目的とする。  The present invention relates to a deoxidizing resin containing a deoxidizing agent, a deoxidizing packaging material formed by laminating the deoxidizing resin with another material, and a deoxidizing container prepared by processing the packaging material. The purpose of the present invention is to provide a dry preservation method which is effective in preventing defoaming capacity (oxygen absorption capacity) from lowering and preventing foaming during the preparation of packaging materials, heat processing molding of containers, or heat sealing. And
本発明者らは、 この目的を達成すべく鋭意検討を行った結果、 酸化促進剤とし て脱酸素剤に用いられるハロゲン化金属塩に含まれる結晶水やその他の水分を加 熱により除去したその乾燥状態で保存することによって脱酸素性樹脂や脱酸素性 包材の脱酸素能力の低下および熱加工時等の発泡を防止できることを見いだし、 本発明を完成した。  The present inventors have conducted intensive studies to achieve this object, and as a result, have removed by heating the water of crystallization and other water contained in the metal halide salt used as the oxidation promoter in the oxygen scavenger. The present inventors have found that storage in a dry state can prevent the oxygen-absorbing resin and the oxygen-absorbing wrapping material from deteriorating in oxygen-absorbing ability and prevent foaming during thermal processing and the like, and thus completed the present invention.
すなわち、 本発明は、 少なくとも鉄粉及びハロゲン化金属塩で構成された脱酸 素剤を含有する脱酸素性樹脂、 この脱酸素性樹脂を他の材料と積層して作成した 脱酸素性包装材料 (この包装材料には、 更に他の (積層) 材料と積層して完成さ れるべき、 中間製品の積層体も含まれる。 ) 又はこの脱酸素性包装材料を加工し て作成した脱酸素性容器を、 該ハ口ゲン化金属塩の結晶水が外れて実質的に無水 塩に移行する結晶水脱離温度より 2 0 °C以上の高温で加熱処理した後、 該樹脂、 包装材料又は容器を該ハロゲン化金属塩の無水塩と実質的に同等以上の吸湿力を 有する乾燥剤とともに水蒸気バリアー性の包装容器に密封して保存することを特 徴とする脱酸素性樹脂又は脱酸素性包材の乾燥保存方法に関する。 That is, the present invention provides a deoxidizing resin containing a deoxidizing agent composed of at least iron powder and a metal halide, and a deoxidizing packaging material formed by laminating the deoxidizing resin with another material. (This packaging material also includes a laminate of an intermediate product that should be completed by laminating with other (laminated) materials.) Or a deoxidizing container made by processing this deoxidizing packaging material The water of crystallization of the metal halide salt is removed and is substantially anhydrous. After heat treatment at a temperature of at least 20 ° C higher than the desorption temperature of water of crystallization that transfers to a salt, the resin, the packaging material or the container has substantially the same or greater hygroscopicity as the anhydrous salt of the metal halide salt. The present invention relates to a method for drying and preserving an oxygen-absorbing resin or an oxygen-absorbing packaging material, characterized in that the oxygen-absorbing resin or the oxygen-absorbing packaging material is sealed and stored in a water vapor barrier packaging container together with a desiccant.
以下に本発明を詳細に説明する。 本発明で用いられる脱酸素剤は、 少なく とも鉄粉 (主剤) とハロゲン化金属塩 とで構成される。  Hereinafter, the present invention will be described in detail. The oxygen scavenger used in the present invention is composed of at least iron powder (main agent) and a metal halide salt.
鉄粉としては、 その粒径は特に制限されることはないが平均粒径 7〜 2 0 /i で、 見掛け密度が 2 . 3 g / c m 3以上の微細なものが好適に用いられる。 また、 このような鉄粉としては、 還元鉄粉、 噴霧鉄粉などの鉄粉の他、 铸鉄、 鋼鉄屑、 研削鉄屑などを破砕した鉄粉を用いることができる。 As the iron powder, a fine particle having an average particle diameter of 7 to 20 / i and an apparent density of 2.3 g / cm 3 or more is preferably used, although the particle diameter is not particularly limited. Examples of such iron powder include iron powder such as reduced iron powder and sprayed iron powder, as well as iron powder obtained by crushing iron, steel chips, ground iron chips and the like.
ハロゲン化金属塩としては、 ハロゲン化アル力リ土類金属塩及びハロゲン化ァ ルカリ金属塩を挙げることができるが、 これらの中でも塩化カルシウム、 塩化マ グネシゥムなどのハロゲン化アル力リ土類金属塩が好ましく、 これらは単独で用 いることもできるが、 互いに混ぜて、 あるいはこれらに塩化ナト リウムなどのハ ロゲン化アル力リ金属塩を混ぜて用いても良い。  Examples of the metal halide include alkaline earth metal halides and alkali metal halides. Among them, alkali metal halides such as calcium chloride and magnesium chloride are exemplified. These may be used alone, but may be used as a mixture with each other or with a halogenated alkali metal salt such as sodium chloride.
脱酸素剤の調製は、 上述の微細な鉄粉 (主剤) とハロゲン化金属塩 (酸化促進 剤) とを乾式ミ リング法を用いて窒素などの不活性雰囲気の下、 ハロゲン化金属 塩を粉碎しつつ鉄粉へのコーティングをする、 または、 場合により、 両者をとも に粉碎しつつ、 鉄粉の表面をハロゲン化金属塩で被覆することによるのが好まし い。 これら両者の混合割合は、 要求される酸素吸収速度などの使用目的により適 宜調整されるが、 主剤 1重量部に対し酸化促進剤を例えば 1〜4 0重量部とする ことができる。 このようにして調製された酸素吸収剤の水分量は、 次の脱水工程 での脱水を確実にする見地から 8, 0 0 0 p p m以下が好ましく、 さらに 3, 0 0 0 p p m以下が特に好ましい。 The oxygen scavenger is prepared by milling the fine metal powder (main agent) and the metal halide (oxidation accelerator) under an inert atmosphere such as nitrogen using a dry milling method. It is preferable to coat the iron powder while the powder is being coated, or in some cases, to coat the surface of the iron powder with a metal halide salt while grinding both. The mixing ratio of these two is appropriately adjusted depending on the intended use such as the required oxygen absorption rate, but the oxidation promoter can be, for example, 1 to 40 parts by weight per 1 part by weight of the main agent. The water content of the oxygen absorbent prepared in this manner is preferably not more than 8,000 ppm from the viewpoint of ensuring dehydration in the next dehydration step, and more preferably not more than 3,000 ppm. Particularly preferred is 0 ppm or less.
このようにして調製することのできる脱酸素剤を含有する脱酸素性樹脂の作成 には特別の制限はなく、 例えば、 ベント付き二軸押し出し機等を用いて加熱、 溶 融したポリオレフィン樹脂中に前記脱酸素剤を分散した後、 ペレツ ト化して脱酸 素能を有する樹脂、 すなわち脱酸素性樹脂とする。 脱酸素剤とポリオレフイン樹 脂との混合割合は、 コンパウンド組成、 マスターバッチ組成などいずれでも良い が、 樹脂 1重量部に対して脱酸素剤を例えば 0 . 0 1〜0 . 5重量部とすること ができる。  There is no particular limitation on the preparation of the oxygen-absorbing resin containing the oxygen-absorbing agent that can be prepared in this manner.For example, a polyolefin resin heated and melted using a vented twin-screw extruder or the like is used. After dispersing the oxygen scavenger, it is pelletized to obtain a resin having deoxidizing ability, that is, an oxygen scavenging resin. The mixing ratio of the oxygen scavenger and the polyolefin resin may be any of the compound composition, the masterbatch composition, etc., but the oxygen scavenger is, for example, 0.01 to 0.5 parts by weight per 1 part by weight of the resin. Can be.
ここで、 脱酸素剤のハロゲン化金属塩 (酸化促進剤) に塩化カルシウムを用い た場合を例にとって本発明を説明する。  Here, the present invention will be described by taking, as an example, the case where calcium chloride is used as the metal halide salt (oxidation accelerator) of the oxygen scavenger.
塩化カルシウムには、 無水物の他に 1、 2、 4または 6分子の結晶水を含むも の (C a C l 2 ' n H 2 0、 n = l, 2, 4, 6 ) があり、 すべて無色、 吸湿 ·潮 解性の結晶である。 周知の如く、 塩化カルシウムは、 水溶液を濃縮していく と、 約 3 0 °C以下では六水和物、 約 3 0〜4 0 °Cでは四水和物、 それ以上では二水和 物を析出する。 これらのうち、 二水和物はさらに 1 7 5 °Cで一水和物、 約 3◦ 0 °Cで無水物となると、 言われ ( (株) 東京化学同人 1 9 9 4年発行 「化学辞典」 ) 、 あるいは、 2 0 0 °Cで無水物になる、 とも言われているが ( (株) 岩波書店 1 9 9 8年発行 「岩波理化学辞典第 5版」 ) 、 本発明者によれば後者の辞典と同 じく約 2 0 0 °C以上で加熱すると無水物になる。 The calcium chloride in addition to 1, 2, 4 or also comprise water of crystallization of 6 molecules (C a C l 2 'n H 2 0, n = l, 2, 4, 6) of the anhydride has, All are colorless, hygroscopic and deliquescent crystals. As is well known, calcium chloride concentrates as an aqueous solution, it becomes hexahydrate at about 30 ° C or lower, tetrahydrate at about 30-40 ° C, and dihydrate at about 30-40 ° C. Precipitates. Of these, dihydrate is further said to be monohydrate at 175 ° C and anhydrous at about 3 ° C, and is said to be Dictionary)), or it is said that it becomes anhydrous at 200 ° C (Iwanami Shoten Publishing Co., Ltd., published in 1998). In the same way as in the latter dictionary, heating at about 200 ° C or more turns it into an anhydride.
塩化カルシウムは、 結晶水の少ないほど吸湿力が強くなり、 無水物や一水和物 (の水分) はいうまでもなく、 2水塩 (二水和物) の水分 (結晶水) は、 少なく とも常温付近では、 一般に吸湿剤あるいは乾燥剤と呼ばれる物質と共存、 同封す ることでは除去することができない。 換言すれば、 2水塩でも吸湿性が強く乾燥 剤に用いられている。  The smaller the water of crystallization, the stronger the hygroscopic power of calcium chloride, and the less water (crystal water) of dihydrate (dihydrate), not to mention anhydrous and monohydrate (water). In both cases, at around normal temperature, it cannot be removed by coexisting and enclosing with a substance generally called a desiccant or desiccant. In other words, even dihydrates are highly hygroscopic and are used as desiccants.
塩化カルシウムの水和物は加熱すると段階的に結晶水が失われ、 前述のように 、 本発明者の確認したところによれば 2 0 0 °C以上で加熱すると無水物となり、 全ての結晶水は自由水となる。 従って、 上述のベント付き二軸押し出し機を用い て脱酸素剤とポリオレフイン樹脂とを加熱、 混練する場合、 約 2 0 0 °C以上の温 度で加熱、 混練すれば脱酸素剤中の塩化カルシウムの結晶水は実質的にすべて自 由水となり、 その大部分は二軸押し出し機のベント口から除去されるが、 残りは 自由水の形で樹脂中に拡散した状態になる。 一方、 2 0 0 °C未満で加熱、 混練し た場合には、 塩化カルシウムに結晶水が残存する。 したがって、 2 0 0 °C以上で 加熱、 混練して作成した脱酸素性樹脂に対して本発明の乾燥保存方法が有利に適 用することができる。 When heated, calcium chloride hydrate loses water of crystallization in stages, According to the confirmation of the inventor, heating at 200 ° C. or more turns into an anhydride, and all water of crystallization becomes free water. Therefore, when the oxygen scavenger and the polyolefin resin are heated and kneaded using the above-described vented twin-screw extruder, heating and kneading at a temperature of about 200 ° C or more, and calcium kneading in the oxygen scavenger when kneaded. The water of crystallization substantially becomes free water, and most of the water is removed from the vent of the twin-screw extruder, but the remainder is dispersed in the resin in the form of free water. On the other hand, when heated and kneaded at less than 200 ° C., water of crystallization remains in calcium chloride. Therefore, the dry storage method of the present invention can be advantageously applied to a deoxidized resin prepared by heating and kneading at 200 ° C. or more.
塩化カルシウム二水和物の場合、 結晶水が外れて実質的に無水塩に移行する結 晶水脱離温度より 2 0 °C以上の高温は 2 2 0 °Cである。 結晶水脱離温度での加熱 では、 これが平衡温度であるため結晶水の脱離に時間がかかりしかも完全脱離が 困難であるので、 結晶水脱離温度より 2 0 °C以上の高温での加熱とするのである 。 加熱温度の上限は、 マトリックス樹脂に加熱による品質劣化が生じない温度で ある。  In the case of calcium chloride dihydrate, the temperature higher than the crystallization water desorption temperature at which the water of crystallization deviates and shifts to an anhydrous salt by more than 20 ° C is 220 ° C. In the case of heating at the crystallization water desorption temperature, this is an equilibrium temperature, so it takes time to desorb crystallization water and complete desorption is difficult. It is heating. The upper limit of the heating temperature is a temperature at which the quality of the matrix resin does not deteriorate due to heating.
本発明に係わる脱酸素剤における酸化促進剤の吸湿力の強さは、 塩化カルシゥ ム無水物の吸湿力であれば充分であることは言うまでもない。  It goes without saying that the oxygen absorbing agent of the oxygen scavenger according to the present invention has a sufficient hygroscopic power as long as it has the hygroscopic power of calcium chloride anhydride.
このように作成した脱酸素性樹脂を作成直後に、 およびこれをアルミ箔積層体 で防湿包装して数日間保存した後に、 それそれの水分量を後掲力一ルフィ ッシャ 一法にて測定した。 両者の結果を後掲図 1に模式的に示す。 作成直後の場合では 、 大きなピーク 1個 (P のみ観察された (図 1の実線) 。 保存後の場合では、 小さなピークが 2個 (P 2 aおよび P 2 b ) 観察されたが (図 2の点線) 、 後に現れ たビーク (P 2 b ) は塩化カルシウムの含水結晶によるものであることがわかった 。 塩化カルシウムの含水結晶が種々の状態にある脱酸素剤含有樹脂を作成し、 こ れを用いて脱酸素剤含有包装材料を加工製造し、 この製品 (包装材料) の物性を 調べたところ、 それらの水分量の測定において前記の後に現れるビークが大きく なるのに伴って、 加熱、 加工時等に発泡が生じやすくなることが分かった。 以上 より、 図 1で示される作成直後の場合の唯一のピーク と保存後の場合の最 初に現れるピーク (Ρ ^ ) との面積の差 (斜線部) は、 作成 (加熱) 直後の脱酸 素性樹脂に存在した自由水の一部が数日間保存されるうちに無水塩に結晶水とし て取り込まれて一水和物又は二水和物になったその水分量であることが示唆され る。 塩化マグネシウムを用いた場合にも、 同様な試験をして、 塩化カルシウムと 同様な結果を得た。 Immediately after preparing the oxygen-absorbing resin prepared as described above, and after storing it for several days in a moisture-proof package with an aluminum foil laminate, the water content of each was measured by the following method. . The results of both are shown schematically in Figure 1 below. In the case immediately after the preparation, only one large peak (only P was observed (solid line in FIG. 1). In the case after storage, two small peaks (P 2a and P 2b ) were observed (FIG. 2). It was found that the beak (P 2 b ) that appeared later was due to hydrated crystals of calcium chloride.A resin containing an oxygen scavenger in which the hydrated crystals of calcium chloride were in various states was prepared. Processes and manufactures oxygen-containing packaging materials using Upon examination, it was found that foaming tends to occur during heating, processing, etc., as the beak appearing after the above in the measurement of the water content increases. Based on the above, the difference in the area (shaded area) between the only peak immediately after preparation and the first peak (Ρ ^) after storage shown in Fig. 1 is the deoxidation immediately after preparation (heating). This suggests that the water content of the free water that was present in the base resin was monohydrate or dihydrate when it was incorporated into the anhydrous salt as water of crystallization during storage for several days. . When magnesium chloride was used, a similar test was performed, and similar results were obtained as with calcium chloride.
本発明の乾燥保存方法において、 乾燥保存されるべき脱酸素性樹脂とともに水 蒸気バリア一性の包装容器に密封されるべきハロゲン化金属塩無水物と実質的に 同等以上の吸湿力を有する乾燥剤 (以下、 単に "本乾燥剤" ということもある。 ) は、 一般に乾燥剤として知られているものの中から選択して用いることができ 、 脱酸素剤に用いた塩化カルシウムや塩化マグネシウムの無水物と実質的に同等 以上の吸湿力を有する乾燥剤であればよい。 これらの乾燥剤は無水の状態にして 初めて用いられるとは限らず、 多少吸湿した状態であっても使用に耐えうる十分 な余剰吸着量 (吸湿力) を有しているものであれば、 本乾燥剤としての使用に何 ら支障はない。 また、 実質的に同等以上の吸湿力とは、 等温吸着 (吸湿) 線にて 脱酸素性樹脂の保存条件 (温度及び湿度) の範囲内で示される塩化カルシウムや 塩化マグネシウムの無水物と実質的に同等以上の吸湿力を言う。 このような乾燥 剤の例としては、 塩化カルシウム、 塩化マグネシウム、 シリカゲル、 ゼォライ ト 、 合成ゼォライ ト、 活性白土等であって、 前記の吸湿力を有する状態のものを挙 げることができる。  In the dry storage method of the present invention, a desiccant having substantially the same or higher hygroscopicity as a metal halide anhydride to be sealed in a water vapor barrier-compatible packaging container together with an oxygen-absorbing resin to be dried and stored. (Hereinafter, it may be simply referred to as "the desiccant".) Can be used by selecting from those generally known as desiccants, and anhydrous calcium chloride and magnesium chloride used as the oxygen scavenger. Any desiccant having substantially the same or higher hygroscopicity may be used. These desiccants are not always used for the first time in an anhydrous state. If they have a sufficient amount of excess adsorption (hygroscopicity) that can withstand use even in a slightly moisture-absorbed state, this type of desiccant is used. There is no problem in using it as a desiccant. In addition, a substantially equivalent or higher hygroscopicity means that it is substantially equivalent to an anhydrous calcium chloride or magnesium chloride indicated within the range of storage conditions (temperature and humidity) of the deoxidizing resin by an isothermal adsorption (hygroscopic) line. Say the same or better hygroscopicity. Examples of such a desiccant include calcium chloride, magnesium chloride, silica gel, zeolite, synthetic zeolite, activated clay, and the like, which have the above-mentioned hygroscopicity.
脱酸素性樹脂と本乾燥剤とを水蒸気バリァー性包装体に同封して密封包装する ことにより、 上述の自由水および吸着水が除去される。 このようにして本発明の 乾燥保存方法を適用することにより、 脱酸素性樹脂中に存在する自由水および該 樹脂のペレツ ト表面の吸着水が除去され、 これらの保存中の脱酸素能低下を防止 でき、 さらには脱酸素性樹脂を加熱、 溶融させてこれを他の材料と積層して脱酸 素性包装材料に加工する際の発泡防止が可能となり、 延いてはそのような脱酸素 性包装材料の作成が容易になる。 また、 初期水分量が高くて包装材料への加工が 困難な脱酸素性樹脂は、 これに対して本発明の乾燥保存方法を適用することによ り、 保存中の脱酸素能の低下が防止され、 さらには発泡が生ずることなく包装材 料への加工が可能となる。 The above-described free water and adsorbed water are removed by enclosing the oxygen-absorbing resin and the present desiccant in a steam-barrier package and hermetically sealing the package. By applying the dry preservation method of the present invention in this manner, the free water existing in the deoxidizing resin and the free water The adsorbed water on the surface of the resin pellets is removed, preventing a decrease in the deoxidizing capacity during storage.In addition, the deoxidizing resin is heated and melted, and this is laminated with other materials to deoxygenate packaging. This makes it possible to prevent foaming during processing into materials, which in turn facilitates the production of such deoxidized packaging materials. In the case of oxygen-absorbing resins which have a high initial moisture content and are difficult to process into packaging materials, the drying and preservation method of the present invention prevents the decrease in oxygen-absorbing ability during storage. In addition, processing into packaging materials is possible without foaming.
また、 上述の脱酸素剤を含有する脱酸素性樹脂を、 これに含有されているハロ ゲン化金属塩の結晶水が自由水となる温度以上で加熱、 溶融させ、 他の材料と積 層して得られた脱酸素性包装材料は、 これに本発明の乾燥保存方法を適用したし た場合、 ハロゲン化金属塩の結晶水に由来する自由水および脱酸素性包装材料表 面の吸着水は本乾燥剤により除去される。 これにより脱酸素性包装材料保存中の 脱酸素能低下を防止できる、 さらにはこの脱酸素性包装材料を脱酸素性容器に熱 熔着成形する際の熱成形される部分の発泡を防止することができ、 脱酸素性容器 の成形作成が容易になる。  In addition, the oxygen-absorbing resin containing the above-described oxygen scavenger is heated and melted at a temperature not lower than the temperature at which the water of crystallization of the metal halide salt contained therein becomes free water, and laminated with another material. When the dry storage method of the present invention is applied to the oxygen-absorbing packaging material obtained as described above, the free water derived from the water of crystallization of the metal halide salt and the water adsorbed on the surface of the oxygen-absorbing packaging material are It is removed by the present desiccant. This makes it possible to prevent a decrease in the oxygen-absorbing capacity during storage of the oxygen-absorbing packaging material, and to prevent foaming of the thermoformed portion when the oxygen-absorbing packaging material is heat-sealed and molded into the oxygen-absorbing container. This facilitates the formation and production of deoxidizing containers.
さらにまた、 このような脱酸素性包装材料を成形して得られた脱酸素性容器は 、 これに本発明の乾燥保存方法を適用した場合、 脱酸素性容器に付着した吸着水 は本乾燥剤により除去される。 これにより、 脱酸素性容器は保存中の脱酸素能低 下を防止できる。 さらには、 脱酸素性容器材料中のハロゲン化金属塩の吸湿がな いため、 内容物を充填後ヒートシールにより密封する際の発泡が防止されること により脱酸素性容器包装体は流通時の衝撃に十分耐えうるヒートシール強度が得 られる。  Furthermore, the oxygen-absorbing container obtained by molding such an oxygen-absorbing packaging material, when the drying and preservation method of the present invention is applied thereto, adsorbed water adhering to the oxygen-absorbing container becomes the present desiccant. To be removed. As a result, the oxygen scavenging container can prevent the oxygen scavenging ability from decreasing during storage. Furthermore, since there is no moisture absorption of the metal halide in the oxygen-absorbing container material, foaming is prevented when the content is filled and then sealed by heat sealing, so that the oxygen-absorbing container package has an impact during distribution. Heat seal strength enough to withstand heat is obtained.
本発明の脱酸素性包装材料は、 フィルム状またはシ一ト状の包装材料であり、 フィルム状とは厚さおおよそ 2 5 0 in以下であり、 一方、 シート状とはそれ以 上の厚さを指す。 また、 脱酸素性容器とは、 酸化により品質劣化の恐れのある内 容物を充填するに適する形状のものであればその形状には特別の制限はなく、 用 途に応じて、 適宜、 カップ状、 トレ一状、 袋状などとすることができる。 The oxygen-absorbing packaging material of the present invention is a film-like or sheet-like packaging material.A film-like thickness is approximately 250 in or less, while a sheet-like thickness is a greater thickness. Point to. In addition, a deoxidizing container means that there is a risk of quality deterioration due to oxidation. There is no particular limitation on the shape as long as the shape is suitable for filling the container, and the shape may be a cup shape, a tray shape, a bag shape, or the like as appropriate depending on the application.
本発明の乾燥保存方法では、 脱酸素性樹脂又は脱酸素性包材および酸化促進剤 のハロゲン化金属塩無水物と実質的に同等以上の吸湿力を有する乾燥剤を同封し て水蒸気バリァー性包装容器で包装する。 この水蒸気バリァー性包装容器として は、 金属缶、 アルミ箔などの金属箔積層体の容器、 アルミ蒸着フィルム積層体の 容器、 シリ力またはアルミナなどのセラミック蒸着フィルム積層体の容器等が好 適に用いられる。  In the dry preservation method of the present invention, a deoxidizing resin or a deoxidizing packaging material and a desiccant having a moisture absorption substantially equal to or greater than that of a metal halide anhydride of an oxidation promoter are enclosed, and steam barrier packaging is performed. Package in a container. As the water vapor barrier packaging container, a metal can, a container of a metal foil laminate such as aluminum foil, a container of an aluminum vapor deposition film laminate, a container of a ceramic vapor deposition film laminate such as sily or alumina are preferably used. Can be
本発明の脱酸素性樹脂又は脱酸素性包材の乾燥保存に際して、 例えば、 本乾燥 剤の代わりにいわゆる自力反応型脱酸素小袋を使用した場合、 脱酸素性樹脂又は 脱酸素性包材の脱酸素能は保持できるものの脱酸素剤小袋からそれらに水分が移 行し、 熱加工時に発泡が生じる。 さらに、 他の方法として、 脱酸素性樹脂又は脱 酸素性包材を包装する包装容器内の酸素を窒素などの不活性ガスで置換すること により、 それらの保存中の脱酸素能の低下を防ぐことも考えられるが、 コストが かかるばかりでなく、 窒息などの危険があり作業安全性にも問題がある。 この様 な点からも、 本発明の脱酸素性樹脂又は脱酸素性包材の乾燥保存方法は、 他の保 存方法と比較して低コス トかつ安全性が高いうえ、 容易に保存中の脱酸素能の低 下および熱成形加工時やヒートシール時のトラブルを防止することができる。 さらに、 本発明の乾燥保存方法で用いられる乾燥剤は、 これを透湿性または透 湿性かつ耐熱性袋状容器に収納して用いると、 脱酸素性樹脂、 脱酸素性包装材料 および脱酸素性容器を乾燥保存する際に作業性の面で好ましい。 このような透湿 性の袋状容器は、 ポリエチレンフィルム、 ポリプロピレンフィルム、 ポリエステ ルフィルム、 パルプ、 紙、 ポリエチレンまたはポリプロピレンの不織布で構成さ れたものが好ましく、 これらの材料は、 それそれ単独にまたは積層体として使用 することができる。 さらに、 本発明の乾燥保存方法でシリカゲル、 ゼォライ ト、 合成ゼォライ ト、 活性白土などを乾燥剤に用いた場合、 これを収納する容器は透 湿性と耐熱性を兼ね備えたポリプロピレンフィルム、 ポリエステルフィルム、 パ ルプ、 紙、 またはボリプロピレンの不織布で構成されたものが好ましい。 これら の透湿性かつ耐熱性袋状容器に収納された本乾燥剤は、 脱酸素性樹脂又は脱酸素 性包材の乾燥保存に供した後、 加熱、 真空加熱、 減圧乾燥等により再使用可能と なるからである。 さて、 本発明者は、 先に、 外側より外層を有することもでき、 かつ酸素バリア 層/ナイ口ン層/酸素吸収層/シーラント層で構成されていることを特徴とする 酸素吸収性積層包装材料、 および、 特にこのような包装材料であって該ナイロン 層と該酸素吸収層との間に中間層を有することを特徴とする酸素吸収性積層包装 材料、 ならびに全面が酸素バリア層を含む多層材料であり、 少なく ともその一部 がこれらの酸素吸収性積層包装材料によりなることを特徴とする酸素吸収性包装 容器に関する発明をし、 これについて特許出願をした (特願平 1 0— 1 8 1 1 7 0 ) 。 これの記載の一部を以下に引用する。 When the oxygen-absorbing resin or oxygen-absorbing packaging material of the present invention is dried and stored, for example, when a so-called self-reactive oxygen-desorbing sachet is used instead of the desiccant, the oxygen-absorbing resin or oxygen-absorbing packaging material is removed. Although oxygen capacity can be maintained, moisture is transferred from the oxygen scavenger sachet to them, and foaming occurs during thermal processing. Further, as another method, the oxygen in the packaging container for packaging the oxygen-absorbing resin or the oxygen-absorbing packaging material is replaced with an inert gas such as nitrogen to prevent a decrease in the oxygen-absorbing ability during storage. Although it is conceivable, this is not only costly, but also poses a danger of suffocation and other problems in work safety. From this point of view, the dry storage method of the oxygen-absorbing resin or the oxygen-absorbing packaging material of the present invention is low in cost and high in safety as compared with other storage methods, and is easily stored. It is possible to prevent a decrease in the deoxidizing ability and a trouble during the thermoforming or heat sealing. Furthermore, when the desiccant used in the dry preservation method of the present invention is stored in a moisture-permeable or moisture-permeable and heat-resistant bag-like container and used, the oxygen-absorbing resin, the oxygen-absorbing packaging material, and the oxygen-absorbing container Is preferred in terms of workability when dried and stored. Such a moisture-permeable bag-like container is preferably made of a polyethylene film, a polypropylene film, a polyester film, pulp, paper, or a nonwoven fabric of polyethylene or polypropylene. Can be used as a body. Furthermore, silica gel, zeolite, When synthetic zeolite, activated clay, etc. is used as a desiccant, the container for storing it is made of polypropylene film, polyester film, pulp, paper, or non-woven fabric of polypropylene that has both moisture permeability and heat resistance. Is preferred. The desiccant stored in these moisture-permeable and heat-resistant bag-like containers can be reused by heating, vacuum heating, drying under reduced pressure, etc., after subjecting the oxygen-absorbing resin or oxygen-absorbing packaging material to dry storage. Because it becomes. By the way, the present inventor has a feature that an oxygen-absorbing laminated package characterized in that it can have an outer layer from the outside, and is composed of an oxygen barrier layer / a nip layer / an oxygen absorbing layer / a sealant layer. And an oxygen-absorbing laminated packaging material, particularly such a packaging material, having an intermediate layer between the nylon layer and the oxygen-absorbing layer, and a multilayer including an oxygen barrier layer on the entire surface. Made an invention on an oxygen-absorbing packaging container characterized in that at least a part of the material is composed of these oxygen-absorbing laminated packaging materials, and filed a patent application for this invention (Japanese Patent Application No. Hei 10-10-18). 1 170). A part of this description is cited below.
この先行発明の酸素吸収性積層包装材料は、 前記のように、 外側より外層を有 することもでき、 かつ酸素バリア層/ナイロン層/酸素吸収層/シーラント層で 構成されていることを特徴とする酸素吸収性積層包装材料である。  As described above, the oxygen-absorbing laminated packaging material of this prior invention can have an outer layer from the outside, and is composed of an oxygen barrier layer / nylon layer / oxygen absorbing layer / sealant layer. Is an oxygen-absorbing laminated packaging material.
このような積層包装材料において、 外側に有することもできる外層には、 特別 の制限はなく、 例えばポリエチレンテレフ夕レート [ P E T ] などの材質を挙げ ることができる。  In such a laminated packaging material, the outer layer which can be provided on the outside is not particularly limited, and examples thereof include a material such as polyethylene terephthalate [PET].
ナイロン層の厚みは、 後述のように、 先行発明の包装材料全体の厚みを 2 0 0 〃m前後以下と考えると、 3〜4 0 mとすることができる。  As will be described later, the thickness of the nylon layer can be set to 3 to 40 m, assuming that the thickness of the entire packaging material of the prior invention is about 200 μm or less.
酸素バリア層にも、 特別の制限はないが、 少なく ともアルミニウムなどの金属 箔または金属蒸着膜を含む層であることが好ましい。 酸素吸収剤としては、 従来知られているもの全てが使用可能であるが、 特に鉄 粉を主剤とし、 塩化ナト リウム、 塩化カルシウム等のハロゲン化アルカリ金属又 はハロゲン化アル力リ土類金属を酸化促進剤とするものが、 衛生上及び酸素吸収 能力の観点で好適である。 酸素吸収層は、 酸素吸収剤をポリオレフインなどと混 練して作成することができる。 The oxygen barrier layer is not particularly limited, but is preferably a layer containing at least a metal foil such as aluminum or a metal deposition film. As the oxygen absorber, any of the conventionally known oxygen absorbers can be used.In particular, iron powder is the main agent, and alkali metal halides such as sodium chloride and calcium chloride or alkali metal halides are used. Those which are used as oxidation promoters are preferred from the viewpoint of hygiene and oxygen absorption capacity. The oxygen absorbing layer can be formed by kneading an oxygen absorbing agent with polyolefin or the like.
シ一ラント層 (ヒートシール層) の材質もポリオレフインとすることができ、 そしてヒートシール層は白色に着色されていることが好ましい。  The material of the sealant layer (heat seal layer) can also be polyolefin, and the heat seal layer is preferably colored white.
そして、 上記の各層において、 ポリオレフインが材質とされる場合、 このよう なポリオレフィンはボリプロピレンまたはプロピレン含量が 7 0 %以上のポリブ 口ビレン共重合体であることが好ましい。  When polyolefin is used as the material in each of the above-mentioned layers, such a polyolefin is preferably a polypropylene or a polybutylene copolymer having a propylene content of 70% or more.
従来、 3層構成のバウチでは落下衝撃強度が不足する場合に 4層構成のものが 使用され、 すなわち、 衝撃吸収層としてもう 1層のフィルムをアルミ箔の内側ま たは外側に設けるのが一般的で、 ナイロンやポリエステルが使用されているが ( 日本食品工業学会編 「新版食品工業総合事典」 (平成 5年 (株) 光琳発行) ) 、 その場合ナイロンは酸素吸収剤層と併設されてはいないことに加えて、 その作用 効果も先行発明におけるのとは異なる。  Conventionally, a three-layered voucher has a four-layered structure when the drop impact strength is insufficient.In other words, it is common to provide another layer of film on the inside or outside of aluminum foil as a shock absorbing layer. In general, nylon and polyester are used (edited by the Japan Food Industry Association, “New Edition of the Food Industry General Encyclopedia” (1993, published by Korin Co., Ltd.)). In addition to that, the operation and effect are also different from those of the prior invention.
詳述すると、 ナイロンは通常アルミ箔等のバリア層の外側に貼ることが多く、 内側に貼る構成は脱酸素包材関連では先行事例が見当たらない。 (a ) 鉄系の脱 酸素剤成分は、 酸素吸収に伴い、 鯖の発生で粒径が大きくなる。 すなわち、 脱酸 素剤層から鉄粉 (鑌) が突き出てくるが、 ナイロンは適度な柔軟性 ( 「腰がある 」 との表現が用いられる) があり、 特に突き刺し強度に優れるので、 鑌の突き出 しを防げる。 また、 (b ) 鉄系の脱酸素剤の酸化促進剤の塩分が加熱処理中や経 時変化で次第に材料中を移行して金属箔を腐食するが、 ナイロンは塩分の移行を 防止する効果が大きく、 延いては、 腐食を防止する。 このような理由により、 ナ イロンを内貼りすることによって、 包材ラミネ一卜の経時剥離を防止する効果が 大きく、 そして、 この効果はレ トルト包材で特に顕著であるが、 通常の乾物系 ( 調味料顆粒等) にも適用できる。 酸素吸収性積層包装材料におけるナイロンのこ のような作用効果を発現せしめることは、 本発明者による先行発明の最大の特徴 の一つである。 In more detail, nylon is usually applied to the outside of the barrier layer such as aluminum foil, etc., and there is no previous example of the structure applied to the inside in relation to the deoxidized packaging material. (A) The iron-based oxygen scavenger component increases its particle size due to the generation of mackerel as it absorbs oxygen. In other words, iron powder (鑌) protrudes from the deoxidizing agent layer. Nylon has a moderate flexibility (the expression “having a waist” is used), and particularly has excellent piercing strength. This prevents overhang. In addition, (b) the salt of the oxidation promoter of the iron-based oxygen scavenger gradually migrates through the material during heat treatment or changes over time, and corrodes the metal foil. Nylon has the effect of preventing the migration of salt. Large, thus preventing corrosion. For this reason, applying Nylon internally has the effect of preventing the laminating packaging material from peeling over time. This effect is large, and this effect is particularly remarkable in retort packaging materials, but it can also be applied to ordinary dry matter (such as seasoning granules). It is one of the greatest features of the present invention by the present inventor that the nylon has such an effect in the oxygen-absorbing laminated packaging material.
この先行発明の積層包装材料の 1つの例は、 ナイ口ン層をガスバリァ一層と酸 素吸収層との間に設けた、 層構成が、 例えば、 P E T / A L (アルミニウム) 箔 /N Y (ナイロン) /酸素吸収層/シーラン ト層である積層材料である。 これに より、 酸素吸収層中の添加物 (塩化カルシウム、 塩化ナト リウムなど) の移行に よるアルミ箔 (A L箔) の腐食を防止することができ (ナイロンの塩に対するバ リア一性を利用) 、 また鉄粉が酸化して膨張した際にアルミ箔に接触してアルミ 箔が腐食したり、 アルミ箔を突き破ることを防止することができる (ナイロンの 高突き刺し強度を利用) のである。  One example of the laminated packaging material of the prior invention is that a plywood layer is provided between a gas barrier layer and an oxygen-absorbing layer. The layer configuration is, for example, PET / AL (aluminum) foil / NY (nylon) It is a laminated material of / oxygen absorption layer / searant layer. This can prevent corrosion of aluminum foil (AL foil) due to migration of additives (calcium chloride, sodium chloride, etc.) in the oxygen absorbing layer (using the barrier property of nylon to salt). Also, when the iron powder oxidizes and expands, it can be prevented from contacting the aluminum foil and corroding the aluminum foil or breaking through the aluminum foil (using the high piercing strength of nylon).
このような積層材は、 N Y (ナイロン) 層と酸素吸収層の間にポリオレフイン などの中間層を配置することができる。 この場合の層構造は、 例えば、 P E T / A L箔 /N Y /中間層/酸素吸収層/シーラント層となる。 中間層の材質がポリ ォレフィンである場合、 このポリオレフインも、 ポリプロピレンまたはプロビレ ン含量が 7 0 %以上のポリプロピレン共重合体であることが好ましいことは、 上 に述べたところと同じである。  Such laminates may have an intermediate layer such as polyolefin between the N Y (nylon) layer and the oxygen absorbing layer. The layer structure in this case is, for example, PET / AL foil / N Y / intermediate layer / oxygen absorbing layer / sealant layer. When the material of the intermediate layer is a polyolefin, it is preferable that the polyolefin is also a polypropylene or a polypropylene copolymer having a propylene content of 70% or more, which is the same as described above.
このような積層材は、 特にシ一ラント層の厚みとナイ口ン層と酸素吸収層の間 に配置するポリオレフイン中間層の厚みの比を 1 : 0 . 3〜 1 : 2 . 5の間にし たものが好ましい。 これにより、 酸素吸収層は、 酸化する際に内圧が高まり、 内 側または外側に圧逃げしょうとするが、 この場合、 シ一ラン ト層が薄すぎると酸 素吸収層の酸化反応によりシーラント層にピンホールが発生し、 酸素吸収層の成 分が内容物に移行してしまう。 また、 シ一ラント層が厚すぎると、 シーラント層 とは反対のナイロン層とポリオレフィン中間層の間でデラミが発生する、 といつ た問題を効果的に解消することができる。 In such a laminated material, the ratio of the thickness of the sealant layer to the thickness of the polyolefin intermediate layer disposed between the nip layer and the oxygen absorbing layer is set to be 1: 0.3 to 1: 2.5. Are preferred. As a result, the internal pressure of the oxygen-absorbing layer increases when it is oxidized, and the oxygen-absorbing layer attempts to escape to the inside or outside. In this case, if the sealant layer is too thin, the oxidation reaction of the oxygen-absorbing layer causes the sealant layer to oxidize. A pinhole is generated at the beginning, and the components of the oxygen absorbing layer are transferred to the contents. Also, if the sealant layer is too thick, delamination will occur between the nylon layer and the polyolefin intermediate layer opposite to the sealant layer. Problems can be effectively solved.
本発明者による先行発明の酸素吸収性包装材料は、 先に述べたように、 優れた 品質のレ トルト食品類の作成に用いられるレ トルトバウチの作成に使用されるば かりでなく、 包装材料に同様の性能の要求される他の非レ トルトバウチの用途に 使用することももちろんできる。  As described above, the oxygen-absorbing packaging material of the prior invention by the present inventor is not only used for making retort bouches used for making high-quality retort foods, but also as a packaging material. Of course, it can be used for other non-retort bouch applications requiring similar performance.
そこで、 次に、 上に説明した酸素吸収性積層包装材料よりなる包装容器につい て説明する。  Therefore, next, a packaging container made of the oxygen-absorbing laminated packaging material described above will be described.
この包装容器は、 全面が酸素バリア層を含む多層材料であり、 少なく ともその 一部が上に説明した酸素吸収性積層包装材料よりなることを特徴とする酸素吸収 性包装容器であり、 特にその形状が袋体のものである。 この袋体は、 レ トルトパ ゥチ (平バウチ、 枕状バウチ、 スタンディングバウチなど) として好ましいが、 必ずしもレ トルトバウチに限定されるわけではなく、 高温、 高圧のレ トルト処理 を経ない酸素や光により品質の劣化の生じる食品や食品以外のものの包装容器と して使用することのできることはいうまでもない。 先行発明の包装容器に収容さ れるべき食品としては、 半固形状のお粥、 固形状の米飯、 粉末状もしくは顆粒状 の調味料等の食品を挙げることができる。  This packaging container is an oxygen-absorbing packaging container characterized in that the entire surface is a multilayer material including an oxygen barrier layer, and at least a part thereof is made of the oxygen-absorbing laminated packaging material described above. The shape is that of a bag. This bag is preferable as a retort pouch (flat bouch, pillow-shaped voucher, standing bouch, etc.), but it is not necessarily limited to a retort pouch, and may be exposed to oxygen or light that does not undergo high-temperature, high-pressure retort treatment. Needless to say, it can be used as a packaging container for foods and other foods that deteriorate in quality. Examples of foods to be contained in the packaging container of the prior invention include foods such as semisolid porridge, solid cooked rice, powdery or granular seasonings, and the like.
本発明者による先行発明の酸素吸収性積層包装材料は、 シートのような厚い包 装材料に用いられることは少なく、 レ トルト食品用のレ トルトバウチなどに有用 であるので、 その厚さは通常フィルムの厚さ、 即ち、 2 0 0〃m前後以下とする ことができる。  The oxygen-absorbing laminated packaging material of the prior invention by the present inventor is rarely used for thick packaging materials such as sheets, and is useful for retort bouches for retort foods. , That is, about 200 μm or less.
この先行発明の酸素吸収性積層包装材料を使用してレ トルトバウチなどの包装 容器を作成する方法は、 それ自体には特別の制限はなく、 適宜従来の方法に準ず ることができる。  The method for producing a packaging container such as a lettuce voucher using the oxygen-absorbing laminated packaging material of the prior invention is not particularly limited per se, and can be appropriately followed by a conventional method.
(以上、 前記特願平 1 0— 1 8 1 1 7 0号の明細書の 「発明の詳細な説明」 段 落 0 0 1 3および 1 6〜 3 2 ) 。 本発明の乾燥保存方法が適用されるべき脱酸素性包装材料および脱酸素性容器 は、 それそれ、 先行発明の酸素吸収性積層包装材料および酸素吸収性包装容器に 準じて作成することができる。 このような脱酸素性包装材料として、 酸素吸収層 の厚みが例えば 1 0〜2 5 mの酸素吸収性積層包装材料を挙げることができ、 このものは特にレ トルト用容器に好適に用いることができる。 (The above is the detailed description of the invention, paragraphs 0-13 and 16-32 of the specification of Japanese Patent Application No. 10-181710). The oxygen-absorbing packaging material and oxygen-absorbing container to which the dry preservation method of the present invention is applied can be prepared according to the oxygen-absorbing laminated packaging material and the oxygen-absorbing packaging container of the prior invention. As such a deoxidizing packaging material, an oxygen-absorbing laminated packaging material having an oxygen-absorbing layer having a thickness of, for example, 10 to 25 m can be mentioned, and this is particularly preferably used for a retort container. it can.
(図面の簡単な説明) (Brief description of drawings)
図 1は、 脱酸素性樹脂の水分量を、 その作成直後に、 及び防湿包装で数日間保 存した後にカールフィ ッシヤー水分分析法で測定した結果を示す。 実線は作成直 後のサンプル、 そして破線は数日保存後のサンブルの分析結果である。  FIG. 1 shows the results of the water content of the oxygen-absorbing resin measured by the Karl Fischer water analysis method immediately after its preparation and after storage in moisture-proof packaging for several days. The solid line is the analysis of the sample immediately after preparation, and the dashed line is the analysis of the sample after several days of storage.
(発明を実施するための最良の形態) (Best mode for carrying out the invention)
以下、 実施例によって本発明の内容を例示説明するが、 本発明の内容は実施例 に限定されるものではない。  Hereinafter, the content of the present invention will be described by way of examples, but the content of the present invention is not limited to the examples.
なお、 実施例中、 水分量の測定、 酸素吸収性能の測定及び製膜性の評価は、 そ れそれ、 次のようにして行った。  In the examples, the measurement of the water content, the measurement of the oxygen absorption performance, and the evaluation of the film-forming property were performed as follows.
(水分量の測定)  (Measurement of water content)
被検サンプル (脱酸素性樹脂ペレツ ト) を京都電子工業 (株) 製 「水分気化装 置 ADP— 3 5 1」 で 2 80 °Cに加熱し、 遊離した水分を窒素気流でパージし、 この水分を同社製 「カールフィ ッシヤー水分計 MKC— 2 1 0」 を用いて測定し た。  The test sample (deoxygenating resin pellet) was heated to 280 ° C with a “moisture vaporizer ADP-351” manufactured by Kyoto Electronics Manufacturing Co., Ltd., and the released moisture was purged with a nitrogen stream. The moisture was measured using the company's “Karl Fisher Moisture Analyzer MKC-210”.
(酸素吸収性能の測定)  (Measurement of oxygen absorption performance)
脱酸素性樹脂ペレツ トを、 1 80°Cにおいて圧力 1 00 k g/ cm2で 5分間熱 ブレスし、 1 0 cmx 1 0 cmx 0. 5 mmのシートを作成した。 このシートを 水 l m lとともに、 ポリエチレンテレフタレート/ A 1箔 /ポリプロピレンで構 成される積層袋 (水蒸気バリア一性の包装容器) にいれ、 ヘッ ドスペースの空気 量を 5 0 m lに調整し、 ヒートシールにより密封し、 6 6 °Cで 9 0分間加熱後 3 0分間放冷した。 加熱放冷後のへッ ドスペースの酸素濃度をガスクロマトグラフ ィ一にて測定し、 酸素吸収量 (酸素吸収性能) を算出した。 The oxygen-absorbing resin pellet was heated at 180 ° C. under a pressure of 100 kg / cm 2 for 5 minutes to form a sheet of 10 cm × 10 cm × 0.5 mm. This sheet Place it in a laminated bag (package container with water vapor barrier) composed of polyethylene terephthalate / A1 foil / polypropylene together with 1 ml of water, adjust the head space air volume to 50 ml, and seal with heat seal. After heating at 66 ° C for 90 minutes, the mixture was allowed to cool for 30 minutes. The oxygen concentration in the head space after heating and cooling was measured by gas chromatography, and the oxygen absorption (oxygen absorption performance) was calculated.
(製膜性の評価)  (Evaluation of film forming properties)
脱酸素性樹脂ペレツ トを 3 0 0 °Cに加熱した T一ダイより 3 0 mの厚さで押 し出して作成した膜の状態を観察して製膜性の評価をした。 実施例 1  The state of the film formed by extruding the oxygen-absorbing resin pellet with a thickness of 30 m from a T-die heated to 300 ° C. was observed, and the film forming property was evaluated. Example 1
平均粒径 1 0 mの鉄粉 2 0 0 k gに粒状無水塩化カルシウムを 1 0 k g添加し 、 内部を不活性ガスで置換した振動ミルを用いて無水塩化カルシウムの粉砕と鉄粉 へのコーティングを行い、 脱酸素剤 2 1 0 k gを得た。 次に、 得られた脱酸素剤 2 1 0 k gとポリプロピレン樹脂 7 9 0 k gとをベント付き二軸の押出混練機を用い て 2 2 0 °Cで 1 0 0 k g / hのスピードで混練し、 脱酸素剤を 2 1 w t %含有する ペレッ ト状の脱酸素性樹脂 1 , 0 0 0 k gを得た。 得られた脱酸素性樹脂の水分量 を測定したところ 6 8 0 p p mであった。 実施例 2  Add 100 kg of granular anhydrous calcium chloride to 200 kg of iron powder having an average particle diameter of 10 m, and pulverize anhydrous calcium chloride and coat the iron powder using a vibration mill in which the inside is replaced with an inert gas. Then, 210 kg of an oxygen scavenger was obtained. Next, 210 kg of the obtained oxygen absorber and 790 kg of polypropylene resin were kneaded at 220 ° C at a speed of 100 kg / h using a twin-screw extrusion kneader equipped with a vent. Thus, 1.0000 kg of a pellet-shaped oxygen-absorbing resin containing 21% by weight of an oxygen scavenger was obtained. The water content of the obtained deoxygenating resin was measured and found to be 680 ppm. Example 2
実施例 1で調製した脱酸素性樹脂のペレツト 2 5 k gと無水塩化カルシウム 5 0 gを透湿性包材 (ポリプロピレン不織布) で包装した乾燥剤 3袋とを、 ポリエチレ ン /アルミ箔 /ポリエチレンを内袋とするクラフ 卜紙袋 (水蒸気バリア一性の包装 容器) にいれ、 ヒートシールにより密封した。 室温にて 1ヶ月保存後、 脱酸素性樹 脂の物性 (水分量、 酸素吸収量及び製膜性の 3項目) を評価した。 その結果を後記 第 1表に示す。 実施例 3 25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 50 kg of anhydrous calcium chloride in a desiccant packaged with a moisture-permeable packaging material (polypropylene nonwoven fabric) were mixed with 3 bags of polyethylene / aluminum foil / polyethylene. The bag was placed in a craft paper bag (package container with a water vapor barrier property) and sealed by heat sealing. After storage at room temperature for one month, the physical properties of the deoxygenated resin (water content, oxygen absorption and film forming properties) were evaluated. The results are shown in Table 1 below. Example 3
実施例 1で調製した脱酸素性樹脂のペレツト 2 5 k gと合成ゼォライ ト (商品名 「ゼオラム」 、 東ソ一株式会社製) 5 0 gを耐熱透湿性包材 (ポリプロピレン不織 布) で包装した乾燥剤 3袋とを、 ポリエチレン/アルミ箔 /ポリエチレンを内袋と するクラフト紙袋にいれ、 ヒ一トシ一ルにより密封した。 室温にて 1ヶ月保存後、 実施例 2におけると同様に脱酸素性樹脂の物性を評価した。 結果を第 1表に示す。 実施例 4  25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 50 g of synthetic zeolite (trade name “Zeoram”, manufactured by Tosoh Corporation) are wrapped in a heat- and moisture-permeable packaging material (polypropylene non-woven cloth). The three bags of the desiccant thus obtained were placed in a kraft paper bag containing polyethylene / aluminum foil / polyethylene as an inner bag, and sealed with a heat seal. After storage at room temperature for one month, the physical properties of the deoxidizing resin were evaluated in the same manner as in Example 2. The results are shown in Table 1. Example 4
実施例 3において脱酸素性樹脂の保存に使用した乾燥剤の重量を測定したところ 、 1 1 gの重量増加が認められた。 この耐熱透湿包材に入った乾燥剤を 1 3 0 °Cで 2日間真空加熱して再生し、 実施例 1で調製した新たな脱酸素性樹脂を用いて実施 例 2におけると同様に保存後、 その物性を評価した。 結果を第 1表に示す。 実施例 5  When the weight of the desiccant used for storing the oxygen-absorbing resin in Example 3 was measured, a weight increase of 11 g was recognized. The desiccant contained in the heat-resistant and moisture-permeable packaging material is regenerated by heating at 130 ° C for 2 days under vacuum, and stored in the same manner as in Example 2 using the new deoxidizing resin prepared in Example 1. Later, its physical properties were evaluated. The results are shown in Table 1. Example 5
実施例 1で調製した脱酸素性樹脂のペレツ ト 2 5 k gと無水塩化カルシウム 5 0 gを透湿性包材 (ポリプロピレン不織布) で包装した乾燥剤 3袋とを、 シリカ蒸着 ポリエチレンテレフ夕レート Zポリエチレンで構成される袋にいれ、 ヒ一トシ一ル により密封した。 室温にて 1ヶ月保存後、 実施例 2におけると同様に脱酸素性樹脂 の物性を評価した。 結果を第 1表に示す。 実施例 6  25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 50 bags of anhydrous calcium chloride were packaged in a moisture-permeable packing material (polypropylene nonwoven fabric) and 3 bags of a desiccant were deposited on silica-deposited polyethylene terephthalate Z polyethylene. And sealed with a heat seal. After storage at room temperature for one month, the physical properties of the deoxidizing resin were evaluated in the same manner as in Example 2. The results are shown in Table 1. Example 6
実施例 1で調製した脱酸素性樹脂のペレツ ト 2 5 k gと初期吸湿量が自重の 1 0 w t %である合成ゼォライ ト 5 0 gを耐熱透湿性包材 (ポリプロピレン不織布) で 包装した乾燥剤 3袋とを、 ポリエチレン/アルミ箔 /ポリエチレンを内袋とするク ラフ ト紙袋にいれ、 ヒートシールにより密封した。 室温にて 1ヶ月保存後、 実施例 2におけると同様に脱酸素性樹脂の物性を評価した。 結果を第 1表に示す。 実施例 7 A desiccant obtained by packaging 25 kg of the pellet of the oxygen-absorbing resin prepared in Example 1 and 50 g of synthetic zeolite having an initial moisture absorption of 10 wt% of its own weight in a heat-resistant and moisture-permeable packaging material (polypropylene nonwoven fabric). 3 bags and polyethylene / aluminum foil / polyethylene inner bag It was placed in a rough paper bag and sealed by heat sealing. After storage at room temperature for one month, the physical properties of the deoxidizing resin were evaluated in the same manner as in Example 2. The results are shown in Table 1. Example 7
平均粒径 1 0〃mの鉄粉 2 0 0 k gに無水塩化マグネシウムを 1 0 k g添力□し、 内部を不活性ガスで置換した振動ミルを用いて無水塩化マグネシウムの粉碎と鉄粉 へのコーティングを行ない、 脱酸素剤 2 1 O k gを得た。 次に、 得られた脱酸素剤 1 0 k gとポリプロピレン樹脂 1 2 3 k gとをベント付き二軸の押出混練機を用 いて 2 5 0 °Cで 1 5 0 k g/ hのスピ一ドで混練し、 脱酸素剤を 6 3 w t %含有す るペレツ ト状の脱酸素性樹脂 3 3 3 k gを得た (脱酸素剤含有率は実施例 1の 3倍 ) 。 得られた脱酸素性樹脂ペレッ トの水分量を測定したところ、 2, 0 0 0 p p m であった。 実施例 8  Add 10 kg of anhydrous magnesium chloride to 200 kg of iron powder with an average particle size of 100 μm, and pulverize anhydrous magnesium chloride using a vibrating mill in which the inside is replaced with an inert gas, and pulverize the iron powder. Coating was performed to obtain 21 O kg of an oxygen scavenger. Next, 10 kg of the obtained oxygen absorber and 123 kg of the polypropylene resin were kneaded with a vented twin-screw extruder at 250 ° C with a speed of 150 kg / h. As a result, 33 kg of a pellet-shaped oxygen-absorbing resin containing 63% by weight of an oxygen-absorbing agent was obtained (the oxygen-absorbing agent content was 3 times that of Example 1). The water content of the obtained oxygen-absorbing resin pellet was measured and found to be 2,000 ppm. Example 8
実施例 7で調製した脱酸素性樹脂のペレツ ト 2 5 k gと無水塩化カルシウム 5 0 gを透湿性包材 (ポリプロピレン不織布) で包装した乾燥剤 3袋とを、 ポリエチレ ン /アルミ箔 /ポリエチレンを内袋とするクラフト紙袋にいれ、 ヒートシールによ り密封した。 室温にて 1ヶ月保存後、 乾燥保存した脱酸素性樹脂ペレツ トを 5 0 k gのポリプロピレン樹脂ペレツ トと良く混合した後、 実施例 2におけると同様に物 性を評価した。 結果を第 1表に示す。 比較例 1 Polyethylene / aluminum foil / polyethylene were mixed with 25 kg of the oxygen-absorbing resin pellet prepared in Example 7 and 3 bags of desiccant obtained by packing 50 g of anhydrous calcium chloride with a moisture-permeable packaging material (nonwoven polypropylene fabric). It was placed in an inner kraft paper bag and sealed by heat sealing. After storage at room temperature for one month, the dried oxygen-absorbing resin pellets were mixed well with 50 kg of polypropylene resin pellets, and the physical properties were evaluated in the same manner as in Example 2. The results are shown in Table 1. Comparative Example 1
実施例 1で調製した脱酸素性樹脂ペレツト 2 5 k gを乾燥剤は同封せずに、 ポリ エチレン/アルミ箔 /ポリエチレンを内袋とするクラフト紙袋にいれ、 ヒートシ一 ルにより密封した。 室温にて 1ヶ月保存後、 実施例 2におけると同様に脱酸素性樹 脂の物性を評価した。 結果を第 1表に示す。 比較例 2 25 kg of the oxygen-absorbing resin pellet prepared in Example 1 was placed in a kraft paper bag having a polyethylene / aluminum foil / polyethylene inner bag without enclosing a desiccant and sealed with a heat seal. After storage at room temperature for one month, the deoxygenated tree was treated as in Example 2. The physical properties of the fat were evaluated. The results are shown in Table 1. Comparative Example 2
実施例 1で調製した脱酸素性樹脂ペレツト 25 kgと自力反応型酸素吸収剤小袋 (商品名 「エージレス Z— 500」 、 三菱瓦斯化学製) 3袋とを、 ポリエチレン/ A 1箔 /ポリエチレンを内袋とするクラフト紙袋にいれ、 ヒートシールにより密封 した。 室温にて 1ヶ月保存後、 実施例 2におけると同様に脱酸素性樹脂の物性を評 価した。 結果を第 1表に示す。 比較例 3  25 kg of the oxygen-absorbing resin pellet prepared in Example 1 and 3 bags of a self-reactive oxygen absorbent small bag (trade name “Ageless Z-500”, manufactured by Mitsubishi Gas Chemical Co., Ltd.) and polyethylene / A 1 foil / polyethylene inside It was placed in a kraft paper bag and sealed by heat sealing. After storage at room temperature for one month, the physical properties of the deoxidizing resin were evaluated in the same manner as in Example 2. The results are shown in Table 1. Comparative Example 3
平均粒径 10 zmの鉄粉 200 k gに粒状無水塩化カルシウムを 10 k g添加し 、 内部を不活性ガスで置換した振動ミルを用いて無水塩化カルシウムの粉碎と鉄粉 へのコ一ティングを行い、 脱酸素剤 2 1 0 k gを得た。 次に、 得られた脱酸素剤 2 10 k gとポリプロピレン樹脂 790 kgとをベント付き二軸の押出混練機を用い て 1 60°Cで 1 0 Okg/hのスピードで混練し、 脱酸素剤を 2 1 wt%含有する ペレッ ト状の脱酸素性樹脂 1, 000 kgを得た。 得られた脱酸素性樹脂ペレット の水分量を測定したところ、 1, l O O ppmであった。 比較例 4  Addition of 10 kg of granular anhydrous calcium chloride to 200 kg of iron powder having an average particle size of 10 zm, and grinding and coating of anhydrous calcium chloride using a vibration mill in which the inside is replaced with an inert gas, 210 kg of oxygen scavenger were obtained. Next, 2 10 kg of the obtained oxygen scavenger and 790 kg of the polypropylene resin were kneaded at 160 ° C at a speed of 10 Okg / h using a biaxial extrusion kneader equipped with a vent to remove the oxygen scavenger. We obtained 1,000 kg of a pellet-shaped deoxygenating resin containing 21 wt%. The water content of the obtained deoxygenating resin pellet was measured and found to be 1,10 ppm. Comparative Example 4
比較例 3で調製した脱酸素性樹脂ペレツト 25 k gと無水塩化カルシウム 50 g を透湿性包材 (ポリプロピレン不織布) で包装した乾燥剤 3袋とを、 ポリエチレン /アルミ箔 /ポリエチレンを内袋とするクラフト紙袋にいれ、 ヒートシールにより 密封した。 室温にて 1ヶ月保存後、 実施例 2におけると同様に脱酸素性樹脂の物性 を評価した。 結果を第 1表に示す。 第 1表 Craft containing 25 kg of the oxygen-absorbing resin pellet prepared in Comparative Example 3 and 50 g of anhydrous calcium chloride in a desiccant packaged with a moisture-permeable packaging material (polypropylene nonwoven fabric) and polyethylene / aluminum foil / polyethylene inner bag. It was put in a paper bag and sealed by heat sealing. After storage at room temperature for one month, the physical properties of the deoxidizing resin were evaluated in the same manner as in Example 2. The results are shown in Table 1. Table 1
Figure imgf000021_0001
なお、 実施例 2〜 6および 8のカールフィ ッシャー水分分析では、 比較例 1、 2 および 4と比べて明確な第二ピークが観察されなかった。 実施例 9
Figure imgf000021_0001
In the Karl Fischer moisture analysis of Examples 2 to 6 and 8, no clear second peak was observed as compared with Comparative Examples 1, 2 and 4. Example 9
無延伸ポリプロピレン [CPP] ( 30 j m) と酸化チタン含有白色無延伸ポリ プロピレン [CPPw] (30 rn) との間に、 実施例 2において乾燥保存した脱 酸素性樹脂ペレッ 卜を押出機を用いて Tダイより 300°Cで押出してサンドィツチ ラミネートすることにより、 脱酸素性層 (2 を形成した。 続いて、 該積層 体の CP P面と、 通常のドライラミネート法によりウレタン系接着剤にてラミネ一 トされたポリエチレンテレフ夕レート [PET] /アルミ箔 延伸ナイロン ( 1 5 〃m) のナイロン面とを通常のドライラミネート法によりウレタン系接着剤にてラ ミネ一卜することにより脱酸素性積層体である脱酸素性包装材料を得た。 得られた 脱酸素性包装材料は塩化ビニール製パイプに幅 900 mmで、 長さ 1, 000 m每 にロール状に卷き取った。 この積層体の層構成は、 次のようになる。  Using an extruder, the oxygen-absorbing resin pellets dried and stored in Example 2 were placed between unstretched polypropylene [CPP] (30 jm) and titanium oxide-containing white unstretched polypropylene [CPPw] (30 rn). The deoxidized layer (2) was formed by extruding at 300 ° C from a T-die and sandwich laminating. Subsequently, the CPP surface of the laminate was laminated with a urethane-based adhesive by a usual dry lamination method. Detoxified polyethylene terephthalate [PET] / aluminum foil Deoxygenated laminate by laminating with a urethane-based adhesive using a normal dry laminating method with a stretched nylon (15 mm) nylon surface The obtained oxygen-absorbing packaging material was wound into a roll with a width of 900 mm and a length of 1,000 m 每 on a vinyl chloride pipe. The layer configuration of Become like
すなわち、 P E TZアルミ箔 Z延伸ナイロン ( 1 5 zm) /CPP ( 30 jum) /脱酸素性層 (S T ^n /CP Pw iS O^n c 実施例 1 0 That is, PE TZ aluminum foil Z stretch nylon (15 zm) / CPP (30 jum) / Deoxygenation layer (ST ^ n / CP Pw iS O ^ nc Example 10
実施例 9で調製したロール状の脱酸素性包装材料の両側に無水塩化カルシウム 5 0 gを透湿性包材 (ポリエチレン不織布) で包装した乾燥剤を 2袋ずつに配し、 P E T/アルミ箔ノポリプロピレンからなる (水蒸気バリア一性の) 包材でガムテ一 プを用いて包装し、 室温にて 1ヶ月間保存した。 1ヶ月後に開封し、 内面積が 3 3 0 c m2である三方シールパゥチを作成し、 パゥチ内に水 1 m 1を入れた後、 開口部 をさらにヒートシールしてへッドスペースの空気量を 5 0 m lに調整した四方ヒー トシールパゥチを作成した。 該パゥチを 1 2 1。(:で 8分間レ トルト処理した後、 へ ッ ドスペースの酸素濃度をガスクロマトグラフィ一で測定したところ 4. 0%であ り、 酸素吸収量は 8. 8mlであった。 また、 上記の Ξ方シールパゥチに 2 0 0 m 1の水を入れて開口部をヒ一トシールした四方ヒートシールパゥチを 1 2 1 °Cで 8 分間レ トルト処理を行い、 1 0 0袋のパゥチの耐圧試験 (条件: 1 0 0 k g f /袋 、 1分間) を行ったがすべて問題なかった。 比較例 5 Drying agent prepared by packing 50 g of anhydrous calcium chloride with a moisture-permeable packing material (polyethylene non-woven fabric) on both sides of the roll-shaped deoxidizing packing material prepared in Example 9 was placed in each of two bags, and PET / aluminum foil was used. It was packaged with a gum tape using a packaging material made of polypropylene (water vapor barrier property) and stored at room temperature for one month. Was opened one month later, create an inner area that is 3 3 0 cm 2 three-way Shirupauchi, after containing water 1 m 1 in Pauchi, the air amount of dead space to further heat sealed opening 5 0 A four-sided heat seal patch adjusted to ml was prepared. 1 2 1 After 8 hours of retort treatment with (:), the oxygen concentration in the head space was measured by gas chromatography to be 4.0%, and the oxygen absorption amount was 8.8 ml. The four-sided heat seal porch with 200 m1 of water poured into the one-side seal pallet and heat-sealed the opening is subjected to a retort treatment at 121 ° C for 8 minutes, and a pressure test of 100 bags of pallets ( Conditions: 100 kgf / bag, 1 minute), but no problem was found.
実施例 9で調製した脱酸素性包装材料のロールを乾燥剤を使用しないこと以外は 実施例 1 0におけると同様にして室温にて 1ヶ月保管した後、 実施例 1 0における と同様にパゥチを作成し、 へッ ドスペース内の酸素濃度測定及び耐圧試験を行った 。 その結果、 ヘッドスペース内の酸素濃度は 6. 3 %、 そして酸素吸収量は 7. 8 mlであり、 酸素吸収能力の低下が認められた。 また、 耐圧試験では 1 0 0袋中 2 5袋の破袋が確認された。 破袋の状況を観察すると、 四方ヒートシールしたパゥチ のすベてのヒートシール部の脱酸素性樹脂層で微少な発泡が見られた。 実施例 1 1 After storing the roll of the oxygen-absorbing packaging material prepared in Example 9 at room temperature for one month in the same manner as in Example 10 except that no desiccant was used, It was prepared and subjected to oxygen concentration measurement and pressure resistance test in the head space. As a result, the oxygen concentration in the headspace was 6.3%, and the oxygen absorption was 7.8 ml, indicating a decrease in oxygen absorption capacity. In the pressure test, 25 out of 100 bags were broken. Observation of the state of bag breakage revealed that slight foaming was observed in the oxygen-absorbing resin layer in all the heat-sealed portions of the four-side heat sealed pouch. Example 1 1
実施例 9で調製した脱酸素性包装材料からスタンディングパゥチを作製した (内 面積 330 cm2) 。 スタンディングパゥチ 2, 400袋と、 無水塩化カルシウム 5 0 gを透湿性包材 (ポリエチレン不織布) で包装した乾燥剤 1袋とを P E T/アル ミ箔 /ポリエチレンからなる袋に入れ、 袋口を輪ゴムで止め、 室温にて 1ヶ月間保 存した。 1ヶ月後に開封し、 スタンディングパゥチ内に水 1 m 1を入れた後、 開口 部をヒートシールし、 へッドスペースの空気量を 50 m 1に調整したパゥチを調製 した。 該パゥチを 12 1°Cで 8分間レ トルト処理した後、 へッ ドスペースの酸素濃 度をガスクロマトグラフィーで測定したところ 4. 7 %であり酸素吸収量は 8. 5 mlであった。 また、 スタンディングパゥチに 2◦ 0 m 1の水を入れて開口部をヒ 一トシ一ル後、 12 1 °Cで 8分間レ トルト処理を行い、 1 00袋のバウチの耐圧試 験 (条件: l O Okgf/袋、 1分間) を行ったがすべて問題なかった。 比較例 6 A standing patch was prepared from the deoxidized packaging material prepared in Example 9 (internal area: 330 cm 2 ). Put 2,400 bags of standing pouch and 1 bag of 50 g of anhydrous calcium chloride in a desiccant packed with moisture-permeable packing material (polyethylene non-woven fabric) in a bag made of PET / aluminum foil / polyethylene. And stored at room temperature for 1 month. One month later, the package was opened, 1 ml of water was put in the standing patch, and the opening was heat-sealed to prepare a patch in which the air volume in the head space was adjusted to 50 ml. After the patch was retorted at 121 ° C. for 8 minutes, the oxygen concentration in the head space was measured by gas chromatography to be 4.7%, and the oxygen absorption amount was 8.5 ml. In addition, after filling the opening with 200 m1 of water in the standing pouch and heat-sealing the opening, retort treatment was performed at 121 ° C for 8 minutes. : L O Okgf / bag, 1 minute), but all was well. Comparative Example 6
実施例 1 1におけると同様に作製したスタンディングバウチを乾燥剤を使用しな いこと以外は実施例 1 1におけると同様に保存後、 同実施例におけると同様にへッ ドスペース内の酸素濃度測定及び耐圧試験を行った。 その結果、 ヘッ ドスペース内 の酸素濃度は 6. 5%であり、 そして酸素吸収量は 7. 7 mlであり、 酸素吸収能 力の低下が認められた。 耐圧試験では 1 00袋中 20袋の破袋が確認された。 破袋 の状況を観察すると、 スタンディングパゥチに水を入れ最後にヒートシールした部 分の脱酸素性樹脂層のみに微少な発泡が見られた。 実施例 12  After storing the standing vouches prepared in the same manner as in Example 11 except that no desiccant was used, the oxygen concentration in the head space was measured in the same manner as in Example 11 after storage as in Example 11 And a pressure test. As a result, the oxygen concentration in the head space was 6.5%, and the oxygen absorption amount was 7.7 ml, indicating a decrease in the oxygen absorption capacity. In the pressure test, 20 bags of 100 bags were broken. When observing the state of bag breakage, slight foaming was observed only in the deoxidized resin layer in the portion that was filled with water in the standing patch and finally heat-sealed. Example 12
平均粒径 1 の鉄粉 200 k gに粒状無水塩化カルシウムを 40 k g添加し 、 内部を不活性ガスで置換した振動ミルを用いて無水塩化カルシウムの粉砕と鉄粉 へのコーティングを行い、 脱酸素剤 2 4 0 k gを得た。 次に、 得られた脱酸素剤と 低密度ポリエチレン樹脂 9 6 0 k gとをベント付き二軸の押出混練機を用いて 2 4 CTCで 1 0 0 k g/hのスピ一ドで混練し、 脱酸素剤をを 2 0 w t %含有するペレ ット状の脱酸素性樹脂 1, 2 0 0 k gを得た。 この脱酸素性樹脂の水分量を測定し たところ、 3 2 0 p pmであった。 実施例 1 3 Add 40 kg of granular anhydrous calcium chloride to 200 kg of iron powder having an average particle size of 1 and pulverize the anhydrous calcium chloride using a vibrating mill in which the inside is replaced with an inert gas and iron powder. Was applied to obtain 240 kg of an oxygen scavenger. Next, the obtained oxygen scavenger and low-density polyethylene resin (960 kg) were kneaded using a vented twin-screw extruder at 24 CTC at a speed of 100 kg / h, and the resulting mixture was demixed. 1,200 kg of a pellet-shaped oxygen-absorbing resin containing 20 wt% of an oxygenating agent was obtained. The water content of the deoxygenating resin was measured and found to be 320 ppm. Example 13
実施例 1 2で調製した脱酸素性樹脂ペレツト 2 5 k gと無水塩化カルシウム 5 0 gを透湿性包材 (ポリプロピレン不織布) で包装した乾燥剤 3袋とを、 ポリエチレ ン /アルミ箔 /ポリエチレンを内袋とするクラフ ト紙袋 (水蒸気バリアー性の容器 ) にいれ、 ヒートシールにより密封した。 室温にて 1ヶ月保存後、 脱酸素性樹脂の 水分量を測定したところ、 2 5 0 p pmであった。 実施例 1 4  25 kg of the oxygen-absorbing resin pellet prepared in Example 12 and 50 g of anhydrous calcium chloride in a desiccant packaged with a moisture-permeable packaging material (polypropylene nonwoven fabric) were mixed with 3 bags of polyethylene / aluminum foil / polyethylene. It was placed in a craft paper bag (steam barrier container) and sealed by heat sealing. After storage at room temperature for one month, the water content of the deoxygenating resin was measured and found to be 250 ppm. Example 14
酸化チタン含有白色低密度ポリエチレン [LD P Ew] ( 3 0 m) 上に、 実施 例 1 3における乾燥した脱酸素性樹脂ペレツ トを押出機を用いて Tダイより 3 0 0 °Cで押出し、 脱酸素性層 (2 0〃m) を形成して積層体を得た。 この積層体の層構 成は、 次のようになる。  The dried oxygen-absorbing resin pellets of Example 13 were extruded at 300 ° C. from a T-die using an extruder on titanium oxide-containing white low-density polyethylene [LD P Ew] (30 m). A deoxygenation layer (20 μm) was formed to obtain a laminate. The layer structure of this laminate is as follows.
すなわち、 脱酸素性層 (2 0 m) /LD P Ew ( 3 0〃m) 。  That is, the deoxidizing layer (20 m) / LDP Ew (30 m).
得られた積層体の脱酸素性層表面をコロナ処理した後、 通常のドライラミネート 法によりウレタン系接着剤にてラミネートされた P E T/アルミ箔ノ延伸ナイ口ン ( 1 5 zm) とウレタン系接着剤にてドライラミネートすることにより脱酸素性積 層体である脱酸素性包装材料を得た。 得られた脱酸素性包装材料は塩化ビニール製 パイプに幅 9 0 0 mmで、 長さ 1, 0 0 0 m毎にロール状に巻き取った。 この積層 体の層構成は次のようになる。 すなわち、 PET/アルミ箔 /延伸ナイロン ( 1 5〃m) /脱酸素性層 (20〃 m) /L D P E w (30 m) 。 実施例 1 5 After the surface of the oxygen-desorbing layer of the obtained laminate is corona-treated, the PET / aluminum foil stretched nylon (15 zm) laminated with a urethane-based adhesive by a normal dry lamination method and a urethane-based adhesive By dry laminating with the agent, an oxygen-absorbing packaging material as an oxygen-absorbing laminate was obtained. The resulting deoxidized packaging material was wound into a vinyl chloride pipe with a width of 900 mm and a length of 1000 m in a roll. The layer configuration of this laminate is as follows. PET / aluminum foil / stretched nylon (15 m) / deoxidation layer (20 m) / LDPE w (30 m). Example 15
実施例 14で調製したロール状の脱酸素性包装材料の両側に無水塩化カルシウム 50 gを透湿性包材 (ポリエチレン不織布) で包装した乾燥剤を 2袋ずつに配し、 PET/アルミ箔 /ポリプロピレンからなる (水蒸気バリアー性の) 包材でガムテ —プを用いて包装して室温にて 1ヶ月間保存した。 1ヶ月後に開封し、 20 cmx 20 cmの平パゥチを作成し、 空気 30mlと一緒に、 飽和臭化ナトリゥム水溶液 及び臭化ナトリウム粉末を封入した通気性の高い不織布の小袋を調湿目的で封入し 、 24°C環境下にて内部湿度を 58 %RHに保った状態で 1ヶ月保存後のパゥチ内 の気体の酸素濃度を測定した。 また、 同条件にて 6ヶ月保存後のパゥチについてァ ルミ箔の腐食を確認するため目視観察を行った。 結果を下記第 2表に示す。 第 2表  A roll of oxygen-absorbing wrapping material prepared in Example 14 was placed on both sides with a desiccant packed with 50 g of anhydrous calcium chloride in a moisture-permeable packing material (polyethylene non-woven fabric). PET / aluminum foil / polypropylene It was packaged with a wrapping material (steam barrier property) using gum tape and stored at room temperature for one month. One month later, open it, create a 20 cm x 20 cm flat patch, and, together with 30 ml of air, enclose a highly air-permeable nonwoven pouch containing a saturated sodium bromide aqueous solution and sodium bromide powder for humidity control purposes. After storing for 1 month in a 24 ° C. environment with the internal humidity kept at 58% RH, the oxygen concentration of the gas in the patch was measured. In addition, under the same conditions, the patch after storage for 6 months was visually observed to confirm corrosion of the aluminum foil. The results are shown in Table 2 below. Table 2
Figure imgf000025_0001
上表に示す通り、 脱酸素性能 (酸素吸収性能) が良好であると同時に、 ナイロン 層をガスバリア一層であるアルミ箔と脱酸素性層との間に配したことにより、 アル ミ箔の腐食が防止された。 比較例 7 実施例 1 4で得られた 2層積層体である脱酸素性層 (2 0 m) /LD P Ew ( 3 0 j m) の脱酸素性層 (=酸素吸収層) 表面をコロナ処理した後、 通常のドライ ラミネート法によりウレタン系接着剤にてラミネートされた P E T/アルミ箔とゥ レタン系接着剤にてドライラミネートすることにより脱酸素性積層体である脱酸素 性包装材料を得た。 得られた脱酸素性包装材料は塩化ビニール製パイプに幅 9 0 0 mmで、 長さ 1, 0 0 0 m毎にロール状に卷き取った。 この積層体の層構成は、 次 のようになる。
Figure imgf000025_0001
As shown in the above table, the deoxidation performance (oxygen absorption performance) is good, and at the same time, the nylon layer is disposed between the aluminum foil, which is a gas barrier layer, and the deoxidizing layer, so that the corrosion of the aluminum foil is reduced. Was prevented. Comparative Example 7 The surface of the oxygen-absorbing layer (= oxygen absorbing layer) of the oxygen-absorbing layer (20 m) / LDP Ew (30 jm), which is the two-layer laminate obtained in Example 14, was subjected to corona treatment. A PET / aluminum foil laminated with a urethane-based adhesive by a usual dry lamination method and dry-laminated with a urethane-based adhesive were used to obtain a deoxidized packaging material as a deoxidized laminate. The obtained oxygen-absorbing packaging material was wound into a vinyl chloride pipe in a roll shape at a width of 900 mm and a length of 1,000 m. The layer structure of this laminate is as follows.
すなわち、 P E T/アルミ箔 /酸素吸収層 (2 0 zm) /LD P Ew ( 3 0 m ) 。 比較例 8  That is, PET / aluminum foil / oxygen absorbing layer (20 zm) / LD P Ew (30 m). Comparative Example 8
比較例 7において得られた積層体について、 実施例 1 5におけると同様な評価を 実施した。 この結果も上記第 2表に示した。 この表に示す通り、 脱酸素能は良好で あつたが、 ナイロン層をガスパリア一層であるアルミ箔と脱酸素性層 (酸素吸収層 ) の間に配さなかったため、 脱酸素性層の影響によりアルミ箔の絰時的な腐食が認 められた。 実施例 1 6  The same evaluation as in Example 15 was performed for the laminate obtained in Comparative Example 7. The results are also shown in Table 2 above. As shown in this table, the oxygen scavenging ability was good, but the nylon layer was not disposed between the aluminum foil, which is a layer of gas, and the oxygen scavenging layer (oxygen absorbing layer). Temporary corrosion of the aluminum foil was observed. Example 16
実施例 9における脱酸素性層の厚みを 2 から 2 0 mに変更した以外は実 施例 9におけると全く同様にして、 脱酸素性包装材料を得た。 実施例 1 7  An oxygen-absorbing packaging material was obtained in exactly the same manner as in Example 9 except that the thickness of the oxygen-absorbing layer in Example 9 was changed from 2 to 20 m. Example 17
実施例 1 6の脱酸素性包装材料に関し、 実施例 1 1におけると同様に実施したと ころ、 酸素濃度は 5. 1 %で酸素吸収量は 8. 3 m l、 そして耐圧試験はすべて問題 なかった。 また、 該スタンディングバウチのノッチ部から開封性テストを実施した が特に問題なかった。 比較例 9 When the oxygen-absorbing packaging material of Example 16 was used in the same manner as in Example 11, the oxygen concentration was 5.1%, the oxygen absorption amount was 8.3 ml, and the pressure resistance test was all satisfactory. . An opening test was performed from the notch of the standing bouch. But there was no problem. Comparative Example 9
実施例 9における脱酸素性層の厚みを 27〃mから 8 zmに変更した脱酸素性積 層体を得ようと試みたが、 Tダイからの安定押出しが困難で、 目的の積層体を得る ことができなかつた。 比較例 1 0  An attempt was made to obtain a deoxidized laminate in which the thickness of the deoxidized layer in Example 9 was changed from 27 m to 8 zm, but stable extrusion from the T-die was difficult, and the desired laminate was obtained. I can't do it. Comparative Example 10
実施例 9における脱酸素性層の厚みを 27 zmから 40〃mに変更した以外は実 施例 9におけると全く同様にして、 脱酸素性包装材料を得た。 比較例 1 1  An oxygen-absorbing packaging material was obtained in exactly the same manner as in Example 9 except that the thickness of the oxygen-absorbing layer in Example 9 was changed from 27 zm to 40 μm. Comparative Example 1 1
比較例 10の脱酸素性包装材料に関し、 実施例 1 1と同様に実施したところ、 酸 素濃度は 4. 3%で酸素吸収量は 8. 7 ml, そして耐圧試験はすべて問題なかつ た。 また、 該スタンディングパゥチのノッチ部から開封性テストを実施したが開封 にかなりの力を要した。 実施例 1 7及び比較例 1 1の結果は、 脱酸素性層 (酸素吸収層) の厚みを 2倍に 増やしても脱酸素能はほとんど向上せず、 脱酸素性層の厚みを 25 /m以上の厚さ にしても脱酸素剤が有効に活用されず脱酸素能力がほとんど向上しないことを示し ている。 一方、 比較例 1 1におけるスタンディ ングパゥチは、 実施例 17のものと 比較してフィルム厚みが厚いため、 開封性が悪化した。 参考例  When the deoxidizing packaging material of Comparative Example 10 was carried out in the same manner as in Example 11, the oxygen concentration was 4.3%, the oxygen absorption amount was 8.7 ml, and all the pressure resistance tests were not problematic. An opening test was conducted from the notch of the standing patch, but it took a considerable amount of force to open. The results of Example 17 and Comparative Example 11 show that even if the thickness of the oxygen-absorbing layer (oxygen-absorbing layer) was doubled, the oxygen-absorbing ability was hardly improved, and the thickness of the oxygen-absorbing layer was 25 / m2. Even with the above thickness, the oxygen scavenger is not effectively used, indicating that the oxygen scavenging ability is hardly improved. On the other hand, the standing patch in Comparative Example 11 had a larger film thickness than that of Example 17, so that the opening property was deteriorated. Reference example
実施例 9における同じ材質の包材で作成したスタンディングパゥチ ( 12 Omm x 1 8 0 m m) を用いて、 この内部に精米 (2 0 g ) および水 (2 3 0 g ) の合計 2 5 0 gを入れ、 ヒートシールし、 密封後加圧加熱殺菌 ( 1 2 1 ° ( 、 8分) した。 1 日冷却後、 開封したところ、 粥ができており、 このものは異臭を持たず、 土鍋で 長時間かけて家庭で作る "かゆ" と同じ呈味であった。 A standing patch (12 Omm) made of the same packaging material in Example 9 x 180 mm), put a total of 250 g of milled rice (20 g) and water (230 g) in the inside, heat seal, seal, and heat sterilize under pressure (1 2 1 ° (, 8 minutes) After cooling for 1 day, when opened, porridge was formed, which had no off-flavor and tasted the same as "porridge" made at home in a clay pot for a long time. .
(産業上の利用可能性) (Industrial applicability)
本発明による、 脱酸素性樹脂、 これを他の材料と積層した脱酸素性包装材料、 及びこの包装材料を用いて作成した脱酸素性容器の乾燥保存方法によれば、 脱酸 素剤に酸化促進剤として用いられるハロゲン化金属塩による吸湿が防止され、 延 いてはこれらの、 保存中の脱酸素能の低下することが防止され、 さらには脱酸素 性樹脂又は脱酸素性包装材料は、 そのままではこれらを熱 (成型) 加工する際に 支障があるほど吸湿した水分が存在していても熱 (成型) 加工に支障のない程度 に水分が除去され、 熱加工時の脱酸素性包装材料及びヒートシール時の脱酸素性 容器の発泡を防止することができる。  According to the oxygen-absorbing resin according to the present invention, the oxygen-absorbing packaging material obtained by laminating the same with other materials, and the method for drying and storing an oxygen-absorbing container prepared using this packaging material, Moisture absorption by the metal halide salt used as an accelerator is prevented, which in turn prevents a decrease in the oxygen-absorbing capacity during storage, and furthermore, the oxygen-absorbing resin or the oxygen-absorbing packaging material is used as it is. In such a case, even if there is moisture absorbed so much as to hinder the heat (molding) processing, moisture is removed to such an extent that the heat (molding) processing is not hindered. Deoxygenation during heat sealing Foaming of the container can be prevented.

Claims

請求の範囲 The scope of the claims
1 . 少なくとも鉄粉及びハロゲン化金属塩で構成された脱酸素剤を含有する脱 酸素性樹脂、 この脱酸素性樹脂を他の材料と積層して作成した脱酸素性包装材料 又はこの脱酸素性包装材料を加工して作成した脱酸素性容器を、 該ハロゲン化金 属塩の結晶水が外れて実質的に無水塩に移行する結晶水脱離温度より 2 0 °C以上 の高温で加熱処理した後、 該樹脂、 包装材料又は容器を該ハロゲン化金属塩の無 水塩と実質的に同等以上の吸湿力を有する乾燥剤とともに水蒸気バリァ一性の包 装容器に密封して保存することを特徴とする脱酸素性樹脂又は脱酸素性包材の乾 燥保存方法。 1. An oxygen-absorbing resin containing an oxygen-absorbing agent composed of at least iron powder and a metal halide salt, an oxygen-absorbing packaging material formed by laminating this oxygen-absorbing resin with another material, or this oxygen-absorbing material. The deoxidizing container prepared by processing the packaging material is heat-treated at a temperature higher than the desorption temperature of crystal water, at which the crystal water of the metal salt is removed and substantially shifts to an anhydrous salt, by 20 ° C or more. After that, it is preferable that the resin, the packaging material or the container is sealed and stored in a steam-barrier packaged container together with a desiccant having a hygroscopicity substantially equal to or higher than that of the anhydrous salt of the metal halide. A method for drying and storing a deoxidizing resin or a deoxidizing packaging material.
2 . 該ハロゲン化金属塩が塩化カルシウム又は/及び塩化マグネシウムである ことを特徴とする請求項 1記載の脱酸素性樹脂又は脱酸素性包材の乾燥保存方法  2. The method for drying and preserving an oxygen-absorbing resin or an oxygen-absorbing packaging material according to claim 1, wherein the metal halide is calcium chloride and / or magnesium chloride.
3 . ハロゲン化金属塩無水物と実質的に同等以上の吸湿力を有する乾燥剤が塩 化カルシウム、 塩化マグネシウム、 シリカゲル、 ゼォライ ト、 合成ゼォライ ト及 び活性白土から選ばれる一又は二以上の物質であることを特徴とする請求項 1又 は 2記載の脱酸素性樹脂又は脱酸素性包材の乾燥保存方法。 3. One or more substances selected from the group consisting of calcium chloride, magnesium chloride, silica gel, zeolite, synthetic zeolite, and activated clay, in which the desiccant having substantially the same or greater hygroscopicity as the metal halide anhydride is used. The dry preservation method of an oxygen-absorbing resin or an oxygen-absorbing packaging material according to claim 1 or 2, wherein
4 . ハロゲン化金属塩無水物と実質的に同等以上の吸湿力を有する乾燥剤が透 湿性の耐熱性袋状容器に封入されてなることを特徴とする請求項 1〜3のいずれ かに記載の脱酸素性樹脂又は脱酸素性包材の乾燥保存方法。  4. A desiccant having a hygroscopicity substantially equal to or greater than that of a metal halide anhydride is sealed in a moisture-permeable heat-resistant bag-shaped container. Drying and preservation method of the deoxidizing resin or the deoxidizing packaging material.
5 . 包装材料の積層構成が外側より外層/酸素バリァ層 Zナイ口ン層/酸素吸 収層/シ一ラント層であり、 かつ該酸素吸収層の厚みが 1 0〜2 5 mである袋 状脱酸素性容器であることを特徴とする、 請求項 1〜4のいずれかに記載の乾燥 保存方法を適用されるべき脱酸素性容器。  5. A bag in which the packaging material is composed of an outer layer / oxygen barrier layer / Z-opening layer / oxygen absorbing layer / sealant layer from the outside and a thickness of the oxygen absorbing layer of 10 to 25 m. An oxygen-absorbing container to which the drying and preservation method according to any one of claims 1 to 4 is applied, wherein the container is a deoxygenating container.
6 . ナイロン層と酸素吸収層との間にさらに中間層が設けられていることを特 徴とする請求項 5記載の脱酸素性容器。 6. Note that an intermediate layer is further provided between the nylon layer and the oxygen absorbing layer. The deoxidizing container according to claim 5, wherein
PCT/JP1999/007316 1999-12-27 1999-12-27 Method for drying and storage of oxygen-scavenging resin or oxygen-scavenging packaging material WO2001048064A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/007316 WO2001048064A1 (en) 1999-12-27 1999-12-27 Method for drying and storage of oxygen-scavenging resin or oxygen-scavenging packaging material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/007316 WO2001048064A1 (en) 1999-12-27 1999-12-27 Method for drying and storage of oxygen-scavenging resin or oxygen-scavenging packaging material

Publications (1)

Publication Number Publication Date
WO2001048064A1 true WO2001048064A1 (en) 2001-07-05

Family

ID=14237703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007316 WO2001048064A1 (en) 1999-12-27 1999-12-27 Method for drying and storage of oxygen-scavenging resin or oxygen-scavenging packaging material

Country Status (1)

Country Link
WO (1) WO2001048064A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203937A (en) * 1989-02-02 1990-08-13 Sumitomo Chem Co Ltd Production of self-reaction type oxygen absorbing sheet
JPH053776A (en) * 1990-10-15 1993-01-14 Mitsubishi Gas Chem Co Inc Food-packaged form for hot cooking
WO1996040412A2 (en) * 1995-06-07 1996-12-19 Amoco Corporation Oxygen-scavenging composition
JPH09173831A (en) * 1995-12-23 1997-07-08 Sony Corp Deoxidation material and manufacture thereof
JPH1028860A (en) * 1996-07-18 1998-02-03 Sony Corp Oxygen scavenger and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02203937A (en) * 1989-02-02 1990-08-13 Sumitomo Chem Co Ltd Production of self-reaction type oxygen absorbing sheet
JPH053776A (en) * 1990-10-15 1993-01-14 Mitsubishi Gas Chem Co Inc Food-packaged form for hot cooking
WO1996040412A2 (en) * 1995-06-07 1996-12-19 Amoco Corporation Oxygen-scavenging composition
JPH09173831A (en) * 1995-12-23 1997-07-08 Sony Corp Deoxidation material and manufacture thereof
JPH1028860A (en) * 1996-07-18 1998-02-03 Sony Corp Oxygen scavenger and its production

Similar Documents

Publication Publication Date Title
JP3171259B2 (en) Oxygen absorber
US6596191B2 (en) Oxygen absorbing composition, oxygen absorbing resin composition using the oxygen absorbing composition, and preserving method utilizing these compositions
US6133361A (en) Oxygen-absorbing composition, oxygen-absorbing resin composition, packing material, multi-layered packing, oxygen absorber packet, packing method and preservation method
JP4019339B2 (en) Carbon dioxide absorbing laminate, container using the same, and food preservation method
JPH0826348A (en) Moisture-adjustable laminated bag
JP2003088344A (en) Oxygen and carbon dioxide-adsorbing multilayer body
JP3282567B2 (en) Laminate for packaging containing activated oxygen absorber
WO2001048064A1 (en) Method for drying and storage of oxygen-scavenging resin or oxygen-scavenging packaging material
EP1842794B1 (en) Cheese packaging
JP3788057B2 (en) Deoxygenated resin composition, deoxygenated packaging material, and dry oxygen storage method using these
JP3246538B2 (en) Packing for lid
JP4131030B2 (en) Oxygen absorber composition, oxygen absorber package and article storage method
JP2002052655A (en) Oxygen absorbable multilayered material and method for preserving article containing low moisture content using the same
US20050034599A1 (en) Oxygen absorber composition, oxygen absorber packaging and oxygen absorption method
JP4085218B2 (en) Oxygen scavenger composition and storage method
JP4174633B2 (en) Oxygen-absorbing laminated packaging material
JP3376915B2 (en) Deoxygenated multilayer body, packaging container using the same, and method of storing food or medicine
JP2666381B2 (en) Packaging film for oxygen scavenger
JP2000142815A (en) Deoxidizing airtight packaging container and storing method
JP2002284216A (en) Lid with deoxidizing function
JP4544377B2 (en) Oxygen-absorbing multilayer
JP3246537B2 (en) Packing for lid
JP7383897B2 (en) Carbon dioxide adjustment laminate and packaging
JPH1044333A (en) Wrapping material for dry food and method for packaging dry food
WO2023182130A1 (en) Oxygen scavenger composition, oxygen scavenger package, and method for manufacturing oxygen scavenger package

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase