WO2001047995A1 - Nouveau polypeptide, dioxygenase humaine 13, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, dioxygenase humaine 13, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001047995A1
WO2001047995A1 PCT/CN2000/000675 CN0000675W WO0147995A1 WO 2001047995 A1 WO2001047995 A1 WO 2001047995A1 CN 0000675 W CN0000675 W CN 0000675W WO 0147995 A1 WO0147995 A1 WO 0147995A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
human
sequence
seq
Prior art date
Application number
PCT/CN2000/000675
Other languages
English (en)
Chinese (zh)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Shanghai Biowindow Gene Development Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Biowindow Gene Development Inc. filed Critical Shanghai Biowindow Gene Development Inc.
Priority to AU23409/01A priority Critical patent/AU2340901A/en
Publication of WO2001047995A1 publication Critical patent/WO2001047995A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide, human plus dioxygenase 13, and a polynucleotide sequence encoding the polypeptide. The invention also relates to the preparation method and application of the polynucleotide and polypeptide. Background
  • Bacterial ring hydroxylation plus dioxygenase is a multi-component enzyme complex, which consists of a hydroxylase component and an electron transfer component.
  • the hydroxylase component itself contains two subunits: a 50 Kd ⁇ -subunit; a 20 Kd (3- subunit.
  • the electron transfer component itself also contains two subunits: a ferredoxin subunit and a The ferredoxin reductase subunit, or a single subunit with two distinct functions of ferredoxin and ferredoxin reductase.
  • dioxygenases contain an aromatic cyclohydroxylase component.
  • the hydroxylase has two subunits, and these two subunits are similar in different dioxygenases.
  • the ⁇ -subunit in the hydroxylase component combines both a 2Fe-2S type iron-sulfur protein and an iron atom, while the ⁇ -subunit does not contain any detectable iron atoms or unstable sulfur compounds ( Neidle E. L., Hartnett C., Ornston NL, Bairoch A., Rekik M., Harayama S. 1991 J. Bacteriol. 173: 5385-5395).
  • At the N-terminus of the c-subunit protein there is a conserved region containing 24 amino acid residues. This region contains 2 cysteine and 2 histidine residues capable of binding iron-sulfur protein. We use this area as a signal pattern.
  • the N-terminal region of the electron transfer component of dioxygenase is similar to chloroplast-type flavin protein, while the C-terminal region is similar to several redox enzymes.
  • There is a separate iron-thioflavin protein in the electron transfer component which has NADH-cytochrome c reducing activity, which transfers electrons from NADH to the aromatic ring and makes it hydroxylated.
  • polypeptide of the present invention is deduced to be identified as human plus dioxidase 13.
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a method for producing human plus dioxin II.
  • Another object of the present invention is to provide an antibody against the polypeptide of the present invention, human plus dioxygenase 13.
  • Another object of the present invention is to provide mimetic compounds, antagonists, agonists, and inhibitors of the polypeptide of the present invention, human plus dioxygenase 1 3.
  • Another object of the present invention is to provide a method for diagnosing and treating diseases related to human plus dioxin 13 abnormalities.
  • the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 177-545 in SEQ ID NO: 1; and (b) a sequence having positions 1-864 in SEQ ID NO: 1 Sequence of bits.
  • the invention further relates to a vector, in particular an expression vector, containing the polynucleotide of the invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; and a method comprising culturing said Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • a vector in particular an expression vector, containing the polynucleotide of the invention
  • a host cell genetically engineered with the vector including a transformed, transduced or transfected host cell
  • a method comprising culturing said Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit the activity of human plus oxygenase 13 protein, which comprises using the polypeptide of the invention.
  • the invention also relates to compounds obtained by this method.
  • the present invention also relates to a method for detecting a disease or susceptibility to disease associated with abnormal expression of human plus oxygenase 1 3 protein in vitro, comprising detecting mutations in the polypeptide or a polynucleotide sequence encoding the same in a biological sample, or detecting The amount or biological activity of a polypeptide of the invention in a biological sample.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the preparation of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of human plus dioxin 13.
  • Figure 1 is a comparison diagram of the amino acid sequence homology of the present inventor's dioxygenase 13 with a total of 64 amino acids and domain plus dioxygenase from 40 to 03.
  • the upper sequence is human dioxygenase 1 3 and the lower sequence is the dioxygenase domain.
  • ⁇ "and”: “and”. “Indicate that the probability of the same amino acid appearing between the two sequences decreases in sequence.
  • Figure 2 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of isolated human plus dioxin 1 3.
  • 1 3kDa is the molecular weight of the protein.
  • the arrow indicates the isolated protein band.
  • Nucleic acid sequence refers to oligonucleotides, nucleotides or polynucleotides and fragments or parts thereof, and can also refer to genomic or synthetic DNA or RNA, which can be single-stranded or double-stranded, representing the sense strand or Antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • a protein or polynucleotide “variant” refers to an amino acid sequence having one or more amino acids or nucleotide changes, or a polynucleotide sequence encoding it.
  • the change may include an amino acid sequence or a nucleotide sequence Amino acid or nucleotide deletions, insertions or substitutions.
  • Variants may have "conservative" changes in which the substituted amino acid has a structural or chemical property similar to the original amino acid, such as replacing isoleucine with leucine. Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insertion means that a change in the amino acid sequence or nucleotide sequence results in an increase in one or more amino acids or nucleotides compared to a molecule that exists in nature.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response and to bind specific antibodies in a suitable animal or cell.
  • An "agonist” refers to a molecule that, when combined with human dioxygenase 13, causes a change in the protein to regulate the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that binds human plus dioxin 13.
  • Antagonist refers to a molecule that can block or modulate the biological or immunological activity of human plus oxygenase 13 when combined with human plus oxygenase 13.
  • Antagonists and inhibitors can include proteins, nucleic acids, carbohydrates, or any other molecule that can bind human plus dioxin 13.
  • Regular refers to a change in the function of human plus oxygenase 13, including an increase or decrease in protein activity, a change in binding properties, and any other biological, functional, or immune changes in human plus oxygenase 13.
  • substantially pure means substantially free of other proteins, lipids, sugars or other substances with which it is naturally associated.
  • Those skilled in the art can purify human plus oxygenase 13 using standard protein purification techniques.
  • Substantially pure human plus dioxin 13 produces a single main band on a non-reducing polyacrylamide gel.
  • the purity of human plus oxygenase 13 polypeptide can be analyzed by amino acid sequence.
  • Complementary refers to the natural binding of polynucleotides by base-pairing under conditions of acceptable salt concentration and temperature.
  • sequence C-T-G-A
  • complementary sequence G-A-C-T
  • the complementarity between two single-stranded molecules can be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • “Homology” refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid. The inhibition of such hybridization can be detected by performing hybridization (Southern blotting or Nor thern blotting, etc.) under conditions of reduced stringency.
  • Substantially homologous sequences or hybridization probes can compete and inhibit the binding of completely homologous sequences to the target sequence under conditions of reduced stringency. This does not imply that conditions with reduced stringency allow Non-specific binding is possible because conditions of reduced stringency require that the two sequences bind to each other as a specific or selective interaction.
  • Percent identity refers to the percentage of sequences that are the same or similar in the comparison of two or more amino acid or nucleic acid sequences.
  • the percent identity can be determined electronically, such as through the MEGALIGN program (Lasergene software package, DNASTAR, Inc., Madi Son Wis.).
  • the MEGALIGN program can compare two or more sequences based on different methods, such as the Cluster method ( Higgins, DG and PM Sharp (1988) Gene 73: 237-244).
  • the Clus ter method arranges groups of sequences into clusters by checking the distance between all pairs. The clusters are then assigned in pairs or groups.
  • the percent identity between two amino acid sequences such as sequence A and sequence B is calculated by the following formula: The number of matching residues between sequence ⁇ and sequence ⁇
  • the number of residues in sequence ⁇ -the number of spacer residues in sequence ⁇ -the number of spacer residues in sequence X can also be determined by Clus ter method or using methods known in the art such as Jotun He in. J., (1990) Methods in enzymology 183: 625-645).
  • Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
  • Amino acids used for conservative substitutions for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
  • the "antisense strand” refers to a nucleic acid strand that is complementary to the “sense strand”.
  • Derivative refers to HFP or a chemical modification of its nucleic acid. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group. Nucleic acid derivatives can encode polypeptides that retain the main biological properties of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? (&1>') 2 and? ⁇ It can specifically bind to human deoxygenase 13 epitopes.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of a substance from its original environment (for example, its natural environment if it occurs naturally).
  • a naturally occurring polynucleotide or polypeptide is not isolated when it is present in a living animal, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist with it in the natural system.
  • Such a polynucleotide may be part of a vector, or it may be The same polynucleotide or polypeptide is part of a certain: S complex. Since the carrier or composition is not a component of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances existing in the natural state. .
  • isolated human plus oxygenase 13 means that human plus oxygenase 13 is substantially free of other proteins, lipids, carbohydrates, or other substances naturally associated with it. Those skilled in the art can purify human plus oxygenase 13 using standard protein purification techniques. Substantially pure polypeptides can produce a single main band on a non-reducing polyacrylamide gel. The purity of the human plus oxygenase 13 polypeptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, human plus dioxygenase 13, which basically consists of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the present invention can be naturally purified products or chemically synthesized products, or can be produced from prokaryotic or eukaryotic hosts (eg, bacteria, yeast, higher plants, insects, and mammalian cells) using recombinant techniques. Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the present invention also includes fragments, derivatives and analogs of human dioxygenase 13.
  • fragment refers to a polypeptide that substantially maintains the same biological function or activity of the human dioxygenase 13 of the present invention.
  • a fragment, derivative or analog of the polypeptide of the present invention may be: U) a type in which one or more amino acid residues are substituted with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substituted
  • the amino acid may or may not be encoded by the genetic code; or (II) such a type in which a group on one or more amino acid residues is substituted by another group to include a substituent; or (II) A type in which a mature polypeptide is fused with another compound (such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol); or (IV) a type of polypeptide sequence in which an additional amino acid sequence is fused into a mature polypeptide ( Such as a leader sequence or a secreted sequence or a sequence used to purify this polypeptide or a protein sequence).
  • such fragments, derivatives and analogs are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes the nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a polynucleotide sequence that is 864 bases in length and its open reading frame (177-545) encodes 122 amino acids.
  • This polypeptide has a characteristic sequence of dioxygenase, and it can be deduced that the human dioxygenase 13 has the result represented by the dioxygenase. Structure and function.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDM, genomic DNA, or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • DNA can be coding or non-coding.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide that includes the polypeptide and a polynucleotide that includes additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • This polynucleotide variant can be a naturally occurring allelic variant or a non-naturally occurring variant.
  • These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences).
  • the present invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the present invention under stringent conditions.
  • "strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 60 ° C; or (2) Add a denaturant during hybridization, such as 50 ° /.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • nucleic acid fragments that hybridize to the sequences described above.
  • a "nucleic acid fragment” contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 cores Glycylic acid or more.
  • Nucleic acid fragments can also be used in nucleic acid amplification techniques such as PCR to identify and / or isolate polynucleotides encoding human plus oxygenase 13.
  • polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding human plus oxygenase 1 3 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These technologies include but are not limited to: 1) Probes are used to hybridize to a genomic or cDNA library to detect homologous polynucleotide sequences, and 2) antibody expression libraries are screened to detect cloned polynucleotide fragments with common structural characteristics.
  • the DM fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DNA of the polypeptide.
  • genomic DNA isolation is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the separation of cDM sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • Various methods have been used to extract mRNA, and kits are also commercially available (Qiagene).
  • the construction of cDNA libraries is also a common method (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DNA-DNA or DNA-RNA hybridization; (2) the presence or absence of marker gene functions; (3) measuring the level of human plus dioxin 13 transcripts; (4) ) Detection of protein products expressed by genes through immunological techniques or determination of biological activity. The above methods can be used singly or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is usually a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect protein products expressed by the human plus oxygenase 13 gene.
  • ELISA enzyme-linked immunosorbent assay
  • a method using PCR technology to amplify DNA / RNA is preferably used to obtain the gene of the present invention.
  • the RACE method RACE-rapid cDNA end rapid amplification method
  • the primers used for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
  • the amplified DNA / RM fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various DNA fragments and the like obtained as described above can be determined by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. To obtain full-length cDNA Sequence, sequencing needs to be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising a polynucleotide of the present invention, and a host cell produced by genetic engineering using the vector of the present invention or directly using a human plus dioxygenase 13 coding sequence, and a method for producing a polypeptide of the present invention by recombinant technology. .
  • a polynucleotide sequence encoding human plus oxygenase 13 can be inserted into a vector to constitute a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses, or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain origins of replication, promoters, marker genes, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding human plus oxygenase 13 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DM technology, DNA synthesis technology, and in vivo recombination technology (Sambroook, et al. Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: the lac or trp promoter of E.
  • the expression vector also includes a ribosome binding site for translation initiation, a transcription terminator, and the like. Insertion of enhancer sequences into the vector will enhance its transcription in higher eukaryotic cells. Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers and adenovirus enhancers on the late side of the origin of replication.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding human plus oxygenase 13 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or the recombinant vector.
  • the term "host cell” refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells such as fly S2 or Sf 9
  • animal cells such as CH0, COS, or Bowes s melanoma cells, etc. .
  • Transformation of a host cell with a DNA sequence described in the present invention or a recombinant vector containing the DNA sequence can be performed using conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of DNA uptake can be in the exponential growth phase were harvested, treated with (Method 12, using the procedure well known in the art.
  • Alternative is MgC l 2.
  • transformation can also be performed by electroporation.
  • the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposomes Packaging, etc.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant human dioxygenase 1 (Scence, 1984; 224: 14 31). Generally there are the following steps:
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • a suitable method such as temperature conversion or chemical induction
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If necessary, the recombinant protein can be isolated and purified by various separation methods using its physical, chemical and other properties. These methods are well known to those skilled in the art. These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • conventional renaturation treatment protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid
  • the polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat malignant tumors, adrenal deficiency, skin diseases, various inflammations, HIV infections and immune diseases.
  • hydroxylation plus dioxygenase has the action mechanism of flavin coenzymes. It is important in the process of electron transfer and regulates the process of organism's respiratory metabolism.
  • the alpha-subunit of hydroxylated dioxygenase is necessary for its function.
  • the cc-subunit-specific conserved sequence of the hydroxylated dioxygenase forms the motif necessary for its activity.
  • the abnormal expression of the specific hydroxylated dioxygenase ⁇ -subunit motif will cause the function of the polypeptide containing the motif of the present invention to be abnormal, resulting in abnormal oxidative phosphorylation of the respiratory chain, affecting substances and Energy metabolism and related diseases such as material and energy metabolism disorders, embryonic development disorders, growth and development disorders, tumors, etc.
  • the abnormal expression of the human plus dioxygenase 13 in the present invention will produce various diseases, especially material and energy metabolism disorders, embryonic development disorders, growth disorders, and various tumors. These diseases include but are not Limited to:
  • Substance and energy metabolism disorders isovalerate, propionate, methylmalonic aciduria, combined carboxylase deficiency, glutaric acid type I, phenylketonuria, albinism, tryptamine Disease, glycineemia, hypersarcosineemia, glutamate metabolism deficiency disease, metabolic deficiency disease of the urea cycle, histidine metabolism deficiency disease, lysine metabolism deficiency disease, mucolipid storage disease, Ray-niney Syndrome, xanthineuria, orotic aciduria, adenine nucleotide deaminase deficiency, hyperlipoproteinemia, hereditary fructose intolerance, galactosemia, fructose metabolism deficiency, glycogen storage disease
  • Fetal developmental disorders congenital abortion, cleft palate, limb loss, limb differentiation disorder, cryptorchidism, congenital inguinal hernia, double uterus, vaginal atresia, hypospadias, amphoteric deformity, atrial septal defect, ventricular septal defect, pulmonary stenosis , Arterial duct closure, neural tube defects, congenital hydrocephalus, iris defect, congenital glaucoma or cataract, congenital deafness
  • Various tumors gastric cancer, liver cancer, lung cancer, esophageal cancer, breast cancer, leukemia, lymphoma, thyroid tumor, uterine fibroids, neuroblastoma, astrocytoma, ependymoma, glioblastoma, colon cancer , Melanoma, adrenal cancer, bladder cancer, bone cancer, osteosarcoma, myeloma, bone marrow cancer, brain cancer, uterine cancer, endometrial cancer, gallbladder cancer, colon cancer, thymus tumor, nasal cavity and sinus cancer, nasopharyngeal cancer , Laryngeal cancer, tracheal tumor, fibroma, fibrosarcoma, lipoma, liposarcoma, leiomyoma
  • human plus dioxygenase 13 of the present invention will also produce certain hereditary, hematological and immune system diseases.
  • the polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases Therapy, for example, can treat various diseases, especially material and energy metabolism disorders, embryonic development disorders, growth and development disorders, various tumors, inflammation, certain hereditary, blood diseases and immune system diseases.
  • the invention also provides methods of screening compounds to identify agents that increase (agonist) or suppress (antagonist) human plus dioxin 13.
  • Agonists enhance human plus dioxin 13 to stimulate biological functions such as cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or membrane preparations expressing human plus oxygenase 13 can be cultured with labeled human plus oxygenase 13 in the presence of a drug. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of human plus oxygenase 13 include antibodies, compounds, receptor deletions, and the like that have been screened. Antagonists of human plus oxygenase 13 can bind to human plus oxygenase 13 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot perform biological functions.
  • human plus dioxygenase 13 can be added to the bioanalytical assay to determine whether the compound is an antagonist by measuring the effect of the compound on the interaction between human plus dioxin 13 and its receptor .
  • Receptor deletions and analogs that act as antagonists can be screened in the same manner as described above for screening compounds.
  • Polypeptide molecules capable of binding to human plus oxygenase 13 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase.
  • human 13 enzymes are generally labeled.
  • the present invention provides a method for producing antibodies using polypeptides, and fragments, derivatives, analogs or cells thereof as antigens. These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies directed against the human deoxygenase 13 epitope. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments generated from Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting human plus dioxygenase 13 directly into immunized animals (such as rabbits, mice, rats, etc.). A variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant. Wait. Techniques for preparing human plus dioxin 13 monoclonal antibodies include, but are not limited to, hybridoma technology (Kohler and Milstein. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma technology, and EBV- Hybridoma technology, etc. Chimeric antibodies that bind human constant regions to non-human variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851). The existing technology for producing single-chain antibodies (U.S. Pat No. 4946778) can also be used to produce single-chain antibodies against human plus dioxin 13.
  • Anti-human plus oxygenase 13 antibodies can be used in immunohistochemical techniques to detect human plus oxygenase 13 in biopsy specimens.
  • Monoclonal antibodies that bind to human dioxygenase 1 3 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • human plus dioxin 1 3 high affinity monoclonal antibodies can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill human plus dioxin 13 positive cell.
  • the antibodies in the present invention can be used to treat or prevent diseases related to human plus dioxin 1 3.
  • Administration of an appropriate amount of antibody can stimulate or block the production or activity of human plus dioxin 1 3.
  • the invention also relates to a diagnostic test method for quantitatively and locally detecting the level of human plus dioxin 1 3.
  • tests are well known in the art and include FISH assays and radioimmunoassays.
  • the level of human plus oxygenase 13 detected in the test can be used to explain the importance of human plus oxygenase II in various diseases and to diagnose diseases in which human plus oxygenase 13 plays a role.
  • polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • Polynucleotides encoding human plus oxygenase 1 3 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of human plus dioxin 1 3.
  • Recombinant gene therapy vectors (such as viral vectors) can be designed to express mutated human plus oxygenase 1 3 to inhibit endogenous human plus oxygenase 1 3 activity.
  • a mutated human plus dioxygenase 1 3 may be a shortened human plus dioxygenase 1 3 lacking a signaling domain, and although it can bind to a downstream substrate, it lacks signaling activity.
  • the recombinant gene therapy vector can be used to treat diseases caused by abnormal expression or activity of human plus oxygenase 1 3.
  • Virus-derived expression vectors such as retroviruses, adenoviruses, adenovirus-associated viruses, herpes simplex virus, parvoviruses, and the like can be used to transfer a polynucleotide encoding human dioxygenase 1 3 into a cell.
  • a method for constructing a recombinant viral vector carrying a polynucleotide encoding human plus oxygenase 1 3 can be found in the existing literature (Sambrook, et al.).
  • a recombinant polynucleotide encoding human dioxygenase 13 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • ribozymes that inhibit human dioxygenase 1 3 mRNA are also present.
  • a ribozyme is an enzyme-like RNA molecule that can specifically decompose specific RNA. Its mechanism of action is that the ribozyme molecule specifically hybridizes with complementary RNA to perform endonucleation.
  • Antisense RNA, DNA and ribozymes can be obtained by any existing MA or DNA synthesis technology. For example, the technology for the synthesis of oligonucleotides by solid-phase phosphate amide synthesis has been widely used.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of DM sequences encoding the RNA. This DNA sequence has been integrated downstream of the RNA polymerase promoter of the vector. In order to increase the stability of a nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the ribonucleoside linkages should use phosphate thioester or peptide bonds instead of phosphodiester bonds.
  • the polynucleotide encoding human plus oxygenase 13 can be used for the diagnosis of diseases related to human plus oxygenase 13.
  • the polynucleotide encoding human plus oxygenase 13 can be used to detect the expression of human plus oxygenase 13 or abnormal expression of human plus oxygenase 13 in a disease state.
  • the DNA sequence encoding human plus oxygenase II can be used to hybridize biopsy specimens to determine the expression of human plus oxygenase 13.
  • Hybridization techniques include Southern blotting, Northern blotting, and in situ hybridization. These technical methods are all mature technologies that are publicly available, and related kits are commercially available.
  • a part or all of the polynucleotide of the present invention can be used as a probe to be fixed on a microarray or a DNA chip (also referred to as a "gene chip") for analyzing differential expression analysis and gene diagnosis of genes in a tissue.
  • Human-dioxygenase 13-specific primers can also be used to detect RNA-polymerase chain reaction (RT-PCR) in vitro amplification to detect human-dioxygenase 13 transcripts.
  • Detection of mutations in the human plus oxygenase 13 gene can also be used to diagnose human plus oxygenase 13-related diseases.
  • Human plus oxygenase 13 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to normal wild-type human plus oxygenase 13 DNA sequences. Mutations can be detected using existing techniques such as Southern imprinting, DNA sequence analysis, PCR, and in situ hybridization. In addition, mutations may affect protein expression. Therefore, Northern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • sequences of the invention are also valuable for chromosome identification. This sequence will specifically target a specific position on a human chromosome and can hybridize to it. Currently, specific sites for each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeating polymorphisms) are available for marking chromosome positions. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DNA sequences on a chromosome.
  • PCR primers (preferably 15-35bp) are prepared based on cDNA, and the sequences can be located on chromosomes. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DM to specific chromosomes.
  • oligonucleotide primers of the present invention by a similar method, a set of fragments from a specific chromosome can be utilized Or a large number of genomic clones to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and hybrid pre-selection to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the difference in cDNA or genomic sequence between the affected and unaffected individuals needs to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for structural changes in chromosomes, such as deletions or translocations that are visible at the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Human plus dioxin 13 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and range of human plus dioxin 13 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician. Examples
  • Total human fetal brain RNA was extracted by one-step method with guanidine isothiocyanate / phenol / chloroform.
  • Poly (A) mRNA was isolated from total RNA using Quik mRNA Isolation Kit (Qiegene). 2ug poly (A) mRNA is reverse transcribed to form cDNA.
  • the Smart 00 cDNA cloning kit (purchased from CI on tech) was used to insert the 00 fragment into the multiple cloning site of pBSK (+) vector (Clontech) to transform DH5 ⁇ to form a cDNA library.
  • Dye terminate cycle react ion sequencing kit Perkin-Elmer
  • ABI 377 automatic sequencer Perkin-Elmer
  • the determined cDNA sequence was compared with the existing public DNA sequence database (Genebank), and it was found that the cDNA sequence of one of the clones 0568d07 was new DNA.
  • the inserted cD fragments contained in this clone were determined in both directions by synthesizing a series of primers.
  • the sequence of the human plus dioxygenase 13 of the present invention and the protein sequence encoded by the same were used in a profile scan program (Basic local alignment search tool) in GCG [Altschul, SF et al. J. Mol. Biol. 1990; 215: 403-10], performing domain analysis in a database such as prosite.
  • the human plus oxygenase 13 of the present invention is homologous with the domain plus oxygenase at 40-103.
  • the homology result is shown in Fig. 1.
  • the homology rate is 23%, and the score is 14.75; the threshold value is 14.45.
  • Example 3 Cloning of a gene encoding human plus oxygenase 13 by RT-PCR
  • CDNA was synthesized using fetal brain total RNA as a template and oligo-dT as a primer for reverse transcription reaction. After purification with Qiagene's kit, the following primers were used for PCR amplification:
  • Primer 1 5 '-ACGGCTGCGAGAAGACGAGGCTTA- 3' (SEQ ID NO: 3)
  • Primer2 5 '-AGAGGGGATTTTT ATTTGTTTGAG- 3' (SEQ ID NO: 4)
  • Primerl is a forward sequence located at the 5th end of SEQ ID NO: 1, starting at lbp;
  • Primer2 is the 3 'end reverse sequence in SEQ ID NO: 1.
  • Amplification conditions 50 mmol / L KC1, 10 mmol / L Tris-HC1, pH 8.5, 1.5 mmol / L MgCl 2 , 20 ( ⁇ mol / L dNTP, lOpmol primer, 1U Taq in a reaction volume of 50 ⁇ 1 DNA polymerase (Clontech).
  • the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) under the following conditions for 25 cycles: 94.C 30sec; 55 ° C 30sec; 72.C 2min.
  • ⁇ -act in was set as the positive control and the template blank was used as the negative control.
  • the amplified product was purified using QIAGEN's kit and TA cloning kit was connected to the pCR vector (Invitrogen's product).
  • the DNA sequence of the product is exactly the same as l-864bp shown in SEQ ID NO: 1.
  • Example 4 Northern blot analysis of human plus dioxygenase 13 gene expression
  • RNA extraction in one step [Anal. Biochera 1987, 162, 156-159].
  • This method involves acid guanidinium thiocyanate phenol-chloroform extraction. That is, the tissue is homogenized with 4M guanidine isothiocyanate-25mM sodium citrate, 0.2M sodium acetate (pH4.0), and 1 time volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1 ), Mix and centrifuge. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
  • RNA containing 20mM 3- (N- morpholino) propanesulfonic acid (pH7.0) -5mM sodium acetate - electrophoresed on ImM EDTA- 2.2M formaldehyde-1.2% agarose gel. It was then transferred to a nitrocellulose membrane.
  • the DNA probe used was the PCR amplified human plus oxygenase 13 coding region sequence (177bp to 545bp) shown in FIG.
  • a 32P-labeled probe (about 2 x 10 6 cpm / ml) was hybridized with a nitrocellulose membrane to which RNA was transferred at 42 ° C overnight in a solution containing 50% formamide-25mM KH 2 P0 4 (pH 7.4) -5 ⁇ SSC-5 ⁇ Denhardt's solution and 20 ⁇ g / ml salmon sperm DNA. After hybridization, the filter was washed in 1 ⁇ SSC-0.1% SDS at 55 ° C for 30 minutes. Then, use Phosphor Imager was used for analysis and quantification.
  • Example 5 In vitro expression, isolation and purification of recombinant human plus dioxin 13
  • Primer 3 5'- CCCCATATGATGTTTTCAGTGGACTCAGTGAAG- 3 '(Seq ID No: 5)
  • Primer4 5'- CATGGATCCTTAGGCGAACTGGCCCACACACTT- 3' (Seq ID No: 6)
  • the 5 'ends of these two primers contain Ndel and BamHI restriction sites, respectively , followeded by the coding sequences of the 5 'and 3' ends of the gene of interest, respectively.
  • the Ndel and BamHI restriction sites correspond to the selectivity on the expression vector plasmid pET-28b (+) (Novagen, Cat. No. 69865.3). Endonuclease site.
  • the pBS-0568d07 plasmid of the target gene was used as a template for PCR reaction.
  • the PCR reaction conditions were as follows: a total volume of 50 ⁇ 1 containing 10 pg of pBS-0568d07 plasmid, primers Primer-3 and Primer-4 were 1 Opmol, Advantage polymerase Mix (Clontech) 1 ⁇ 1, respectively. Cycle parameters: 94 ° C 20s, 60 ° C 30s, 68 ° C 2 min, a total of 25 cycles. Nde I and BamHI were used to double digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
  • Ligation products were transformed by the calcium chloride method Escherichia bacteria DH5 a, the (final concentration of 30 ⁇ 8 / ⁇ 1) LB plates incubated overnight positive clones by colony PCR method containing kanamycin, and sequenced. A positive clone (pET-0568d07) with the correct sequence was selected, and the recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method.
  • NH 2 -Met-Phe-Ser-Val-Asp-Ser-Val-Lys-Ile-Cys-Pro-Gln-Arg-Gly-Gln-COOH SEQ ID NO: 7
  • the polypeptide is coupled with hemocyanin and bovine serum albumin to form a complex, respectively.
  • hemocyanin and bovine serum albumin for the method, see: Avraraeas, et al. Immunochemi s try, 1969; 6: 43. Rabbits were immunized with 4 mg of the hemocyanin polypeptide complex plus complete Freund's adjuvant, and 15 days later, the hemocyanin polypeptide complex plus incomplete Freund's adjuvant was used to boost immunity once.
  • a titer plate coated with a 15 g / ml bovine serum albumin peptide complex was used as an ELISA to determine antibody titers in rabbit serum.
  • Total IgG was isolated from antibody-positive rabbit serum using protein A-Sepharose.
  • the peptide was bound to a cyanogen bromide-activated Sepharose4B column, and anti-peptide antibodies were separated from the total IgG by affinity chromatography.
  • the immunoprecipitation method proved that the purified antibody could specifically bind to human dioxygenase 13.
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
  • the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
  • Filter hybridization methods include dot blotting, Southern imprinting, Nor thern blotting, and copying methods. They all use the same steps to fix the polynucleotide sample to be tested on the filter and then hybridize.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer to saturate the non-specific binding site of the sample on the filter with the carrier and the synthesized polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing labeled probes and incubated to hybridize the probes to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment uses higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; the second type of probes are partially related to the present invention
  • the polynucleotide SEQ ID NO: 1 is the same or complementary oligonucleotide fragment.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragments for use as hybridization probes from the polynucleotide SEQ ID NO: 1 of the present invention should follow the following principles and several aspects to be considered:
  • the preferred range of probe size is 18-50 nucleotides
  • the GC content is 30% -70%, and the non-specific hybridization increases when it exceeds;
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, the primary probe should not be used;
  • Probe 1 (probel), which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt)
  • Probe 2 which belongs to the second type of probe, is equivalent to the gene fragment of SEQ ID NO: 1 or its Complementary Mutation Sequences for Complementary Fragments (41Nt):
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membrane nitrocellulose membrane
  • the sample membrane was placed in a plastic bag, and a 3-1 Omg pre-hybridization solution (lOxDenhardfs; 6xSSC, 0.1 mg / ml) was added.
  • CT DM calf thymus DM. After sealing the bag, shake at 68 ° C for 2 hours.
  • Gene microarrays or DNA microarrays are new technologies currently being developed by many national laboratories and large pharmaceutical companies. It refers to the orderly and high-density arrangement of a large number of target gene fragments on glass, The data is compared and analyzed on a carrier such as silicon using fluorescence detection and computer software to achieve the purpose of rapid, efficient, and high-throughput analysis of biological information.
  • the polynucleotide of the present invention can be used as a target DM for gene chip technology for high-throughput research of new gene functions; searching for and screening new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases .
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as target DNA, including the polynucleotide of the present invention. They were amplified by PCR respectively. After purification, the concentration of the amplified product was adjusted to about 500 ng / ul, and spotted on a glass medium with a Cartesian 7500 spotting instrument (purchased from Cartesian, USA). The distance is 280 ⁇ m. The spotted slides were hydrated, dried, and cross-linked in a UV cross-linking instrument. After elution, the DNA was fixed on the glass slide to prepare a chip. The specific method steps have been reported in the literature. The sample post-processing steps in this embodiment are:
  • Total mRNA was extracted from normal liver and liver cancer in one step, and mRNA was purified using Oligotex mRNA Midi Kit (purchased from QiaGen).
  • the fluorescent reagent Cy3dUTP (5- Amino- propargy 1-2 ⁇ -deoxyuri dine 5 '-tr iphate coupled to Cy3 fluorescent dye, purchased from Amersham Phamacia Biotech company) labeled mRNA of normal liver tissue, using the fluorescent reagent Cy5dUTP (5-Amino-propargy 1-2 ⁇ -deoxyuri dine 5'-tr iphate coupled to Cy5 fluorescent Dye (purchased from Amersham Phamacia Biotech) was used to label liver cancer tissue mRNA, and the probe was prepared after purification.
  • Probes from the above two tissues and chips were hybridized in a UniHyb TM Hybridization Solution (purchased from TeleChem) hybridization solution for 16 hours, washed with a washing solution (1 x SSC, 0.2% SDS) at room temperature, and then scanned with ScanArray 3000.
  • Scanner purchased from General Scanning, USA
  • Imagene software Biodicovery, USA

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

L'invention concerne un nouveau polypeptide, une dioxygénase humaine 13, et un polynucléotide codant pour ce polypeptide ainsi qu'un procédé d'obtention de ce polypeptide par des techniques recombinantes d'ADN. L'invention concerne en outre les applications de ce polypeptide dans le traitement de maladies, notamment des tumeurs malignes, de l'hémopathie, de l'infection par VIH, de maladies immunitaires et de diverses inflammations. L'invention concerne aussi l'antagoniste agissant contre le polypeptide et son action thérapeutique ainsi que les applications de ce polynucléotide codant pour la dioxygénase humaine 13.
PCT/CN2000/000675 1999-12-27 2000-12-25 Nouveau polypeptide, dioxygenase humaine 13, et polynucleotide codant pour ce polypeptide WO2001047995A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU23409/01A AU2340901A (en) 1999-12-27 2000-12-25 A novel polypeptide - human dioxygenase 13 and a polynucleotide encoding the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN 99125787 CN1301841A (zh) 1999-12-27 1999-12-27 一种新的多肽——人加双氧酶13和编码这种多肽的多核苷酸
CN99125787.1 1999-12-27

Publications (1)

Publication Number Publication Date
WO2001047995A1 true WO2001047995A1 (fr) 2001-07-05

Family

ID=5284197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000675 WO2001047995A1 (fr) 1999-12-27 2000-12-25 Nouveau polypeptide, dioxygenase humaine 13, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1301841A (fr)
AU (1) AU2340901A (fr)
WO (1) WO2001047995A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131083A (ja) * 1990-09-20 1992-05-01 Ajinomoto Co Inc ヒト肝システインジオキシゲナーゼ
WO1998004685A1 (fr) * 1996-07-25 1998-02-05 American Cyanamid Company Gene et inhibiteurs de 4-hydroxyphenylpyruvatedioxygenase
DE19730066A1 (de) * 1997-07-14 1999-01-21 Basf Ag DNA-Sequenz codierend für eine Hydroxyphenylpyruvatdioxygenase und deren Überproduktion in Pflanzen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04131083A (ja) * 1990-09-20 1992-05-01 Ajinomoto Co Inc ヒト肝システインジオキシゲナーゼ
WO1998004685A1 (fr) * 1996-07-25 1998-02-05 American Cyanamid Company Gene et inhibiteurs de 4-hydroxyphenylpyruvatedioxygenase
DE19730066A1 (de) * 1997-07-14 1999-01-21 Basf Ag DNA-Sequenz codierend für eine Hydroxyphenylpyruvatdioxygenase und deren Überproduktion in Pflanzen

Also Published As

Publication number Publication date
CN1301841A (zh) 2001-07-04
AU2340901A (en) 2001-07-09

Similar Documents

Publication Publication Date Title
WO2001072815A1 (fr) Nouveau polypeptide, ferredoxine humaine 12, et polynucleotide codant pour ce polypeptide
WO2001047995A1 (fr) Nouveau polypeptide, dioxygenase humaine 13, et polynucleotide codant pour ce polypeptide
WO2001053492A1 (fr) Nouveau polypeptide, s-adenosylmethionine synthetase 31, et polynucleotide codant pour ce polypeptide
WO2001079434A2 (fr) Nouveau polypeptide, signal peptidase humaine 10, et polynucleotide codant pour ce polypeptide
WO2001075085A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 11.3, et polynucleotide codant pour ce polypeptide
WO2001098488A1 (fr) Nouveau polypeptide, sous-unite 24 de flavoproteine humaine, et polynucleotide codant ce polypeptide
WO2001072983A1 (fr) Nouveau polypeptide, peroxydase humaine 11, et polynucleotide codant pour ce polypeptide
WO2001046431A1 (fr) Nouveau polypeptide, catalase 10, et polynucleotide codant pour ce polypeptide
WO2001075125A1 (fr) Nouveau polypeptide, serine hydrolase humaine atp-dependante 31, et polynucleotide codant pour ce polypeptide
WO2001048166A1 (fr) Nouveau polypeptide, ribonucleotide reductase 10, et polynucleotide codant pour ce polypeptide
WO2001070795A1 (fr) Nouveau polypeptide, glycinamide ribonucleotide synthetase humaine 13, et polynucleotide codant pour ce polypeptide
WO2001047984A1 (fr) Nouveau polypeptide, proteine 10 de la famille des amidases, et polynucleotide codant pour ce polypeptide
WO2001048012A1 (fr) Nouveau polypeptide, sous-unite i-11 de nadh-deshydrogenase, et polynucleotide codant pour ce polypeptide
WO2001072810A1 (fr) Nouveau polypeptide, proteine humaine 12 de la famille des amidases, et polynucleotide codant pour ce polypeptide
WO2001066585A1 (fr) Nouveau polypeptide, proteine humaine 10 regulant la protease, et polynucleotide codant pour ce polypeptide
WO2001046429A1 (fr) Nouveau polypeptide, deshydrogenase a chaine respiratoire 10 nadh, et polynucleotide codant pour ce polypeptide
WO2001066579A1 (fr) Nouveau polypeptide, proteine humaine 14 de constitution de cytochromes, et polynucleotide codant pour ce polypeptide
WO2001072805A1 (fr) Nouveau polypeptide, sous-unite humaine 14.19 de flavoproteine, et polynucleotide codant pour ce polypeptide
WO2001047994A1 (fr) Nouveau polypeptide, proteine 10 utilisant pep, et polynucleotide codant pour ce polypeptide
WO2001075024A2 (fr) Nouveau polypeptide, facteur humain 13 associe a nf-e2, et polynucleotide codant pour ce polypeptide
WO2001079435A2 (fr) Nouveau polypeptide, sous-unite humaine 14 de flavoproteine, et polynucleotide codant pour ce polypeptide
WO2001075079A1 (fr) Nouveau polypeptide, dihydroorotase humaine 13, et polynucleotide codant pour ce polypeptide
WO2001072794A1 (fr) Nouveau polypeptide, helicase 16, et polynucleotide codant pour ce polypeptide
WO2001048219A1 (fr) Nouveau polypeptide, proteine de transport phosphorylee 10, et polynucleotide codant pour ce polypeptide
WO2001072972A1 (fr) Nouveau polypeptide, ribulose-biphosphate carboxylase humaine 8, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP