WO2001045824A1 - Methods of cooling producer gas from high-temperature swirl furnace and of arresting entrained slag mist - Google Patents

Methods of cooling producer gas from high-temperature swirl furnace and of arresting entrained slag mist Download PDF

Info

Publication number
WO2001045824A1
WO2001045824A1 PCT/JP1999/007226 JP9907226W WO0145824A1 WO 2001045824 A1 WO2001045824 A1 WO 2001045824A1 JP 9907226 W JP9907226 W JP 9907226W WO 0145824 A1 WO0145824 A1 WO 0145824A1
Authority
WO
WIPO (PCT)
Prior art keywords
downcomer
gas
swirling
cooling water
cooling
Prior art date
Application number
PCT/JP1999/007226
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Terauchi
Toshiaki Nakamura
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP17777498A priority Critical patent/JP3777801B2/en
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to PCT/JP1999/007226 priority patent/WO2001045824A1/en
Publication of WO2001045824A1 publication Critical patent/WO2001045824A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/006Equipment for treating dispersed material falling under gravity with ascending gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/001Cooling of furnaces the cooling medium being a fluid other than a gas
    • F27D2009/0013Cooling of furnaces the cooling medium being a fluid other than a gas the fluid being water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • F27D2009/0089Quenching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems

Definitions

  • the present invention relates to a method for cooling gas generated from a high-temperature swirl furnace used for gasification or combustion of organic raw materials or wastes, and for collecting slag mist accompanying the gas.
  • FIG. 1 An example of the configuration of a conventional device for cooling the high-temperature syngas obtained by coal gasification is shown in the schematic sectional view of FIG.
  • This equipment supplies coal slurry through a parner attached to a parner mounting nozzle 28, and converts it into gas at high temperature and pressure to generate a generated gas, and a generated gas in the reaction chamber 21.
  • Quenching chamber 2 2 Is communicated through the slot section 23 with.
  • the quenching chamber 22 is provided with a downcomer 24 connected to the throat section 23, and the lower end of the downcomer 24 has a quench bath 25 in the quench chamber 22. It is immersed inside and divides the upper space of the quenching chamber 24 inside and outside. Therefore, the gas from the throat section 23 is introduced into the cooling area inside the downcomer 24 and then blown into the quench bath 25, and blows up into the upper space of the quench chamber 22 outside the downcomer 24. .
  • a gas exhaust pipe 27 is provided to communicate with the chamber space on the outer peripheral side of the downcomer pipe 24, and a quenching ring 29 is provided at the boundary between the reaction chamber 21 and the quenching chamber 22.
  • the lower surface of 29 is in contact with the upper end of the downcomer 24.
  • the quench ring 29 is divided into an upper spray chamber 30 and a lower film chamber 31.
  • the cooling water discharged from the film chamber 31 travels substantially parallel to the axis of the downcomer 24 and falls along the inner surface of the downcomer 24 to form a thin falling film of the cooling water. Further, the cooling water discharged from the spray chamber 30 travels from around the quenching ring 29 in the direction of the main axis of the downcomer 24. 26 is the line that discharges slag, d is generated gas, and e is cooling water.
  • the synthesis gas descending by a combination of turbulence and film evaporation cooling and spray cooling in the cooling zone is cooled from an initial temperature of, for example, 130 ° C. to an outlet temperature of the downcomer 24, for example, about 500 ° C. Can be cooled ⁇
  • the synthesis gas exiting from the lower part of the cooling zone passes through the quench bath 25 and most of the 95% of the ash and carbide particles separate from the gas at the lower end of the cooling zone Is done.
  • the gas passing through the quench bath 25 rises together with the evaporated cooling water while cooling the outer region of the downcomer 24 and is discharged from the gas discharge tube 27 at a temperature of, for example, 23 ° C.
  • An object of the present invention is to provide a high-temperature swirling furnace, in which An object of the present invention is to provide a more effective cooling method for generated gas, including collecting slag mist by water flow generated in a circulating flow and the entire inside of a downcomer pipe. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, assuming that the direction of the swirling flow of the cooling water on the inner surface of the downcomer is the same as the direction of the swirling flow of the generated gas in the downcomer, the generated gas The slag mist that accompanies can be collected reliably.On the other hand, if the direction of the swirling flow of the cooling water is opposite to that of the generated gas, water droplets can be generated in the entire interior of the downcomer. And arrived at the present invention.
  • the present invention cools the generated gas by blowing the gas generated in the reaction chamber of the high-temperature swirling furnace into a quenching chamber having a quenching bath through a downcomer pipe, and reduces slag mist accompanying the gas.
  • the cooling water film formed by supplying the cooling water to the inner wall surface of the downcomer is formed as a swirling water film flowing in the circumferential direction of the downcomer.
  • the swirling water film supplies cooling water from the cooling water injection part provided at the top of the downcomer pipe that introduces the generated gas into the gas quenching chamber.
  • the cooling water wets the inner surface of the downcomer pipe This can be realized by injecting the wall flow from the tangential direction in the horizontal cross section of the downcomer so that the swirl flows in the same or opposite direction to the swirl flow of the generated gas in the downcomer.
  • the generated gas is cooled by evaporating a part of the cooling water by bringing the hot generated gas into direct contact with the swirling flow of the cooling water formed on the inner surface of the downcomer pipe.
  • the swirling flow of the generated gas is reliably maintained and promoted, and the slag mist accompanying the generated gas wets the cooling water inside the downcomer pipe. It is possible to reliably capture the flow in the wall swirling flow. In addition, the swirling flow of the generated gas lowers the swirling flow of the cooling water.
  • the wet wall thickness can be made uniform by pressing in the circumferential direction of the inner surface of the pipe.
  • the downcomer is formed in a cylindrical shape to form a swirling water film, a uniform swirling flow of the cooling water wet wall can be formed, and the swirling flow of the gas generated from the reaction chamber can be maintained.
  • the swirling water film extends along the axial direction of the downcomer. Since the turning radius is set to be small, the water film thickness is made uniform, an appropriate thickness can be secured over the entire length of the downcomer, and the protection function of the downcomer can be maintained.
  • the number of cooling water injections used to form the wetting wall swirl flow formed on the inner wall surface of the downcomer pipe is one or more, and the total flow rate is the inner circumference of the top part of the downcomer pipe. 20 m 3 Zh per unit immersion length may be set to Z m or more.
  • the wetted perimeter is the length of the side where the fluid is in contact with the solid wall when the fluid is flowing in a conduit or open channel. If the cooling water amount is less than the above value, the whole does not get wet when flowing on the surface of the downcomer due to insufficient cooling water, so that the swirling flow of the wetting wall cannot be formed on the entire surface.
  • the wet wall is not formed on the entire surface and becomes mottled, the molten slag flowing down from the reaction chamber adheres, and becomes nucleus, and the slag further adheres and blocks the downcomer pipe.
  • the hot gas from the reaction chamber and the inner wall of the downcomer metal surface
  • the turning direction of the cooling water is opposite to the turning direction of the generated gas in the downcomer, and the gas swirling flow rate in the downcomer for generating water droplets in the entire downcomer is, for example, constant. In the case of a pressure system, it should be 3.0 mZ s or more.
  • the cooling water When the cooling water is swirled from the upper end of the downcomer and swirled in the opposite direction to the gas flow, the cooling water gradually increases as the cooling water flow speed increases. Since the surface is wavy and water droplets are formed, the gas-liquid contact area that comes into contact with the swirling gas coming from the reaction chamber is dramatically increased.
  • the gas swirl speed to generate waving on the surface of the swirl cooling water film is equal to or higher than the above value.
  • the cooling water injection section provided at the top of the downcomer pipe may be configured such that a cooling water swirling flow path is formed on the outer peripheral side of the downcomer pipe to overflow the cooling water, or the cooling water is swirled inside the downcomer pipe. It can be configured as a guide plate system that forms a swirling water film by forming a flow path.
  • FIG. 1 is a cross-sectional configuration diagram of a high-temperature swirl furnace used in the present invention having a reaction chamber and a gas quenching chamber.
  • FIG. 2 is a horizontal cross-sectional configuration view as viewed from an arrow A in FIG.
  • FIG. 4 is a cross-sectional view showing an example in which the downcomer of the gas quenching chamber has a cylindrical shape.
  • FIG. 4 is a horizontal sectional view of a cooling water injection unit in FIG. 3.
  • FIG. 6 is a cross-sectional view showing an embodiment in which the downcomer of the gas quenching chamber has an inverted conical cylindrical shape.
  • FIG. 6 is a cross-sectional view showing an embodiment in a case where the cooling water injection of the gas quenching chamber is formed on the outer peripheral side of the downcomer and overflows.
  • FIG. 7 is a horizontal sectional view of a cooling water injection part in FIG. 6.
  • FIG. 7 is a cross-sectional view showing an embodiment in a case where a guide plate system in which cooling water is injected into a gas quenching chamber on the inner peripheral side of a downcomer pipe is used.
  • FIG. 9 is a horizontal sectional view of the cooling water injection unit in FIG.
  • FIG. 2 is a schematic sectional view showing an example of a conventional high-temperature syngas cooling device having a quenching chamber and a downcomer pipe.
  • the swirling flow of the cooling water on the inner surface of the downcomer pipe descends.
  • the basic feature is that cooling water is injected from the tangential direction in the horizontal section of the downcomer so that the swirling flow of the generated gas in the pipe is in the same direction or in the opposite direction.
  • FIG. 1 is a cross-sectional view of a high-temperature swirl furnace showing an apparatus configuration for realizing the method according to the present invention
  • FIG. 2 is a horizontal cross-sectional view as viewed from an arrow A in FIG. This will be described below.
  • the above apparatus has an upper reaction chamber 1 into which gas generated in the pre-gasification step is introduced, and a lower gas quenching chamber 2. Both are communicated through a slot 3 with a small opening area.
  • a downcomer 4 communicating with the throat section 3 is provided in the gas quenching chamber 2, and the lower end of the downcomer 4 is immersed in a quench bath 5 in the gas quenching chamber 2.
  • the upper space of the gas quenching chamber 4 is divided inside and outside.
  • the gas from the throat section 3 is introduced into the upper space cooling area inside the downcomer 4 and then blown into the quench bath 5 to be blown up into the upper space of the gas quenching chamber 2 outside the downcomer 4
  • the molten slag flowing down to the gas quenching chamber 2 along the wall of the reaction chamber 1 and the slag mist in the gas are separated and cooled by the quenching bath 5 to become granulated slag, which is discharged.
  • a slag discharge port 6 is provided at the lower end of the gas quenching chamber.
  • a gas outlet 7 is provided which communicates with the gas quenching chamber space on the outer peripheral side of the downcomer 4, from which the cooled gas is led out.
  • a slag water outlet 8 is provided below the water level of the quench bath 5 in the gas quenching chamber 2.
  • a cooling water injection section 9 is formed at the top of the downcomer pipe 4.
  • the cooling water is supplied from the cooling water injection section 9 so that a wet wall is formed on the inner wall surface of the downcomer pipe 4.
  • the cooling water injection method is set to be tangential to the horizontal cross section of the downcomer pipe so that the wetting wall of the inner surface of the downcomer pipe 4 formed by the cooling water forms a swirling water film.
  • the swirling flow of the wetting wall is made to be the same or opposite to the swirling flow of the generated gas in the downcomer pipe.
  • the configuration of the reaction chamber 1 will be described.
  • the gas introduction line was blown into the reaction chamber 1 with a circular cross section in the tangential direction of the virtual circle 10 of the swirling flow. It is set.
  • oxygen b and steam are also introduced into the furnace from the side of the reaction chamber 1 along the tangential direction of the virtual circle 10 of the swirling flow. c is supplied.
  • the generated gas forms a swirling flow inside the reaction chamber 1.
  • the generated gas swirls and passes through the throat section 3 and is introduced into the downcomer pipe 4.
  • the cooling water supplied from the cooling water injection section 9 causes the swirling flow of the generated gas in the downcomer pipe 4.
  • a water film is formed as a swirling flow in the same or opposite direction.
  • the downcomer 4 has a cylindrical shape with a larger diameter than the throat 3, and the upper and lower edges are formed into a saw-tooth shape, while the lower edge is connected to the quench bath 5. It is immersed.
  • the serrations at the top edge do not allow the wetting water film to drift when the cooling water overflows, even when the equipment is installed at an angle.
  • a trough 41 is formed around the top of the downcomer 4, and an overflow opening 4 2 is formed at the top of the downcomer 4 to allow the cooling water introduced into the trough 41 to overflow to the inner peripheral wall surface. I have. In this way, a water film is formed on the inner wall of the downcomer 4.
  • FIG. 4 shows a plan view of the downcomer 4 having the rough 4 1.
  • the trough 41 is formed as a circumferential groove, and a cooling water supply pipe 43 is tangentially connected to the trough 41.
  • cooling water supply pipe 43 it is desirable to connect a plurality of cooling water supply pipes at equal intervals in the circumferential direction in case of an unexpected event.
  • the water flow in the trough 41 becomes a circumferential flow and overflows to the inner surface side of the downcomer pipe 4 through the overflow opening 4 2 to form a water film.
  • the swirling flow occurs on the inner wall of Fig. 4 (solid arrow W in Fig. 4).
  • This swirling flow direction is set to be the same as or opposite to the swirling direction of the swirling gas (the dashed arrow G in FIG. 4).
  • the turning direction of the turning water film can be arbitrarily set by changing the connection direction of the cooling water supply pipe 43. If the cooling water is swirled in the direction opposite to the swirling direction of the generated gas in the downcomer (as shown in Fig. 4), the surface of the swirling water film will be ruffled and water droplets will be generated throughout the downcomer. In addition, the gas swirl velocity in the downcomer must be 3.0 / s or more in the case of a normal pressure system.
  • FIG. 5 shows another example of the shape of the downcomer pipe.
  • a truncated inverted conical cylindrical downcomer 4 A is shown.
  • the cooling water forming the swirling water film evaporates as it reaches the lower area of the conical downcomer 4A due to contact with the high-temperature generated gas, and the amount of water decreases, but the turning radius decreases. Therefore, a swirling flow of the wetting wall having a uniform thickness can be secured over the entire length of the conical downcomer 4A.
  • the inclination angle of the conical downcomer 4A may be set in the range of 1 to 5 degrees, preferably 2 to 3 or 4 degrees with respect to the vertical plane. The angle should be set so that the thickness of the rotating water film can be equalized.
  • Figures 6 and 7 show other cooling methods to create a swirling swirling flow on the inner surface of the downcomer pipe 4.
  • the water injection method is shown. This example shows the trough in the overflow weir system.
  • the thickness of the swirling water film formed on the inner wall surface of the downcomer pipe 4 can be made uniform in the circumferential direction.
  • the solid arrow W indicates the flow direction of the cooling water
  • the broken arrow G indicates the swirling flow direction of the gas.
  • a guide plate 12 having a cylindrical ring shape as a whole is attached inside the upper end side of the downcomer 4.
  • the guide plate 12 has a funnel shape in which the upper half portion has an outer diameter gradually reduced from the inner diameter of the downcomer 4, and the lower half has a cooling water supply pipe 4 3 opened to the downcomer 4.
  • the cooling water from the cooling water supply pipe 43 which is formed in a small-diameter cylindrical shape facing the opening portion, flows from the tangential direction of the downcomer pipe 4 as in the previous embodiment.
  • the introduced cooling water is swirled along the annular flow path formed by the downcomer 4 guide plates 12, and the opening between the downcomer 4 and the small-diameter tube portion of the guide plates 12 is opened.
  • the overflow weir method and the guide plate method are used, so that the water droplets of the cooling water do not scatter and wet the refractory brick in the throat section 3.
  • Wetting the refractory bricks on the reaction chamber 1 side with cooling water rapidly cools the refractory bricks heated to high temperature, causing cracks. Therefore, by using the above-mentioned method, it is possible to form a swirling water film having a uniform thickness on the inner surface of the downcomer 4 without causing water droplets of the cooling water to scatter on the refractory brick.
  • the distance S from the innermost part of the throat 3 to the downcomer 4 is important. That is, when the distance S is short, when the molten slag flows down from the reaction chamber 1 through the throat section 3, the molten slag contacts as much as possible the cooling water forming the swirling water film on the surface of the downcomer pipe 4. It is better to prevent this, so it is important to keep the distance S appropriately so as to minimize the influence of the flow of the molten slag. For example, if the cooling water is too strong even if the distance S is maintained, the phenomenon of cooling the refractory bricks due to the splashing of water droplets will be caused. It is important to have.
  • the operation according to the above embodiment is as follows.
  • the gas generated from the reaction chamber 1 passes through the throat section 3 to the gas quenching chamber 2 while maintaining the swirling flow. enter.
  • Most of the molten slag generated in the reaction chamber 1 flows down to the gas quenching chamber 2 along the reaction chamber wall.
  • Some slag mist is quenched from the throat section 3 while being entrained by the generated gas.
  • the gas quenching chamber 2 quenches the hot gas generated in the reaction chamber 1 and separates and cools the molten slag flowing down to the gas quenching chamber along the wall of the reaction chamber and the molten slag mist accompanying the generated gas. Granulated slag.
  • the inside of the downcomer 4 of the gas quenching chamber 2 is exposed to the high-temperature atmosphere by the passage of the high-temperature generated gas and the molten slag.
  • the inner surface of the downcomer 4 has a cooling water injection section 9 at the top.
  • the cooling water e supplied from the tangential direction to the horizontal cross section of the downcomer pipe 4 forms a swirling swirling flow, so that it is protected from thermal shocks and damage to the material can be avoided. It can flow down to the quench bath 5 without growing on the surface.
  • a swirling water film is formed on the inner wall surface of the downcomers 4, 4A through which the swirling gas accompanying the slag mist flows and the molten slag flows down, forming a wet wall.
  • the swirling flow direction of the cooling water is the same as the swirling flow direction of the generated gas in the downcomer, the swirling flow of the generated gas is reliably maintained and promoted, and the slag mist accompanying the generated gas is maintained. Can be reliably trapped in the swirling flow of the cooling water on the inner surface of the downcomer pipe.
  • the swirling flow of the generated gas presses the wetting wall swirling flow of the cooling water in the circumferential direction of the inner surface of the downcomer pipe, so that the thickness of the wetting wall can be made uniform.
  • the swirling flow of the generated gas causes the surface flow of the swirling flow of the cooling water to become turbulent. It becomes wavy in a state, and water droplets can be generated from the surface to the entire inside of the downcomer pipe. This allows high-temperature generated gas and cooling The area of contact with water is dramatically increased, and the cooling effect of generated gas and the efficiency of collecting slag mist are improved.
  • the gas swirling velocity in the downcomer in order to generate water droplets in the entire downcomer, in the case of a normal pressure system, the gas swirling velocity in the downcomer must be 3.0 OmZs or more.
  • the high-temperature generated gas is in direct contact with the swirling flow of the cooling water formed on the inner surface of the downcomer pipe, thereby evaporating a part of the cooling water, which has the effect of cooling the generated gas.
  • the wetting wall swirling flow with the supply direction of the cooling water being opposite to the gas swirling direction, water droplets can be generated by waving, and the contact between the cooling water and the high-temperature gas is remarkable.
  • Fig. 10 not only radiative heat transfer but also forced convection heat transfer is performed, so that the gas cooling efficiency is dramatically improved.
  • the inverted conical cylindrical shape reduces the turning radius of the cooling water film even if a part of the cooling water evaporates and is lost due to contact with the high-temperature generated gas. Therefore, it is possible to ensure a moderately thick swirling flow.
  • the flow of the wetting wall of the cooling water on the inner surface of the downcomer pipe is cooled by direct contact of the high-temperature generated gas with the cooling water and evaporation of a part of the cooling water.
  • the flow of the wetting wall can be used as a swirling flow, and the streamline length of the cooling water can be increased to prolong the contact time with the swirling gas. This significantly improves the gas cooling efficiency and the slag mist collection efficiency of the swirling water film.
  • the swirling flow direction in the opposite direction to the swirling direction of the generated gas, countless water droplets are generated from the surface of the wetting wall, and the contact area with the gas is increased, resulting in more effective generation.
  • the gas can be cooled. 'Even if the swirling flow direction of the cooling water is the same as the swirling flow direction of the generated gas, 5 By the pressure of the generated gas, slag mist can be collected while maintaining the swirling flow of the water film, and the thickness of the wet wall can be maintained uniformly.
  • the present invention can be used in a high-temperature swirl furnace used when burning combustible waste to gasify or coal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Chimneys And Flues (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Separation Of Particles Using Liquids (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

Gas produced in the reaction chamber (1) of a high-temperature swirl furnace is blown through a downcomer (4) into a quenching chamber (2) having a quenching bath, whereby the producer gas is cooled and slag mist entrained in this gas is arrested. Cooling water from a cooling water pouring part at the top of the downcomer is allowed to flow circumferentially of the downcomer along the inner wall surface to form a swirling water membrane. The pouring of the cooling water is effected tangentially as seen in the horizontal section of the downcomer so that the swirling water membrane may be in a direction that is the same as or opposite to that of the swirling flow of the producer gas in the downcomer. The cooling water pouring part can employ an overflow weir system from a trough formed in the outer periphery of the downcomer or a guide plate system having an annular flow channel formed in the inner periphery of the downcomer for direct downflowing.

Description

明 細 書 高温旋回炉発生ガスの冷却および同伴スラグミス トの捕集方法 技術分野  Description Method of cooling high-temperature swirl furnace generated gas and collecting entrained slag mist Technical field
本発明は有機性原料あるいは廃棄物のガス化または燃焼などに使用さ れる高温旋回炉から発生するガスを冷却するとともにガスに同伴するス ラグミス トを捕集する方法に関する。 背景技術  The present invention relates to a method for cooling gas generated from a high-temperature swirl furnace used for gasification or combustion of organic raw materials or wastes, and for collecting slag mist accompanying the gas. Background art
従来、 都市ごみ、 産業廃案物、 下水汚泥の多くが焼却設備へ、 またし 尿や高濃度廃液が水処理設備へ送られ処理されている。 しかし、 まだ多 く の廃棄物が未処理のまま投棄されているため、 環境汚染や埋立て地の 逼迫を招く に至っている。 このため、 廃棄物を低温でガス化処理した後 に高温で燃焼する ことによ り 、 灰分を溶融スラグ化するとともに、 ダイ ォキシン類を完全分解するガス化溶融システムの実用化が強く望まれて いる。  Conventionally, much of municipal solid waste, industrial waste and sewage sludge are sent to incineration facilities, and human waste and highly concentrated waste liquid are sent to water treatment facilities for treatment. However, much of the waste is still being dumped untreated, leading to environmental pollution and tight landfills. For this reason, there is a strong demand for the practical use of a gasification and melting system in which waste is gasified at a low temperature and then burned at a high temperature to convert ash into molten slag and completely decompose dioxins. I have.
以上の中核となる高温燃焼炉あるいは高温ガス化炉の構成や処理方法 が種々提案されているものの、 このような高温ガス化炉で発生するガス の冷却方法もまた上記システムの成否を左右するといえるほど重要であ る。  Although various configurations and treatment methods for the high-temperature combustion furnace or high-temperature gasifier as the core above have been proposed, it can be said that the method of cooling the gas generated in such a high-temperature gasifier also determines the success or failure of the above system. Is more important.
石炭のガス化によって得られた高温合成ガスを冷却する従来装置の構 成例を図 1 0 の概要断面図に示す。 この装置はパーナ装着ノズル 2 8 に 取り付けられたパーナを介して石炭スラ リ を供給し、 高温高圧化でガス 化して発生ガスを発生させる反応室 2 1 と、 反応室 2 1 で発生した発生 ガスを冷却する下部の急冷チャ ンバ 2 2からなり、 両者は狭い開口面積 を持つス ロー ト部 2 3 を通じて連絡されている。 急冷チャ ンバ 2 2 内に は前記ス ロー ト部 2 3 に連通される下降管 2 4が設けられており、 この 下降管 2 4は、 その下端が急冷チャ ンバ 2 2 内の急冷浴 2 5 内に浸漬さ れ、 急冷チャ ンバ 2 4の上部空間を内外に区画している。 したがって、 スロー ト部 2 3からのガスは下降管 2 4内部の冷却領域に導入された後 急冷浴 2 5 内に吹き込まれ、 下降管 2 4外部の急冷チャ ンバ 2 2 の上部 空間に吹き上がる。 An example of the configuration of a conventional device for cooling the high-temperature syngas obtained by coal gasification is shown in the schematic sectional view of FIG. This equipment supplies coal slurry through a parner attached to a parner mounting nozzle 28, and converts it into gas at high temperature and pressure to generate a generated gas, and a generated gas in the reaction chamber 21. Quenching chamber 2 2 Is communicated through the slot section 23 with. The quenching chamber 22 is provided with a downcomer 24 connected to the throat section 23, and the lower end of the downcomer 24 has a quench bath 25 in the quench chamber 22. It is immersed inside and divides the upper space of the quenching chamber 24 inside and outside. Therefore, the gas from the throat section 23 is introduced into the cooling area inside the downcomer 24 and then blown into the quench bath 25, and blows up into the upper space of the quench chamber 22 outside the downcomer 24. .
下降管 2 4の外周側のチャ ンバ空間部に通じるガス排出管 2 7が設け られ、 また、 反応室 2 1 と急冷チャ ンバ 2 2 との境界に急冷リ ング 2 9 があり、 急冷リ ング 2 9 の下面は下降管 2 4の上端部に接している。 急冷リ ング 2 9 は上部のスプレーチャンバ 3 0 と下部のフィルムチヤ ンバ 3 1 に分かれている。 フィルムチャンバ 3 1 から放出された冷却水 は下降管 2 4の軸にほぼ平行に進み下降管 2 4の内面に沿って落下する 冷却水の薄い落下フィルムを形成する。 また、 スプレーチャンバ 3 0か ら放出された冷却水は急冷リ ング 2 9 の周囲から下降管 2 4の主軸方向 に進むようになつている。 2 6 はスラグを排出するライ ン、 dは発生ガ ス、 e は冷却水である。  A gas exhaust pipe 27 is provided to communicate with the chamber space on the outer peripheral side of the downcomer pipe 24, and a quenching ring 29 is provided at the boundary between the reaction chamber 21 and the quenching chamber 22. The lower surface of 29 is in contact with the upper end of the downcomer 24. The quench ring 29 is divided into an upper spray chamber 30 and a lower film chamber 31. The cooling water discharged from the film chamber 31 travels substantially parallel to the axis of the downcomer 24 and falls along the inner surface of the downcomer 24 to form a thin falling film of the cooling water. Further, the cooling water discharged from the spray chamber 30 travels from around the quenching ring 29 in the direction of the main axis of the downcomer 24. 26 is the line that discharges slag, d is generated gas, and e is cooling water.
前記冷却領域における乱流とフィ ルム蒸発による冷却およびスプレー 冷却の組合わせにより降下する合成ガスを例えば 1 3 7 0 °Cの初期温度 から下降管 2 4の出口温度例えば約 5 0 0 °Cまで冷却することができる < さ らに冷却領域の下方部分からでた合成ガスは急冷浴 2 5 中を通り抜け ると、 灰および炭化物粒子の大半約 9 5 %は冷却領域の下端においてガ スから分離される。 急冷浴 2 5 を通り抜けたガスは下降管 2 4の外側領 域を冷却しながら蒸発した冷却水とともに上昇しガス排出管 2 7から例 えば 2 3 2 °Cの温度で排出される。  The synthesis gas descending by a combination of turbulence and film evaporation cooling and spray cooling in the cooling zone is cooled from an initial temperature of, for example, 130 ° C. to an outlet temperature of the downcomer 24, for example, about 500 ° C. Can be cooled <In addition, the synthesis gas exiting from the lower part of the cooling zone passes through the quench bath 25 and most of the 95% of the ash and carbide particles separate from the gas at the lower end of the cooling zone Is done. The gas passing through the quench bath 25 rises together with the evaporated cooling water while cooling the outer region of the downcomer 24 and is discharged from the gas discharge tube 27 at a temperature of, for example, 23 ° C.
また、 国際公開番号 W O 9 8 Z 1 0 2 2 5 における発明 「旋回溶融炉 及び旋回溶融炉を用いた廃棄物のガス化方法」 によれば、 反応室とスラ グ分離室からなる旋回溶融炉では、 反応室壁面を流下したスラグはスラ グ滴となってスラグ分離室に落下し、 分離室内の下降管との接合コーナ 部の周方向に配置された補助スプレーによって下降管内壁面の冷却と同 時にガスゃスラグを噴霧冷却した後、 スラグ分離室下部の急冷浴中の水 に吹き込まれて急冷される。 下降管の外側を上昇したガスはスラグ分離 室に設けたガス出口よ り排出され、 急冷浴中に堆積したスラグはスラグ 出口よ り排出される。 In addition, the invention disclosed in International Publication No. WO988Z102 And a gasification method for waste using a swirling melting furnace, '' in a swirling melting furnace consisting of a reaction chamber and a slag separation chamber, the slag flowing down the wall of the reaction chamber becomes slag droplets and enters the slag separation chamber. After falling down, the gas sprayed slag is spray-cooled at the same time as cooling the inner wall of the downcomer pipe by an auxiliary spray arranged in the circumferential direction of the junction with the downcomer pipe in the separation chamber, and then the water in the quench bath at the bottom of the slag separation chamber And quenched. Gas rising outside the downcomer is discharged from the gas outlet provided in the slag separation chamber, and slag deposited in the quench bath is discharged from the slag outlet.
しかしながら、 前記高温合成ガス冷却装置あるいは旋回溶融炉におけ る発生ガスの冷却および同伴するスラグミス トの捕集方法においては、 それぞれのプロセスにおいて一応の冷却効率ゃスラグミス トの捕集効率 が達成されているものの、 よ り一層効果的な冷却方法や捕集方法の開発 が望まれている。 特に高温旋回炉に関する方法で望まれている改良や開 発を課題として列挙すると以下の通りである。  However, in the method of cooling generated gas and collecting slag mist accompanying the generated gas in the high-temperature synthesis gas cooling device or the swirling melting furnace, a certain cooling efficiency ゃ a collection efficiency of slag mist is achieved in each process. However, there is a need for more effective cooling and collection methods. In particular, improvements and developments that are desired in methods related to high-temperature swirl furnaces are listed below as issues.
( a ) 高温旋回炉発生ガスを下降管内部で従来の技術、 例えば下降管 接合部に設けた補助スプレーによる管内壁面の冷却およびガス冷却よ り も一層効果的に冷却させる方法の関発。  (a) Involvement of a method for cooling the gas generated from the high-temperature swirling furnace inside the downcomer pipe by conventional techniques, for example, cooling the inner wall of the pipe by an auxiliary spray provided at the junction of the downcomer pipe and cooling gas more effectively than gas cooling.
( b ) 発生ガスに同伴したスラグミス トを下降管内面の冷劫水の濡壁 流れおよび下降管内部全体に発生する水滴によ り捕集できるよう に冷却 水の供給方法の改良。  (b) Improvement of the cooling water supply method so that slag mist accompanying the generated gas can be collected by the flow of the cold water on the inner surface of the downcomer pipe and the water droplets generated inside the downcomer pipe.
( c ) ガスの冷却効果を向上させるために、 下降管内部全体に無数の 水滴を発生させる方法の関発。  (c) A method of generating countless water droplets throughout the downcomer to improve the gas cooling effect.
( d ) 旋回しながら吹込まれる発生ガスに同伴したスラグミス トを確 実に捕集するために、 下降管内部の冷却水の濡壁旋回流れの濡壁厚みが 常に一様となるようにする冷却水供給方法の改良。  (d) Cooling to ensure that the thickness of the wetting wall of the swirling flow of cooling water inside the downcomer pipe is always uniform in order to reliably collect slag mist accompanying the generated gas that is blown while swirling. Improvement of water supply method.
本発明の目的は、 高温旋回炉において、 下降管内面の冷却水の漏壁旋 回流れや下降管内部全体に発生させた水滴でスラグミス トを捕集するこ とを含めて、 発生ガスのよ り効果的な冷却方法を提供する ことにある。 発明の開示 SUMMARY OF THE INVENTION It is an object of the present invention to provide a high-temperature swirling furnace, in which An object of the present invention is to provide a more effective cooling method for generated gas, including collecting slag mist by water flow generated in a circulating flow and the entire inside of a downcomer pipe. Disclosure of the invention
本発明者らは上記目的を達成すべく鋭意研究の結果、 下降管内面の冷 却水の濡壁旋回流れの方向を下降管内での発生ガスの旋回流れ方向と同 じにすると、 発生ガスに同伴するスラグミス トを確実に捕集できる こと 一方冷却水の濡壁旋回流れの方向を発生ガスのそれと逆方向にすると、 下降管内部全体に水滴を発生できる等、 前述の課題が解決されるこ とを 見いだし本発明に到達した。  The present inventors have conducted intensive studies to achieve the above object, and as a result, assuming that the direction of the swirling flow of the cooling water on the inner surface of the downcomer is the same as the direction of the swirling flow of the generated gas in the downcomer, the generated gas The slag mist that accompanies can be collected reliably.On the other hand, if the direction of the swirling flow of the cooling water is opposite to that of the generated gas, water droplets can be generated in the entire interior of the downcomer. And arrived at the present invention.
すなわち、 本発明は高温旋回炉の反応室で発生するガスを急冷浴を有 する急冷チャ ンバに下降管を介して吹き込むことによ り前記発生ガスを 冷却するとともにこのガスに同伴するスラグミス トを捕集する場合に、 前記下降管の内壁面に冷却水を供給して形成される冷却水膜を前記下降 管の周方向に流れる旋回水膜として形成するようにしたものである。 旋 回水膜は、 発生ガスをガス急冷チャ ンバ内に導入する下降管の頂部に設 けた冷却水注入部から冷却水を供給するが、 この供給の際に下降管内面 での冷却水の濡壁流れが下降管内の発生ガスの旋回流れに対して同方向 あるいは逆方向の旋回流れとなるよう に下降管の水平断面において接線 方向から注入することで実現できる。 高温の発生ガスが下降管内面に形 成された冷却水の濡壁旋回流れと直接接触させることにより、 冷却水の 一部を蒸発させることで、 発生ガスを冷却する。  That is, the present invention cools the generated gas by blowing the gas generated in the reaction chamber of the high-temperature swirling furnace into a quenching chamber having a quenching bath through a downcomer pipe, and reduces slag mist accompanying the gas. When collecting, the cooling water film formed by supplying the cooling water to the inner wall surface of the downcomer is formed as a swirling water film flowing in the circumferential direction of the downcomer. The swirling water film supplies cooling water from the cooling water injection part provided at the top of the downcomer pipe that introduces the generated gas into the gas quenching chamber.In this supply, the cooling water wets the inner surface of the downcomer pipe This can be realized by injecting the wall flow from the tangential direction in the horizontal cross section of the downcomer so that the swirl flows in the same or opposite direction to the swirl flow of the generated gas in the downcomer. The generated gas is cooled by evaporating a part of the cooling water by bringing the hot generated gas into direct contact with the swirling flow of the cooling water formed on the inner surface of the downcomer pipe.
旋回水膜の流れ方向を発生ガスの旋回流れ方向と同方向とすると、 発 生ガスの旋回流れは確実に維持 · 促進され、 発生ガスに同伴するスラグ ミス トを下降管内面の冷却水の濡壁旋回流れに確実に捕集させる ことが できる。 また、 発生ガスの旋回流れによ り冷却水の濡壁旋回流れを下降 管内面周方向に押し付ける ことによ り、 濡壁厚みを一様なものとするこ とができる。 If the flow direction of the swirling water film is the same as the swirling flow direction of the generated gas, the swirling flow of the generated gas is reliably maintained and promoted, and the slag mist accompanying the generated gas wets the cooling water inside the downcomer pipe. It is possible to reliably capture the flow in the wall swirling flow. In addition, the swirling flow of the generated gas lowers the swirling flow of the cooling water. The wet wall thickness can be made uniform by pressing in the circumferential direction of the inner surface of the pipe.
一方、 旋回水膜の流れ方向を発生ガスの旋回流れ方向と逆方向と して 向流状態とすると、 発生ガスの旋回流れによ り冷却水の濡壁旋回流れの 表層流が乱流状態となり、 表面から下降管内部全体に水滴を発生させる ことができ、 高温ガスと冷却水との接触面積が飛躍的に増大する こ とで 発生ガスの冷却およびスラグミス 卜の捕集効率を高める ことができる。  On the other hand, if the flow direction of the swirling water film is opposite to the swirling flow direction of the generated gas and the counterflow state is established, the swirling flow of the generated gas will cause the surface flow of the wetting wall swirling flow of the cooling water to become turbulent. Water droplets can be generated from the surface to the entire interior of the downcomer pipe, and the contact area between the high-temperature gas and the cooling water can be dramatically increased, thereby increasing the efficiency of cooling the generated gas and collecting slag mist. .
前記下降管を円筒形状と して旋回水膜を形成するよう にすれば、 一様 な冷却水濡壁旋回流れが形成できる とともに、 反応室からの発生ガスの 旋回流れを維持することができる。 一方、 下降管を逆円錐筒形状とする ことで、 高温の発生ガスとの接触により冷却水の一部が蒸発して失われ ても、 旋回水膜は前記下降管の軸方向下向きに沿って旋回半径が小さく なるように設定されているので、 水膜厚さが均一化され、 適度な厚みを 下降管の全長に亙って確保することができ、 下降管の保護機能を維持で さる。  If the downcomer is formed in a cylindrical shape to form a swirling water film, a uniform swirling flow of the cooling water wet wall can be formed, and the swirling flow of the gas generated from the reaction chamber can be maintained. On the other hand, by forming the downcomer into an inverted conical cylindrical shape, even if part of the cooling water evaporates and is lost due to contact with the hot generated gas, the swirling water film extends along the axial direction of the downcomer. Since the turning radius is set to be small, the water film thickness is made uniform, an appropriate thickness can be secured over the entire length of the downcomer, and the protection function of the downcomer can be maintained.
下降管の内壁面に形成される濡壁旋回流れを形成するために用いられ る前記冷却水の注入本数は 1 本も し く は複数本であって、 その合計流量 が下降管頂部内周の単位浸辺長当た り 2 0 m 3 Z h Z m以上とすればよ い。 浸辺長 (We t t e d P e r i m e t e r ) とは、 導管内あるいは開渠内を流体が 流れている時の固体壁と流体とが接触している部分の辺の長さである。 上記値以下では、 冷却水量が不足して下降管の表面上を流れるときに全 体が濡れず、 濡壁旋回流れを全面に形成することができなく なるからで ある。 濡壁が全面に形成されずに斑になると、 反応室から流下した溶融 スラグが付着してしまい、 それが核となりスラグが更に付着して下降管 を閉塞させる。 また、 濡壁が形成されない部分は反応室からの高温ガス と下降管内面壁 (金属面) が直接接触し、 局所的に高温に晒される こと になる。 したがって部分的に濡れない斑模様となる ことを防止するため に、 下降管頂部内周の単位浸辺長当たり 2 0 m 3 Z h Z m以上とする必 要がある。 The number of cooling water injections used to form the wetting wall swirl flow formed on the inner wall surface of the downcomer pipe is one or more, and the total flow rate is the inner circumference of the top part of the downcomer pipe. 20 m 3 Zh per unit immersion length may be set to Z m or more. The wetted perimeter is the length of the side where the fluid is in contact with the solid wall when the fluid is flowing in a conduit or open channel. If the cooling water amount is less than the above value, the whole does not get wet when flowing on the surface of the downcomer due to insufficient cooling water, so that the swirling flow of the wetting wall cannot be formed on the entire surface. If the wet wall is not formed on the entire surface and becomes mottled, the molten slag flowing down from the reaction chamber adheres, and becomes nucleus, and the slag further adheres and blocks the downcomer pipe. In the area where the wetting wall is not formed, the hot gas from the reaction chamber and the inner wall of the downcomer (metal surface) come into direct contact and are locally exposed to high temperature. become. Therefore, in order to prevent the formation of a mottled pattern that is not partially wetted, it is necessary to set it to 20 m 3 ZhZm or more per unit immersion length of the inner circumference of the downcomer pipe top.
また、 前記冷却水の旋回方向が下降管内での発生ガスの旋回方向に対 して逆方向であって、 下降管内部全体に水滴を発生させるための下降管 内のガス旋回流速は、 例えば常圧系の場合 3 . 0 m Z s 以上とすればよ い。 旋回流を伴ったガスの流れに杭して下降管の上端部から冷却水をガ スの旋回方向と反対に旋回させて流すと、 冷却水の流速が速く なるにし たがって、 次第に冷却水の表面が波立つとともに、 かつ水滴ができるた め、 反応室からく る旋回ガスと接触する気液接触面積が飛躍的に増大す る。 ところが、 発生ガスの旋回速度が 3 . O m Z s 未満では、 冷却水の 波立ち現象および水滴の発生が生じることがなく 、 冷却効率も小さい。 したがって、 旋回冷却水膜の表面に波立ちを発生させるためのガス旋回 速度と して上記値以上が必要なのである。  Further, the turning direction of the cooling water is opposite to the turning direction of the generated gas in the downcomer, and the gas swirling flow rate in the downcomer for generating water droplets in the entire downcomer is, for example, constant. In the case of a pressure system, it should be 3.0 mZ s or more. When the cooling water is swirled from the upper end of the downcomer and swirled in the opposite direction to the gas flow, the cooling water gradually increases as the cooling water flow speed increases. Since the surface is wavy and water droplets are formed, the gas-liquid contact area that comes into contact with the swirling gas coming from the reaction chamber is dramatically increased. However, when the swirling speed of the generated gas is less than 3.0 OmZs, the cooling water does not undulate and the generation of water droplets does not occur, and the cooling efficiency is low. Therefore, it is necessary that the gas swirl speed to generate waving on the surface of the swirl cooling water film is equal to or higher than the above value.
更に、 前記下降管頂部に設けられる冷却水注入部の方式は下降管の外 周側に冷却水の旋回流路を形成して溢流させる方式もしく は、 下降管の 内部に冷却水の旋回流路を形成して旋回水膜を形成するガイ ド板方式と して構成することが可能である。 図面の簡単な説明  Further, the cooling water injection section provided at the top of the downcomer pipe may be configured such that a cooling water swirling flow path is formed on the outer peripheral side of the downcomer pipe to overflow the cooling water, or the cooling water is swirled inside the downcomer pipe. It can be configured as a guide plate system that forms a swirling water film by forming a flow path. BRIEF DESCRIPTION OF THE FIGURES
【図 1 】  【Figure 1 】
反応室とガス急冷チャ ンバを有する本発明に用いられる高温旋回炉の 断面構成図である。  FIG. 1 is a cross-sectional configuration diagram of a high-temperature swirl furnace used in the present invention having a reaction chamber and a gas quenching chamber.
【図 2】  【Figure 2】
図 1 の矢視 Aから見た水平断面構成図である。  FIG. 2 is a horizontal cross-sectional configuration view as viewed from an arrow A in FIG.
【図 3】 ガス急冷チャ ンバの下降管を円筒形状として実施例を示す断面図であ る。 [Figure 3] FIG. 4 is a cross-sectional view showing an example in which the downcomer of the gas quenching chamber has a cylindrical shape.
【図 4】  [Fig. 4]
図 3 の冷却水注入部の水平断面図である。  FIG. 4 is a horizontal sectional view of a cooling water injection unit in FIG. 3.
【図 5】  [Figure 5]
ガス急冷チャ ンバの下降管を逆円錐筒形状と した実施例を示す断面図 である。  FIG. 6 is a cross-sectional view showing an embodiment in which the downcomer of the gas quenching chamber has an inverted conical cylindrical shape.
【図 6】  [Fig. 6]
ガス急冷チャ ンバの冷却水注入を下降管の外周側に形成して溢流され る方式と した場合の実施形態を示す断面図である。  FIG. 6 is a cross-sectional view showing an embodiment in a case where the cooling water injection of the gas quenching chamber is formed on the outer peripheral side of the downcomer and overflows.
【図 7】  [Fig. 7]
図 6 の冷却水注入部の水平断面図である。  FIG. 7 is a horizontal sectional view of a cooling water injection part in FIG. 6.
【図 8】  [Fig. 8]
ガス急冷チャ ンバの冷却水注入を下降管内周側に形成するガイ ド板方 式とした場合の実施形態を示す断面図である。  FIG. 7 is a cross-sectional view showing an embodiment in a case where a guide plate system in which cooling water is injected into a gas quenching chamber on the inner peripheral side of a downcomer pipe is used.
【図 9】  [Fig. 9]
図 8 の冷却水注入部の水平断面図である。  FIG. 9 is a horizontal sectional view of the cooling water injection unit in FIG.
【図 1 0】  [Fig. 10]
急冷チャ ンバおよび下降管を有する従来の高温合成ガス冷却装置の一 例を示す概要断面図である。 FIG. 2 is a schematic sectional view showing an example of a conventional high-temperature syngas cooling device having a quenching chamber and a downcomer pipe.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 ガス急冷チャ ンバ内の下降管頂部に設けた冷却水注入部か ら冷却水を供給して濡壁を形成する際、 下降管内面での冷却水の濡壁旋 回流れが下降管内の発生ガスの旋回流れに対して同方向あるいは逆方向 の旋回流れになるよう に下降管の水平断面において接線方向から冷却水 を注入する点に基本的特徴がある。  According to the present invention, when the cooling water is supplied from a cooling water injection portion provided at the top of the downcomer pipe in the gas quenching chamber to form a wetting wall, the swirling flow of the cooling water on the inner surface of the downcomer pipe descends. The basic feature is that cooling water is injected from the tangential direction in the horizontal section of the downcomer so that the swirling flow of the generated gas in the pipe is in the same direction or in the opposite direction.
図 1 は本発明に係る方法を実現するための装置構成を示す高温旋回炉 の断面構成図、 図 2 は図 1 の矢視 Aから見た水平断面構成図であって、 これらの図を参照して以下説明する。  FIG. 1 is a cross-sectional view of a high-temperature swirl furnace showing an apparatus configuration for realizing the method according to the present invention, and FIG. 2 is a horizontal cross-sectional view as viewed from an arrow A in FIG. This will be described below.
図に示しているよう に、 上記装置は上部の前ガス化工程で発生したガ スが導入される上部の反応室 1 と下部のガス急冷チャ ンバ 2 を備えてい る。 この両者は狭い開口面積を持つスロ一 ト部 3 を通じて連絡されてい る。 ガス急冷チャンバ 2 内には前記スロー ト部 3 に連通される下降管 4 が設けられており、 この下降管 4は、 その下端がガス急冷チャ ンバ 2 内 の急冷浴 5 内に浸漬され、 またガス急冷チャ ンバ 4の上部空間を内外に 区画している。 したがって、 スロー ト部 3 からのガスは下降管 4内部の 上部空間冷却領域に導入された後、 急冷浴 5 内に吹き込まれ、 下降管 4 外部のガス急冷チャ ンバ 2 の上部空間に吹き上がらせるようにしている , 反応室 1 の壁面に沿ってガス急冷チャンバ 2 に流下する溶融スラグと ガス中のスラグミス トが急冷浴 5 によ り分離冷却されて水砕スラグとな るが、 これを排出するスラグ排出口 6がガス急冷チャンバ下端部に設け られている。 また、 下降管 4の外周側のガス急冷チャンバ空間部に通じ るガス排出口 7 が設けられ、 ここから冷却されたガスを外部に導出する ようにしている。 また、 ガス急冷チャ ンバ 2 における急冷浴 5 の水位よ り下方位置にはスラグ水排出口 8が設けられている。  As shown in the figure, the above apparatus has an upper reaction chamber 1 into which gas generated in the pre-gasification step is introduced, and a lower gas quenching chamber 2. Both are communicated through a slot 3 with a small opening area. A downcomer 4 communicating with the throat section 3 is provided in the gas quenching chamber 2, and the lower end of the downcomer 4 is immersed in a quench bath 5 in the gas quenching chamber 2. The upper space of the gas quenching chamber 4 is divided inside and outside. Therefore, the gas from the throat section 3 is introduced into the upper space cooling area inside the downcomer 4 and then blown into the quench bath 5 to be blown up into the upper space of the gas quenching chamber 2 outside the downcomer 4 The molten slag flowing down to the gas quenching chamber 2 along the wall of the reaction chamber 1 and the slag mist in the gas are separated and cooled by the quenching bath 5 to become granulated slag, which is discharged. A slag discharge port 6 is provided at the lower end of the gas quenching chamber. Further, a gas outlet 7 is provided which communicates with the gas quenching chamber space on the outer peripheral side of the downcomer 4, from which the cooled gas is led out. A slag water outlet 8 is provided below the water level of the quench bath 5 in the gas quenching chamber 2.
このような構成に加えて、 上記下降管 4 の頂部に冷却水注入部 9 が形 成されており、 この冷却水注入部 9 から冷却水を供給して下降管 4 の内 壁面に濡壁を形成するよう にしている。 この実施例では、 下降管 4 内面 での冷却水による濡壁が旋回水膜となるように、 冷却水注入方法を下降 管の水平断面において接線方向となるよう に設定している。 この濡壁旋 回流れが下降管内の発生ガスの旋回流れに対して同方向あるいは逆方向 の旋回流れになるようにしている。 In addition to this configuration, a cooling water injection section 9 is formed at the top of the downcomer pipe 4. The cooling water is supplied from the cooling water injection section 9 so that a wet wall is formed on the inner wall surface of the downcomer pipe 4. In this embodiment, the cooling water injection method is set to be tangential to the horizontal cross section of the downcomer pipe so that the wetting wall of the inner surface of the downcomer pipe 4 formed by the cooling water forms a swirling water film. The swirling flow of the wetting wall is made to be the same or opposite to the swirling flow of the generated gas in the downcomer pipe.
最初に反応室 1 の構成を説明する。 反応室 1 における発生ガスを旋回 させるために、 図 2 に示しているよう に、 ガスの導入線が円形断面の反 応室 1 に対し旋回流れの仮想円 1 0 の接線方向に吹き込まれるように設 定されている。 高温旋回炉では例えば流動層ガス化炉から供給されるガ ス化ガス a と同時に、 反応室 1 の側面からやはり上記旋回流れの仮想円 1 0 の接線方向に沿って炉内に酸素 b とスチーム c が供給される。 これ によ り、 反応室 1 の内部で発生ガスは旋回流れを形成する。  First, the configuration of the reaction chamber 1 will be described. In order to swirl the generated gas in the reaction chamber 1, as shown in Fig. 2, the gas introduction line was blown into the reaction chamber 1 with a circular cross section in the tangential direction of the virtual circle 10 of the swirling flow. It is set. In the high-temperature swirling furnace, for example, simultaneously with the gasification gas a supplied from the fluidized-bed gasification furnace, oxygen b and steam are also introduced into the furnace from the side of the reaction chamber 1 along the tangential direction of the virtual circle 10 of the swirling flow. c is supplied. As a result, the generated gas forms a swirling flow inside the reaction chamber 1.
発生ガスが旋回してスロー ト部 3 を通過し、 下降管 4 の内部に導入さ れるが、 前記冷却水注入部 9から供給される冷却水が、 この下降管 4内 の発生ガスの旋回流れに対して同方向あるいは逆方向の旋回流れとなつ て水膜を形成するようにしている。 下降管 4は図 3 に示しているように スロー ト部 3 よりは大径に形成された円筒形状とされており、 上下の端 縁を鋸歯状に形成しつつ、 下端縁を急冷浴 5 に浸漬させている。 上端縁 の鋸歯は冷却水を溢流させる場合、 装置が傾斜して据え付けられていた 場合であっても濡壁水膜を偏流させることがない。 また、 下端縁の鋸歯 はガスが冷却浴 5から下降管 4 の外面側に移行する際に、 気泡を微細化 して冷却効率を高める作用を発揮させることができる。 下降管 4の管頂 部外周には トラフ 4 1 が形成され、 トラフ 4 1 に導入された冷却水を内 周壁面に溢流させる溢流開口 4 2 を下降管 4 の管頂部に形成している。 これにより水膜を下降管 4の内壁に形成させるようにしている。 この ト ラフ 4 1 を備えた下降管 4の平面図を図 4 に示す。 卜 ラ フ 4 1 は円周溝 と して形成されており、 この 卜 ラフ 4 1 に対して冷却水供給管 4 3が接 線方向に接続している。 冷却水供給管 4 3 は 1 本でもよいが、 不測の事 態に備えて円周方向に等間隔に複数本接続するこ とが望ましい。 このと き、 冷却水の合計流量が下降管頂部内周の単位浸辺長当た り 2 0 m 3 Z h Z m以上として、 下降管 4の内壁面が全面的に濡壁となるようにする ことが望ま しい。 これによ り、 卜ラフ 4 1 内の水流は円周流れとなり、 溢流開口 4 2 によ り下降管 4の内面側に溢流して水膜を形成するが、 こ の水膜は下降管 4 の内壁面で旋回流れとなるのである (図 4実線矢印 W ) 。 この旋回流れ方向は旋回ガスの旋回方向 (図 4破線矢印 G ) と同 一もしく は逆の方向に設定される。 旋回水膜の旋回方向は前記冷却水供 給管 4 3 の接続方向を変更することにより任意に設定できる。 冷却水の 旋回方向を下降管内での発生ガスの旋回方向に対して逆方向とした場合 には (図 4 の状態) 、 旋回水膜の表面を波立たせ下降管内部全体に水滴 を発生させるために、 下降管内のガス旋回流速が、 常圧系の場合 3 . 0 / s 以上とする ことが必要である。 The generated gas swirls and passes through the throat section 3 and is introduced into the downcomer pipe 4. The cooling water supplied from the cooling water injection section 9 causes the swirling flow of the generated gas in the downcomer pipe 4. A water film is formed as a swirling flow in the same or opposite direction. As shown in Fig. 3, the downcomer 4 has a cylindrical shape with a larger diameter than the throat 3, and the upper and lower edges are formed into a saw-tooth shape, while the lower edge is connected to the quench bath 5. It is immersed. The serrations at the top edge do not allow the wetting water film to drift when the cooling water overflows, even when the equipment is installed at an angle. Further, when the gas moves from the cooling bath 5 to the outer surface side of the downcomer pipe 4, the sawtooth at the lower edge can exert an effect of miniaturizing bubbles and increasing cooling efficiency. A trough 41 is formed around the top of the downcomer 4, and an overflow opening 4 2 is formed at the top of the downcomer 4 to allow the cooling water introduced into the trough 41 to overflow to the inner peripheral wall surface. I have. In this way, a water film is formed on the inner wall of the downcomer 4. This FIG. 4 shows a plan view of the downcomer 4 having the rough 4 1. The trough 41 is formed as a circumferential groove, and a cooling water supply pipe 43 is tangentially connected to the trough 41. Although one cooling water supply pipe 43 may be provided, it is desirable to connect a plurality of cooling water supply pipes at equal intervals in the circumferential direction in case of an unexpected event. This and can, Ri total flow rate of cooling water per unit Hitahen length inner periphery downcomer top as 2 0 m 3 or more Z h Z m, as the inner surface of the downcomer 4 is fully wetted-wall It is desirable to do it. As a result, the water flow in the trough 41 becomes a circumferential flow and overflows to the inner surface side of the downcomer pipe 4 through the overflow opening 4 2 to form a water film. The swirling flow occurs on the inner wall of Fig. 4 (solid arrow W in Fig. 4). This swirling flow direction is set to be the same as or opposite to the swirling direction of the swirling gas (the dashed arrow G in FIG. 4). The turning direction of the turning water film can be arbitrarily set by changing the connection direction of the cooling water supply pipe 43. If the cooling water is swirled in the direction opposite to the swirling direction of the generated gas in the downcomer (as shown in Fig. 4), the surface of the swirling water film will be ruffled and water droplets will be generated throughout the downcomer. In addition, the gas swirl velocity in the downcomer must be 3.0 / s or more in the case of a normal pressure system.
図 5 に下降管の他の形状例を示す。 同図は裁頭逆円錐筒形状の下降管 4 Aとしたものである。 このようにすることによ り 、 旋回水膜は前記下 降管 4の軸方向下向きに沿って旋回半径が小さ く なる。 旋回水膜を形成 している冷却水が、 高温の発生ガスとの接触によ り 円錐下降管 4 Aの下 部領域に至るにしたがって蒸発して水量が減少するが、 旋回半径が小さ く なるので、 円錐下降管 4 Aの全長に亙って均一な厚みの濡壁旋回流れ を確保することができる。 この円錐下降管 4 Aの傾斜角は垂直面に対し て 1 〜 5度、 望ましく は 2 〜 3 または 4度の範囲に設定すればよい。 旋 回水膜の厚さを均等化できる角度に設定すればよいのである。  Figure 5 shows another example of the shape of the downcomer pipe. In this figure, a truncated inverted conical cylindrical downcomer 4 A is shown. By doing so, the turning radius of the turning water film decreases along the axial direction of the downcomer 4. The cooling water forming the swirling water film evaporates as it reaches the lower area of the conical downcomer 4A due to contact with the high-temperature generated gas, and the amount of water decreases, but the turning radius decreases. Therefore, a swirling flow of the wetting wall having a uniform thickness can be secured over the entire length of the conical downcomer 4A. The inclination angle of the conical downcomer 4A may be set in the range of 1 to 5 degrees, preferably 2 to 3 or 4 degrees with respect to the vertical plane. The angle should be set so that the thickness of the rotating water film can be equalized.
図 6 、 図 7 は下降管 4の内面に濡壁旋回流れをつく るための他の冷却 水注入方式を示している。 この図示の例は、 溢流堰方式における ト ラフFigures 6 and 7 show other cooling methods to create a swirling swirling flow on the inner surface of the downcomer pipe 4. The water injection method is shown. This example shows the trough in the overflow weir system.
4 1 の溝中央部分にバッフ ァ用の仕切板 1 1 を配置し、 冷却水供給管 4 3 の出口からの流出水が直接溢流開口 4 2 Aに向かわないよう にし、 ト ラフ 4 1 内の外周側から一旦仕切板 1 1 の下縁を潜り込んで ト ラフ 4 1 内周側に至るよう に設定し、 溢流開口 4 2 Aの全周領域から均一に溢れ 出るよう にしている。 これによ り ト ラフ 4 1 内での冷却水の流速を確保 することができるため、 大部分のスラグ水を精製後リサイ クル使用する 場合において、 冷却水に同伴するが除去しきれない微粒子スラグが ト ラ フ内で堆積する こ とを回避できる。 また、 下降管 4の内壁面に形成され る旋回水膜の厚さが周方向で均一化できる。 図 7 において、 実線矢印 W は冷却水の流れ方向、 破線矢印 Gはガスの旋回流れ方向を示している。 上述した実施例は下降管 4の外周側に冷却水の旋回流路を形成して溢 流させる方式を示しているが、 図 8 、 図 9 に示した実施例は下降管 4の 頂端部内周側に冷却水の動圧エネルギーを減衰させることなく旋回流路 を形成して旋回水膜を形成する冷却水注入方式を示している。 下降管 4 の上端側における内側に、 全体と して円筒リ ング状の形状をなすガイ ド 板 1 2 を取り付けている。 このガイ ド板 1 2 は、 上半部を外径が下降管 4 の内径から徐々 に縮径する漏斗状に形成し、 下半部を下降管 4 に開口 された冷却水供給管 4 3の開口部分に対面する小径筒状に形成している, 冷却水供給管 4 3からの冷却水は、 図 9 に示しているように、 先の実施 例と同様に、 下降管 4の接線方向から導入するが、 この導入冷却水は下 降管 4ガイ ド板 1 2 によって形成された環状流路に沿って旋回され、 下 降管 4 とガイ ド板 1 2 の小径筒部との間の開口から下降管 4の内壁面に 流出する。 ガイ ド板 1 2が冷却水の動圧エネルギーを減衰させる ことの ないよう に流れを規制するので、 下降管 4の内壁面に十分な旋回エネル ギーを持つ濡壁流れを形成する。 これによ り冷却水の全体を旋回水膜と して作用させるこ とができる。 また、 ガイ ド板 1 2 を下降管 4内の頂部 に配置するだけでよいので、 構造的にも簡易化できる。 ガイ ド板 1 2 は 高温ガスに晒されるが、 冷却水によって冷却状態が維持されるので、 熱 衝撃から保護される。 このような構成では、 旋回流が下降管 4 の内壁面 側に形成されるが、 ガイ ド板 1 2 の上部漏斗状部分によって反応室 1側 の耐火レンガに冷却水が飛散する こ とは阻止される。 4 Place a buffer partition plate 1 1 in the center of the groove of 1 1 so that the effluent from the outlet of the cooling water supply pipe 4 3 does not go directly to the overflow opening 4 2 A. The lower edge of the partition plate 11 is once sunk into the trough 41 from the outer periphery of the trough 41 so as to uniformly overflow from the entire peripheral area of the overflow opening 42A. As a result, the flow rate of the cooling water in the trough 41 can be secured, so that when most of the slag water is recycled after purification, the fine particle slag that accompanies the cooling water but cannot be completely removed is used. Can be prevented from accumulating in the trough. Further, the thickness of the swirling water film formed on the inner wall surface of the downcomer pipe 4 can be made uniform in the circumferential direction. In FIG. 7, the solid arrow W indicates the flow direction of the cooling water, and the broken arrow G indicates the swirling flow direction of the gas. Although the above-described embodiment shows a method in which a cooling water swirl flow path is formed on the outer peripheral side of the downcomer 4 and overflows, the embodiments shown in FIGS. 8 and 9 show the inner periphery of the top end of the downcomer 4. A cooling water injection method is shown in which a swirling flow path is formed without attenuating the dynamic pressure energy of the cooling water on the side to form a swirling water film. A guide plate 12 having a cylindrical ring shape as a whole is attached inside the upper end side of the downcomer 4. The guide plate 12 has a funnel shape in which the upper half portion has an outer diameter gradually reduced from the inner diameter of the downcomer 4, and the lower half has a cooling water supply pipe 4 3 opened to the downcomer 4. As shown in FIG. 9, the cooling water from the cooling water supply pipe 43, which is formed in a small-diameter cylindrical shape facing the opening portion, flows from the tangential direction of the downcomer pipe 4 as in the previous embodiment. The introduced cooling water is swirled along the annular flow path formed by the downcomer 4 guide plates 12, and the opening between the downcomer 4 and the small-diameter tube portion of the guide plates 12 is opened. Flows out to the inner wall surface of the downcomer pipe 4. Since the guide plate 12 regulates the flow so as not to attenuate the dynamic pressure energy of the cooling water, a wet wall flow having sufficient swirling energy is formed on the inner wall surface of the downcomer 4. As a result, the entire cooling water is It can be made to act. In addition, since it is only necessary to dispose the guide plate 12 at the top of the downcomer pipe 4, the structure can be simplified. Although the guide plate 12 is exposed to the high-temperature gas, the cooling state is maintained by the cooling water, so that it is protected from thermal shock. In such a configuration, a swirl flow is formed on the inner wall side of the downcomer pipe 4, but the upper funnel-shaped portion of the guide plate 12 prevents the cooling water from scattering on the refractory brick on the reaction chamber 1 side. Is done.
旋回濡壁流れを形成する際、 溢流堰方式やガイ ド板方式を用いる こと によって、 冷却水の水滴が飛散してスロー ト部 3 の耐火レンガを濡らす こ とがない。 冷却水によ り反応室 1 側の耐火レンガを濡らすと、 高温に 加熱された耐火レンガが急冷され、 ク ラ ックが生じるため、 絶対に避け なければならない。 そこで上記方式を用いることにより冷却水の水滴が 耐火レンガに飛散させることなく 、 下降管 4の内面に均等厚さの旋回水 膜を形成する ことができる。  When the swirling wetting wall flow is formed, the overflow weir method and the guide plate method are used, so that the water droplets of the cooling water do not scatter and wet the refractory brick in the throat section 3. Wetting the refractory bricks on the reaction chamber 1 side with cooling water rapidly cools the refractory bricks heated to high temperature, causing cracks. Therefore, by using the above-mentioned method, it is possible to form a swirling water film having a uniform thickness on the inner surface of the downcomer 4 without causing water droplets of the cooling water to scatter on the refractory brick.
と ころで、 反応室 1 で発生した溶融スラグはスロー ト部 3 を介して流 下するが、 このとき、 スロー ト部 3 に耐火レンガが突出した形を呈して いる。 このスロー ト部 3 の最内径部から下降管 4 までの距離 S (図 1参 照) が重要である。 すなわち、 距離 Sが短いと溶融スラグが反応室 1 か らスロー ト部 3 を介して流下した際に、 溶融スラグが下降管 4の表面で 旋回水膜を形成している冷却水とできるだけ接触するこ とを防止する方 がよく 、 このためできるだけ溶融スラグの流れの影響を受けないように 距離 S を適宜に保持することが大切となる。 例え、 この距離 S を保持し ていても冷却水の勢いが強すぎると、 水滴飛散による耐火レンガの冷却 現象が惹起されるため、 適宜な S を保持した上で、 水膜の旋回流速を保 持することが大切となる。  At this time, the molten slag generated in the reaction chamber 1 flows down through the throat portion 3, and at this time, the refractory brick has a shape protruding from the throat portion 3. The distance S from the innermost part of the throat 3 to the downcomer 4 (see Fig. 1) is important. That is, when the distance S is short, when the molten slag flows down from the reaction chamber 1 through the throat section 3, the molten slag contacts as much as possible the cooling water forming the swirling water film on the surface of the downcomer pipe 4. It is better to prevent this, so it is important to keep the distance S appropriately so as to minimize the influence of the flow of the molten slag. For example, if the cooling water is too strong even if the distance S is maintained, the phenomenon of cooling the refractory bricks due to the splashing of water droplets will be caused. It is important to have.
上述実施例による作用は次のよう になる。 反応室 1 からの発生ガスは 旋回流れを保ったまま、 スロー ト部 3 を通過してガス急冷チャ ンバ 2 に 入る。 また反応室 1 内で発生する溶融スラグの大部分は反応室壁面に沿 つてガス急冷チャ ンバ 2 に流下する力 一部のスラグミス トは発生ガス に同伴された状態でスロー ト部 3 からガス急冷チャ ンバ 2へ送られる。 ガス急冷チャ ンバ 2 は反応室 1 で発生する高温の発生ガスを急冷すると ともに、 反応室壁面に沿ってガス急冷チャンバへと流下する溶融スラグ および発生ガスに同伴する溶融スラグミス トを分離冷却し、 水砕スラグ 化する。 The operation according to the above embodiment is as follows. The gas generated from the reaction chamber 1 passes through the throat section 3 to the gas quenching chamber 2 while maintaining the swirling flow. enter. Most of the molten slag generated in the reaction chamber 1 flows down to the gas quenching chamber 2 along the reaction chamber wall.Some slag mist is quenched from the throat section 3 while being entrained by the generated gas. Sent to chamber 2. The gas quenching chamber 2 quenches the hot gas generated in the reaction chamber 1 and separates and cools the molten slag flowing down to the gas quenching chamber along the wall of the reaction chamber and the molten slag mist accompanying the generated gas. Granulated slag.
ガス急冷チャ ンバ 2 の下降管 4内部は高温の発生ガスおよび溶融スラ グが通過する ことで高温雰囲気にさ らされる力 、 下降管 4 の内面にはそ の頂部にある冷却水注入部 9 において下降管 4 の水平断面に対して接線 方向から供給する冷却水 e によって濡壁旋回流れを形成させているため 熱衝撃から保護され材料の損傷を回避できるとともに、 付着した固化ス ラグを下降管内面で成長させることなく急冷浴 5へと流下させることが できる。  The inside of the downcomer 4 of the gas quenching chamber 2 is exposed to the high-temperature atmosphere by the passage of the high-temperature generated gas and the molten slag. The inner surface of the downcomer 4 has a cooling water injection section 9 at the top The cooling water e supplied from the tangential direction to the horizontal cross section of the downcomer pipe 4 forms a swirling swirling flow, so that it is protected from thermal shocks and damage to the material can be avoided. It can flow down to the quench bath 5 without growing on the surface.
ここで、 スラグミス トを同伴する旋回ガスが通流し、 溶融スラグが流 下する下降管 4 、 4 Aの内壁面には、 旋回水膜が形成され、 濡壁を形成 している。 冷却水の濡壁旋回流れ方向を下降管内での発生ガスの旋回流 れ方向に対して同方向にすると、 発生ガスの旋回流れは確実に維持 · 促 進されて、 発生ガスに同伴するスラグミス トを下降管内面の冷却水の濡 壁旋回流れに確実に捕集させる こ とができる。 また、 発生ガスの旋回流 れによ り冷却水の濡壁旋回流れを下降管内面周方向に押し付けることに よ り、 濡壁厚みを一様なものとする ことができる。  Here, a swirling water film is formed on the inner wall surface of the downcomers 4, 4A through which the swirling gas accompanying the slag mist flows and the molten slag flows down, forming a wet wall. If the swirling flow direction of the cooling water is the same as the swirling flow direction of the generated gas in the downcomer, the swirling flow of the generated gas is reliably maintained and promoted, and the slag mist accompanying the generated gas is maintained. Can be reliably trapped in the swirling flow of the cooling water on the inner surface of the downcomer pipe. Further, the swirling flow of the generated gas presses the wetting wall swirling flow of the cooling water in the circumferential direction of the inner surface of the downcomer pipe, so that the thickness of the wetting wall can be made uniform.
逆に、 冷却水の濡壁旋回流れ方向を発生ガスの旋回流れ方向に対して 逆方向にして向流状態とすると、 発生ガスの旋回流れにより冷却水の濡 壁旋回流れの表層流が乱流状態となって波立ち、 表面から下降管内部全 体に水滴を発生させることができる。 これによ り高温の発生ガスと冷却 水との接触面積が飛躍的に増大し、 発生ガスの冷却効果およびスラグミ ス トの捕集効率が向上する。 なお、 下降管内部全体に水滴を発生させる には、 下降管内のガス旋回流速と して常圧系の場合、 3 . O m Z s 以上 が必要である。 Conversely, if the direction of the swirling flow of the cooling water is opposite to the direction of the swirling flow of the generated gas, and the counterflow state is established, the swirling flow of the generated gas causes the surface flow of the swirling flow of the cooling water to become turbulent. It becomes wavy in a state, and water droplets can be generated from the surface to the entire inside of the downcomer pipe. This allows high-temperature generated gas and cooling The area of contact with water is dramatically increased, and the cooling effect of generated gas and the efficiency of collecting slag mist are improved. In addition, in order to generate water droplets in the entire downcomer, in the case of a normal pressure system, the gas swirling velocity in the downcomer must be 3.0 OmZs or more.
高温の発生ガスが下降管内面に形成された冷却水の濡壁旋回流れと直 接接触する ことによ り、 冷却水の一部を蒸発させることで、 発生ガスを 冷却する効果がある。 特に、 冷却水の供給方向をガス旋回方向と逆方向 にして濡壁旋回流れを形成する ことにより、 波立ちによ り水滴を発生さ せる ことができるので、 冷却水と高温ガスとの接触が顕著となり、 従来 のよう に (第 1 0 図) 輻射伝熱のみでなく 、 強制対流伝熱となるため、 ガスの冷却効率が飛躍的に改善される。  The high-temperature generated gas is in direct contact with the swirling flow of the cooling water formed on the inner surface of the downcomer pipe, thereby evaporating a part of the cooling water, which has the effect of cooling the generated gas. In particular, by forming the wetting wall swirling flow with the supply direction of the cooling water being opposite to the gas swirling direction, water droplets can be generated by waving, and the contact between the cooling water and the high-temperature gas is remarkable. As in the conventional case (Fig. 10), not only radiative heat transfer but also forced convection heat transfer is performed, so that the gas cooling efficiency is dramatically improved.
また、 図 3 に示しているように、 下降管 4形状を円筒形状とすること で、 一様な冷却水の濡壁旋回流れが形成できるとともに反応室 1 からの 発生ガスの旋回流れを維持する ことができる。 さ らに図 5 に示すように 逆円錐筒形状とするこ とで、 高温の発生ガスとの接触によ り冷却水の一 部が蒸発し失われても冷却水膜の旋回半径が小さくなるので、 適度の厚 みの濡壁旋回流れを確保することができる。  In addition, as shown in Fig. 3, by making the shape of the downcomer pipe 4 cylindrical, a uniform wetting wall swirling flow of the cooling water can be formed and the swirling flow of the generated gas from the reaction chamber 1 is maintained. be able to. Furthermore, as shown in Fig. 5, the inverted conical cylindrical shape reduces the turning radius of the cooling water film even if a part of the cooling water evaporates and is lost due to contact with the high-temperature generated gas. Therefore, it is possible to ensure a moderately thick swirling flow.
以上述べたよう に、 本発明によれば、 下降管内面の冷却水の濡壁流れ は高温の発生ガスが直接冷却水と接触し、 この冷却水の一部が蒸発する ことで発生ガスを冷却するとともに、 この濡壁流れを旋回流れとし、 冷 却水の流線長さを長く して旋回ガスとの接触時間を長くすることができ る。 これによ り旋回水膜によるガス冷却効率とスラグミス トの捕集効率 が格段に向上する。 特に発生ガスの旋回方向と逆方向に濡壁旋回流れ方 向を設定することによ り、 濡壁表面から無数の水滴が発生し、 ガスとの 接触面積が大きく なり 、 よ り効果的に発生ガスを冷却することができる ' 冷却水の濡壁旋回流れ方向を発生ガスの旋回流れ方向と同じにしても、 5 発生ガスによる圧力により、 水膜の旋回流れを維持しながらスラグミス トを捕集でき、 かつ濡壁厚みを一様に保持できる。 産業上の利用可能性 As described above, according to the present invention, the flow of the wetting wall of the cooling water on the inner surface of the downcomer pipe is cooled by direct contact of the high-temperature generated gas with the cooling water and evaporation of a part of the cooling water. At the same time, the flow of the wetting wall can be used as a swirling flow, and the streamline length of the cooling water can be increased to prolong the contact time with the swirling gas. This significantly improves the gas cooling efficiency and the slag mist collection efficiency of the swirling water film. In particular, by setting the swirling flow direction in the opposite direction to the swirling direction of the generated gas, countless water droplets are generated from the surface of the wetting wall, and the contact area with the gas is increased, resulting in more effective generation. The gas can be cooled. 'Even if the swirling flow direction of the cooling water is the same as the swirling flow direction of the generated gas, 5 By the pressure of the generated gas, slag mist can be collected while maintaining the swirling flow of the water film, and the thickness of the wet wall can be maintained uniformly. Industrial applicability
本発明は、 可燃性廃棄物を燃焼してガス化し、 あるいは石炭をガス化 する際に用いられる高温旋回炉に利用する ことができる。  INDUSTRIAL APPLICABILITY The present invention can be used in a high-temperature swirl furnace used when burning combustible waste to gasify or coal.

Claims

請求の範囲 The scope of the claims
1 . 高温旋回炉の反応室で発生するガスを急冷浴を有する急冷チャ ンバ に下降管を介して吹き込むことによ り前記発生ガスを冷却するとともに このガスに同伴するスラグミス ト を捕集する方法であって、 1. A method of cooling the generated gas by blowing gas generated in the reaction chamber of the high-temperature swirling furnace into a quenching chamber having a quenching bath through a downcomer pipe, and collecting slag mist accompanying the gas. And
前記下降管の内壁面に冷却水を供給して形成される冷却水膜を前記下 降管の周方向に流れる旋回水膜と して形成することを特徴とする発生ガ スの冷却および同伴スラグミス 卜の捕集方法。  A cooling water film formed by supplying cooling water to the inner wall surface of the downcomer pipe as a swirling water film flowing in a circumferential direction of the downcomer pipe, wherein cooling of the generated gas and accompanying slag mistakes are performed. How to collect birds.
2 . 前記旋回水膜は発生ガスの旋回方向と逆方向にして発生ガスと向流 接触させる こ とを特徴とする請求項 1 に記載の発生ガスの冷却および同 伴スラグミス 卜の捕集方法。  2. The method for cooling generated gas and collecting accompanying slag mist according to claim 1, wherein the swirling water film is brought into countercurrent contact with the generated gas in a direction opposite to the direction of rotation of the generated gas.
3 . 前記旋回水膜は前記下降管の軸方向下向きに沿って旋回半径が小さ く なるよう に設定することによ り水膜厚さを均一化したことを特徴とす る発生ガスの冷却および同伴スラグミス 卜の捕集方法。  3. The water film thickness is made uniform by setting the swirling water film so as to have a small turning radius along the axially downward direction of the downcomer pipe, so that the generated gas cooling and cooling can be performed. Collection method of accompanying slag mist.
4 . 高温旋回炉の反応室で発生するガスを急冷浴を有する急冷チャ ンバ に下降管を介して吹き込むことによ り前記発生ガスを冷却するとともに このガスに同伴するスラグミス トを捕集する方法であって、 4. A method of cooling the generated gas by blowing gas generated in the reaction chamber of the high-temperature swirling furnace into a quenching chamber having a quenching bath through a downcomer pipe and collecting slag mist accompanying the gas. And
前記下降管の内壁面に冷却水を供給して形成される冷却水膜を前記下 降管の周方向に流れる旋回水膜と して形成するとともに、 前記発生ガス の旋回方向と逆方向にして発生ガスと向流接触させ、 かつ前記下降管を 逆円錐筒状に形成して前記旋回水膜を前記下降管の軸方向下向きに沿つ て旋回半径が小さ く なるよう に設定してなることを特徴とする発生ガス の冷却および同伴スラグミス 卜の捕集方法。  A cooling water film formed by supplying cooling water to the inner wall surface of the downcomer pipe is formed as a swirling water film flowing in the circumferential direction of the downcomer pipe, and is formed in a direction opposite to the swirling direction of the generated gas. The downflow pipe is formed in an inverted conical cylindrical shape so as to be in countercurrent contact with the generated gas, and the swirling water film is set so as to have a small turning radius along the axial downward direction of the downcomer pipe. A method for cooling generated gas and collecting accompanying slag mist.
5 . 前記冷却水の注入本数は 1 本もし く は複数本であって、 その合計流 量が下降管頂部内周の単位浸辺長当たり 2 0 m 3 / h Z m以上である請 求項 1 ないし 4のいずれか 1 記載の方法。 5. The injection number of the cooling water is a one if Ku is more present, it is the sum flow amount 2 0 m 3 / h Z m or more per unit Hitahen length inner periphery downcomer top請Motomeko The method according to any one of 1 to 4.
6 . 前記冷却水の旋回方向が下降管内での発生ガスの旋回方向に対して 逆方向であって、 下降管内部全体に水滴を発生させるための下降管内の ガス旋回流速が、 常圧系の場合 3 . 0 m Z s以上である請求項 1ないし 4のいずれか 1記載の方法。 6. The swirling direction of the cooling water is opposite to the swirling direction of the generated gas in the downcomer, and the gas swirl flow rate in the downcomer for generating water droplets in the entire downcomer is normal pressure system. The method according to any one of claims 1 to 4, wherein the case is 3.0 mZs or more.
7 . 前記下降管頂部に設けられる冷却水注入部は下降管の外周側に旋回 流路を形成して溢流させることを特徴とする請求項 1 ないし 4のいずれ か 1記載の方法。  7. The method according to any one of claims 1 to 4, wherein the cooling water injection section provided at the top of the downcomer forms a swirling flow path on the outer peripheral side of the downcomer to overflow.
8 . 前記下降管頂部に設けられる冷却水注入部は下降管の内周側に旋回 流路を形成して下降管の内壁面に流下させることを特徴とする請求項 1 ないし 4のいずれか 1記載の方法。  8. The cooling water injection section provided at the top of the downcomer forms a swirling flow path on the inner peripheral side of the downcomer and flows down to the inner wall surface of the downcomer. The described method.
PCT/JP1999/007226 1998-06-24 1999-12-22 Methods of cooling producer gas from high-temperature swirl furnace and of arresting entrained slag mist WO2001045824A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17777498A JP3777801B2 (en) 1998-06-24 1998-06-24 Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist
PCT/JP1999/007226 WO2001045824A1 (en) 1998-06-24 1999-12-22 Methods of cooling producer gas from high-temperature swirl furnace and of arresting entrained slag mist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17777498A JP3777801B2 (en) 1998-06-24 1998-06-24 Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist
PCT/JP1999/007226 WO2001045824A1 (en) 1998-06-24 1999-12-22 Methods of cooling producer gas from high-temperature swirl furnace and of arresting entrained slag mist

Publications (1)

Publication Number Publication Date
WO2001045824A1 true WO2001045824A1 (en) 2001-06-28

Family

ID=26440233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/007226 WO2001045824A1 (en) 1998-06-24 1999-12-22 Methods of cooling producer gas from high-temperature swirl furnace and of arresting entrained slag mist

Country Status (2)

Country Link
JP (1) JP3777801B2 (en)
WO (1) WO2001045824A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018677B1 (en) 2009-05-15 2011-03-04 차은정 Air cleaner
KR101049063B1 (en) * 2011-01-31 2011-07-15 차은정 Filter for utilizing water and air cleaner and heat exchanger by using thereof
CN113563931A (en) * 2021-08-03 2021-10-29 山东明泉新材料科技有限公司 Technological method integrating gas gathering reaction and gas separation

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405801B1 (en) * 2000-05-01 2003-11-15 한국에너지기술연구원 Pulsation control system in the quencher of the submerged-quench incinerator
US6613127B1 (en) 2000-05-05 2003-09-02 Dow Global Technologies Inc. Quench apparatus and method for the reformation of organic materials
KR100438284B1 (en) * 2001-05-02 2004-07-02 병 도 김 An Industrial Waste Incinerator Using Vortex Tube Theory
JP4522895B2 (en) * 2005-03-16 2010-08-11 日鉱金属株式会社 Exhaust gas cleaning cooling tower
DE102009032760B3 (en) * 2009-07-11 2011-02-17 Karlsruher Institut für Technologie Combustion plant and process with thermal barrier coating on wet slag remover
CN104019460B (en) * 2014-06-20 2016-08-24 航天长征化学工程股份有限公司 A kind of water wall gasifier dross method and apparatus
CN104524906B (en) * 2015-01-26 2016-07-13 绿地环保科技股份有限公司 Gas from oil burning depurator
CN104634102B (en) * 2015-02-13 2016-08-17 阳谷祥光铜业有限公司 A kind of floating method of smelting of reversely rotation, nozzle and metallurgical equipment
JP5855784B1 (en) * 2015-07-30 2016-02-09 新日鉄住金エンジニアリング株式会社 Wet wall structure
CN110319451A (en) * 2019-07-10 2019-10-11 杭州中昊科技有限公司 Quencher suitable for high-temperature flue gas
CN111706872B (en) * 2020-07-01 2021-11-19 湖南捷瑞化工有限公司 Water-soluble type environmental protection chimney based on atmospheric pressure
CN114459248B (en) * 2022-01-18 2023-07-18 安徽华铂再生资源科技有限公司 Slag flushing process special for kiln

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101663A (en) * 1972-04-07 1973-12-21
JPS5084971A (en) * 1973-11-29 1975-07-09
JPS53103977A (en) * 1977-02-21 1978-09-09 Caribbean Properties Method and apparatus for continuous counter current contact between gas phase and liquid phase and for successive separation of both
EP0926441A1 (en) * 1996-09-04 1999-06-30 Ebara Corporation Rotary fusing furnace and method for gasifying wastes using the rotating fusing furnace

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48101663A (en) * 1972-04-07 1973-12-21
JPS5084971A (en) * 1973-11-29 1975-07-09
JPS53103977A (en) * 1977-02-21 1978-09-09 Caribbean Properties Method and apparatus for continuous counter current contact between gas phase and liquid phase and for successive separation of both
EP0926441A1 (en) * 1996-09-04 1999-06-30 Ebara Corporation Rotary fusing furnace and method for gasifying wastes using the rotating fusing furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101018677B1 (en) 2009-05-15 2011-03-04 차은정 Air cleaner
KR101049063B1 (en) * 2011-01-31 2011-07-15 차은정 Filter for utilizing water and air cleaner and heat exchanger by using thereof
CN113563931A (en) * 2021-08-03 2021-10-29 山东明泉新材料科技有限公司 Technological method integrating gas gathering reaction and gas separation
CN113563931B (en) * 2021-08-03 2024-03-26 山东明泉新材料科技有限公司 Technological method integrating gasification reaction and gas separation

Also Published As

Publication number Publication date
JP3777801B2 (en) 2006-05-24
JP2000005542A (en) 2000-01-11

Similar Documents

Publication Publication Date Title
US9890341B2 (en) Gasification reactor and process for entrained-flow gasification
WO2001045824A1 (en) Methods of cooling producer gas from high-temperature swirl furnace and of arresting entrained slag mist
US8758458B2 (en) Quench chamber assembly for a gasifier
NO328487B1 (en) Process and apparatus for producing solid fuel, synthesis and reduction gas.
RU2495913C2 (en) Gasification device with equipment for slag removal
CA1052102A (en) Slag bath generator adapted to operate under pressure
RU2482165C2 (en) Device for obtaining synthesis gas with reactor-gasifier and adjacent quick cooling chamber
US3951615A (en) Cylindrical pressure reactor for producing a combustible gas
CN104449868B (en) A kind of airflow bed gasification furnace of eddy flow melt cinder solidification
CN109628151A (en) Coke powder Y type air flow bed clean and effective Gasification Polygeneration System technique
JP3557912B2 (en) Combustion melting furnace, combustion melting method, and waste heat power generation system
JP2000329323A (en) High temperature gasifying furnace structure in waste gasifying processing apparatus
GB2033563A (en) Removing slag from a gasifier
CN215597273U (en) Waste incineration fly ash melting treatment system
CN107118808A (en) Coal tar Y type air flow bed clean and effective gasification process
CN208166938U (en) Coal tar Y type air flow bed clean and effective gasification installation
JP2004163034A (en) Molten slag cooling device and method, and gasification melting system using molten slag cooling device
CN207294697U (en) The Y type airflow bed gasification furnaces of dry granulation deslagging
CN113166661A (en) Reactor and process for gasifying and/or melting raw materials
JPH054565B2 (en)
JP2004531683A (en) Melting furnace
JP2004277574A (en) Cooling and dust removing method of synthesis gas, and its apparatus
CN113587110B (en) Msw incineration flying ash melting treatment system
JPH0231284B2 (en)
JP2003042424A (en) Fluidized bed furnace, and supply method for solid incinerated substance with low specific gravity to the fluidized bed furnace

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase