JP4019339B2 - Carbon dioxide absorbing laminate, container using the same, and food preservation method - Google Patents
Carbon dioxide absorbing laminate, container using the same, and food preservation method Download PDFInfo
- Publication number
- JP4019339B2 JP4019339B2 JP16915199A JP16915199A JP4019339B2 JP 4019339 B2 JP4019339 B2 JP 4019339B2 JP 16915199 A JP16915199 A JP 16915199A JP 16915199 A JP16915199 A JP 16915199A JP 4019339 B2 JP4019339 B2 JP 4019339B2
- Authority
- JP
- Japan
- Prior art keywords
- carbon dioxide
- container
- absorbing
- layer
- dioxide gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W90/00—Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
- Y02W90/10—Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics
Landscapes
- Packages (AREA)
- Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
- Laminated Bodies (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)
Description
【0001】
【発明に属する技術分野】
本発明は炭酸ガス吸収積層体、これを用いた容器及び食品類の保存方法に関する。さらに詳しくは、熱可塑性樹脂に炭酸ガス吸収剤および吸湿剤が混練・分散された炭酸ガス吸収層を備えた炭酸ガス吸収積層体、並びにこのような炭酸ガス吸収積層体を材料に用いて作成された容器及び、例えば、容器に充填・密封後に炭酸ガスを発生する食品類をこのような容器に充填・密封しておく食品類の保存方法に関する。
【0002】
【従来の技術】
焙煎後のコーヒー豆、チーズやヨーグルトなどの発酵食品、豆類や穀物類などの農産物等は、容器内に充填・密封した後に炭酸ガスを発生することがある。また、ボイルやレトルト処理等の加熱処理により炭酸ガスを発生する食品(後述)もある。このような食品類を容器に充填・密封して保存した場合、炭酸ガスの発生によって内圧が高まり、そのため容器の変形が生じることがある。さらには、内圧に耐え切れなくなった容器の破損、延いては内容物の漏洩等の問題点があった。
【0003】
特開昭56−130222号公報等には、炭酸ガス吸収剤を含有する小袋を上述の食品類と同封・密封する方法により、発生する炭酸ガスを除去することが行われている。しかしながら、消費者は該小袋を異物混入として製造者にクレームを申し立てたり、誤って食べてしまう場合や、該小袋が破損して内容物を汚染してしまう可能性があるといった欠点があった。さらに、製品の製造工程において該小袋の投入工程が余分に必要であるという欠点もあった。
【0004】
また、特開昭55−29975号公報には、合成樹脂フィルム等の基材シートに炭酸ガスを吸収する組成物を塗布、含浸または練り込んだ食品等の保存用素材の開示がある。しかしながら、該保存用素材は食品等を収納した包装体中に併置する、すなわち同封することにより機能を発揮するものであり、炭酸ガス吸収剤小袋の欠点を解決したものとは言えない。
【0005】
別の方法として、特開昭63−319141号公報、特開平5−222215号公報等には、プラスチックフィルムのガス透過性をコントロールし、食品から発生する炭酸ガスをフィルムを通して選択的に外部へ逃がし、容器の変形や破損を防止する方法が開示されている。しかしながら、一般的に、炭酸ガスの透過性が高い場合には、同時に酸素の透過性も高くなる傾向がある。そのため、例えば、これらのフィルムから作成した容器を焙煎後のコーヒーに使用した場合、発生する炭酸ガスによる容器の変形・破損は防止できるかもしれないが、容器外部から侵入する酸素によりコーヒーの風味および香りを損ない、品質が低下する問題点があった。
【0006】
【発明が解決しようとする課題】
前記記載の従来技術の背景下に、本発明の課題は、充填・密封後に炭酸ガスを発生する食品類に対して、内圧上昇による容器の変形・破損を防止し、ガス吸収剤の誤食・漏洩の心配がなく、品質保持効果に優れた食品類の保存方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは前記の課題を解決すべく鋭意検討を行った結果、炭酸ガス吸収積層体からなる容器を充填・密封後に炭酸ガスを発生する食品類に使用することにより、容器の変形・破損の防止や、ガス吸収剤の誤食・漏洩の心配がなく、長期間にわたり品質が保持されることを見出し、このような知見に基づいて本発明を完成するに至った。
【0008】
すなわち、本発明は、低密度ポリエチレンの熱可塑性樹脂に(1)水酸化カルシウム、酸化カルシウム、水酸化マグネシウムおよび酸化マグネシウムから選ばれる単一物もしくは混合物である炭酸ガス吸収剤および(2)該炭酸ガス吸収剤と反応して不溶性の塩を生じることのないハロゲン化金属塩および無機酸塩から選ばれる潮解性無機塩の単一物もしくは混合物である吸湿剤を混練して分散した炭酸ガス吸収樹脂組成物からなる炭酸ガス吸収層を備え、そして該炭酸ガス吸収層の内側に少なくともシーラント層を、そして外側に少なくともガスバリア層を備えたことを特徴とし、かつ、該炭酸ガス吸収層に用いる熱可塑性樹脂の炭酸ガス透過係数が2.5cc・mm/m 2 ・24 h ・atm以上および水蒸気透過係数が0.10g・mm/m 2 ・24h以上であり、且つ、シーラント層の炭酸ガス透過度が37,000cc/m 2 ・24h・atm以上および水蒸気透過度が5g/m 2 ・24h以上であることを特徴とする焙煎後のコーヒー豆またはその粉砕物の保存用容器の材料である炭酸ガス吸収積層体に関する。本発明は、また、このような炭酸ガス吸収積層体からなる容器およびこのような容器を用いた食品類の保存方法にも関する。
【0009】
【発明の実施の形態】
以下に本発明を詳細に説明する。
【0010】
本発明の炭酸ガス吸収積層体(以下、積層体と略称することもある)は、熱可塑性樹脂に炭酸ガス吸収剤および吸湿剤を混練して分散した炭酸ガス吸収樹脂組成物からなる炭酸ガス吸収層を少なくとも備えた炭酸ガス吸収積層体である。積層体はシートあるいはフィルムのいずれであっても構わない。シートとは、積層体の厚みが概ね200μmを超えるものであり、そしてフィルムとはそれ以下のものである。
【0011】
本発明の炭酸ガス吸収層に用いる熱可塑性樹脂の炭酸ガス透過係数が2.5cc・mm/m2・24h・atm以上および水蒸気透過係数が0.10g・mm/m2・24h以上であり、且つ、備えられるシーラント層の炭酸ガス透過度が100cc/m2・24h・atm以上および水蒸気透過度が5g/m2・24h以上であることが好ましい。ここに、炭酸ガス透過度はASTM D1434(25℃、0%RH)で測定され、そして水蒸気透過度はJIS Z0208(40℃、90%RH)で測定される。炭酸ガス透過係数および水蒸気透過係数は、上記規格による炭酸ガス透過度および水蒸気透過度それぞれの測定値に、被検層の厚み(mm)を乗じて算出されるものである。
【0012】
本発明の炭酸ガス吸収層に用いられる熱可塑性樹脂としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−α−オレフィン共重合体、ポリメチルペンテン、ポリブタジエン等のポリオレフィン類を挙げることができる。また、これらのポリオレフィン類の酸変性物を挙げることができる。その他にも、エチレン−酢酸ビニル共重合体等のビニル化合物類、ポリエチレンテレフタレート、ポリカーボネート等のポリエステル類、6−ナイロン等のポリアミド類、アクリル酸もしくはアクリル酸エステルとエチレンの共重合体およびアイオノマー等が挙げられる。これらの熱可塑性樹脂は、単一で用いてもあるいは2種類以上を混用しても構わない。
【0013】
炭酸ガス透過係数が2.5cc・mm/m2・24h・atm未満の場合、炭酸ガス吸収積層体で作成された容器に充填・密封された内容物から発生する炭酸ガスが、炭酸ガス吸収層に担持された炭酸ガス吸収剤へ到達するまでに時間がかかり、効率的な炭酸ガス吸収が望めないため好ましくない。また、水蒸気透過係数が0.10g・mm/m2・24h未満の場合、後述するように、炭酸ガス吸収剤とともに炭酸ガス吸収層に担持される吸湿剤の効果が小さくなるため好ましくない。
【0014】
本発明の炭酸ガス吸収剤は、水酸化カルシウム、酸化カルシウム、水酸化マグネシウムおよび酸化マグネシウムから選ばれる単一物もしくは混合物であることが好ましい。該炭酸ガス吸収剤の前記熱可塑性樹脂への配合量には特別の制限はなく、要求される炭酸ガス吸収量や吸収速度に応じて適宜選ばれる。
【0015】
本発明の吸湿剤は、炭酸ガス吸収剤と反応して不溶性の塩を生じることのないハロゲン化金属塩および無機酸塩から選ばれる潮解性無機塩の単一物もしくは混合物であることが好ましい。ハロゲン化金属塩としては、塩化カルシウム、塩化マグネシウム、塩化リチウム、塩化亜鉛、臭化カルシウム等のアルカリ金属あるいはアルカリ土類金属の塩化物、臭化物が好ましく用いられる。無機酸塩としては、過塩素酸マグネシウムの無水塩もしくは三水塩、過塩素酸バリウムなどが好ましく用いられる。これらの潮解性無機塩類を炭酸ガス吸収剤とともに炭酸ガス吸収層に担持させることにより、炭酸ガス吸収速度が高まる効果を奏する。これは、内容物の水分が吸湿剤により炭酸ガス吸収層へ速やかに取り込まれることにより、炭酸ガス吸収剤が効率よく機能するためである。本発明の吸湿剤の添加量には特に制限はないが、炭酸ガス吸収剤に対して1〜30wt%であることが特に好ましい。添加量が1wt%未満の場合には、吸湿剤による炭酸ガス吸収速度の向上効果が認められない。また、添加量が30wt%を超えても、さらなる炭酸ガス吸収速度の向上が認められないし、炭酸ガス吸収樹脂組成物の吸湿性が必要以上に高くなりラミネート加工時等の取り扱いが困難になるので好ましくない。本発明以外の吸湿剤として、例えば、リン酸カリウム等の潮解性リン酸塩を用いた場合、炭酸ガス吸収剤と不溶性の塩を生じるために炭酸ガス吸収速度を高める効果は認められない。さらには、シリカゲル、ゼオライト、合成ゼオライト、活性白土等の吸湿剤では、内容物から取り込んだ水分を吸湿剤自体が保持してしまうために炭酸ガス吸収速度を高める効果は認められない。
【0016】
本発明の炭酸ガス吸収樹脂組成物は、二軸押出機等を用いて、予め加熱溶融状態にある前記熱可塑性樹脂に炭酸ガス吸収剤および吸湿剤を混練して分散することにより得ることができる。得られた樹脂組成物は、次工程のラミネート加工時の取り扱い性の面からペレット化することが好ましい。吸湿剤は、炭酸ガス吸収剤の近傍に存在した方がその効果を最大限に発揮する。そのため炭酸ガス吸収剤と吸湿剤は、熱可塑性樹脂に混練・分散する前に振動ボールミルやヘンシェルミキサー等を用いて予め混合してしておくことが特に好ましい。さらに必要に応じて硫酸バリウム、酸化チタン、シリカ、アルミナ等の無機フィラーや、アエロジル、微粉樹脂パウダー等の流動性調節剤を添加しても構わない。
【0017】
本発明の炭酸ガス吸収積層体に備えられるシーラント層は、炭酸ガス透過度が100cc/m2・24h・atm以上および水蒸気透過度が5g/m2・24h以上であることが好ましい。さらには内容物と炭酸ガス吸収層とを隔離しつつ、容器を形成するための熱接着性が要求される。シーラント層に用いられる熱可塑性樹脂としては、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体、エチレン−α−オレフィン共重合体、ポリメチルペンテン、ポリブタジエン等のポリオレフィン類を挙げることができる。また、これらのポリオレフィン類の酸変性物が挙げられる。その他にも、エチレン−酢酸ビニル共重合体等のビニル化合物類、非結晶性ポリエチレンテレフタレート等のポリエステル類、アクリル酸もしくはアクリル酸エステルとエチレンの共重合体およびアイオノマー等が挙げられる。これらの熱可塑性樹脂は、単一で用いてもあるいは2種類以上を混用しても構わない。また、必要に応じて硫酸バリウム、酸化チタン、シリカ、アルミナ等の無機フィラーを添加してもよく、さらに延伸処理により前記の無機フィラーを基点とし微多孔化して用いても構わないし、ポリエチレンやポリプロピレンの不織布を用いても構わない。
【0018】
炭酸ガス吸収積層体で作成された容器に充填・密封された内容物から発生した炭酸ガスは、シーラント層を介して炭酸ガス吸収層で吸収される。したがって、シーラント層の炭酸ガス透過度が100cc/m2・24h・atm未満の場合、炭酸ガス吸収速度が低下し、容器の変形等が生じるため好ましくない。同様に、内容物の水分は、シーラント層を介して炭酸ガス吸収層へ到達する。したがって、シーラント層の水蒸気透過度が5g/m2・24h未満の場合、本発明の吸湿剤を使用しても炭酸ガス吸収速度の向上が認められず、好ましくない。本発明のシーラント層の厚みは、前記の炭酸ガス透過度および水蒸気透過度を満たすものであれば特に制限はなく、要求される炭酸ガス吸収速度、容器のシール強度、内容物との隔離性等を勘案して、適宜選択される。一方、炭酸ガス吸収層を形成する熱可塑性樹脂にシーラント層を形成する樹脂と同様なものを用いた場合、内容物によっては必ずしもシーラント層が必要でない場合も有り得る。
【0019】
本発明の炭酸ガス吸収積層体に備えられるガスバリア層は、酸素透過度が0.5cc/m2・24h・atm以下であるアルミニウム等の金属箔や、シリカ、アルミナ、アルミニウムを蒸着したポリエチレンテレフタレートフィルムや、ポリ(メタ)アクリル酸焼付けポリエチレンテレフタレートフィルムや、エチレン−酢酸ビニル共重合体ケン化物等が好ましく用いられる。本発明においてガスバリア層は内容物の性質によっては必ずしも必須ではないが、例えば、焙煎後のコーヒー豆や該コーヒー豆の粉砕物は、容器外部から侵入する酸素によって風味や香りが損なわれてしまうため上記のガスバリア層を用いることが特に好ましい。
【0020】
本発明の炭酸ガス吸収積層体は、その製造方法には特別のに制限はなく、公知のラミネート法を用いることができる。例えば、炭酸ガス吸収樹脂組成物を加熱・溶融してTダイ法あるいはインフレーション法にて炭酸ガス吸収層を形成し、得られた炭酸ガス吸収層の各面にガスバリア層およびヒートシール層をウレタン系等の接着剤によって積層するドライラミネート法や、ガスバリア層とヒートシール層との間に加熱溶融した炭酸ガス吸収層を挟み込んで積層する押出サンドイッチラミネーション法や、ガスバリア層に加熱溶融した炭酸ガス吸収層およびヒートシール層を共に押し出して積層する共押出ラミネーション法等が挙げられる。また、ガスバリア層と炭酸ガス吸収層との間に、炭酸ガス吸収剤および吸湿剤によるガスバリア層の腐食や損傷を防止する目的で、例えばナイロンやポリオレフィンなどの樹脂層を介在させても構わない。さらに、ガスバリア層の外側あるいは炭酸ガス吸収層の外側には、印刷を施したポリエチレンテレフタレートフィルムやポリプロピレンフィルムを積層しても構わない。
【0021】
本発明の炭酸ガス吸収積層体は、要求される炭酸ガス吸収速度や吸収量を勘案して、容器の一部分あるいは全部に用いることができ、三方あるいは四方シール袋、スタンディングパウチ、ガゼット袋、スチック状袋、ピロー袋、カップ、トレー、蓋材など様々な形態になり得る。さらに、容器の一部にワンウェイバルブを取り付けても構わない。ワンウェイバルブとは、オイルシール等により密閉されていたバルブの一部が、容器内圧が規定値以上に上昇した際のみ開き、内圧を逃がす機能を有するものである。
【0022】
本発明の、炭酸ガス吸収積層体の材料からなる容器に食品類を充填・密封しておく食品類の保存方法が適用される食品類としては、容器内に充填・密封後保存中に炭酸ガスを発生するものを好ましいものとして挙げることができ、例えば、焙煎後のコーヒー豆およびその粉砕物や、チーズ、ヨーグルト、納豆、キムチ等の発酵食品や、豆や穀物等の農産物等が挙げられる。また、容器内に密封して加熱処理を行った場合、油分の分解や添加物の影響等により炭酸ガスを発生するものでもよく、例えば、ハンバーグ、油揚げ、焼き鳥、饅頭、コロッケ、アメリカンドック、餃子、シュウマイ、カステラ、蒸しケーキ等が挙げられる。さらに、本発明の保存方法は、必ずしも上記の食品類に限定されるものではなく、所期の目的を達する物品であればよい。
【実施例】
以下、実施例により本発明を例示・説明するが、本発明の内容は実施例に制限されるものではない。
【0023】
実施例1
水酸化カルシウム100Kgに対して塩化カルシウム10Kgを添加し、内部を乾燥空気で置換した振動ボールミルを用いてこれらの粉砕と混合を行った。次に、得られた混合物と直鎖状低密度ポリエチレン(炭酸ガス透過係数825cc・mm/m2・24h・atm、そして水蒸気透過係数0.48g・mm/m2・24h)とをサイドフィード方式ベント付き二軸押出機を用いて200℃で混練し、水酸化カルシウムを30重量%含有する炭酸ガス吸収樹脂組成物を得た。
【0024】
通常のドライラミネート法によりポリエチレンテレフタレートフィルム [PET] 、延伸ポリプロピレンフィルム[OPP]、アルミニウム箔[AL箔]、直鎖状低密度ポリエチレンフィルム[LLDPE]を順次ラミネートした積層用基材を得た。得られた積層用基材のLLDPE面とシーラント層となる厚さ20μmの未延伸ポリプロピレンフィルム[CPP](炭酸ガス透過度37,000cc /m2・24h・atm、そして水蒸気透過度15g/m2・24h)との間に、加熱・溶融した炭酸ガス吸収樹脂組成物を押出サンドイッチラミネーションすることにより炭酸ガス吸収積層体(A)を得た。この積層体の構成は、以下のようになる:PET(12μm)/OPP(20μm)/AL箔(7μm)/LDDPE(30μm)/炭酸ガス吸収層(40μm)/CPP(20μm)。
【0025】
得られた該積層体(A)を用いて、製袋機によりピロー袋(内面積850cm2)を作成した。焙煎後のコーヒー豆の粉砕物300g(水分活性:0.2)を、前記のピロー袋に袋内の酸素濃度が0.2%以下になるように窒素を吹き込みながら充填・密封した。
【0026】
(容器の外観)
充填・密封後のサンプルを24℃で保管し、3日後および28日後の容器(ピロー袋)の外観を目視にて観察した。結果を後記第1表に示す。
【0027】
(容器内の炭酸ガス濃度の測定)
充填・密封後のサンプルを24℃で保管し、3日後および28日後の容器(ピロー袋)内の炭酸ガス濃度をガスクロマトグラフィーにより測定した。結果を第1表に示す。
【0028】
(コーヒーの官能評価)
充填・密封後のサンプルを24℃で28日間保管後、15人のパネラーを用いてコーヒーの香りおよび風味について官能評価を行った。この結果も第1表に示す。なお、評価点は平均点で表示し、充填直前のコーヒーの評点を5.0とした。
【0029】
実施例2
ピロー袋にワンウェイバルブを取り付けた以外は、実施例1におけると同様にコーヒーを充填・密封後、容器の外観評価、容器内の炭酸ガス濃度の測定およびコーヒーの官能評価を行った。結果を第1表に示す。
【0030】
実施例3
水酸化カルシウム80Kg、酸化カルシウム20Kgおよび過塩素酸マグネシウム5Kgを、内部を乾燥空気で置換した振動ボールミルを用いてこれらの粉砕と混合を行った。次に、得られた混合物と直鎖状低密度ポリエチレン(炭酸ガス透過係数825cc・mm/m2・24h・atmそして水蒸気透過係数0.48g・mm/m2・24h)とをサイドフィード方式ベント付き二軸押出機を用いて200℃で混練し、水酸化カルシウムを30重量%含有する炭酸ガス吸収樹脂組成物を得た。
【0031】
通常のドライラミネート法によりPET、AL箔及びLLDPEをラミネートした積層用基材を得た。得られた積層用基材のLLDPE面側に、炭酸ガス吸収樹脂組成物およびシーラント層を共押出ラミネーション法を用いて炭酸ガス吸収積層体(B)を得た。なお、シーラント層には、低密度ポリエチレンペレット[LDPE]とポリメチルペンテンペレット[TPX]との1:1(重量比)の混合物を用いた。シーラント層の炭酸ガス透過度は50,000cc/m2・24h・atmであり、、水蒸気透過度は60g /m2・24hであった。この積層体の構成は、以下のようになる:PET(12μm)/AL箔(7μm)/LLDPE(15μm)/炭酸ガス吸収層(30μm)/LDPE+TPX (50μm)。
【0032】
以下、実施例1とおけると同様にコーヒーを充填・密封後、容器の外観評価、容器内の炭酸ガス濃度の測定およびコーヒーの官能評価を行った。結果を第1表に示す。
【0033】
比較例1
通常のドライラミネート法によりポリエチレンテレフタレートフィルム [PET] 、延伸ポリプロピレンフィルム[OPP]、アルミニウム箔[AL箔]、および未延伸ポリプロピレン[CPP] を順次ラミネートし、次の構成の積層体を得た: PET(12μm)/OPP(20μm)/AL箔(7μm)/CPP(20μm)。
【0034】
以下、実施例1とおけると同様にコーヒーを充填・密封後、容器の外観評価、容器内の炭酸ガス濃度の測定およびコーヒーの官能評価を行った。結果を第1表に示す。
【0035】
比較例2
塩化カルシウムを用いない以外は、実施例1におけると同様にして炭酸ガス吸収積層体(C)を得た。以下、実施例1とおけると同様にコーヒーを充填・密封後、容器の外観評価、容器内の炭酸ガス濃度の測定およびコーヒーの官能評価を行った。結果を第1表に示す。
【0036】
比較例3
塩化カルシウムの代わりにリン酸カリウムを用いた以外は、実施例1におけると同様にして炭酸ガス吸収積層体(D)を得た。以下、実施例1とおけると同様にコーヒーを充填・密封後、容器の外観評価、容器内の炭酸ガス濃度の測定およびコーヒーの官能評価を行った。結果を第1表に示す。
【0037】
比較例4
塩化カルシウムの代わりに合成ゼオライトを用いた以外は、実施例1におけると同様にして炭酸ガス吸収積層体(E)を得た。以下、実施例1とおけると同様にコーヒーを充填・密封後、容器の外観評価、容器内の炭酸ガス濃度の測定およびコーヒーの官能評価を行った。結果を第1表に示す。
【0038】
比較例5
シーラント層に厚さ80μmの未延伸ポリプロピレン[CPP](炭酸ガス透過度9,250cc/m2・24h・atm、そして水蒸気透過度3.8g/m2・24h)を用いた以外は、実施例1におけると同様にして炭酸ガス吸収積層体(F)を得た。この積層体の構成は、以下のようになる: PET(12μm)/OPP(20μm)/AL箔(7μm)/LLDPE(30μm)/炭酸ガス吸収層(40μm)/CPP(80μm)。
【0039】
以下、実施例1とおけると同様にコーヒーを充填・密封後、容器の外観評価、容器内の炭酸ガス濃度の測定およびコーヒーの官能評価を行った。結果を第1表に示す。
【0040】
比較例6
水酸化カルシウム100Kgに対して塩化カルシウム10Kgを添加し、内部を乾燥空気で置換した振動ボールミルを用いてこれらの粉砕と混合を行った。次に、得られた混合物とエチレン−酢酸ビニル共重合体ケン化物 [EVOH] (炭酸ガス透過係数0.02cc・mm/m2・24h・atm、そして水蒸気透過係数1.4g・mm/m2・24h)とをサイドフィード方式ベント付き二軸押出機を用いて200℃で混練し、水酸化カルシウムを30重量%含有する炭酸ガス吸収樹脂組成物を得たのち、実施例1とおけると同様に炭酸ガス吸収積層体(G)を得た。この積層体の構成は、以下のようになる: PET(12μm)/OPP(20μm)/AL箔(7μm)/LLDPE(30μm)/炭酸ガス吸収層(40μm)/CPP(20μm)。
【0041】
以下、実施例1におけると同様にコーヒーを充填・密封後、容器の外観評価、容器内の炭酸ガス濃度の測定およびコーヒーの官能評価を行った。結果を第1表に示す。
【0042】
比較例7
ポリビニルアルコール(ケン化度60%)60重量部とポリエチレングルコール20重量部(平均分子量600)とを加熱・混練した後、さらにEVOH40重量部を添加して加熱・混練した樹脂組成物を調製した。この樹脂組成物を芯層となるようにして、エチレン−酢酸ビニル共重合体[EVA]、アイオノマー[IO]および酸変性ポリオレフィン[AD](接着剤樹脂)を共押出積層し、炭酸ガス透過積層体を得た。該積層体の構成は以下のようになる:EVA(20μm)/AD(3μm)/芯層(19μm)/AD(3μm)/IO(35μm)。 該積層体の炭酸ガス透過度は900cc/m2・24h・atmであり、そして酸素透過度は100cc/m2・24h・atmであった。
【0043】
以下、実施例1におけると同様にコーヒーを充填・密封後、容器の外観評価、容器内の炭酸ガス濃度の測定およびコーヒーの官能評価を行った。結果を第1表に示す。
【0044】
【表1】
【0045】
【発明の効果】
以上説明したように、本発明の炭酸ガス吸収積層体からなる容器を、充填・密封後に炭酸ガスを発生する食品類に使用することにより、容器の変形・破損の防止や、ガス吸収剤の誤食・漏洩の心配がなく、長期間にわたり品質を保持することができる。
【図面の簡単な説明】
【図1】本発明の炭酸ガス吸収積層体の構成例(概念図)を例示する。
【符号の説明】
1 ガスバリア層
2 炭酸ガス吸収層
3 シーラント層[0001]
[Technical field belonging to the invention]
The present invention relates to a carbon dioxide absorbing laminate, a container using the same, and a method for preserving foods. More specifically, a carbon dioxide absorbing laminate having a carbon dioxide absorbing layer in which a carbon dioxide absorbing agent and a hygroscopic agent are kneaded and dispersed in a thermoplastic resin, and such a carbon dioxide absorbing laminate as a material. The present invention relates to a container and a method for preserving foods in which, for example, foods that generate carbon dioxide after being filled and sealed are filled and sealed in such containers.
[0002]
[Prior art]
Coffee beans after roasting, fermented foods such as cheese and yogurt, agricultural products such as beans and cereals, etc. may generate carbon dioxide after being filled and sealed in a container. In addition, there are foods (described later) that generate carbon dioxide gas by heat treatment such as boiling and retort treatment. When such foods are filled and sealed in a container, the internal pressure increases due to the generation of carbon dioxide gas, which may cause deformation of the container. Furthermore, there were problems such as breakage of the container that could not withstand the internal pressure and leakage of the contents.
[0003]
Japanese Patent Application Laid-Open No. 56-130222 discloses that carbon dioxide generated is removed by a method of enclosing and sealing a sachet containing a carbon dioxide absorbent with the foods described above. However, there are drawbacks in that the consumer may complain to the manufacturer that the sachet is mixed with foreign matter, or if he / she accidentally eats it, or the sachet may break and contaminate the contents. Further, there is a drawback that an extra step of filling the sachet is necessary in the product manufacturing process.
[0004]
Japanese Patent Laid-Open No. 55-29975 discloses a material for preserving food such as a base sheet such as a synthetic resin film, which is coated, impregnated or kneaded with a composition that absorbs carbon dioxide. However, the preservative material exhibits functions by being placed in a package containing food or the like, that is, enclosed, and cannot be said to have solved the disadvantages of the carbon dioxide absorbent sachet.
[0005]
As another method, JP-A-63-319141, JP-A-5-222215, etc. control the gas permeability of a plastic film, and selectively release carbon dioxide generated from food through the film to the outside. A method for preventing deformation and breakage of a container is disclosed. However, generally, when carbon dioxide gas permeability is high, oxygen permeability tends to increase at the same time. Therefore, for example, when containers made from these films are used for coffee after roasting, deformation and breakage of the containers due to the generated carbon dioxide gas may be prevented, but the flavor of the coffee is caused by oxygen entering from the outside of the container. In addition, there is a problem that the fragrance is impaired and the quality is deteriorated.
[0006]
[Problems to be solved by the invention]
Under the background of the prior art described above, the object of the present invention is to prevent deformation and breakage of the container due to an increase in internal pressure for foods that generate carbon dioxide gas after filling and sealing. An object of the present invention is to provide a method for preserving foods that is free from leakage and has an excellent quality retention effect.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-mentioned problems, the present inventors have used a container made of a carbon dioxide-absorbing laminate for foods that generate carbon dioxide after filling and sealing, thereby deforming or breaking the container. It has been found that the quality is maintained for a long period of time without the risk of accident prevention and accidental leakage and leakage of the gas absorbent, and the present invention has been completed based on such knowledge.
[0008]
That is, the present invention is low density polyethylene thermoplastic resin (1) calcium hydroxide, calcium oxide, single or mixtures carbon dioxide-absorbing agent and (2) a carbonate acid selected from magnesium hydroxide and magnesium oxide Carbon dioxide gas-absorbing resin in which a moisture absorbent , which is a single or a mixture of deliquescent inorganic salts selected from metal halide salts and inorganic acid salts, that does not react with the gas absorbent to form an insoluble salt, is kneaded and dispersed A carbon dioxide gas absorbing layer comprising the composition , and at least a sealant layer inside and at least a gas barrier layer inside the carbon dioxide gas absorbing layer, and a thermoplastic used for the carbon dioxide gas absorbing layer carbon dioxide gas permeability coefficient of the resin is 2.5cc · mm / m 2 · 24 h · atm or higher and a water vapor permeability coefficient of 0.10 g · mm m or 2 · 24h or more, and, roasting, wherein the carbon dioxide gas permeability of the sealant layer is 37,000cc / m 2 · 24h · atm or higher and a water vapor permeability of 5 g / m 2 · 24h or more The present invention relates to a carbon dioxide-absorbing laminate that is a material for a storage container for later coffee beans or ground products thereof . The present invention also relates to a container comprising such a carbon dioxide absorbing laminate and a method for preserving foods using such a container.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
[0010]
The carbon dioxide-absorbing laminate of the present invention (hereinafter sometimes abbreviated as laminate) is a carbon dioxide-absorbing layer comprising a carbon dioxide-absorbing resin composition in which a carbon dioxide absorbent and a hygroscopic agent are kneaded and dispersed in a thermoplastic resin. This is a carbon dioxide-absorbing laminate comprising at least a layer. The laminate may be a sheet or a film. A sheet is a sheet having a thickness of more than 200 μm, and a film is less than that.
[0011]
The carbon dioxide gas permeability coefficient of the thermoplastic resin used for the carbon dioxide gas absorbing layer of the present invention is 2.5 cc · mm / m 2 · 24 h · atm or more and the water vapor permeability coefficient is 0.10 g · mm / m 2 · 24 h or more, In addition, the carbon dioxide gas permeability of the sealant layer provided is preferably 100 cc / m 2 · 24 h · atm or more and the water vapor permeability is preferably 5 g / m 2 · 24 h or more. Here, the carbon dioxide gas permeability is measured by ASTM D1434 (25 ° C., 0% RH), and the water vapor permeability is measured by JIS Z0208 (40 ° C., 90% RH). The carbon dioxide gas permeability coefficient and water vapor permeability coefficient are calculated by multiplying the measured values of carbon dioxide gas permeability and water vapor permeability according to the above standards by the thickness (mm) of the test layer.
[0012]
Examples of the thermoplastic resin used in the carbon dioxide absorption layer of the present invention include low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-α-olefin copolymer. Mention may be made of polyolefins such as polymers, polymethylpentene and polybutadiene. Moreover, the acid modification thing of these polyolefins can be mentioned. In addition, vinyl compounds such as ethylene-vinyl acetate copolymer, polyesters such as polyethylene terephthalate and polycarbonate, polyamides such as 6-nylon, copolymers of acrylic acid or acrylic acid ester and ethylene, and ionomers. Can be mentioned. These thermoplastic resins may be used alone or in combination of two or more.
[0013]
When the carbon dioxide permeability coefficient is less than 2.5 cc · mm / m 2 · 24 h · atm, the carbon dioxide gas generated from the contents filled and sealed in the container made of the carbon dioxide absorbing laminate is the carbon dioxide absorbing layer. Since it takes time to reach the carbon dioxide absorbent supported on the carbon dioxide, efficient carbon dioxide absorption cannot be expected. Further, when the water vapor transmission coefficient is less than 0.10 g · mm / m 2 · 24 h, the effect of the hygroscopic agent supported on the carbon dioxide absorbing layer together with the carbon dioxide absorbent becomes small as will be described later, which is not preferable.
[0014]
The carbon dioxide absorbent of the present invention is preferably a single substance or a mixture selected from calcium hydroxide, calcium oxide, magnesium hydroxide and magnesium oxide. There is no special restriction | limiting in the compounding quantity to the said thermoplastic resin of this carbon dioxide absorber, According to the carbon dioxide absorption amount and absorption rate which are requested | required, it selects suitably.
[0015]
The hygroscopic agent of the present invention is preferably a single or mixture of deliquescent inorganic salts selected from metal halide salts and inorganic acid salts that do not react with the carbon dioxide gas absorbent to form insoluble salts. As the metal halide salt, chlorides or bromides of alkali metals or alkaline earth metals such as calcium chloride, magnesium chloride, lithium chloride, zinc chloride and calcium bromide are preferably used. As the inorganic acid salt, anhydrous magnesium perchlorate or trihydrate, barium perchlorate and the like are preferably used. By supporting these deliquescent inorganic salts on the carbon dioxide absorption layer together with the carbon dioxide absorbent, there is an effect of increasing the carbon dioxide absorption rate. This is because the carbon dioxide absorbent functions efficiently when moisture in the contents is quickly taken into the carbon dioxide absorbent by the moisture absorbent. Although there is no restriction | limiting in particular in the addition amount of the hygroscopic agent of this invention, It is especially preferable that it is 1-30 wt% with respect to a carbon dioxide gas absorber. When the addition amount is less than 1 wt%, the effect of improving the carbon dioxide absorption rate by the hygroscopic agent is not recognized. Further, even if the addition amount exceeds 30 wt%, further improvement in the carbon dioxide absorption rate is not recognized, and the hygroscopicity of the carbon dioxide absorption resin composition becomes higher than necessary, making it difficult to handle during lamination. It is not preferable. For example, when a deliquescent phosphate such as potassium phosphate is used as a hygroscopic agent other than the present invention, an effect of increasing the carbon dioxide absorption rate is not recognized because it produces an insoluble salt with the carbon dioxide absorbent. Furthermore, in the case of a hygroscopic agent such as silica gel, zeolite, synthetic zeolite, activated clay, etc., the moisture absorbing agent itself retains moisture taken in from the contents, and thus the effect of increasing the carbon dioxide absorption rate is not recognized.
[0016]
The carbon dioxide absorbing resin composition of the present invention can be obtained by kneading and dispersing a carbon dioxide absorbent and a hygroscopic agent in the thermoplastic resin that has been heated and melted in advance using a twin screw extruder or the like. . It is preferable to pelletize the obtained resin composition from the surface of the handleability at the time of the lamination process of the next process. The hygroscopic agent exhibits its effect to the maximum when it exists in the vicinity of the carbon dioxide absorbent. Therefore, it is particularly preferable that the carbon dioxide gas absorbent and the hygroscopic agent are preliminarily mixed using a vibration ball mill, a Henschel mixer or the like before being kneaded and dispersed in the thermoplastic resin. Furthermore, you may add fluidity modifiers, such as inorganic fillers, such as barium sulfate, a titanium oxide, a silica, an alumina, and an aerosol, fine powder resin powder as needed.
[0017]
The sealant layer provided in the carbon dioxide-absorbing laminate of the present invention preferably has a carbon dioxide gas permeability of 100 cc / m 2 · 24 h · atm or more and a water vapor permeability of 5 g / m 2 · 24 h or more. Furthermore, the thermal adhesiveness for forming a container is requested | required, isolating the content and a carbon dioxide absorption layer. The thermoplastic resin used for the sealant layer is low density polyethylene, linear low density polyethylene, medium density polyethylene, high density polyethylene, polypropylene, ethylene-propylene copolymer, ethylene-α-olefin copolymer, polymethyl. Mention may be made of polyolefins such as pentene and polybutadiene. In addition, acid modified products of these polyolefins may be mentioned. In addition, vinyl compounds such as an ethylene-vinyl acetate copolymer, polyesters such as amorphous polyethylene terephthalate, copolymers of acrylic acid or acrylic ester and ethylene, ionomers, and the like can be given. These thermoplastic resins may be used alone or in combination of two or more. Further, if necessary, an inorganic filler such as barium sulfate, titanium oxide, silica, alumina or the like may be added. Further, the inorganic filler may be made microporous based on the above-mentioned inorganic filler by stretching treatment, and polyethylene or polypropylene may be used. You may use the nonwoven fabric of.
[0018]
Carbon dioxide generated from the contents filled and sealed in the container made of the carbon dioxide-absorbing laminate is absorbed by the carbon dioxide-absorbing layer through the sealant layer. Therefore, when the carbon dioxide gas permeability of the sealant layer is less than 100 cc / m 2 · 24 h · atm, the carbon dioxide gas absorption rate is lowered, and the container is deformed. Similarly, the moisture in the contents reaches the carbon dioxide absorption layer through the sealant layer. Therefore, when the water vapor permeability of the sealant layer is less than 5 g / m 2 · 24 h, the carbon dioxide absorption rate is not improved even when the moisture absorbent of the present invention is used, which is not preferable. The thickness of the sealant layer of the present invention is not particularly limited as long as it satisfies the carbon dioxide permeability and water vapor permeability described above, and the required carbon dioxide absorption rate, container seal strength, separability from contents, etc. Is selected as appropriate. On the other hand, when the same resin as the resin that forms the sealant layer is used as the thermoplastic resin that forms the carbon dioxide absorbing layer, the sealant layer may not be necessary depending on the contents.
[0019]
The gas barrier layer provided in the carbon dioxide-absorbing laminate of the present invention is a polyethylene terephthalate film in which a metal foil such as aluminum having an oxygen permeability of 0.5 cc / m 2 · 24 h · atm or less, silica, alumina, and aluminum are deposited. In addition, a poly (meth) acrylic acid-baked polyethylene terephthalate film, a saponified ethylene-vinyl acetate copolymer, or the like is preferably used. In the present invention, the gas barrier layer is not necessarily required depending on the properties of the contents. For example, the coffee beans after roasting and the pulverized coffee beans lose their flavor and aroma due to oxygen entering from the outside of the container. Therefore, it is particularly preferable to use the above gas barrier layer.
[0020]
The production method of the carbon dioxide-absorbing laminate of the present invention is not particularly limited, and a known laminating method can be used. For example, a carbon dioxide absorbing resin composition is heated and melted to form a carbon dioxide absorbing layer by a T-die method or an inflation method, and a gas barrier layer and a heat seal layer are provided on each surface of the obtained carbon dioxide absorbing layer. Dry lamination method that laminates with adhesive such as, extrusion sandwich lamination method that sandwiches and laminates carbon dioxide absorption layer heated and melted between gas barrier layer and heat seal layer, carbon dioxide absorption layer that heats and melts gas barrier layer And a coextrusion lamination method in which the heat seal layers are extruded and laminated together. Further, a resin layer such as nylon or polyolefin may be interposed between the gas barrier layer and the carbon dioxide absorbing layer for the purpose of preventing corrosion or damage of the gas barrier layer by the carbon dioxide absorbent and the hygroscopic agent. Furthermore, a printed polyethylene terephthalate film or polypropylene film may be laminated outside the gas barrier layer or outside the carbon dioxide absorption layer.
[0021]
The carbon dioxide-absorbing laminate of the present invention can be used for a part or all of the container in consideration of the required carbon dioxide absorption rate and absorption amount, and can be used in a three- or four-sided seal bag, standing pouch, gusset bag, stick-like It can be in various forms such as bags, pillow bags, cups, trays, and lids. Further, a one-way valve may be attached to a part of the container. A one-way valve has a function in which a part of a valve sealed by an oil seal or the like opens only when the internal pressure of a container rises to a specified value or more and releases the internal pressure.
[0022]
The foods to which the food storage method of filling and sealing foods in a container made of the material of the carbon dioxide gas-absorbing laminate of the present invention is applied include carbon dioxide gas during storage after filling and sealing in the containers. Can be mentioned as preferable, for example, roasted coffee beans and pulverized products thereof, fermented foods such as cheese, yogurt, natto and kimchi, and agricultural products such as beans and grains . In addition, when heat-sealed in a container, carbon dioxide may be generated due to decomposition of oil or the influence of additives, such as hamburger, fried chicken, yakitori, bun, croquette, American dock, dumplings , Shumai, Castella, steamed cake and the like. Furthermore, the preservation method of the present invention is not necessarily limited to the foods described above, and may be any article that achieves the intended purpose.
【Example】
Hereinafter, the present invention will be illustrated and explained by examples, but the contents of the present invention are not limited to the examples.
[0023]
Example 1
These were ground and mixed using a vibrating ball mill in which 10 kg of calcium chloride was added to 100 kg of calcium hydroxide and the inside was replaced with dry air. Next, the obtained mixture and linear low-density polyethylene (carbon dioxide permeability coefficient 825 cc · mm / m 2 · 24 h · atm and water vapor permeability coefficient 0.48 g · mm / m 2 · 24 h) are side-fed. A carbon dioxide absorbing resin composition containing 30% by weight of calcium hydroxide was obtained by kneading at 200 ° C. using a vented twin screw extruder.
[0024]
A base material for lamination was obtained by laminating a polyethylene terephthalate film [PET], a stretched polypropylene film [OPP], an aluminum foil [AL foil], and a linear low-density polyethylene film [LLDPE] in order by an ordinary dry laminating method. 20 μm-thick unstretched polypropylene film [CPP] (carbon dioxide gas permeability 37,000 cc / m 2 · 24 h · atm, and water vapor permeability 15 g / m 2) serving as the LLDPE surface and sealant layer of the obtained base material for lamination. -Carbon dioxide absorbing laminate (A) was obtained by extrusion sandwich lamination of the heated and melted carbon dioxide absorbing resin composition between 24 h). The structure of this laminate is as follows: PET (12 μm) / OPP (20 μm) / AL foil (7 μm) / LDDPE (30 μm) / carbon dioxide absorbing layer (40 μm) / CPP (20 μm).
[0025]
Using the obtained laminate (A), a pillow bag (inner area 850 cm 2 ) was prepared by a bag making machine. 300 g (water activity: 0.2) of roasted coffee beans after roasting were filled and sealed while blowing nitrogen into the pillow bag so that the oxygen concentration in the bag was 0.2% or less.
[0026]
(Appearance of container)
The sample after filling and sealing was stored at 24 ° C., and the appearance of the container (pillow bag) after 3 days and 28 days was visually observed. The results are shown in Table 1 below.
[0027]
(Measurement of carbon dioxide concentration in the container)
The sample after filling and sealing was stored at 24 ° C., and the carbon dioxide concentration in the container (pillow bag) after 3 days and 28 days was measured by gas chromatography. The results are shown in Table 1.
[0028]
(Sensory evaluation of coffee)
The sample after filling and sealing was stored at 24 ° C. for 28 days, and then sensory evaluation was performed on the aroma and flavor of coffee using 15 panelists. The results are also shown in Table 1. In addition, the evaluation score was displayed as an average score, and the score of the coffee immediately before filling was set to 5.0.
[0029]
Example 2
Except for attaching a one-way valve to the pillow bag, after filling and sealing the coffee in the same manner as in Example 1, the appearance of the container was evaluated, the carbon dioxide concentration in the container was measured, and the sensory evaluation of the coffee was performed. The results are shown in Table 1.
[0030]
Example 3
These were ground and mixed using a vibration ball mill in which 80 kg of calcium hydroxide, 20 kg of calcium oxide and 5 kg of magnesium perchlorate were substituted with dry air. Next, the obtained mixture and linear low density polyethylene (carbon dioxide gas permeability coefficient 825 cc · mm / m 2 · 24 h · atm and water vapor permeability coefficient 0.48 g · mm / m 2 · 24 h) are side-feed type vented. A carbon dioxide absorbing resin composition containing 30% by weight of calcium hydroxide was obtained by kneading at 200 ° C. using a twin screw extruder.
[0031]
A base material for lamination was obtained by laminating PET, AL foil, and LLDPE by an ordinary dry laminating method. A carbon dioxide-absorbing laminate (B) was obtained on the LLDPE surface side of the obtained substrate for lamination using a co-extrusion lamination method with a carbon dioxide-absorbing resin composition and a sealant layer. For the sealant layer, a 1: 1 (weight ratio) mixture of low density polyethylene pellets [LDPE] and polymethylpentene pellets [TPX] was used. The carbon dioxide gas permeability of the sealant layer was 50,000 cc / m 2 · 24 h · atm, and the water vapor permeability was 60 g / m 2 · 24 h. The structure of this laminate is as follows: PET (12 μm) / AL foil (7 μm) / LLDPE (15 μm) / carbon dioxide absorbing layer (30 μm) / LDPE + TPX (50 μm).
[0032]
Thereafter, as in Example 1, after filling and sealing with coffee, the appearance of the container was evaluated, the carbon dioxide concentration in the container was measured, and the sensory evaluation of the coffee was performed. The results are shown in Table 1.
[0033]
Comparative Example 1
A polyethylene terephthalate film [PET], a stretched polypropylene film [OPP], an aluminum foil [AL foil], and an unstretched polypropylene [CPP] were sequentially laminated by an ordinary dry laminating method to obtain a laminate having the following configuration: PET (12 μm) / OPP (20 μm) / AL foil (7 μm) / CPP (20 μm).
[0034]
Thereafter, as in Example 1, after filling and sealing with coffee, the appearance of the container was evaluated, the carbon dioxide concentration in the container was measured, and the sensory evaluation of the coffee was performed. The results are shown in Table 1.
[0035]
Comparative Example 2
A carbon dioxide-absorbing laminate (C) was obtained in the same manner as in Example 1 except that calcium chloride was not used. Thereafter, as in Example 1, after filling and sealing with coffee, the appearance of the container was evaluated, the carbon dioxide concentration in the container was measured, and the sensory evaluation of the coffee was performed. The results are shown in Table 1.
[0036]
Comparative Example 3
A carbon dioxide-absorbing laminate (D) was obtained in the same manner as in Example 1 except that potassium phosphate was used instead of calcium chloride. Thereafter, as in Example 1, after filling and sealing with coffee, the appearance of the container was evaluated, the carbon dioxide concentration in the container was measured, and the sensory evaluation of the coffee was performed. The results are shown in Table 1.
[0037]
Comparative Example 4
A carbon dioxide-absorbing laminate (E) was obtained in the same manner as in Example 1 except that synthetic zeolite was used instead of calcium chloride. Thereafter, as in Example 1, after filling and sealing with coffee, the appearance of the container was evaluated, the carbon dioxide concentration in the container was measured, and the sensory evaluation of the coffee was performed. The results are shown in Table 1.
[0038]
Comparative Example 5
Example except that unstretched polypropylene [CPP] (carbon dioxide permeability 9,250 cc / m 2 · 24 h · atm and water vapor permeability 3.8 g / m 2 · 24 h) having a thickness of 80 μm was used for the sealant layer In the same manner as in 1, a carbon dioxide-absorbing laminate (F) was obtained. The structure of this laminate is as follows: PET (12 μm) / OPP (20 μm) / AL foil (7 μm) / LLDPE (30 μm) / carbon dioxide absorbing layer (40 μm) / CPP (80 μm).
[0039]
Thereafter, as in Example 1, after filling and sealing with coffee, the appearance of the container was evaluated, the carbon dioxide concentration in the container was measured, and the sensory evaluation of the coffee was performed. The results are shown in Table 1.
[0040]
Comparative Example 6
These were ground and mixed using a vibrating ball mill in which 10 kg of calcium chloride was added to 100 kg of calcium hydroxide and the inside was replaced with dry air. Next, the obtained mixture and saponified ethylene-vinyl acetate copolymer [EVOH] (carbon dioxide gas permeability coefficient 0.02 cc · mm / m 2 · 24 h · atm and water vapor permeability coefficient 1.4 g · mm / m 2 24h) was mixed at 200 ° C. using a side feed type vented twin screw extruder to obtain a carbon dioxide-absorbing resin composition containing 30% by weight of calcium hydroxide, and then the same as in Example 1. A carbon dioxide-absorbing laminate (G) was obtained. The structure of this laminate is as follows: PET (12 μm) / OPP (20 μm) / AL foil (7 μm) / LLDPE (30 μm) / carbon dioxide absorbing layer (40 μm) / CPP (20 μm).
[0041]
Thereafter, after filling and sealing the coffee in the same manner as in Example 1, the appearance of the container was evaluated, the carbon dioxide concentration in the container was measured, and the sensory evaluation of the coffee was performed. The results are shown in Table 1.
[0042]
Comparative Example 7
After heating and kneading 60 parts by weight of polyvinyl alcohol (degree of saponification 60%) and 20 parts by weight of polyethylene glycol (average molecular weight 600), 40 parts by weight of EVOH was further added to prepare a heated and kneaded resin composition. . Using this resin composition as a core layer, co-extrusion lamination of ethylene-vinyl acetate copolymer [EVA], ionomer [IO] and acid-modified polyolefin [AD] (adhesive resin) is performed, and carbon dioxide gas permeable lamination Got the body. The structure of the laminate is as follows: EVA (20 μm) / AD (3 μm) / core layer (19 μm) / AD (3 μm) / IO (35 μm). The laminate had a carbon dioxide gas permeability of 900 cc / m 2 · 24 h · atm and an oxygen permeability of 100 cc / m 2 · 24 h · atm.
[0043]
Thereafter, after filling and sealing the coffee in the same manner as in Example 1, the appearance of the container was evaluated, the carbon dioxide concentration in the container was measured, and the sensory evaluation of the coffee was performed. The results are shown in Table 1.
[0044]
[Table 1]
[0045]
【The invention's effect】
As described above, by using the container comprising the carbon dioxide-absorbing laminate of the present invention for foods that generate carbon dioxide after filling and sealing, the container can be prevented from being deformed / damaged or the gas absorbent can be mistaken. There is no worry about food and leakage, and quality can be maintained for a long time.
[Brief description of the drawings]
FIG. 1 illustrates a configuration example (conceptual diagram) of a carbon dioxide absorbing laminate according to the present invention.
[Explanation of symbols]
1
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16915199A JP4019339B2 (en) | 1999-06-16 | 1999-06-16 | Carbon dioxide absorbing laminate, container using the same, and food preservation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16915199A JP4019339B2 (en) | 1999-06-16 | 1999-06-16 | Carbon dioxide absorbing laminate, container using the same, and food preservation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000355079A JP2000355079A (en) | 2000-12-26 |
JP4019339B2 true JP4019339B2 (en) | 2007-12-12 |
Family
ID=15881238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16915199A Expired - Fee Related JP4019339B2 (en) | 1999-06-16 | 1999-06-16 | Carbon dioxide absorbing laminate, container using the same, and food preservation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4019339B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003088344A (en) * | 2001-09-17 | 2003-03-25 | Mitsubishi Gas Chem Co Inc | Oxygen and carbon dioxide-adsorbing multilayer body |
JP4225062B2 (en) * | 2003-01-09 | 2009-02-18 | 凸版印刷株式会社 | Moisture absorption packaging container |
JP4708742B2 (en) * | 2004-06-21 | 2011-06-22 | 凸版印刷株式会社 | Recycled multilayer structure |
EP2660797B1 (en) | 2010-12-27 | 2020-04-22 | Sato Holdings Kabushiki Kaisha | Label, printing paper top layer formation material, information-bearing medium, wristband clip, and carbon dioxide reduction method using same |
JP6202183B1 (en) * | 2016-12-09 | 2017-09-27 | 三菱瓦斯化学株式会社 | Multilayer body, packaging container, and food storage method |
JP2019218136A (en) * | 2018-06-22 | 2019-12-26 | 大日本印刷株式会社 | Carbon dioxide-absorbing sealant film for fermented food, laminate for fermented food and packaging bag for fermented food |
JP2019218137A (en) * | 2018-06-22 | 2019-12-26 | 大日本印刷株式会社 | Carbon dioxide-absorbing sealant film for coffee, laminate for coffee and packaging bag for coffee |
JP2019217750A (en) * | 2018-06-22 | 2019-12-26 | 大日本印刷株式会社 | Carbon dioxide-absorbing sealant film, laminate and packaging bag |
JP7300257B2 (en) * | 2018-10-31 | 2023-06-29 | 共同印刷株式会社 | Hydrogen sulfide absorption film |
JP7283178B2 (en) * | 2019-03-29 | 2023-05-30 | 大日本印刷株式会社 | Carbon dioxide absorption laminate and valveless package |
JP7383897B2 (en) * | 2019-03-29 | 2023-11-21 | 大日本印刷株式会社 | Carbon dioxide adjustment laminate and packaging |
JP7383896B2 (en) * | 2019-03-29 | 2023-11-21 | 大日本印刷株式会社 | Carbon dioxide gas adjustment sealant film |
JP7371341B2 (en) * | 2019-03-29 | 2023-10-31 | 大日本印刷株式会社 | Carbon dioxide absorption laminate and valveless packaging |
-
1999
- 1999-06-16 JP JP16915199A patent/JP4019339B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2000355079A (en) | 2000-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100240734B1 (en) | Multilayer structural body | |
JP3171259B2 (en) | Oxygen absorber | |
US5889093A (en) | Oxygen-absorbing resin composition and packing material, multi-layered packing material, package and packing method using the same | |
JP4019339B2 (en) | Carbon dioxide absorbing laminate, container using the same, and food preservation method | |
US6596191B2 (en) | Oxygen absorbing composition, oxygen absorbing resin composition using the oxygen absorbing composition, and preserving method utilizing these compositions | |
US6133361A (en) | Oxygen-absorbing composition, oxygen-absorbing resin composition, packing material, multi-layered packing, oxygen absorber packet, packing method and preservation method | |
JP3496427B2 (en) | Oxygen-absorbing resin composition and packaging material, multilayer packaging material, package, or packaging method using the same | |
JP3687720B2 (en) | Oxygen absorbing multilayer film and oxygen absorbing packaging container | |
JP4196142B2 (en) | Oxygen-absorbing multilayer film and packaging container | |
JP2003088344A (en) | Oxygen and carbon dioxide-adsorbing multilayer body | |
JP3166817B2 (en) | Deoxidizing multilayer structure and package comprising the same | |
JP3808584B2 (en) | How to store goods | |
JP2001354817A (en) | Oxygen absorbing rubber composition | |
JP2007030467A (en) | Deoxygenation film | |
JP3282567B2 (en) | Laminate for packaging containing activated oxygen absorber | |
JP3781062B2 (en) | Lid packing | |
JP3962882B2 (en) | Deoxidizing resin composition, sheet or film comprising the same, and packaging container | |
JP2002052655A (en) | Oxygen absorbable multilayered material and method for preserving article containing low moisture content using the same | |
JP2000142815A (en) | Deoxidizing airtight packaging container and storing method | |
JP4174633B2 (en) | Oxygen-absorbing laminated packaging material | |
JP4595167B2 (en) | Package | |
JP3376915B2 (en) | Deoxygenated multilayer body, packaging container using the same, and method of storing food or medicine | |
JP3424734B2 (en) | Oxygen-absorbing packaging bag | |
JP4085218B2 (en) | Oxygen scavenger composition and storage method | |
JP3322304B2 (en) | Deoxidized multilayer film and packaging bag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040907 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060202 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060810 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060825 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070831 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070913 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101005 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111005 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121005 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131005 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |