JP2004277574A - Cooling and dust removing method of synthesis gas, and its apparatus - Google Patents

Cooling and dust removing method of synthesis gas, and its apparatus Download PDF

Info

Publication number
JP2004277574A
JP2004277574A JP2003071284A JP2003071284A JP2004277574A JP 2004277574 A JP2004277574 A JP 2004277574A JP 2003071284 A JP2003071284 A JP 2003071284A JP 2003071284 A JP2003071284 A JP 2003071284A JP 2004277574 A JP2004277574 A JP 2004277574A
Authority
JP
Japan
Prior art keywords
cooling
cooling medium
cooling chamber
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003071284A
Other languages
Japanese (ja)
Inventor
Asanori Yamatake
朝教 山丈
Toshio Fukuda
俊男 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2003071284A priority Critical patent/JP2004277574A/en
Publication of JP2004277574A publication Critical patent/JP2004277574A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/72Other features
    • C10J3/82Gas withdrawal means
    • C10J3/84Gas withdrawal means with means for removing dust or tar from the gas
    • C10J3/845Quench rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10KPURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
    • C10K1/00Purifying combustible gases containing carbon monoxide
    • C10K1/02Dust removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J2300/00Details of gasification processes
    • C10J2300/18Details of the gasification process, e.g. loops, autothermal operation
    • C10J2300/1846Partial oxidation, i.e. injection of air or oxygen only

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new cooling and dust removing method which can attain the cooling and dust removal of a high temperature synthesis gas, obtained by gasification of combustible wastes through partial oxidation, more effectively than the cooling and dust removal by spraying cooling water from an auxiliary spray and in which there exist no dipping portions into the cooling medium (quenching bath) in the stream of the gas, and to provide its apparatus. <P>SOLUTION: In cooling the synthesis gas and removing the dust in a tube-structured cooling chamber 5, the cooling medium d is supplied from the circumference of the top of the cooling chamber to form a wetted wall on the inner wall surface of the cooling chamber while introducing the synthesis gas from the upside of the cooling chamber. The cooling medium c is supplied into the inside of the cooling chamber from the axial center section of the upper part region of the cooling chamber also to form droplets of the cooling medium, and the synthesis gas is put into contact with the wetted wall and the droplets for the cooling and dust removal to be carried out. Its apparatus is also provided. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、可燃性廃棄物を部分酸化によりガス化して得られる高温の合成ガスを効果的に冷却・除塵する方法及びその装置に関する。
【0002】
【従来の技術】
従来、都市ごみ、産業廃棄物、下水汚泥などの可燃性廃棄物の多くが焼却設備で焼却処理されてきたが、近年は、循環型社会構築の高まりを受けて、廃棄物リサイクル(マテリアルリサイクル)の動きと共に、可燃性廃棄物のフィードストックリサイクルへの社会的要請が強く叫ばれるようになってきた。フィードストックリサイクルの分野では、例えば、可燃性廃棄物を、高温で熱分解及び/又はガス化することにより、可燃性廃棄物中の炭素含有化合物を、水素や一酸化炭素などの無機ガス、低級炭化水素ガス、炭化水素油などに分解し、得られる生成物を必要に応じて精製するなどした上で各種分野(石油、化学、発電、製鉄など)の原料として再利用する方法が提案されている。
【0003】
可燃性廃棄物のガス化は、通常、可燃性廃棄物を、常圧から数気圧程度の加圧条件下で支燃剤(純酸素、空気等)と噴霧剤(スチーム、窒素ガス、炭酸ガス等)を用いて550〜1500℃で部分酸化することによって合成ガスを生成させることから出発していて、種々の構成が提案されている。また、該合成ガスには、ガス化の際に可燃性廃棄物中の炭素含有化合物が充分に分解されないで発生するタール分の他に、スラグ、飛灰、未燃炭素(チャー)、メタル分、砂などの固体成分が同伴して含まれるため、その処理方法も種々提案されている。
【0004】
このように可燃性廃棄物を高温でガス化して合成ガスを得る方法においては、種々の方法や構成やそれに伴う処理方法が種々提案されているが、その中で高温の合成ガスの冷却・除塵方法もまたフィードストックリサイクルのシステムを左右すると言えるほど重要なものである。
【0005】
従来、高温の合成ガスの冷却・除塵方法としては、合成ガスを水と直接接触させて温度を急激に下げて冷却する方法が一般的である。また、合成ガスをボイラーに送りそこで熱回収して温度を下げる方法も一般的であるが、この場合も、熱回収後にガスを水と直接接触させて更に温度を下げて冷却・除塵していることから、高温の合成ガスを効果的に冷却・除塵するには、水による直接冷却の方法が非常に重要なものとなっている。
【0006】
高温の合成ガスを水と直接接触させて冷却・除塵する従来の方法としては、例えば、特許文献1(その6頁及び図16)に図6の構造の装置を用いる方法が示されている。この装置は、反応室(燃焼室)21とその下方の絞り部(喉部)23を介して連結する急冷室22からなり、急冷室22の内部には浸漬管24が配設されて冷却領域を形成するようになっている。即ち、浸漬管24は、下端部(下端に鋸歯状部をもつ)が急冷浴25に浸漬していて、上端部が急冷リング29(急冷室22の上端にある)の下面に接している。そして、急冷リング29は上部のスプレーチャンバー30と下部のフィルムチャンバー31に分かれていて、フィルムチャンバー31から放出された冷却水は浸漬管24の軸にほぼ平行に進んで浸漬管24の内面に沿って落下する冷却水の薄い落下フィルムを形成し、スプレーチャンバー30から放出された冷却水は急冷リング29の周囲から浸漬管24の主軸方向に進むようになっている。
【0007】
従って、この方法では、石炭のガス化によって得られた合成ガスは、入口28から導入されて、反応室21とその下方の絞り部23を通り、急冷室22の内部に設けられた浸漬管24内部の前記冷却領域に導入された後、冷却領域における乱流及びフィルム蒸発による冷却とスプレー冷却との組合せにより、初期温度(例えば約1370℃)から浸漬管24の出口温度(例えば約500℃)まで急冷される。冷却領域の下方部分から出た合成ガスは、急冷浴25を通り抜けて(その際、灰及び炭化物粒子の大半(約95%)が冷却領域の下端でガスから分離される)、蒸発した冷却水と共に浸漬管24の外側領域を上昇し、急冷室上部にあるガス排出管27から、例えば約230℃で排出される。
【0008】
特許文献1(その図4)には、燃焼室とスラグ分離室(急冷室)からなる旋回溶融炉において合成ガスを直接に冷却・除塵する方法が開示されている。この方法では、合成ガスは、スラグ分離室内の浸漬管との接合角部の周方向に配置された補助スプレーにより噴霧冷却された後、分離室下部の水槽(急冷浴)に吹き込まれて急冷される。このとき、燃焼室壁面を流下したスラグはスラグ滴となってスラグ分離室に落下し、該ガスと同様に噴霧冷却された後に急冷される。また、ガスに同伴するスラグミストはガスと同様に水で噴霧冷却されて急冷される。
【0009】
特許文献2にも、図7の構造の高温旋回炉(旋回溶融炉)において合成ガスを直接に冷却・除塵する方法が開示されている。この方法では、合成ガスは、急冷室2内の浸漬管4の頂部に設けた冷却水注入部9から、浸漬管内面での冷却水の濡れ壁旋回流れが浸漬管内のガスの旋回流れに対して同方向又は逆方向になるように、即ち、冷却水の注入方向が浸漬管の水平断面(円形)においてその接線方向になるように冷却水eを注入することによって冷却され、その後、急冷室下部の水槽(急冷浴)5に吹き込まれて急冷される。この場合、燃焼室壁面を流下したスラグは主として水槽5で急冷され、ガスに同伴するスラグミストはガスと同様に水で冷却されて急冷される。
【0010】
【特許文献1】
WO98/10225号公報
【特許文献2】
特開2000−5542号公報
【0011】
【発明が解決しようとする課題】
しかしながら、これら従来の冷却・除塵方法では、円筒又は円錐状の浸漬管上端からの補助スプレーによる噴霧冷却や濡れ壁旋回流れによる冷却がガスの流れの中で最も温度の高い浸漬管の軸心部を充分に冷却するものではないため、結局は、大量の冷却水を用いかつ装置を大型にすることになる急冷浴によって大部分のガスを冷却・除塵する方式を用いることになっていた。
また、従来の冷却・除塵方法では、冷却水の供給が浸漬管の上端からのみで、高温の合成ガスとの下部での充分な混合が期待されないため、合成ガスが飽和水蒸気圧に達することなく過熱状態で通過し、そのために装置材料を過酷な温度条件下に晒して短寿命にしていた。
【0012】
このように、従来の合成ガスの冷却・除塵方法はそれぞれ一応の冷却効果や除塵効果を達成しているものの、解決すべき問題を有していて、そのような問題を解決して高温の合成ガスをより一層効果的に冷却・除塵できる新たな冷却・除塵方法の開発が望まれていた。即ち、本発明は、可燃性廃棄物を部分酸化によりガス化して得られる高温の合成ガスを補助スプレーによる冷却水の噴霧冷却による冷却・除塵よりも効果的に冷却・除塵することができ、しかもガスの流れの中では冷却媒体への浸漬部(急冷浴)が存在することのない新たな冷却・除塵方法及びその装置を提供することを課題とする。
【0013】
【課題を解決するための手段】
本発明は、(1)可燃性廃棄物を部分酸化によりガス化して生成する合成ガスを管構造の冷却室で冷却・除塵するに当たり、冷却室の上方から合成ガスを導入しながら、冷却室頂部円周から冷却媒体を供給して冷却室内壁面に濡れ壁を形成させると共に、冷却室上部域の軸心部から冷却室内部に冷却媒体を供給して冷却媒体の液滴を形成させ、該合成ガスを該濡れ壁及び該液滴と接触させて急冷・除塵することを特徴とする合成ガスの冷却・除塵方法にある。
【0014】
次に、本発明の冷却・除塵方法の好ましい態様を列記する。
(2)冷却媒体と冷却室外壁面との接触を維持しつつ、該冷却媒体を冷却室頂部円周から冷却室内壁面に供給して冷却室内壁面に濡れ壁を形成させる、前記(1)の合成ガスの冷却・除塵方法。
(3)冷却媒体として、A重油、軽油、又は沸点が100℃を超えて450℃を超えない範囲の液体炭化水素を使用する、前記(1)の合成ガスの冷却・除塵方法。
(4)ガス化温度が550〜1000℃である、前記(1)の合成ガスの冷却・除塵方法。
【0015】
また、(5)本発明は、上端にガス導入口、下端にガス排出口、そして、内部に、頂部及び底部が該ガス導入口及び該ガス排出口にそれぞれ連接する管構造の冷却室を有する二重管構造の合成ガスの冷却・除塵装置であって、該冷却室上部域の軸心部から冷却室内部に冷却媒体の液滴を形成させる手段と、該冷却室頂部円周から冷却室内壁面に冷却媒体の濡れ壁を形成させる手段を備えてなることを特徴とする、合成ガスの冷却・除塵装置にもある。
【0016】
次に、本発明の冷却・除塵装置の好ましい態様を列記する。
(6)冷却室が、ガスの流れに沿って上下方向に縮小部と喉部と拡大部を順に形成する内部構造を有している、前記(5)の合成ガスの冷却・除塵装置。
(7)冷却媒体の液滴形成手段が、装置下部外側面から冷却室下部域に入り冷却室下部域軸心部で方向転換して冷却室上部域に該軸心部を垂直に上昇しその先端に開口部と媒体分散板を備えた媒体分散槽を有する冷却媒体供給用配管にて、冷却媒体を該開口部から冷却室内に溢流させることによる、前記(5)の合成ガスの冷却・除塵装置。
(8)冷却媒体の濡れ壁形成手段が、冷却媒体を、二重管構造の空間部の下方部分に導入して該空間部を上昇させ、該空間部の上端部分で方向転換させた後、冷却室頂部円周に配設の冷却媒体注入部に導いて該冷却媒体注入部から冷却室内壁面を流下させるように冷却媒体を注入することによる、前記(5)の合成ガスの冷却・除塵装置。
(9)冷却・除塵装置の下流に、合成ガスと冷却媒体スラリーを気液分離する気液分離器、該冷却媒体スラリーを固体分と液体分に固液分離する固液分離装置、該冷却媒体スラリー液体分を冷却・除塵装置に戻す冷却媒体循環ライン、及び、該冷却媒体スラリー液体分の濃縮物を冷却・除塵装置上流のガス化炉に送る補助燃料供給ラインを配設してなる、前記(5)の合成ガスの冷却・除塵装置。
【0017】
【発明の実施の形態】
以下、本発明の合成ガスの冷却・除塵方法について図面を参考にしながら詳細に説明する。図1は、本発明の合成ガスの冷却・除塵方法を含む可燃性廃棄物のガス化プロセスの構成を例示するもので、ガス化プロセスは、例えば、前処理工程、ガス化工程、急冷・除塵工程、熱回収工程、洗浄工程を含んでなる。
【0018】
図1のプロセスでは、まず、前処理工程11で、可燃性廃棄物10が分別・破砕され、好ましくは更に成形される。即ち、可燃性廃棄物10は、前処理工程11中の分別操作で不燃物が除去された後、破砕機に供給されて破砕され、次いで、好ましくは前処理工程11中の成形操作で捏和式押出機などにより廃棄物固形化燃料(RDF)に成形された後、ガス化工程12のガス化炉に供給される。
【0019】
本発明において、可燃性廃棄物は、一般廃棄物でも産業廃棄物でも可燃性のものであれば差し支えなく、例えば、廃プラスチック(シュレッダダスト、廃家電を含む)、廃ゴム(廃タイヤを含む)、廃油、廃木材(木くずを含む)、紙くず、繊維くず、活性汚泥廃棄物等が対象になる。その中で、合成ガスを安定的に得ようとすれば、廃プラスチックなどの比較的発熱量の高い可燃性廃棄物を用いることが好適である。
【0020】
ガス化工程12では、前処理工程11から供給される可燃性廃棄物(好ましくは前記成形物)が、ガス化炉で550〜1000℃(好ましくは600〜900℃)の範囲のガス化温度で部分酸化によりガス化され、合成ガスが生成する。このとき、圧力は常圧或いは微正圧にすることが好ましく、通常0〜1kg/cmG、更に好ましくは0.5〜1kg/cmGの範囲とされる。本発明では、合成ガスとして、このように可燃性廃棄物を550〜1000℃のガス化温度で部分酸化によりガス化して生成する合成ガスを使用することが冷却媒体自体の熱分解を抑えることもできるので特に好ましい。
【0021】
前記ガス化炉には、部分酸化用ガスとして、支燃剤(空気、酸素富化空気、又は純酸素)を噴霧剤(炭酸ガス又はスチーム)で希釈した酸素含有気体(低濃度の酸素を含有する)を下部から供給することが好ましい。酸素の全供給量は、可燃性廃棄物を完全燃焼させるために必要な理論燃焼酸素量の0.1〜0.5の範囲であればよい。ガス化炉の形式は可燃性廃棄物を部分酸化によりガス化できるものであれば特に制限されず、移動床、固定床、流動床、噴流床、溶融床のいずれでも差し支えない。
【0022】
ガス化炉で生成した合成ガスは、目的生成物である水素と一酸化炭素の他に、炭酸ガス、窒素ガス、水蒸気を含み、更に、低級炭化水素(メタン、エタン、プロパン等)、塩素化合物(塩化水素等)、硫黄化合物、タール、チャーなども微量含んでいて、ガス化炉が流動床の場合は流動媒体の砂を含むこともある、気体成分と固体成分と液体成分の混合物である。この合成ガスは次に急冷・除塵工程13に送給される。なお、ガス化の際の不燃物で合成ガスに同伴しないものは、ガス化炉の底部から排出される。
【0023】
急冷・除塵工程13では、ガス化工程12から送給される合成ガスが、上端にガス導入口、下端にガス排出口、そして、内部に、頂部及び底部が該ガス導入口及び該ガス排出口にそれぞれ連接する管構造の冷却室を有する二重管構造の冷却・除塵装置で、効果的に急冷・除塵される。即ち、合成ガスは、該冷却室の上方から装置上端のガス導入口を通って冷却室に導入され、該冷却室の頂部円周から冷却室に供給される(該冷却室頂部の冷却媒体注入部から冷却室内壁面を流下させるように注入される)冷却媒体dによって冷却室内壁面に形成される冷却媒体の濡れ壁との接触、及び、該冷却室上部域の軸心部から(装置下部外側面から冷却室下部域に入り冷却室下部域軸心部で方向転換して冷却室上部域に該軸心部を垂直に上昇しその先端に開口部と媒体分散板を備えた媒体分散槽を有する冷却媒体供給用配管の該開口部から)冷却室内に溢流する冷却媒体cによって形成される冷却媒体の液滴との接触により急冷・除塵される。急冷・除塵された合成ガスは更に気液分離器(サイクロンなど)で気液分離され、次に熱回収工程14に送給される。この急冷・除塵と気液分離の操作は繰り返し行っても差し支えない。
【0024】
前記冷却媒体としては、A重油、軽油、沸点(常圧下における)が100℃を超えて450℃を超えない範囲(特に120〜350℃)の常温で液体の炭化水素(キシレン等)が好ましいが、その中でもA重油が更に好ましい。冷却媒体の使用時の温度は常温から冷却媒体の沸点までの温度(特に該沸点近傍の該沸点より低い温度)であることが好ましい。これら冷却媒体により、合成ガスが効果的に急冷・除塵されるだけでなく、ガス中の液体成分(特にタール)も効果的に除去されて冷却媒体中に捕集される。また、急冷・除塵後のガス温度も100℃を超えて前記範囲の圧力下における冷却媒体の沸点近くまでの温度とすることが可能になる。なお、冷却媒体cとdは同じものを使用する。
【0025】
熱回収工程14では、急冷・除塵工程13から送給される合成ガスが熱回収装置で常温付近まで冷却され、該ガスから熱が回収される。本発明では、急冷・除塵後のガス温度を高くできるため、合成ガスの保有する熱エネルギーを最初に加圧スチームとして回収でき、その残りの熱エネルギーもスチーム発生用の純水を予熱するためなどに有効に回収できる。そして、余剰の熱エネルギーは工業用水等の冷却水で除去される。この工程で常温付近まで温度低下した合成ガスは、次に洗浄工程15に送給される。なお、熱回収装置は熱回収可能なものであれば特に制限されず、例えば、一般的な型式の多管式熱交換器などが挙げられる。
【0026】
洗浄工程15では、熱回収工程14から送給される合成ガスがアルカリ水溶液で洗浄され、ガス中の微量の塩素化合物(塩化水素等)が除去される。アルカリ洗浄の方法や装置は、塩素化合物などが効果的に除去できれば特に制限されず、通常の気液接触方法や気液接触装置を用いることができる。例えば、アルカリとして、苛性ソーダ水、苛性カリ水、石灰水、アンモニア水などが使用され、気液接触装置として、充填塔、棚段塔、スプレー塔などが使用される。このようにして、固体成分を殆ど含有しないクリーンな合成ガス16を得ることができる。合成ガス16は必要であれば更に脱硫してもよい。
【0027】
以下、本発明の合成ガスの冷却・除塵装置及び冷却・除塵方法について、図面を参考にしながら詳細に説明する。図2は本発明の合成ガスの冷却・除塵装置の断面図、図3は図2の冷却室の矢視Aから見た水平断面図、図4は図2の媒体分散槽の拡大図、図5は図4の媒体分散槽の矢視Bから見た水平断面図をそれぞれ例示するものである。
【0028】
本発明の合成ガスの冷却・除塵装置は、前記ガス化炉の下流に位置し、図2に例示されるような、上端にガス導入口1、下端にガス排出口3、そして、内部に、頂部及び底部が該ガス導入口及び該ガス排出口にそれぞれ連接する管構造の冷却室5を有する二重管構造の合成ガスの冷却・除塵装置2で、該冷却室上部域の軸心部から冷却室内部に冷却媒体の液滴を形成させる手段と、該冷却室頂部円周から冷却室内壁面に冷却媒体の濡れ壁を形成させる手段を備えてなる。この装置において、上端のガス導入口1はガス化炉との連結部分(又はガス化炉下部)4に連接し、下端のガス排出口3は、気液分離器(サイクロンなど)との連結部分6に連接している。
【0029】
冷却・除塵装置2と連結部分4及び6はいずれも耐圧構造をなし、取外しが可能なようにフランジで接続されていることが好ましい。また、連結部分4は、高温の熱が放出されるのを少なくするために外壁耐圧部分が耐火物で覆われているが、更に必要であれば外壁耐圧部分と耐火物の間に水冷壁或いは水に代えて温水又は水蒸気を用いたジャケット壁が設置されていてもよい。なお、冷却・除塵装置2と冷却室5は同心であることが好ましい。
【0030】
冷却・除塵装置2において、冷却室5は、ガスの流れに沿って上下方向に縮小部7aと喉部7bと拡大部7cを順に形成する内部構造を有していることが好ましい。また、冷却室5の底部(拡大部7cの下部端)は冷却・除塵装置2の外壁耐圧部分と連接・一体化していてもよく、この場合、冷却・除塵装置2は冷却室下部域で単管構造を形成する。冷却室5の頂部(縮小部7aの上部端)は冷却媒体注入部を介してガス導入口1に接している。冷却室5及び後述の冷却媒体供給用配管8は、例えば、支持棒(又は支持板)11、12、13により安定化されている。但し、支持棒(又は支持板)は熱伸縮の小さい片端のみが固定されて熱伸縮に対して自由度をもたせる構造となっていて、それぞれ複数で配設されることが好ましい。なお、喉部7bの径は、流体が乱流域に保持される範囲であれば、特に制限されない。このようにして、冷却室5は、二重管構造の冷却・除塵装置2の内管部を構成する。一方、冷却・除塵装置2の外壁耐圧部分は、二重管構造の外管部を構成する。
【0031】
冷却・除塵装置2において、冷却媒体の液滴形成手段は、装置下部外側面(装置下部側面の外壁耐圧部分)から(好ましくは水平に)冷却室下部域(拡大部7c)に入り、冷却室下部域軸心部で(好ましくは90°の角度で)方向転換して冷却室上部域(縮小部7a)に該軸心部を垂直に上昇し、その先端に開口部15(円形)と媒体分散板14(円形)を備えた媒体分散槽9(管状)を有する冷却媒体送給用配管8にて、冷却媒体cを開口部15(媒体分散槽9の円周部)から冷却室(縮小部7a)内に溢流させることによるのが好ましい。
【0032】
開口部15は冷却室上部域(縮小部7a)に位置すればよいが、該縮小部の上端から中間の区域、特に該縮小部の中間部に位置することが好ましい。媒体分散槽9は上端が鋸歯状であってもよく、その液浸部には、図2及び4に例示されるように、冷却媒体が噴水状態で冷却室上部域に噴出するのを抑えると共に開口部15から冷却媒体を均一に溢流させるために、媒体分散板14が取付けられている。媒体分散板14の径は、図2〜5に例示されるように、冷却媒体供給用配管8の管径より大きく、媒体分散槽9の管径より小さい。なお、冷却媒体供給用配管8、媒体分散板14、媒体分散槽9(及びその液浸部)は、冷却室5と同心状に配置されていることが好ましく、そのサイズ等は、冷却媒体cの液滴形成及び該液滴による合成ガスの急冷・除塵が可能な範囲であれば特に限定されない。
【0033】
前記液滴形成手段により、冷却媒体cは、冷却・除塵装置2の下部外側面(装置下部側面の外壁耐圧部分)から冷却室下部域(拡大部7c)に入り、冷却室下部域軸心部で方向転換して冷却室上部域(縮小部7a)に該軸心部を垂直に上昇し、冷却媒体供給用配管8の先端の媒体分散槽9に入って、開口部15から冷却室(縮小部7a)内に溢流する。そして、この溢流冷却媒体と合成ガスaとの接触(衝突)・混合により冷却媒体の液滴が形成される。開口部15から溢流する冷却媒体の流れ方向は、軸心から円周方向に放射状に流れる方向であっても、軸心から円周方向に旋回状に流れる方向であってもよい。このように、冷却媒体cを合成ガスaの主軸方向流れの軸心部で溢流させて供給することにより、冷却媒体と合成ガスとの接触・混合、冷却媒体の液滴形成、合成ガスの急冷・除塵が確実かつ効果的になる。
【0034】
なお、冷却媒体cは、冷却媒体の液滴形成が常に維持されて合成ガスが所定温度に冷却・除塵されるように冷却媒体の蒸発量以上の過剰な量で供給される。この過剰分の冷却媒体により、液滴形成、合成ガスとの接触(衝突)・混合、合成ガスの冷却・除塵が促進される。
【0035】
冷却・除塵装置2において、冷却媒体の濡れ壁形成手段は、冷却室頂部円周に配設の冷却媒体注入部10から冷却室内壁面を流下させるように冷却媒体dを注入することによるのが好ましい。冷却媒体dは、冷却媒体注入部10からそのまま落下させるか或いは溢流堰方式又は衝突板方式により水平断面に対して接線方向に注入すればよく、このようにして濡れ壁下方流れ又は濡れ壁旋回流れを形成させることができる。その結果、熱衝撃から冷却室を保護して材料の損傷を回避して合成ガスを冷却できると共に、その際に内壁面に付着した固形物を成長させることなくガス排出口3へと流下させることができる。
【0036】
冷却媒体dの注入量は、冷却室縮小部7aの内壁の表面積、合成ガスの流量及び温度、冷却媒体の種類などにより変化するが、少なくとも、冷却媒体の蒸発量よりも多い量であって、かつ、冷却室5の縮小部7aの内壁面に冷却媒体の均一な濡れ壁及び液膜を形成させて熱衝撃から冷却室を保護できる量であればよい。
【0037】
なお、冷却媒体dは、二重管構造の空間部(二重管構造の内管部を構成する冷却室5と外管部を構成する外壁耐圧部分との間;図2)の下方部分に導入して該空間部を上昇させ、該空間部の上端部分で溢流により方向転換させた後、冷却室頂部円周に配設の冷却媒体注入部10に導き、該注入部10より前記のように注入することが特に好ましい。二重管構造の空間部を通して冷却媒体dを供給することにによって冷却媒体が冷却室5を外壁面から冷却できるため、仮に内壁面の濡れ壁状態が不均一になるか、内壁面に濡れ壁状態を維持できない状態になっても、温度上昇による熱衝撃から冷却室5を保護して装置材料の損傷を抑えることが可能になる。また、冷却媒体dを該空間部の上端部分で方向転換させることにより、ガス導入口1下端に続く冷却媒体注入部10の外壁の高温ガスとの接触部分を高温状態から熱的に保護することができる。
【0038】
冷却・除塵装置2において、合成ガス(入口ガス)aは冷却室の上方からガス導入口1を通って下方(主軸方向)に流入する。このとき、ガスの流れは旋回流であっても旋回流でなくても差し支えない。次いで、合成ガスaは、冷却室5の上部域(縮小部7a)で前記のようにして供給される冷却媒体c及び冷却媒体dと接触・混合されることにより効果的に急冷・除塵される。また、合成ガスaは、冷却室5の中間部(喉部7b)で流速が速まることにより、冷却媒体との接触・混合及び急冷・除塵の効果が更に高められる。喉部7bを通過した合成ガス(急冷・除塵された合成ガス)は、冷却室5の下部域(拡大部7c)へ導かれて喉部7b通過の際の圧力損失を回復し、ガス排出口3より出口ガスbとして排出される。
【0039】
冷却・除塵装置2を出た合成ガス(出口ガス)bは、連結部分6及びそれに続く配管(図示せず)で接続された下流の気液分離器(図示せず)にて、冷却・除塵された合成ガスと固形物を含む冷却媒体スラリーとに気液分離される。気液分離器としては水槽部を不要とするサイクロンが効果的であり、サイクロンは一般的な構造のもので差し支えない。気液分離器を出た合成ガスは、前記の熱回収工程及び洗浄工程を経て、固体成分を殆ど含有しないクリーンな合成ガス16として回収される。
【0040】
気液分離器で得られた固体成分を含む冷却媒体スラリーは一般的な固液分離装置(濾過装置等)で固体分と液体分に固液分離され、固体分は廃棄されるか、或いは、固体分循環ライン(図示せず)により適宜ガス化炉に送られてその中の固体未燃物(チャー等)が再度ガス化される。一方、液体分は大部分が冷却媒体循環ライン(図示せず)により冷却・除塵装置2に冷却媒体c及びdとして戻されるが、一部は濃縮されて補助燃料供給ライン(図示せず)によりガス化炉に送られる。また、冷却媒体スラリーの一部を固液分離前にそのまま濃縮してガス化炉に送ることもできる。この場合、冷却媒体スラリーの大部分は固液分離後に固体分が廃棄され、液体分が冷却・除塵装置2に戻される。
【0041】
このように、本発明では、冷却媒体中への液体未燃物(タール分等)の蓄積を抑えると共にガス化を効率的にするため、冷却媒体スラリー液体分の濃縮物又は冷却媒体スラリーの濃縮物をガス化炉に戻して、濃縮物(液体未燃物と冷却媒体を含む)をガス化原料及び/又は補助燃料として使用することが特に好ましい。冷却媒体スラリー液体分の濃縮物を戻す場合は、前記固体分をこの濃縮物に併せてガス化炉に戻すことも好ましい。これら濃縮物や固体分をガス化炉へ戻す量は、液体未燃物の蓄積を抑え、固体未燃物のロスが大きくならず、ガス化炉における廃棄物のガス化効率を損なわない範囲であればよい。
【0042】
【発明の効果】
本発明により、可燃性廃棄物を部分酸化によりガス化して得られる高温の合成ガスを補助スプレーによる冷却水の噴霧冷却による冷却・除塵よりも効果的に冷却・除塵することができ、しかも、ガスの流れの中では冷却媒体への浸漬部(急冷浴)を存在させずとも急冷浴による冷却・除塵と同レベルまで冷却・除塵できる新たな冷却・除塵方法及びその装置を提供することができる。
即ち、冷却室内壁面に加えて軸心部から冷却媒体を注入して冷却媒体の液滴を形成させることで、従来の冷却室周辺から軸心部に向かって注入する場合に比してガスとの接触面積が大きくなり、より効果的に合成ガスを急冷・除塵できるようになる。そして、水に代えて液体炭化水素や軽油やA重油を冷却媒体として使用することで効果的に合成ガスを急冷・除塵でき、同伴するタール分も効率よく捕集することができる。また、冷却室を冷却媒体により外壁側から冷却できるため、内壁面での濡れ壁の不均一などによる温度上昇に伴う熱衝撃から冷却室を保護して材料の損傷を抑えることもできる。
更に、冷却・除塵後の合成ガスの温度を100℃を超える温度とすることができるため、合成ガスの保有する熱エネルギーを加圧スチームなどの有用で系内リサイクルが可能なエネルギーとして回収することが可能となる。なお、捕集されたタール分はガス化炉に戻してガス化原料及び/又は補助燃料として使用することができる。
【図面の簡単な説明】
【図1】本発明を含むガス化プロセスの構成を例示する。
【図2】本発明の合成ガスの冷却・除塵装置の断面図を例示する。
【図3】図2の冷却室の矢視Aから見た水平断面図を例示する。
【図4】図2の媒体分散槽の拡大図を例示する。
【図5】図4の媒体分散槽の矢視Bから見た水平断面図を例示する。
【図6】急冷室及び浸漬管を有する従来の合成ガスの冷却・除塵装置の断面図を例示する。
【図7】急冷室及び浸漬管を有する従来の合成ガスの冷却・除塵装置の別の態様の断面図を例示する。
【符号の説明】
〔図1〕 10:可燃性廃棄物、11:前処理工程、12:ガス化工程、13:急冷・除塵工程、14:熱回収工程、15:洗浄(脱塩)工程、16:精製ガス
〔図2〜5〕 1:ガス導入口、2:冷却・除塵装置、3:ガス排出口、4:ガス化炉との連結部分、5:冷却室、6:気液分離器との連結部分、7a:縮小部、7b:喉部、7c:拡大部、8:冷却媒体供給用配管、9:媒体分散槽、10:冷却媒体注入部、11〜13:支持棒(又は支持板)、14:媒体分散板、15:開口部、a:入口ガス、b:出口ガス、c,d:冷却媒体
〔図6,7〕 1:燃焼室、2:急冷室、3:喉部、4:浸漬管、5:水槽(急冷浴)、6:スラグ排出口、7:ガス排出口、8:スラグ水排出口、9:冷却水注入部、21:反応室(燃焼室)、22:急冷室、23:絞り部(喉部)、24:浸漬管、25:急冷浴、26:スラグ排出管、27:ガス排出管、28:ガス導入口、29:急冷リング、30:スプレーチャンバー、31:フィルムチャンバー、a:低温部分酸化ガス、b:酸素、c:スチーム、d:冷却・除塵合成ガス、e:冷却水、f:スラグ粒
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for effectively cooling and removing high-temperature synthesis gas obtained by gasifying combustible waste by partial oxidation.
[0002]
[Prior art]
Conventionally, most combustible waste such as municipal solid waste, industrial waste, and sewage sludge have been incinerated in incineration facilities. As a result, social demands for feedstock recycling of combustible waste have been strongly screamed. In the field of feedstock recycling, for example, pyrolytic decomposition and / or gasification of combustible waste at a high temperature reduces carbon-containing compounds in combustible waste to inorganic gases such as hydrogen and carbon monoxide, and low-grade compounds. Decomposition into hydrocarbon gas, hydrocarbon oil, etc., and refining of the resulting product as necessary, and then reusing it as a raw material in various fields (petroleum, chemical, power generation, steelmaking, etc.) have been proposed. I have.
[0003]
Gasification of combustible waste is usually performed by compressing combustible waste under a pressurized condition of from normal pressure to several atmospheric pressures with a combustion support (pure oxygen, air, etc.) and a spray (steam, nitrogen gas, carbon dioxide gas, etc.). ) To generate synthesis gas by partial oxidation at 550 to 1500 ° C., and various configurations have been proposed. In addition, the synthesis gas contains, in addition to the tar component generated when the carbon-containing compound in the combustible waste is not sufficiently decomposed during gasification, slag, fly ash, unburned carbon (char), and metal component. Since a solid component such as sand and sand is included, various treatment methods have been proposed.
[0004]
As described above, various methods, configurations, and associated treatment methods have been proposed for the method of gasifying combustible waste at a high temperature to obtain a synthesis gas. Methods are also important enough to dictate feedstock recycling systems.
[0005]
Conventionally, as a method for cooling and removing dust from a high-temperature synthesis gas, a method in which a synthesis gas is brought into direct contact with water to rapidly lower the temperature to cool the synthesis gas is generally used. It is also common to send the synthesis gas to a boiler and recover the heat there to lower the temperature.In this case, too, the gas is brought into direct contact with water after the heat recovery to further lower the temperature to cool and remove the dust. Therefore, in order to effectively cool and remove dust from high-temperature synthesis gas, a method of direct cooling with water is very important.
[0006]
As a conventional method for cooling and removing dust by bringing high-temperature synthesis gas into direct contact with water, for example, a method using an apparatus having a structure shown in FIG. 6 is shown in Patent Document 1 (page 6 and FIG. 16). The apparatus comprises a quenching chamber 22 connected to a reaction chamber (combustion chamber) 21 and a throttle (throat) 23 below the reaction chamber (combustion chamber). Is formed. That is, the lower end of the immersion tube 24 (having a serrated portion at the lower end) is immersed in the quenching bath 25, and the upper end is in contact with the lower surface of the quenching ring 29 (at the upper end of the quenching chamber 22). The quenching ring 29 is divided into an upper spray chamber 30 and a lower film chamber 31, and the cooling water discharged from the film chamber 31 travels substantially parallel to the axis of the immersion pipe 24 and moves along the inner surface of the immersion pipe 24. The cooling water discharged from the spray chamber 30 advances from the periphery of the quenching ring 29 in the main axis direction of the immersion tube 24.
[0007]
Therefore, in this method, the synthesis gas obtained by the gasification of coal is introduced from the inlet 28, passes through the reaction chamber 21 and the narrowed portion 23 below the reaction chamber 21, and passes through the immersion pipe 24 provided inside the quenching chamber 22. After being introduced into the internal cooling zone, a combination of cooling by turbulence and film evaporation in the cooling zone and spray cooling reduces the initial temperature (eg, about 1370 ° C.) to the outlet temperature of the dip tube 24 (eg, about 500 ° C.). It is rapidly cooled until. The synthesis gas exiting from the lower part of the cooling zone passes through the quench bath 25 (where most (about 95%) of the ash and carbide particles are separated from the gas at the lower end of the cooling zone) and the evaporating cooling water At the same time, it rises in the outer region of the immersion tube 24 and is discharged from the gas discharge tube 27 at the upper part of the quenching chamber at, for example, about 230 ° C.
[0008]
Patent Literature 1 (FIG. 4) discloses a method for directly cooling and removing dust from a synthesis gas in a swirling melting furnace including a combustion chamber and a slag separation chamber (quenching chamber). In this method, the synthesis gas is spray-cooled by an auxiliary spray arranged in a circumferential direction at a corner of the slag separation chamber and a dip tube, and then blown into a water tank (quenching bath) below the separation chamber to be rapidly cooled. You. At this time, the slag flowing down the combustion chamber wall surface becomes slag droplets, falls into the slag separation chamber, is spray-cooled like the gas, and is rapidly cooled. In addition, the slag mist accompanying the gas is spray-cooled with water and quenched similarly to the gas.
[0009]
Patent Literature 2 also discloses a method of directly cooling and removing dust from a synthesis gas in a high-temperature swirling furnace (swirl melting furnace) having the structure shown in FIG. In this method, the syngas flows from the cooling water injection section 9 provided at the top of the immersion pipe 4 in the quenching chamber 2 so that the wetting wall swirling flow of the cooling water on the inner surface of the immersion pipe is different from the swirling flow of the gas in the immersion pipe. The cooling water is injected by injecting the cooling water e in the same direction or in the opposite direction, that is, so that the injection direction of the cooling water is tangential to the horizontal cross section (circle) of the immersion tube. The water is blown into a lower water tank (quenching bath) 5 to be rapidly cooled. In this case, the slag flowing down the combustion chamber wall surface is quenched mainly in the water tank 5, and the slag mist accompanying the gas is the same as the gas. with water It is cooled and quenched.
[0010]
[Patent Document 1]
WO98 / 10225
[Patent Document 2]
JP-A-2000-5542
[0011]
[Problems to be solved by the invention]
However, in these conventional cooling and dedusting methods, the spray cooling by the auxiliary spray from the upper end of the cylindrical or conical immersion pipe or the cooling by the swirling flow of the wet wall is performed by the axial center of the immersion pipe having the highest temperature in the gas flow. Therefore, a method of cooling and removing most of the gas by a quenching bath that uses a large amount of cooling water and increases the size of the apparatus was eventually used.
In addition, in the conventional cooling / dust removing method, the cooling water is supplied only from the upper end of the immersion pipe, and sufficient mixing with the high-temperature synthesis gas at the lower portion is not expected, so that the synthesis gas does not reach the saturated steam pressure. Passing in an overheated state, the device material was exposed to severe temperature conditions to shorten its life.
[0012]
As described above, although the conventional cooling and dust removing methods of the synthesis gas each achieve a tentative cooling effect and dust removing effect, they have problems to be solved. It has been desired to develop a new cooling / dust removing method capable of cooling / dust removing gas more effectively. That is, according to the present invention, the high-temperature synthesis gas obtained by gasifying the combustible waste by partial oxidation can be more effectively cooled and removed than the cooling and dust removal by spray cooling of the cooling water with the auxiliary spray. It is an object of the present invention to provide a new cooling / dust removing method and a device therefor that do not have an immersion part (quenching bath) in a cooling medium in a gas flow.
[0013]
[Means for Solving the Problems]
According to the present invention, (1) when synthesizing gas generated by gasifying combustible waste by partial oxidation is cooled and dedusted in a cooling chamber having a tubular structure, the syngas is introduced from above the cooling chamber while the syngas is introduced from the top of the cooling chamber. A cooling medium is supplied from the circumference to form a wet wall on the wall surface of the cooling chamber, and a cooling medium is supplied from the axis of the upper area of the cooling chamber to the inside of the cooling chamber to form droplets of the cooling medium. A method for cooling and dedusting a synthesis gas, wherein a gas is brought into contact with the wetting wall and the droplet to rapidly cool and dedust.
[0014]
Next, preferred embodiments of the cooling / dust removing method of the present invention will be listed.
(2) The synthesis of (1) above, wherein the cooling medium is supplied from the circumference of the top of the cooling chamber to the wall of the cooling chamber while maintaining the contact between the cooling medium and the outer wall of the cooling chamber to form a wetted wall on the wall of the cooling chamber. Gas cooling / dust removal method.
(3) The method for cooling and removing dust from synthesis gas according to (1) above, wherein as the cooling medium, heavy oil A, light oil, or a liquid hydrocarbon having a boiling point in a range of more than 100 ° C. and not more than 450 ° C. is used.
(4) The method for cooling and dedusting a synthesis gas according to the above (1), wherein the gasification temperature is 550 to 1000 ° C.
[0015]
Also, (5) the present invention has a gas inlet at the upper end, a gas outlet at the lower end, and a cooling chamber having a pipe structure in which a top and a bottom are connected to the gas inlet and the gas outlet, respectively. A cooling / dust removing apparatus for syngas having a double pipe structure, means for forming droplets of a cooling medium from a shaft center of an upper area of the cooling chamber into the cooling chamber, and a cooling chamber from a top circumference of the cooling chamber. There is also provided a syngas cooling / dust removing device, characterized by comprising means for forming a wetting wall of a cooling medium on a wall surface.
[0016]
Next, preferred embodiments of the cooling / dust removing device of the present invention will be listed.
(6) The synthesis gas cooling / dust removing apparatus according to (5), wherein the cooling chamber has an internal structure in which a reduced portion, a throat portion, and an enlarged portion are sequentially formed in a vertical direction along a gas flow.
(7) The droplet forming means of the cooling medium enters the lower part of the cooling chamber from the outer surface of the lower part of the device, changes its direction at the axis of the lower part of the cooling chamber, and rises vertically to the upper part of the cooling chamber. The cooling and cooling of the synthesis gas of the above (5) by allowing the cooling medium to flow into the cooling chamber from the opening through a cooling medium supply pipe having a medium dispersion tank provided with an opening and a medium dispersion plate at the tip. Dust removal device.
(8) After the wetting wall forming means for the cooling medium introduces the cooling medium into the lower part of the space of the double pipe structure to raise the space and change the direction at the upper end of the space, (5) The synthesis gas cooling / dust removing apparatus according to the above (5), wherein the cooling medium is injected so as to flow to a cooling medium injection section disposed around the top of the cooling chamber and flow down the wall of the cooling chamber from the cooling medium injection section. .
(9) Downstream of the cooling / dust removing device, a gas-liquid separator for gas-liquid separation of the synthesis gas and the cooling medium slurry, a solid-liquid separation device for separating the cooling medium slurry into a solid component and a liquid component, and the cooling medium A cooling medium circulation line for returning the slurry liquid component to the cooling / dust removing device, and an auxiliary fuel supply line for sending a concentrate of the cooling medium slurry liquid to a gasification furnace upstream of the cooling / dust removing device, (5) A syngas cooling / dust removing device.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for cooling and removing dust from a synthesis gas according to the present invention will be described in detail with reference to the drawings. FIG. 1 illustrates the configuration of a combustible waste gasification process including the synthesis gas cooling / dust removal method of the present invention. The gasification process includes, for example, a pretreatment process, a gasification process, a quenching / dust removal process. Process, heat recovery process, and washing process.
[0018]
In the process of FIG. 1, first, in a pretreatment step 11, the combustible waste 10 is separated and crushed, and preferably further molded. That is, the combustible waste 10 is supplied to a crusher and crushed after the non-combustible material is removed by a sorting operation in the pretreatment step 11, and then is preferably kneaded in a molding operation in the pretreatment step 11. After being formed into solidified waste fuel (RDF) by an extruder or the like, it is supplied to the gasification furnace in the gasification step 12.
[0019]
In the present invention, the flammable waste may be municipal waste or industrial waste as long as it is flammable. For example, waste plastic (including shredder dust and waste home appliances) and waste rubber (including waste tires) , Waste oil, waste wood (including wood waste), paper waste, fiber waste, activated sludge waste, etc. Among them, in order to stably obtain a synthesis gas, it is preferable to use a combustible waste having a relatively high calorific value, such as waste plastic.
[0020]
In the gasification step 12, the combustible waste (preferably, the molded product) supplied from the pretreatment step 11 is heated in a gasification furnace at a gasification temperature in the range of 550 to 1000 ° C (preferably 600 to 900 ° C). It is gasified by partial oxidation to produce synthesis gas. At this time, the pressure is preferably normal pressure or slightly positive pressure, and is usually 0 to 1 kg / cm. 2 G, more preferably 0.5 to 1 kg / cm 2 G range. In the present invention, the use of a synthesis gas produced by gasifying combustible waste by partial oxidation at a gasification temperature of 550 to 1000 ° C. as described above also suppresses thermal decomposition of the cooling medium itself. It is particularly preferable because it is possible.
[0021]
The gasification furnace contains, as a partial oxidation gas, an oxygen-containing gas (low-concentration oxygen) obtained by diluting a combustion support (air, oxygen-enriched air, or pure oxygen) with a propellant (carbon dioxide or steam). ) Is preferably supplied from below. The total supply amount of oxygen may be in the range of 0.1 to 0.5 of the theoretical combustion oxygen amount required for completely combustible combustible waste. The type of the gasification furnace is not particularly limited as long as the combustible waste can be gasified by partial oxidation, and may be any of a moving bed, a fixed bed, a fluidized bed, a spouted bed, and a molten bed.
[0022]
The synthesis gas generated in the gasification furnace contains carbon dioxide, nitrogen gas and water vapor in addition to the target products of hydrogen and carbon monoxide, as well as lower hydrocarbons (methane, ethane, propane, etc.) and chlorine compounds. It is a mixture of gaseous, solid and liquid components that also contain trace amounts of (hydrogen chloride, etc.), sulfur compounds, tars, chars, etc., and may contain sand in the fluidized medium if the gasifier is a fluidized bed. . This synthesis gas is then sent to a quenching / dust removing step 13. Incombustible substances that are not accompanied by synthesis gas during gasification are discharged from the bottom of the gasification furnace.
[0023]
In the quenching / dust removing step 13, the synthesis gas supplied from the gasification step 12 is supplied with a gas inlet at the upper end, a gas outlet at the lower end, and a gas inlet and a gas outlet at the top and bottom. The cooling / dust removing device of the double pipe structure having the cooling chamber of the pipe structure connected to each of the pipes effectively quench and remove dust effectively. That is, the synthesis gas is introduced into the cooling chamber from above the cooling chamber through the gas inlet at the upper end of the apparatus, and is supplied to the cooling chamber from the circumference of the top of the cooling chamber. The cooling medium d is injected to flow down the cooling chamber wall surface from the cooling chamber d) and contacts the wetted wall of the cooling medium formed on the cooling chamber wall surface, and from the axial center of the cooling chamber upper area (outside the lower part of the device). Entering the lower part of the cooling chamber from the side, the direction is changed at the axial part of the lower part of the cooling chamber, the axial part is vertically raised in the upper part of the cooling chamber, and a medium dispersion tank provided with an opening and a medium dispersion plate at the tip thereof. The cooling medium c overflows into the cooling chamber (from the opening of the cooling medium supply pipe having the cooling medium supply pipe) and is contacted with droplets of the cooling medium, thereby rapidly cooling and removing dust. The quenched and dedusted synthesis gas is further gas-liquid separated by a gas-liquid separator (such as a cyclone), and then sent to the heat recovery process 14. The quenching / dust removal and gas-liquid separation operations may be repeated.
[0024]
The cooling medium is preferably a heavy oil A, a light oil, or a hydrocarbon (xylene or the like) which is liquid at normal temperature and has a boiling point (under normal pressure) of more than 100 ° C. but not more than 450 ° C. (particularly 120 to 350 ° C.). Among them, heavy oil A is more preferable. The temperature during use of the cooling medium is preferably a temperature from room temperature to the boiling point of the cooling medium (particularly, a temperature near the boiling point and lower than the boiling point). These cooling media not only effectively quench and remove the dust of the synthesis gas, but also effectively remove liquid components (particularly tar) in the gas and collect them in the cooling medium. Further, the gas temperature after quenching and dust removal can be set to a temperature exceeding 100 ° C. to a temperature close to the boiling point of the cooling medium under the pressure in the above range. Note that the same cooling mediums c and d are used.
[0025]
In the heat recovery step 14, the synthesis gas fed from the quenching / dust removing step 13 is cooled by a heat recovery apparatus to near normal temperature, and heat is recovered from the gas. In the present invention, since the gas temperature after quenching and dust removal can be increased, the thermal energy possessed by the synthesis gas can be recovered first as pressurized steam, and the remaining thermal energy is also used for preheating pure water for generating steam. Can be collected effectively. Then, excess heat energy is removed by cooling water such as industrial water. The synthesis gas whose temperature has been lowered to around room temperature in this step is then sent to the cleaning step 15. The heat recovery device is not particularly limited as long as it can recover heat, and examples thereof include a general type of multi-tube heat exchanger.
[0026]
In the washing step 15, the synthesis gas sent from the heat recovery step 14 is washed with an aqueous alkaline solution to remove trace amounts of chlorine compounds (hydrogen chloride and the like) in the gas. The method and apparatus for alkali washing are not particularly limited as long as chlorine compounds and the like can be effectively removed, and a normal gas-liquid contact method or a gas-liquid contact device can be used. For example, caustic soda water, caustic potash water, lime water, ammonia water, or the like is used as the alkali, and a packed tower, a tray tower, a spray tower, or the like is used as the gas-liquid contact device. In this way, a clean synthesis gas 16 containing almost no solid components can be obtained. The synthesis gas 16 may be further desulfurized if necessary.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a syngas cooling / dust removing device and a cooling / dust removing method of the present invention will be described in detail with reference to the drawings. FIG. 2 is a cross-sectional view of the syngas cooling / dust removing apparatus of the present invention, FIG. 3 is a horizontal cross-sectional view of the cooling chamber of FIG. 2 as viewed from an arrow A, and FIG. 4 is an enlarged view of the medium dispersion tank of FIG. 5 is a horizontal sectional view of the medium dispersion tank of FIG.
[0028]
The syngas cooling / dust removing device of the present invention is located downstream of the gasification furnace, and has a gas inlet 1 at an upper end, a gas outlet 3 at a lower end, and an inside, as illustrated in FIG. A syngas cooling / dust removing apparatus 2 having a double pipe structure having a pipe-shaped cooling chamber 5 whose top and bottom are connected to the gas inlet and the gas outlet, respectively, from the axial center of the upper area of the cooling chamber. Means are provided for forming droplets of the cooling medium inside the cooling chamber, and means for forming a wetting wall of the cooling medium on the wall surface of the cooling chamber from the circumference of the top of the cooling chamber. In this apparatus, a gas inlet 1 at the upper end is connected to a connection part (or a lower part of the gasifier) 4 with the gasifier, and a gas outlet 3 at the lower end is connected to a gas-liquid separator (cyclone or the like). It is connected to 6.
[0029]
It is preferable that both the cooling / dust removing device 2 and the connecting portions 4 and 6 have a pressure-resistant structure, and are connected by a flange so as to be removable. In addition, the connection portion 4 is covered with a refractory at the outer wall pressure-resistant portion in order to reduce the release of high-temperature heat. A jacket wall using hot water or steam instead of water may be provided. Note that the cooling / dust removing device 2 and the cooling chamber 5 are preferably concentric.
[0030]
In the cooling / dust removing device 2, the cooling chamber 5 preferably has an internal structure in which a reduced portion 7a, a throat portion 7b, and an enlarged portion 7c are sequentially formed in the vertical direction along the flow of gas. Further, the bottom of the cooling chamber 5 (the lower end of the enlarged portion 7c) may be connected to and integrated with the outer wall pressure-resistant portion of the cooling and dust removing device 2. In this case, the cooling and dust removing device 2 is simply located in the lower area of the cooling chamber. Form a tube structure. The top of the cooling chamber 5 (the upper end of the reduction section 7a) is in contact with the gas inlet 1 via the cooling medium injection section. The cooling chamber 5 and a cooling medium supply pipe 8 described later are stabilized by, for example, support rods (or support plates) 11, 12, and 13. However, the support rod (or support plate) has a structure in which only one end having a small thermal expansion and contraction is fixed to have a degree of freedom with respect to thermal expansion and contraction, and it is preferable that a plurality of the support rods (or support plates) are provided. The diameter of the throat portion 7b is not particularly limited as long as the fluid is in a range where the fluid is held in the turbulent flow region. In this manner, the cooling chamber 5 forms an inner pipe portion of the cooling / dust removing device 2 having a double pipe structure. On the other hand, the outer wall pressure-resistant portion of the cooling / dust removing device 2 constitutes an outer tube having a double tube structure.
[0031]
In the cooling and dedusting device 2, the cooling medium droplet forming means enters (preferably horizontally) the cooling chamber lower region (enlarged portion 7c) from the outer lower surface of the device (the outer wall pressure-resistant portion of the lower surface of the device). The direction is changed (preferably at an angle of 90 °) at the lower area axis, and the axis is raised vertically to the upper area of the cooling chamber (reduced portion 7a). In the cooling medium supply pipe 8 having the medium dispersion tank 9 (tubular) having the dispersion plate 14 (circular), the cooling medium c is supplied from the opening 15 (circumferential part of the medium dispersion tank 9) to the cooling chamber (reduction). Preference is given to overflowing into section 7a).
[0032]
The opening 15 may be located in the upper region of the cooling chamber (reduced portion 7a), but is preferably located in the middle area from the upper end of the reduced portion, particularly in the middle of the reduced portion. The medium dispersion tank 9 may have a saw-toothed upper end, and its liquid immersion part suppresses the ejection of the cooling medium in a fountain state to the upper region of the cooling chamber as illustrated in FIGS. In order to allow the cooling medium to overflow uniformly from the opening 15, a medium distribution plate 14 is attached. As illustrated in FIGS. 2 to 5, the diameter of the medium dispersion plate 14 is larger than the tube diameter of the cooling medium supply pipe 8 and smaller than the tube diameter of the medium dispersion tank 9. The cooling medium supply pipe 8, the medium dispersion plate 14, and the medium dispersion tank 9 (and the liquid immersion part thereof) are preferably arranged concentrically with the cooling chamber 5, and the size and the like of the cooling medium c There is no particular limitation as long as the formation of the droplets and the rapid cooling and dust removal of the synthesis gas by the droplets are possible.
[0033]
By the droplet forming means, the cooling medium c enters the lower part of the cooling chamber (enlarged portion 7c) from the lower outer surface of the cooling and dedusting device 2 (the outer wall pressure-resistant portion of the lower side surface of the device), and enters the lower part of the cooling chamber. To vertically move the shaft center portion into the upper region of the cooling chamber (reducing portion 7a), enter the medium dispersion tank 9 at the tip of the cooling medium supply pipe 8, and open the cooling chamber (reducing portion) through the opening 15. Overflow into section 7a). Then, droplets of the cooling medium are formed by contact (collision) and mixing between the overflow cooling medium and the synthesis gas a. The flow direction of the cooling medium overflowing from the opening 15 may be a direction radially flowing from the axis in the circumferential direction or a direction flowing circularly from the axis in the circumferential direction. In this way, by supplying the cooling medium c by overflowing at the axial center of the flow of the synthesis gas a in the main axial direction, contact and mixing of the cooling medium and the synthesis gas, formation of droplets of the cooling medium, Rapid cooling and dust removal will be reliable and effective.
[0034]
The cooling medium c is supplied in an excess amount equal to or more than the evaporation amount of the cooling medium so that the formation of the droplets of the cooling medium is always maintained and the synthesis gas is cooled to a predetermined temperature and dust is removed. The excess cooling medium promotes droplet formation, contact (collision) and mixing with the synthesis gas, and cooling and dust removal of the synthesis gas.
[0035]
In the cooling and dedusting device 2, it is preferable that the means for forming the wetted wall of the cooling medium is such that the cooling medium d is injected so as to flow down the wall surface of the cooling chamber from the cooling medium injection section 10 arranged on the circumference of the top of the cooling chamber. . The cooling medium d may be dropped directly from the cooling medium injection unit 10 or injected tangentially to the horizontal cross section by the overflow weir system or the collision plate system. A flow can be formed. As a result, it is possible to protect the cooling chamber from thermal shock and avoid damage to the material, thereby cooling the synthesis gas, and at the same time, allow the solid matter attached to the inner wall surface to flow down to the gas outlet 3 without growing. Can be.
[0036]
The injection amount of the cooling medium d varies depending on the surface area of the inner wall of the cooling chamber reduced portion 7a, the flow rate and temperature of the synthesis gas, the type of the cooling medium, and the like. In addition, any amount can be used as long as a uniform wetting wall and liquid film of the cooling medium can be formed on the inner wall surface of the reduced portion 7a of the cooling chamber 5 to protect the cooling chamber from thermal shock.
[0037]
The cooling medium d is provided in a lower portion of a space portion of the double pipe structure (between the cooling chamber 5 forming the inner pipe portion of the double pipe structure and the outer wall pressure resistant portion forming the outer pipe portion; FIG. 2). After being introduced, the space is raised and the direction of the space is changed by overflow at the upper end portion of the space, the space is guided to a cooling medium injection unit 10 arranged on the circumference of the top of the cooling chamber. It is particularly preferable to perform the injection. By supplying the cooling medium d through the space of the double-pipe structure, the cooling medium can cool the cooling chamber 5 from the outer wall surface. Even if the state cannot be maintained, it is possible to protect the cooling chamber 5 from thermal shock due to temperature rise and suppress damage to the device material. Further, by changing the direction of the cooling medium d at the upper end portion of the space, the contact portion of the outer wall of the cooling medium injection section 10 following the lower end of the gas inlet 1 with the high temperature gas is thermally protected from the high temperature state. Can be.
[0038]
In the cooling / dust removing device 2, the synthesis gas (inlet gas) a flows downward (in the direction of the main shaft) from above the cooling chamber through the gas inlet 1. At this time, the gas flow may or may not be a swirling flow. Next, the synthesis gas a is effectively quenched and dedusted by being brought into contact with and mixed with the cooling medium c and the cooling medium d supplied as described above in the upper region (reducing portion 7a) of the cooling chamber 5. . Further, the syngas a has a higher flow velocity in the middle part (throat part 7b) of the cooling chamber 5, so that the effects of contact / mixing with the cooling medium and rapid cooling / dust removal are further enhanced. The synthesis gas that has passed through the throat portion 7b (synthesized by rapid cooling and dust removal) is guided to the lower region (the enlarged portion 7c) of the cooling chamber 5 to recover the pressure loss when passing through the throat portion 7b, and the gas outlet is provided. 3 is discharged as outlet gas b.
[0039]
The synthesis gas (outlet gas) b that has exited the cooling and dust removing device 2 is cooled and dust removed by a downstream gas-liquid separator (not shown) connected by a connecting portion 6 and a subsequent pipe (not shown). The synthesized gas and the cooling medium slurry containing solids are separated into gas and liquid. As the gas-liquid separator, a cyclone that does not require a water tank is effective, and the cyclone may have a general structure. The synthesis gas that has exited the gas-liquid separator is recovered as a clean synthesis gas 16 containing almost no solid components through the heat recovery step and the washing step.
[0040]
The cooling medium slurry containing the solid component obtained by the gas-liquid separator is separated into a solid component and a liquid component by a general solid-liquid separator (such as a filtration device), and the solid component is discarded, or The solids are sent to a gasification furnace by a solid circulation line (not shown) as appropriate, and the solid unburned matter (char, etc.) therein is gasified again. On the other hand, most of the liquid component is returned to the cooling and dedusting device 2 as the cooling media c and d by the cooling media circulation line (not shown), but is partially concentrated and supplied to the auxiliary fuel supply line (not shown). Sent to the gasifier. Further, a part of the cooling medium slurry can be concentrated as it is before solid-liquid separation and sent to a gasification furnace. In this case, the solid content of most of the cooling medium slurry is discarded after solid-liquid separation, and the liquid content is returned to the cooling / dust removing device 2.
[0041]
As described above, in the present invention, in order to suppress accumulation of liquid unburned matter (tar component and the like) in the cooling medium and to make gasification more efficient, the cooling medium slurry liquid concentrate or the concentration of the cooling medium slurry is concentrated. It is particularly preferred to return the product to the gasifier and use the concentrate (including the liquid unburned material and the cooling medium) as the gasification feed and / or auxiliary fuel. When returning the concentrate of the cooling medium slurry liquid, it is also preferable to return the solid to the gasifier together with the concentrate. The amount of these concentrates and solids returned to the gasifier is limited to the extent that the accumulation of liquid unburned materials is suppressed, the loss of solid unburned materials does not increase, and the gasification efficiency of waste in the gasifier is not impaired. I just need.
[0042]
【The invention's effect】
According to the present invention, a high-temperature synthesis gas obtained by gasifying combustible waste by partial oxidation can be more effectively cooled and dedusted than cooling and dedusting by spray cooling of cooling water by an auxiliary spray, In this flow, a new cooling / dust removing method and device capable of cooling / dust removing to the same level as cooling / dust removing by the quenching bath without the presence of the immersion part (quenching bath) in the cooling medium can be provided.
In other words, by injecting the cooling medium from the axial center in addition to the cooling chamber wall surface to form droplets of the cooling medium, the gas and the cooling medium are injected compared to the conventional case where the cooling chamber is injected from the periphery to the axial center. The contact area of the gas becomes large, and the syngas can be quenched and dedusted more effectively. By using a liquid hydrocarbon, light oil, or heavy oil A as a cooling medium instead of water, the syngas can be quenched and dust-removed effectively, and the entrained tar can be collected efficiently. Further, since the cooling chamber can be cooled from the outer wall side by the cooling medium, the cooling chamber can be protected from a thermal shock caused by a temperature rise due to unevenness of the wetted wall on the inner wall surface and the like, and damage to the material can be suppressed.
Furthermore, since the temperature of the synthesis gas after cooling and dust removal can be set to a temperature exceeding 100 ° C., the thermal energy possessed by the synthesis gas should be collected as useful and recyclable energy such as pressurized steam. Becomes possible. The collected tar can be returned to the gasification furnace and used as a gasification raw material and / or an auxiliary fuel.
[Brief description of the drawings]
FIG. 1 illustrates the configuration of a gasification process including the present invention.
FIG. 2 illustrates a cross-sectional view of a syngas cooling / dust removing apparatus of the present invention.
FIG. 3 illustrates a horizontal cross-sectional view of the cooling chamber in FIG.
FIG. 4 illustrates an enlarged view of the medium dispersion tank of FIG. 2;
FIG. 5 illustrates a horizontal cross-sectional view of the medium dispersion tank of FIG. 4 as viewed from an arrow B.
FIG. 6 illustrates a cross-sectional view of a conventional synthesis gas cooling / dust removing apparatus having a quenching chamber and a dip tube.
FIG. 7 illustrates a cross-sectional view of another embodiment of a conventional syngas cooling and dedusting apparatus having a quenching chamber and a dip tube.
[Explanation of symbols]
[Fig. 1] 10: combustible waste, 11: pretreatment step, 12: gasification step, 13: quenching / dust removal step, 14: heat recovery step, 15: washing (desalting) step, 16: purified gas
[FIGS. 2 to 5] 1: gas inlet, 2: cooling / dust removing device, 3: gas outlet, 4: connection part to gasifier, 5: cooling chamber, 6: connection part to gas-liquid separator , 7a: reduction part, 7b: throat, 7c: enlargement part, 8: cooling medium supply pipe, 9: medium dispersion tank, 10: cooling medium injection part, 11 to 13: support rod (or support plate), 14 : Medium dispersion plate, 15: opening, a: inlet gas, b: outlet gas, c, d: cooling medium
[Figs. 6 and 7] 1: combustion chamber, 2: quenching chamber, 3: throat, 4: dip tube, 5: water tank (quenching bath), 6: slag outlet, 7: gas outlet, 8: slag water Outlet, 9: cooling water inlet, 21: reaction chamber (combustion chamber), 22: quenching chamber, 23: throttle (throat), 24: immersion pipe, 25: quenching bath, 26: slag discharge pipe, 27 : Gas exhaust pipe, 28: gas inlet, 29: quenching ring, 30: spray chamber, 31: film chamber, a: low temperature partial oxidizing gas, b: oxygen, c: steam, d: cooling / dust removing synthesis gas, e : Cooling water, f: Slag particles

Claims (9)

可燃性廃棄物を部分酸化によりガス化して生成する合成ガスを管構造の冷却室で冷却・除塵するに当たり、冷却室の上方から合成ガスを導入しながら、冷却室頂部円周から冷却室内壁面に冷却媒体を供給して冷却室内壁面に濡れ壁を形成させると共に、冷却室上部域の軸心部から冷却室内部に冷却媒体を供給して冷却媒体の液滴を形成させ、該合成ガスを該濡れ壁及び該液滴と接触させて急冷・除塵することを特徴とする合成ガスの冷却・除塵方法。In cooling and removing dust from the synthetic gas generated by gasifying combustible waste by partial oxidation in a cooling chamber with a tubular structure, the syngas is introduced from above the cooling chamber, and from the top circumference of the cooling chamber to the wall of the cooling chamber. A cooling medium is supplied to form a wet wall on the wall surface of the cooling chamber, and a cooling medium is supplied from the axis of the upper region of the cooling chamber to the inside of the cooling chamber to form droplets of the cooling medium. A method for cooling and removing dust from a synthesis gas, which comprises contacting with a wet wall and the droplet to rapidly cool and remove the dust. 冷却媒体と冷却室外壁面との接触を維持しつつ、該冷却媒体を冷却室頂部円周から冷却室内壁面に供給して冷却室内壁面に濡れ壁を形成させる、請求項1記載の合成ガスの冷却・除塵方法。The cooling of the synthesis gas according to claim 1, wherein the cooling medium is supplied from the top circumference of the cooling chamber to the wall of the cooling chamber to form a wet wall on the wall of the cooling chamber while maintaining the contact between the cooling medium and the outer wall of the cooling chamber.・ Dust removal method. 冷却媒体として、A重油、軽油、又は沸点が100℃を超えて450℃を超えない範囲の液体炭化水素を使用する、請求項1記載の合成ガスの冷却・除塵方法。The method for cooling and dedusting a synthesis gas according to claim 1, wherein as the cooling medium, heavy oil A, light oil, or liquid hydrocarbon having a boiling point in a range of more than 100 ° C and not more than 450 ° C is used. ガス化温度が550〜1000℃の範囲である、請求項1記載の合成ガスの冷却・除塵方法。The method for cooling and dusting a synthesis gas according to claim 1, wherein the gasification temperature is in a range of 550 to 1000C. 上端にガス導入口、下端にガス排出口、そして、内部に、頂部及び底部が該ガス導入口及び該ガス排出口にそれぞれ連接する管構造の冷却室を有する二重管構造の合成ガスの冷却・除塵装置であって、該冷却室上部域の軸心部から冷却室内部に冷却媒体の液滴を形成させる手段と、該冷却室頂部円周から冷却室内壁面に冷却媒体の濡れ壁を形成させる手段を備えてなることを特徴とする、合成ガスの冷却・除塵装置。Cooling of syngas with a double pipe structure having a gas inlet at the upper end, a gas outlet at the lower end, and a cooling chamber with a pipe structure in which the top and bottom are connected to the gas inlet and the gas outlet, respectively. A dust removing device for forming droplets of the cooling medium from the axial center of the upper part of the cooling chamber to the inside of the cooling chamber; and forming a wetted wall of the cooling medium on the wall surface of the cooling chamber from the circumference of the top of the cooling chamber. An apparatus for cooling and removing dust from a synthesis gas, comprising: 冷却室が、ガスの流れに沿って上下方向に縮小部と喉部と拡大部を順に形成する内部構造を有している、請求項5記載の合成ガスの冷却・除塵装置。6. The syngas cooling and dust removing apparatus according to claim 5, wherein the cooling chamber has an internal structure in which a reduced portion, a throat portion, and an enlarged portion are sequentially formed in the vertical direction along the flow of the gas. 冷却媒体の液滴形成手段が、装置下部外側面から冷却室下部域に入り冷却室下部域軸心部で方向転換して冷却室上部域に該軸心部を垂直に上昇しその先端に開口部と媒体分散板を備えた媒体分散槽を有する冷却媒体供給用配管にて、冷却媒体を該開口部から冷却室内に溢流させることによる、請求項5記載の合成ガスの冷却・除塵装置。The droplet forming means of the cooling medium enters the lower part of the cooling chamber from the outer surface of the lower part of the apparatus, changes direction at the axis of the lower part of the cooling chamber, vertically rises the axis in the upper part of the cooling chamber, and opens at the tip thereof. The cooling / dust removing apparatus for syngas according to claim 5, wherein the cooling medium overflows from the opening into the cooling chamber through a cooling medium supply pipe having a medium dispersion tank provided with a section and a medium dispersion plate. 冷却媒体の濡れ壁形成手段が、冷却媒体を、二重管構造の空間部の下方部分に導入して該空間部を上昇させ、該空間部の上端部分で方向転換させた後、冷却室頂部円周に配設の冷却媒体注入部に導いて該冷却媒体注入部から冷却室内壁面を流下させるように冷却媒体を注入することによる、請求項5記載の合成ガスの冷却・除塵装置。The means for forming a wetting wall of the cooling medium introduces the cooling medium into a lower portion of the space portion of the double pipe structure, raises the space portion, and changes the direction at the upper end portion of the space portion. 6. The syngas cooling and dust removing apparatus according to claim 5, wherein the cooling medium is injected so as to flow to a cooling medium injection section provided around the circumference and flow down the wall of the cooling chamber from the cooling medium injection section. 冷却・除塵装置の下流に、合成ガスと冷却媒体スラリーを気液分離する気液分離器、該冷却媒体スラリーを固体分と液体分に固液分離する固液分離装置、該冷却媒体スラリー液体分を冷却・除塵装置に戻す冷却媒体循環ライン、及び、該冷却媒体スラリー液体分の濃縮物を冷却・除塵装置上流のガス化炉に送る補助燃料供給ラインを配設してなる、請求項5記載の合成ガスの冷却・除塵装置。Downstream of the cooling / dust removing device, a gas-liquid separator for gas-liquid separation of the synthesis gas and the cooling medium slurry, a solid-liquid separation device for solid-liquid separating the cooling medium slurry into a solid component and a liquid component, and the cooling medium slurry liquid component 6. A cooling medium circulation line for returning to the cooling / dust removing device, and an auxiliary fuel supply line for sending a concentrate of the cooling medium slurry liquid to a gasification furnace upstream of the cooling / dust removing device. Syngas cooling and dedusting equipment.
JP2003071284A 2003-03-17 2003-03-17 Cooling and dust removing method of synthesis gas, and its apparatus Pending JP2004277574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071284A JP2004277574A (en) 2003-03-17 2003-03-17 Cooling and dust removing method of synthesis gas, and its apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071284A JP2004277574A (en) 2003-03-17 2003-03-17 Cooling and dust removing method of synthesis gas, and its apparatus

Publications (1)

Publication Number Publication Date
JP2004277574A true JP2004277574A (en) 2004-10-07

Family

ID=33287758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071284A Pending JP2004277574A (en) 2003-03-17 2003-03-17 Cooling and dust removing method of synthesis gas, and its apparatus

Country Status (1)

Country Link
JP (1) JP2004277574A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025140A (en) * 2009-07-23 2011-02-10 Air Liquide Japan Ltd Apparatus and method for treating emission gas accompanied powder
CN102260485A (en) * 2010-05-25 2011-11-30 M·阿伦博里 Heat exchange medium
CN104694171A (en) * 2013-12-06 2015-06-10 通用电气公司 System and method for cooling syngas within a gasifier system
TWI498514B (en) * 2009-12-21 2015-09-01 Bayer Ip Gmbh Plant and process for purifying marine diesel exhausts
CN110903863A (en) * 2019-12-23 2020-03-24 中冶焦耐(大连)工程技术有限公司 Primary cooling process and device adopting circulating ammonia water for refrigeration

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011025140A (en) * 2009-07-23 2011-02-10 Air Liquide Japan Ltd Apparatus and method for treating emission gas accompanied powder
TWI498514B (en) * 2009-12-21 2015-09-01 Bayer Ip Gmbh Plant and process for purifying marine diesel exhausts
CN102260485A (en) * 2010-05-25 2011-11-30 M·阿伦博里 Heat exchange medium
JP2013532202A (en) * 2010-05-25 2013-08-15 エーセー1 インベント アーベー Heat exchange medium
JP2016186085A (en) * 2010-05-25 2016-10-27 アヴァンサーム アーベーAvantherm AB Heat exchange medium
CN104694171A (en) * 2013-12-06 2015-06-10 通用电气公司 System and method for cooling syngas within a gasifier system
CN104694171B (en) * 2013-12-06 2022-06-14 气体产品与化学公司 System and method for cooling syngas within a gasifier system
CN110903863A (en) * 2019-12-23 2020-03-24 中冶焦耐(大连)工程技术有限公司 Primary cooling process and device adopting circulating ammonia water for refrigeration

Similar Documents

Publication Publication Date Title
US9890341B2 (en) Gasification reactor and process for entrained-flow gasification
JP4454045B2 (en) Swivel melting furnace and two-stage gasifier
JP5782376B2 (en) Two-stage entrained gasifier and method
US9631153B2 (en) Adaptable universal method for producing synthetic products
AU2007245732B2 (en) Gasification reactor and its use
JP3777801B2 (en) Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist
EP2334764A2 (en) Process to prepare a gas mixture of hydrogen and carbon monoxide
CN108410517B (en) Gasification quench system
CN108410515B (en) Gasification quench system
JP4061633B2 (en) Gasification processing equipment for organic waste
JP2004277574A (en) Cooling and dust removing method of synthesis gas, and its apparatus
JP4561779B2 (en) Swivel melting furnace and waste gasification method using swirl melting furnace
KR20240005873A (en) Method and apparatus for industrial production of renewable synthetic fuels
JP3938981B2 (en) Gas recycling method for waste gasification
JP5489264B2 (en) Settling separator for gasified combustible gas content
JP3883253B2 (en) High temperature oxidation furnace and oxidation treatment method
US11624034B2 (en) Process and apparatus for producing synthesis gas through thermochemical conversion of biomass and waste materials
JP6901165B2 (en) Equilibrium approach reactor
WO2023161407A1 (en) Plant, device and process
EP2719747B1 (en) Gasification method of coal-bearing raw materials, char and coal
JP2003327976A (en) Pressure two-stage gasification method for combustible waste
JP2008168226A (en) Method for treating object to be treated and treatment apparatus therefor