WO2001046653A1 - Procede et dispositif pour determiner le niveau de remplissage d'une charge dans un recipient - Google Patents

Procede et dispositif pour determiner le niveau de remplissage d'une charge dans un recipient Download PDF

Info

Publication number
WO2001046653A1
WO2001046653A1 PCT/EP2000/011725 EP0011725W WO0146653A1 WO 2001046653 A1 WO2001046653 A1 WO 2001046653A1 EP 0011725 W EP0011725 W EP 0011725W WO 0146653 A1 WO0146653 A1 WO 0146653A1
Authority
WO
WIPO (PCT)
Prior art keywords
echo signal
level
frequency
filling material
container
Prior art date
Application number
PCT/EP2000/011725
Other languages
German (de)
English (en)
Inventor
Michael Sinz
Original Assignee
Endress + Hauser Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress + Hauser Gmbh + Co. Kg filed Critical Endress + Hauser Gmbh + Co. Kg
Publication of WO2001046653A1 publication Critical patent/WO2001046653A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2928Light, e.g. infrared or ultraviolet for discrete levels using light reflected on the material surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/296Acoustic waves
    • G01F23/2962Measuring transit time of reflected waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/103Systems for measuring distance only using transmission of interrupted, pulse modulated waves particularities of the measurement of the distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S15/101Particularities of the measurement of distance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/32Shaping echo pulse signals; Deriving non-pulse signals from echo pulse signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/288Coherent receivers
    • G01S7/2883Coherent receivers using FFT processing

Definitions

  • the invention relates to a method for determining the filling level of a filling material in a container, wherein measuring signals are emitted in the direction of the surface of the filling material and are reflected on the surface as echo signals (useful echo signals) and the level or a change in the filling level is evaluated by evaluating the reflected echo signals of the filling material is determined in the container.
  • Such methods have become known under the name pulse transit time method.
  • a device by implementing the method according to the invention is proposed.
  • Methods that determine the distance to an object via the transit time of measurement or echo signals take advantage of the physical laws, according to which the route is equal to the product of the transit time and the speed of propagation.
  • the route corresponds, for example, to twice the distance between an antenna and the surface of the product
  • the useful echo signal reflected on the surface of the filling material and its transit time are usually determined in the time domain using the so-called intermediate frequency or else using the digital envelope curve when using high-frequency measurement signals. Both the intermediate frequency and the digital hull curve provide the amplitudes of the echo signals as a function of the distance 'antenna - surface of the filling material'.
  • the filling level itself results from the difference between the known distance of the antenna from the bottom of the container and that determined by the measurement Distance of the surface of the product from the antenna
  • a generator generates first microwave pulses and emits them via an antenna with a predetermined transmission repetition frequency in the direction of the surface of the filling material.
  • Another generator generates reference microwave pulses that are the same as the first microwave pulses, differ slightly from these in the retransmission rate.
  • the echo signal and the reference signal are mixed.
  • An intermediate frequency signal is present at the output of the mixer.
  • the intermediate frequency signal has the same course as the echo signal, but is stretched relative to the latter by a time delay factor which is equal to a quotient of the transmission repetition frequency and the frequency difference between the first microwave pulses and the reference microwave pulses.
  • the frequency of the intermediate frequency signal is below 100 kHz.
  • the advantage of the transformation to the intermediate frequency is that relatively slow and therefore inexpensive electronic components can be used for signal detection and / or signal evaluation. Instead of the high-frequency measurement signals such. B. ultrasonic waves, so of course, a transformation to an intermediate frequency is unnecessary.
  • the invention is based on the object of proposing a method for determining the fill level which can be used as an alternative or in addition to the known pulse transit time methods.
  • the object is achieved in that the temporal course of the echo signal is determined, that the echo signal determined in the time domain is transformed into the frequency domain and that on the basis of a change in the phase position of the echo signal in the
  • Frequency range the level of the filling level or a change in the filling level of the filling material in the container is determined.
  • the solution according to the invention is based on the fact that the amplitude spectrum of the echo signals with a constant bandwidth of the measurement signals is independent of the respective filling level of the filling material. However, a change in level is noticeable in a shift in the useful echo signal on the time axis. A shift in the useful echo signal in the time domain corresponds to a phase change in the useful echo signal in the frequency domain.
  • a Fourier transform can be used to move a signal from the time domain to the frequency domain or from the frequency domain to Transform time domain. Mathematically, this is represented as follows: x (t) ⁇ - »X (f), where x (t) identifies the signal in the time domain and X (f) the signal in the frequency domain.
  • phase rotation increases linearly with the frequency f and the shift t 0 . This relationship is referred to as a shift theorem in signal processing.
  • the phase shift is achieved mathematically by multiplying the spectral function X (f) by the complex unit vector
  • the Fourier transform can thus be represented as follows:
  • the echo signal determined in the time domain is transformed from the high-frequency range to the low-frequency range by sequential scanning, and that the echo signal transformed in the low-frequency range is subjected to a Fourier transformation.
  • the advantage of transforming the high-frequency signals into the low-frequency range can be seen in the fact that much cheaper hardware can be used for the evaluation. Depending on the hardware used, it is also possible to evaluate the echo signals in real time.
  • An alternative embodiment of the method according to the invention provides that if high-frequency measurement signals are used, the echo signal determined in the time domain is transformed from the high-frequency range into the low-frequency range by sequential scanning; the time-transformed echo signal is then rectified and digitized. In a final step, the rectified and digitized echo signal is subjected to a Fourier transformation. According to this alternative, the so-called intermediate frequency is not Fourier transformed, but the digital envelope is subjected to a Fourier transformation.
  • the measurement accuracy is known to be increased by the fact that in addition to the maxima (peaks) of the echo signals, which provide amplitude information, the phase positions of the echo signals are also used for the evaluation.
  • the amplitude-modulated intermediate frequency is demodulated and broken down into its complex components. This is achieved e.g. B. by the so-called.
  • Quadrature demodulation ie the intermediate frequency is multiplied once with a sine wave (Q) and once with a cosine wave (I), both vibrations having a similar frequency as the intermediate frequency.
  • the high frequencies resulting from the multiplication are filtered out with a low pass filter.
  • the usual amplitude evaluation then takes place; the respective phase position and the difference between the two phase positions are additionally determined at the locations of the maxima found.
  • the distance between the antenna and the surface of the medium is then made up of a fraction of integer wavelengths, which results from the amplitude evaluation, and a phase remainder.
  • a particularly advantageous embodiment of the method according to the invention can be seen in the fact that in a first method step the fill level in the container is determined on the basis of the time profile of the echo signal; subsequently, the echo signal is then added
  • Multipath propagation means that the echo signals contain, in addition to the actual useful signal, which is reflected directly on the surface of the filling material, also an interference signal component that can be attributed to retro-reflections of the measurement signals on the container wall or on other internals located in the container interior.
  • the cause of the measurement errors which occur as a result of multipath propagation are constructive or destructive interferences between the actual useful echo signal, which is reflected on the surface of the medium, and the proportion of the Useful echo signal, which is reflected by a retroreflector.
  • n is any integer.
  • the same problem also arises as a result of the multimode propagation of wave packets already mentioned in still pipes or in other devices guiding the wave packets.
  • the method according to the invention is therefore also ideally suited to reducing measurement errors which occur due to multimode propagation.
  • the time course of the phase change is corrected so that no phase jumps occur.
  • the problem with the evaluation in the time domain is that the phase is only clear over a range of 360 °.
  • the phase jump correction provides a clear dependency between the phase and the distance to the surface of the filling material or the filling level.
  • a transmission circuit generates measurement signals. These measurement signals are emitted in the direction of the surface of the filling material by means of at least one antenna; the reflected echo waves are received by the at least one antenna.
  • a reception / evaluation circuit which determines the temporal course of the echo signal, transforms the echo signal determined in the time domain into the frequency domain and determines the level of the filling level or a change in the level of the filling material in the container on the basis of a change in the phase position of the echo signal in the frequency range ,
  • the measurement signals are electromagnetic pulses or pulsed electromagnetic waves (eg high-frequency microwave pulses or laser pulses) or ultrasonic pulses.
  • Fig. 5 the amplitude spectrum of the useful echo signals at three different levels
  • Fig. 6 the corrected phase spectra of the useful echo signals at three different levels.
  • Fig. 1 shows a schematic representation of an embodiment of the device according to the invention.
  • a filling material 2 is stored in a container 4.
  • the fill level measuring device 1 which is mounted in an opening 10 in the lid 7 of the container 4, is used to determine the fill level.
  • Pulsed measurement signals in particular microwaves, ultrasound waves or laser beams, are emitted in the direction of the surface 3 of the filling material 2 via the antenna 6 in the signal generation transmission unit 5.
  • the measurement signals are at least partially reflected on the surface 3 as echo signals.
  • These echo signals are in the reception / evaluation unit 8 received and evaluated.
  • the transmission of the measurement signals and reception of the echo signals is coordinated via the transceiver 9.
  • the device 1 z. B. when using microwaves as measuring radiation not only in connection with a freely radiating antenna 6.
  • highly precise measurements of the fill level of liquids or bulk materials in containers are required.
  • measuring instruments are increasingly being used here, in which short electromagnetic high-frequency pulses are coupled into a conductive element and introduced into the container in which the filling material is stored by means of the conductive element.
  • the conductive element is, for example, a rope probe or a rod probe.
  • this measuring method takes advantage of the effect that at the interface between two different media, e.g. B. air and oil or air and water, due to the sudden change (discontinuity) of the dielectric constant of both media, a part of the guided high-frequency pulses or the guided microwaves reflected and the conductive
  • the Element is passed back into the receiving unit.
  • the distance to the interface can be determined on the basis of the transit time of the reflected portion of the high-frequency pulses or of the microwaves. If the empty distance of the container is known, the filling level of the filling material in the container can be calculated.
  • TDR Time Domain Reflectometry
  • the echo signal shown has two amplitude maxima.
  • the left peak characterizes the echo signal which results from the coupling of the measurement signals to the antenna or to the electrically conductive element of a TDR sensor.
  • This echo signal which is only dependent on the sensor used in each case and which maintains its position regardless of the respective fill level, is used as a reference signal in the fill level measurement. Of course, other reference signals can also be used.
  • the right peak represents the actual useful echo signal, which results from the reflection of the measurement signal on the surface of the medium. The level is determined from the distance between the maxima of the useful echo signal and the reference echo signal.
  • the echo signal is shown as a digital envelope in the time domain.
  • Useful echo signal for the maximum of the reference echo signal is used as a measure of the filling level of the filling material 2 in the container 4.
  • the shape of the useful echo signal is invariant to changes in level; however, the position of the useful echo signal changes depending on the respective level. A change in fill level is therefore reflected in a temporal shift in the shape-invariant useful echo signal.
  • the frequency spectrum X (f) of the useful echo signal at different fill levels shows the magnitude or frequency spectrum X (f) of the useful echo signal at different fill levels.
  • the frequency spectrum is independent of the respective filling level of the filling material 2 in the container 4 and is therefore invariant in shape with changes in filling level.
  • phase jump correction rectification is generally known as 'phase unwrapping' in the field of signal processing. A description in connection with the present invention can therefore be dispensed with.
  • the invention takes advantage of the fact that the slope of the change in phase over time depends on the fill level of the filling material 2 in the container 4: the further the surface of the filling material is from the coupling unit generating the reference signal, the smaller the slope of the Phase curve.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

L'invention concerne un procédé et un dispositif permettant de déterminer le niveau de remplissage d'une charge (2) dans un récipient (4). Selon ce procédé, des signaux de mesure sont émis en direction de la surface (3) de la charge (2) et sont réfléchis sous forme de signaux d'écho au niveau de cette surface (3). L'évaluation des signaux d'écho réfléchis permet de déterminer le niveau de remplissage ou une modification dudit niveau de la charge (2) dans le récipient (4). L'invention vise à mettre au point un procédé pouvant s'utiliser en solution de rechange ou en plus des procédés par écho d'impulsion connus. A cet effet, il est prévu de déterminer le cours temporel du signal d'écho et de transformer le signal d'écho détecté dans la plage de temporisation en gamme de fréquences. Il est également prévu de déterminer, sur la base d'une modification de la position de phase du signal d'écho dans la gamme de fréquences, la hauteur du niveau de remplissage ou une modification dudit niveau de la charge (2) dans le récipient (4).
PCT/EP2000/011725 1999-12-22 2000-11-24 Procede et dispositif pour determiner le niveau de remplissage d'une charge dans un recipient WO2001046653A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19961855.0 1999-12-22
DE19961855A DE19961855B4 (de) 1999-12-22 1999-12-22 Verfahren und Vorrichtung zur Bestimmung des Füllstands eines Füllguts in einem Behälter

Publications (1)

Publication Number Publication Date
WO2001046653A1 true WO2001046653A1 (fr) 2001-06-28

Family

ID=7933697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/011725 WO2001046653A1 (fr) 1999-12-22 2000-11-24 Procede et dispositif pour determiner le niveau de remplissage d'une charge dans un recipient

Country Status (2)

Country Link
DE (1) DE19961855B4 (fr)
WO (1) WO2001046653A1 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936403A1 (fr) * 2006-12-20 2008-06-25 Pepperl + Fuchs Gmbh Capteur à ultrasons et procédé destiné à la détermination de la distance entre un objet et un capteur à ultrasons
US7954378B2 (en) 2007-02-07 2011-06-07 Pepperl + Fuchs Gmbh Ultrasonic sensor and method for determining a separation of an object from an ultrasonic sensor
WO2014009068A1 (fr) * 2012-07-09 2014-01-16 Endress+Hauser Gmbh+Co. Kg Procédé et dispositif pour la détermination basée sur laser du niveau de remplissage d'une matière de remplissage dans un récipient
US8730093B2 (en) 2011-09-27 2014-05-20 Rosemount Tank Radar Ab MFPW radar level gauging with distance approximation
US8854253B2 (en) 2011-09-27 2014-10-07 Rosemount Tank Radar Ab Radar level gauging with detection of moving surface
US8872694B2 (en) 2010-12-30 2014-10-28 Rosemount Tank Radar Ab Radar level gauging using frequency modulated pulsed wave
US20150323370A1 (en) * 2012-12-20 2015-11-12 Endress+Hauser Gmbh+Co. Kg Method for Evaluation for Measurement Signals of a Level Gauge
WO2016108073A1 (fr) * 2014-12-30 2016-07-07 Universidad Cooperativa De Colombia Système de mesure de précipitation et de neige
US9513153B2 (en) 2010-12-30 2016-12-06 Rosemount Tank Radar Ab Radar level gauging using frequency modulated pulsed wave

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10149423B4 (de) * 2001-10-06 2014-07-17 Eads Deutschland Gmbh Verfahren und Vorrichtung zur Messung von Entfernungen in optisch trüben Medien
DE102014112228A1 (de) 2014-08-26 2016-03-03 Endress + Hauser Gmbh + Co. Kg Verfahren zur Vermeidung von Phasensprüngen
US10816385B2 (en) * 2018-06-21 2020-10-27 Rosemount Tank Radar Ab Radar level gauge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998002760A1 (fr) * 1996-06-28 1998-01-22 Milkovich Systems Engineering Processeur ameliore de detection de transformees de fourier rapides mettant en oeuvre des principes evolues dans le domaine des frequences
US5847567A (en) * 1994-09-30 1998-12-08 Rosemount Inc. Microwave level gauge with remote transducer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA815529B (en) * 1980-08-29 1982-08-25 Coal Industry Patents Ltd Method and apparatus for locating position of an object in a confined space
DE3107444C2 (de) * 1981-02-27 1984-01-12 Dornier System Gmbh, 7990 Friedrichshafen Hochauflösendes kohärentes Pulsradar
US5361070B1 (en) * 1993-04-12 2000-05-16 Univ California Ultra-wideband radar motion sensor
DE19629593A1 (de) * 1996-07-23 1998-01-29 Endress Hauser Gmbh Co Anordnung zum Erzeugen und zum Senden von Mikrowellen, insb. für ein Füllstandsmeßgerät
DE19723978C2 (de) * 1997-06-06 1999-03-25 Endress Hauser Gmbh Co Verfahren zur Messung des Füllstands eines Füllguts in einem Behälter nach dem Radarprinzip

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847567A (en) * 1994-09-30 1998-12-08 Rosemount Inc. Microwave level gauge with remote transducer
WO1998002760A1 (fr) * 1996-06-28 1998-01-22 Milkovich Systems Engineering Processeur ameliore de detection de transformees de fourier rapides mettant en oeuvre des principes evolues dans le domaine des frequences

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENTWISTLE H F: "SURVEY OF LEVEL INSTRUMENTS", ADVANCES IN INSTRUMENTATION AND CONTROL,US,INSTRUMENT SOCIETY OF AMERICA, RESEARCH TRIANGLE PARK, vol. 46, no. PART 02, 1991, pages 1319 - 1354, XP000347569, ISSN: 1054-0032 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1936403A1 (fr) * 2006-12-20 2008-06-25 Pepperl + Fuchs Gmbh Capteur à ultrasons et procédé destiné à la détermination de la distance entre un objet et un capteur à ultrasons
US7954378B2 (en) 2007-02-07 2011-06-07 Pepperl + Fuchs Gmbh Ultrasonic sensor and method for determining a separation of an object from an ultrasonic sensor
US8872694B2 (en) 2010-12-30 2014-10-28 Rosemount Tank Radar Ab Radar level gauging using frequency modulated pulsed wave
US9513153B2 (en) 2010-12-30 2016-12-06 Rosemount Tank Radar Ab Radar level gauging using frequency modulated pulsed wave
US8730093B2 (en) 2011-09-27 2014-05-20 Rosemount Tank Radar Ab MFPW radar level gauging with distance approximation
US8854253B2 (en) 2011-09-27 2014-10-07 Rosemount Tank Radar Ab Radar level gauging with detection of moving surface
WO2014009068A1 (fr) * 2012-07-09 2014-01-16 Endress+Hauser Gmbh+Co. Kg Procédé et dispositif pour la détermination basée sur laser du niveau de remplissage d'une matière de remplissage dans un récipient
US20150323370A1 (en) * 2012-12-20 2015-11-12 Endress+Hauser Gmbh+Co. Kg Method for Evaluation for Measurement Signals of a Level Gauge
WO2016108073A1 (fr) * 2014-12-30 2016-07-07 Universidad Cooperativa De Colombia Système de mesure de précipitation et de neige
EP3242149A4 (fr) * 2014-12-30 2018-02-21 Universidad Cooperativa De Colombia Système de mesure de précipitation et de neige

Also Published As

Publication number Publication date
DE19961855B4 (de) 2007-11-29
DE19961855A1 (de) 2001-06-28

Similar Documents

Publication Publication Date Title
EP2128576B1 (fr) Procédé de détection de double parole basé sur les propriétés acoustiques spectrales
EP1069438A1 (fr) Procédé et dispositif pour la détermination du niveau de remplissage d'un produit dans un réservoir avec haute précision
EP1701142B1 (fr) Procédé de mesure du niveau d'un milieu dans un récipient basé sur le principe du radar
EP1412710B1 (fr) Procede pour evaluer les signaux de mesure d'un appareil de mesure fonctionnant selon le principe du temps de propagation
DE60027644T2 (de) Messung der dielektrizitätskonstante eines prozessproduktes mittels eines schwachstrom-radar-füllstandsmessumformers
EP0882957B1 (fr) Procédé de mesure du niveau d'un matériau dans un réservoir suivant le principe radar
DE102005063079B4 (de) Verfahren zur Ermittlung und Überwachung des Füllstands eines Mediums in einem Behälter
WO1994014037A1 (fr) Limnimetre fonctionnant au moyen de micro-ondes
WO1995008780A1 (fr) Procede de mesure de niveau fonde sur le principe du radar
DE19961855B4 (de) Verfahren und Vorrichtung zur Bestimmung des Füllstands eines Füllguts in einem Behälter
DE102012107146A1 (de) Verfahren zur Bestimmung und/oder Überwachung des Füllstands eines Mediums in einem Behälter
WO1995008128A1 (fr) Telemetre-radar
WO1997009637A2 (fr) Dispositif de telemetrie
DE102014101904A1 (de) Effiziente Dispersionskorrektur für FMCW-Radar in einem Rohr
EP1454117B1 (fr) Dispositif pour determiner et/ou surveiller le niveau de remplissage d'un conteneur
EP1191315A2 (fr) Dispositif et procédé pour la détermination de la position de l'interface entre deux milieux distincts
DE102005011778A1 (de) Verfahren zur Messung des Füllstands eines in einem Behälter vorgesehenen Mediums auf der Grundlage des Radar-Prinzips
EP1072871B1 (fr) Dispositif pour la mesure du niveau de remplissage d'un produit dans un réservoir
EP1004858A1 (fr) Jauge de niveau de remplissage
DE4331353A1 (de) Radar-Abstandsmeßgerät
EP1186869A2 (fr) Dispositif de mesure du niveau d' un fluide
EP1039273B1 (fr) Procédé de mesure du niveau d' un fluide
WO2013017534A1 (fr) Rapport linéaire entre suivis
DE102005044143A1 (de) Radar-Füllstandsmessung mittels elektromagnetischer Verzögerungsleitung
DE10007187A1 (de) Verfahren und Vorrichtung zur Bestimmung des Füllstandes eines Füllguts in einem Behälter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase