JP3777801B2 - Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist - Google Patents

Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist Download PDF

Info

Publication number
JP3777801B2
JP3777801B2 JP17777498A JP17777498A JP3777801B2 JP 3777801 B2 JP3777801 B2 JP 3777801B2 JP 17777498 A JP17777498 A JP 17777498A JP 17777498 A JP17777498 A JP 17777498A JP 3777801 B2 JP3777801 B2 JP 3777801B2
Authority
JP
Japan
Prior art keywords
downcomer
gas
cooling water
cooling
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17777498A
Other languages
Japanese (ja)
Other versions
JP2000005542A (en
Inventor
誠 寺内
敏明 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP17777498A priority Critical patent/JP3777801B2/en
Priority to PCT/JP1999/007226 priority patent/WO2001045824A1/en
Publication of JP2000005542A publication Critical patent/JP2000005542A/en
Application granted granted Critical
Publication of JP3777801B2 publication Critical patent/JP3777801B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/006Equipment for treating dispersed material falling under gravity with ascending gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C3/00Other direct-contact heat-exchange apparatus
    • F28C3/06Other direct-contact heat-exchange apparatus the heat-exchange media being a liquid and a gas or vapour
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/0002Cooling of furnaces
    • F27D2009/001Cooling of furnaces the cooling medium being a fluid other than a gas
    • F27D2009/0013Cooling of furnaces the cooling medium being a fluid other than a gas the fluid being water
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D9/00Cooling of furnaces or of charges therein
    • F27D2009/007Cooling of charges therein
    • F27D2009/0089Quenching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Of Particles Using Liquids (AREA)
  • Chimneys And Flues (AREA)
  • Separating Particles In Gases By Inertia (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【発明の属する技術分野】
本発明は有機性原料あるいは廃棄物のガス化または燃焼などに使用される高温旋回炉から発生するガスを冷却するとともにガスに同伴するスラグミスト分を捕集する方法に関する。
【従来の技術】
従来、都市ごみ、産業廃棄物、下水汚泥の多くが焼却設備へ、またし尿や高濃度廃液が廃水処理設備へ送られ処理されている。しかし、まだ多くの廃棄物が未処理のまま投棄されているため、環境汚染や埋立て地の逼迫を招くに至った。このため廃棄物を低温でガス化処理した後に高温で燃焼することにより灰分を溶融スラグ化するとともにダイオキシン類を完全分解するガス化溶融システムの実用化が強く望まれている。
以上の中核となる高温燃焼炉あるいは高温ガス化炉の構成や処理方法が種々提案されているものの、このような高温ガス化炉で発生するガスの冷却方法もまた上記システムの成否を左右するといえるほど重要である。
従来の高温合成ガス冷却装置による例を図6の概要断面図に示す。
すなわち、この装置は反応室21と急冷チャンバ22からなり、入口28から導入された石炭のガス化によって得られた合成ガスは反応室21の下方の狭いスロート部23を通り急冷チャンバ22の内部に設けられた浸漬管24内部の冷却領域に導入される。
下端に鋸歯状部をもつ浸漬管24の下端部は急冷浴25に浸漬しており、急冷チャンバ22の上部にはガス排出管27がある。反応室21と急冷チャンバ22との境界に急冷リング29があり、急冷リング29の下面は浸漬管24の上端部に接している。
急冷リング29は上部のスプレーチャンバ30と下部のフィルムチャンバ31に分かれていて、フィルムチャンバ31から放出された冷却水は浸漬管24の軸にほぼ平行に進み浸漬管24の内面に沿って落下する冷却水の薄い落下フィルムを形成し、スプレーチャンバ30から放出された冷却水は急冷リング29の周囲から浸漬管24の主軸方向に進むようになっている。26はスラグを排出するライン、eは冷却水である。
前記冷却領域における乱流とフィルム蒸発による冷却およびスプレー冷却の組合わせにより降下する合成ガスを例えば1370℃の初期温度から浸漬管24の出口温度例えば約500℃まで冷却することができる。さらに冷却領域の下方部分からでた合成ガスは急冷浴25中を通り抜けると、灰および炭化物粒子の大半約95%は冷却領域の下端においてガスから分離される。急冷浴25を通り抜けたガスは浸漬管24の外側領域を冷却しながら蒸発した冷却水とともに上昇しガス排出管27から例えば232℃の温度で排出される。
また、国際公開番号W098/10225における発明「旋回溶融炉及び旋回溶融炉を用いた廃棄物のガス化方法」によれば、燃焼室とスラグ分離室からなる旋回溶融炉では、燃焼室壁面のスラグ層を流下したスラグはスラグ滴となってスラグ分離室に落下し、分離室内の下降管との接合角部の周方向に配置された補助スプレーによって下降管内壁面の冷却と同時にガスやスラグを噴霧冷却した後、スラグ分離室下部の水槽中の水に吹き込まれて急冷される。下降管の外側を上昇したガスはスラグ分離室に設けたガス出口より排出され、水槽中に堆積したスラグはスラグ出口より排出される。
【発明が解決しようとする課題】
しかしながら、前記高温合成ガス冷却装置あるいは旋回溶融炉における発生ガスの冷却および同伴するスラグミスト分の捕集方法においては、それぞれのプロセスにおいて一応の冷却効率やスラグミスト分の捕集効率が達成されているものの、より一層効果的な冷却方法や捕集方法の開発が望まれている。特に高温旋回炉に関する方法で望まれている改良や開発を課題として列挙すると以下の通りである。
(イ) 高温旋回炉発生ガスを下降管内部で従来の技術、例えば下降管接合部に設けた補助スプレーによる管内壁面の冷却およびガス冷却よりも一層効果的に冷却させる方法の開発。
(ロ) 発生ガスに同伴したスラグミスト分を下降管内面の冷却水の濡壁流れおよび下降管内部全体に発生する水滴により捕集できるように冷却水の供給方法の改良。
(ハ) ガスの冷却効果を向上させるために、下降管内部全体に無数の水滴を発生させる方法の開発。
(ニ) 旋回しながら吹込まれる発生ガスの同伴したスラグミストを確実に捕集するために、下降管内部の冷却水の濡壁旋回流れの濡壁厚みが常に一様となるようにする冷却水供給方法の改良。
したがって本発明の目的は、高温旋回炉において、下降管内面の冷却水の濡壁旋回流れや下降管内部全体に発生させた水滴でスラグミスト分を捕集することを含めて、発生ガスのより効果的な冷却方法を提供することにある。
【課題を解決するための手段】
本発明者らは上記目的を達成すべく鋭意研究の結果、下降管内面の冷却水の濡壁旋回流れの方向を下降管内での発生ガスの旋回流れ方向と同じにすると、発生ガスに同伴するスラグミスト分を確実に捕集できること、一方冷却水の濡壁旋回流れの方向を発生ガスのそれと逆方向にすると、下降管内部全体に水滴を発生できる等、前述の課題が解決されることを見いだし本発明に到達した。
すなわち、本発明は第1に、燃焼室とガス急冷室を有する高温旋回炉で発生するガス(発生ガス)を冷却し更に同伴するスラグミスト分を捕集する方法であって、発生ガスをガス急冷室内の下降管頂部に設けた冷却水注入部から冷却水を供給して冷却する際、下降管内面での冷却水の濡壁流れが下降管内の発生ガスの旋回流れに対して同方向あるいは逆方向の旋回流れとなるように下降管の水平断面において接線方向から注入することを特徴とする発生ガスの冷却および同伴スラグミスト分の捕集方法;第2に、前記冷却水の注入本数は1本もしくは複数本であって、その合計流量が下降管頂部内周の単位浸辺長当たり20m3/h/m以 上である前記第1に記載の方法;第3に、前記冷却水の旋回方向が下降管内での発生ガスの旋回方向に対して逆方向であって、下降管内部全体に水滴を発生させるための下降管内のガス旋回流速が、例えば常圧系の場合3.0m/s以上である前記第1に記載の方法;第4に、前記下降管の形状が円柱形状もしくは逆円錐台形状である前記第1に記載の方法;第5に、前記下降管頂部に設けられる冷却水注入部の方式は溢流堰方式もしくは衝突板方式である前記第1に記載の方法を提供するものである。
【発明の実施の形態】
本発明の方法ではガス急冷室内の下降管頂部に設けた冷却水注入部から冷却水を供給する際、下降管内面での冷却水の濡壁旋回流れが下降管内の発生ガスの旋回流れに対して同方向あるいは逆方向の旋回流れになるように下降管の水平断面において接線方向から冷却水を注入する点に特徴があり、具体的な濡壁旋回流れの作用効果は以下の通りである。
冷却水の濡壁旋回流れ方向を下降管内での発生ガスの旋回流れ方向に対して同方向にすると、発生ガスの旋回流れは確実に維持・促進されて、発生ガスに同伴するスラグミスト分を下降管内面の冷却水の濡壁旋回流れに確実に捕集させることができる。また、発生ガスの旋回流れにより冷却水の濡壁旋回流れを下降管内面周方向に押し付けることにより、濡壁厚みを一様なものとすることができる。
一方、冷却水の濡壁旋回流れ方向を発生ガスの旋回流れ方向に対して逆方向にすると、発生ガスの旋回流れにより冷却水の濡壁旋回流れの表面から下降管内部全体に水滴を発生させることができ、高温の発生ガスと冷却水との接触面積が飛躍的に増大することで発生ガスの冷却およびスラグミスト分の捕集効率を高めることができる。なお、下降管内部全体に水滴を発生させるには、下降管内のガス旋回流速として常圧系の場合、3.0m/s以上が必要である。
高温の発生ガスが下降管内面に形成された冷却水の濡壁旋回流れと直接接触することにより、冷却水の一部を蒸発させることで、発生ガスを冷却する効果がある。
下降管形状を円柱形状とすることで、一様な冷却水の濡壁旋回流れが形成できるとともに燃焼室からの発生ガスの旋回流れを維持することができる。さらに逆円錐台形状とすることで、高温の発生ガスとの接触により冷却水の一部が蒸発し失われても適度の厚みの濡壁旋回流れを確保することができる。
【実施例】
図1は本発明で用いられる高温旋回炉の断面構成図、図2は図1の矢視Aから見た水平断面構成図であって、これらの図を参照して以下説明する。
図1、図2において、1は燃焼室、2はガス急冷室、3はスロート部、4は下降管、5は水槽、6はスラグ排出口、7はガス排出口、8はスラグ水排出口、9は冷却水注入部、10は旋回流れの仮想円、aはガス化ガス、bは酸素、cはスチーム、dは発生ガス、eは冷却水、fはスラグ粒である。
高温旋回炉は燃焼室1およびガス急冷室2で構成され、ガス急冷室2は燃焼室1で発生する高温の発生ガスを急冷するとともに、燃焼室壁面に沿ってガス急冷室へと流下する溶融スラグおよび発生ガスに同伴する溶融スラグミスト分を分離冷却し、水砕スラグ化する。
ガス急冷室2は燃焼室1の下部にスロート部3を介して接続され、内部に下降管4、底部に水槽5とスラグ排出口6、側面にガス排出口7とスラグ水排出口8があり、下降管4頂部には冷却水注入部9がある。
高温旋回炉では例えば流動層ガス化炉から供給されるガス化ガスaと高温旋回炉の側面から供給される酸素bとスチームcは旋回流れの仮想円10の接線方向に吹き込まれ旋回流れを形成する。
燃焼室1からの発生ガスは旋回流れを保ったまま、スロート部3を通過してガス急冷室2に入る。また燃焼室1内で発生する溶融スラグの大部分は燃焼室壁面に沿ってガス急冷室2に流下するが、一部のスラグミスト分は発生ガスに同伴された状態でスロート部3からガス急冷室2へ送られる。
ガス急冷室2の下降管4内部は高温の発生ガスおよび溶融スラグが通過することで高温雰囲気にさらされるので、下降管4の内面にはその頂部にある冷却水注入部9において下降管4の水平断面に対して接線方向から供給する冷却水eによって濡壁旋回流れを形成させることで、熱衝撃から保護され材料の損傷を回避できるとともに、付着した固化スラグを下降管内面で成長させることなく水槽5へと流下させることができる。
図3に下降管の形状例を示す。同図(a)は円柱形状、同図(b)は逆円錐台形状であって、後者のようにすると高温の発生ガスとの接触により冷却水の一部が蒸発して失われても適度な厚みの濡壁旋回流れを確保することができる。
図4、図5はいずれも下降管内面に濡壁旋回流れをつくるための冷却水注入方式を示したもので、図4は溢流堰方式で仕切板11を使用し、図5は衝突板方式で衝突板12を使用して安定した濡壁旋回流れを形成することができる。
【発明の効果】
以上述べたように、本発明の発生ガス冷却方法によれば、下降管内面の冷却水の濡壁流れは高温の発生ガスが直接冷却水と接触し、この冷却水の一部が蒸発することで発生ガスを冷却する効果のあることは従来技術も同じであるが、この濡壁流れを旋回流れとし、濡壁表面を粗くすることで従来技術の単純濡壁流れ(前記薄い落下フィルム)の場合に比しガスとの接触面積が大きくなり、より効果的に発生ガスを冷却することができる。
その上、冷却水の濡壁旋回流れ方向を発生ガスの旋回流れ方向と同じにすると発生ガスの旋回流れを維持しながらスラグミスト分を捕集でき、かつ濡壁厚みを一様に保持できる。
またさらに、冷却水の濡壁旋回流れを発生ガスの旋回流れと逆方向にすると、濡壁旋回流れの表面から下降管内全体に水滴を発生でき、ガスと冷却水との接触を飛躍的に増大させ、スラグミスト分の捕集効率を高めることができる。
【図面の簡単な説明】
【図1】燃焼室とガス急冷室を有する本発明に用いられる高温旋回炉の断面構成図である。
【図2】図1の矢視Aから見た水平断面構成図である。
【図3】ガス急冷室の下降管について同図(a)は円柱形状を、同図(b)は逆円錐台形状を示す断面図である。
【図4】ガス急冷室の冷却水注入部での冷却水注入方式において、同図(a)および(b)は溢流堰方式の断面図および平面図である。
【図5】ガス急冷室の冷却水注入部での冷却水注入方式において、同図(a)および(b)は衝突板方式の断面図および平面図である。
【図6】急冷チャンバおよび浸漬管を有する従来の高温合成ガス冷却装置の一例を示す概要断面図である。
【符号の説明】
1 燃焼室
2 ガス急冷室
3 スロート部
4 下降管
5 水槽
6 スラグ排出口
7 ガス排出口
8 スラグ水排出口
9 冷却水注入部
10 旋回流れの仮想円
11 仕切板
12 衝突板
21 反応室
22 急冷チャンバ
23 スロート部
24 浸漬管
25 急冷浴
26 スラグ排出ライン
27 ガス排出管
28 入口
29 急冷リング
30 スプレーチャンバ
31 フィルムチャンバ
a ガス化ガス
b 酸素
c スチーム
d 発生ガス
e 冷却水
f スラグ粒
g 濡壁旋回流れ
BACKGROUND OF THE INVENTION
The present invention relates to a method of cooling a gas generated from a high-temperature swirl furnace used for gasification or combustion of organic raw materials or wastes and collecting slag mist components accompanying the gas.
[Prior art]
Conventionally, most municipal waste, industrial waste, and sewage sludge are sent to incineration facilities, and urine and high-concentration waste liquid are sent to wastewater treatment facilities. However, because a lot of waste is still dumped untreated, it has led to environmental pollution and landfill tightness. For this reason, there is a strong demand for the practical application of a gasification and melting system in which waste is gasified at a low temperature and then combusted at a high temperature to convert ash into molten slag and completely decompose dioxins.
Although various configurations and processing methods for the high-temperature combustion furnace or high-temperature gasification furnace that are the core of the above have been proposed, it can be said that the cooling method of the gas generated in such a high-temperature gasification furnace also determines the success or failure of the system. So important.
An example of a conventional high-temperature syngas cooling device is shown in the schematic cross-sectional view of FIG.
That is, this apparatus comprises a reaction chamber 21 and a quenching chamber 22, and synthesis gas obtained by gasification of coal introduced from an inlet 28 passes through a narrow throat portion 23 below the reaction chamber 21 and enters the quenching chamber 22. It is introduced into a cooling region inside the provided dip tube 24.
The lower end portion of the dip tube 24 having a serrated portion at the lower end is immersed in the quenching bath 25, and a gas discharge tube 27 is provided at the upper portion of the quench chamber 22. There is a quench ring 29 at the boundary between the reaction chamber 21 and the quench chamber 22, and the lower surface of the quench ring 29 is in contact with the upper end of the dip tube 24.
The quenching ring 29 is divided into an upper spray chamber 30 and a lower film chamber 31. Cooling water discharged from the film chamber 31 travels substantially parallel to the axis of the dip tube 24 and falls along the inner surface of the dip tube 24. A thin falling film of cooling water is formed, and the cooling water discharged from the spray chamber 30 advances from the periphery of the quenching ring 29 toward the main axis of the dip tube 24. 26 is a line for discharging slag, and e is cooling water.
The synthesis gas descending by a combination of turbulent flow in the cooling region, film evaporation cooling and spray cooling can be cooled from an initial temperature of, for example, 1370 ° C. to an outlet temperature of the dip tube 24, for example, about 500 ° C. Furthermore, as the synthesis gas emerging from the lower portion of the cooling zone passes through the quench bath 25, the majority of the ash and carbide particles are separated from the gas at the lower end of the cooling zone. The gas that has passed through the quenching bath 25 rises together with the evaporated cooling water while cooling the outer region of the dip tube 24 and is discharged from the gas discharge tube 27 at a temperature of 232 ° C., for example.
Further, according to the invention “Swivel melting furnace and waste gasification method using a swirling melting furnace” in International Publication No. W098 / 10225, in a swirling melting furnace comprising a combustion chamber and a slag separation chamber, the slag on the wall surface of the combustion chamber The slag that flows down the bed falls into the slag separation chamber as slag droplets, and gas and slag are sprayed simultaneously with the cooling of the inner wall of the downcomer pipe by the auxiliary spray arranged in the circumferential direction of the junction corner with the downcomer pipe in the separation chamber. After cooling, it is quenched by being blown into the water in the water tank below the slag separation chamber. The gas rising outside the downcomer is discharged from the gas outlet provided in the slag separation chamber, and the slag accumulated in the water tank is discharged from the slag outlet.
[Problems to be solved by the invention]
However, in the method of cooling the generated gas in the high-temperature synthesis gas cooling device or the swirl melting furnace and the accompanying slag mist collection method, a temporary cooling efficiency and slag mist collection efficiency are achieved in each process. However, development of a more effective cooling method and collection method is desired. In particular, improvements and developments desired in the method related to the high-temperature swirl furnace are listed as problems as follows.
(B) Development of a method for cooling the gas generated in the high-temperature swirl furnace more effectively than the conventional technology, for example, cooling of the inner wall surface of the pipe by auxiliary spray provided at the downcomer joint and gas cooling.
(B) Improvement of the cooling water supply method so that the slag mist accompanying the generated gas can be collected by the wetting wall flow of cooling water on the inner surface of the downcomer and the water droplets generated inside the downcomer.
(C) Development of a method for generating countless water droplets throughout the downcomer to improve the gas cooling effect.
(D) Cooling so that the wet wall thickness of the swirling flow of cooling water inside the downcomer pipe is always uniform in order to reliably collect the slag mist accompanied by the generated gas that is blown while swirling. Improved water supply method.
Therefore, the object of the present invention is to collect the slag mist in the high-temperature swirling furnace, including collecting the slag mist by the swirling flow of the cooling wall on the inner surface of the downcomer pipe and the water droplets generated in the entire downcomer pipe. The object is to provide an effective cooling method.
[Means for Solving the Problems]
As a result of diligent research to achieve the above object, the present inventors have entrained the generated gas when the direction of the swirling flow of the cooling water on the inner surface of the downcomer is the same as that of the generated gas in the downcomer. That the slag mist can be collected reliably, and that the above-mentioned problems can be solved, for example, if the direction of the swirling flow of the cooling water is opposite to that of the generated gas, water droplets can be generated inside the downcomer. We found out and reached the present invention.
That is, the present invention firstly is a method for cooling a gas (generated gas) generated in a high-temperature swirling furnace having a combustion chamber and a gas quenching chamber, and further collecting the accompanying slag mist. When cooling water is supplied from the cooling water injection section provided at the top of the downcomer pipe in the quenching chamber for cooling, the wetting wall flow of the cooling water on the inner surface of the downcomer pipe is in the same direction as the swirling flow of the generated gas in the downcomer pipe or Cooling of the generated gas and collection of entrained slag mist, wherein the cooling gas is injected from the tangential direction in the horizontal cross section of the downcomer so as to obtain a swirling flow in the reverse direction; One or more, and the total flow rate is 20 m 3 / h / m or more per unit immersion edge length of the inner periphery of the downcomer pipe top; The swirl direction is the swirl direction of the generated gas in the downcomer The method according to the first aspect, wherein the gas swirl flow velocity in the downcomer pipe for generating water droplets in the entire downcomer pipe is, for example, 3.0 m / s or more in the case of a normal pressure system; 4. The method according to the first aspect, wherein the shape of the downcomer is a cylindrical shape or an inverted frustoconical shape; fifth, the cooling water injection unit provided at the top of the downcomer is an overflow weir method or a collision The method according to the first aspect, which is a plate method, is provided.
DETAILED DESCRIPTION OF THE INVENTION
In the method of the present invention, when cooling water is supplied from the cooling water injection portion provided at the top of the downcomer pipe in the gas quenching chamber, the wetting wall swirling flow of the cooling water on the inner surface of the downcomer is in contrast to the swirling flow of the generated gas in the downcomer pipe. Thus, the cooling water is injected from the tangential direction in the horizontal cross section of the downcomer so that the swirling flow is in the same direction or in the reverse direction. The specific effects of the swirling flow of the wet wall are as follows.
When the swirl flow direction of the cooling water is the same as the swirl flow direction of the generated gas in the downcomer, the swirl flow of the generated gas is reliably maintained and promoted, and the slag mist accompanying the generated gas is reduced. It is possible to reliably collect in the swirling flow of the cooling water on the inner surface of the downcomer pipe. Further, the wet wall thickness can be made uniform by pressing the wet wall swirl flow of the cooling water in the circumferential direction of the inner surface of the downcomer pipe by the swirl flow of the generated gas.
On the other hand, if the swirl flow direction of the cooling water is opposite to the swirl flow direction of the generated gas, water droplets are generated from the surface of the swirl flow of the cooling water to the entire inside of the downcomer by the swirl flow of the generated gas. In addition, since the contact area between the high-temperature generated gas and the cooling water is dramatically increased, it is possible to increase the cooling efficiency of the generated gas and the collection efficiency of the slag mist. In order to generate water droplets throughout the downcomer, the gas swirl flow rate in the downcomer requires 3.0 m / s or more in the case of a normal pressure system.
By directly contacting the swirling flow of the cooling water formed on the inner surface of the downcomer with the hot generated gas, the generated gas is cooled by evaporating a part of the cooling water.
By making the downcomer pipe shape a cylindrical shape, it is possible to form a uniform wet wall swirl flow of cooling water and to maintain a swirl flow of generated gas from the combustion chamber. Further, by adopting the inverted frustoconical shape, it is possible to ensure a wet wall swirl flow having an appropriate thickness even if a part of the cooling water evaporates and is lost due to contact with the high temperature generated gas.
【Example】
FIG. 1 is a cross-sectional configuration diagram of a high-temperature swirl furnace used in the present invention, and FIG. 2 is a horizontal cross-sectional configuration diagram viewed from an arrow A in FIG. 1 and will be described below with reference to these drawings.
1 and 2, 1 is a combustion chamber, 2 is a gas quenching chamber, 3 is a throat section, 4 is a downcomer, 5 is a water tank, 6 is a slag outlet, 7 is a gas outlet, and 8 is a slag water outlet. , 9 is a cooling water injection part, 10 is a virtual circle of swirl flow, a is a gasification gas, b is oxygen, c is steam, d is a generated gas, e is cooling water, and f is slag particles.
The high-temperature swirl furnace is composed of a combustion chamber 1 and a gas quenching chamber 2, and the gas quenching chamber 2 quenches the high-temperature gas generated in the combustion chamber 1 and melts down to the gas quenching chamber along the combustion chamber wall surface. The molten slag mist that accompanies the slag and generated gas is separated and cooled to be granulated slag.
The gas quenching chamber 2 is connected to the lower portion of the combustion chamber 1 through a throat portion 3, and has a downcomer 4 inside, a water tank 5 and a slag discharge port 6 at the bottom, a gas discharge port 7 and a slag water discharge port 8 on the side surface. There is a cooling water injection part 9 at the top of the downcomer 4.
In the high-temperature swirl furnace, for example, the gasified gas a supplied from the fluidized bed gasifier, the oxygen b and steam c supplied from the side of the high-temperature swirl furnace are blown in the tangential direction of the virtual circle 10 of the swirl flow to form a swirl flow. To do.
The generated gas from the combustion chamber 1 enters the gas quenching chamber 2 through the throat portion 3 while maintaining a swirling flow. Most of the molten slag generated in the combustion chamber 1 flows down to the gas quenching chamber 2 along the wall surface of the combustion chamber, but a part of the slag mist is gas-quenched from the throat portion 3 while being accompanied by the generated gas. Sent to chamber 2.
Since the inside of the downcomer 4 of the gas quenching chamber 2 is exposed to a high temperature atmosphere through the passage of high-temperature generated gas and molten slag, the inner surface of the downcomer 4 has a cooling water injection part 9 at the top of the downcomer 4. By forming the wet wall swirl flow with the cooling water e supplied from the tangential direction with respect to the horizontal cross section, the material can be protected from thermal shock and the damage of the material can be avoided, and the adhered solidified slag can be grown on the downcomer inner surface. It can flow down to the water tank 5.
FIG. 3 shows an example of the shape of the downcomer. The figure (a) is a cylindrical shape, and the figure (b) is an inverted frustoconical shape. If the latter is used, even if a part of the cooling water is evaporated and lost due to contact with the high-temperature generated gas, it is appropriate. A thick wall swirl flow can be secured.
4 and 5 show a cooling water injection method for creating a wetting wall swirl flow on the inner surface of the downcomer pipe. FIG. 4 shows an overflow weir method using a partition plate 11 and FIG. 5 shows a collision plate. The impingement plate 12 can be used in a manner to create a stable wet wall swirl flow.
【The invention's effect】
As described above, according to the generated gas cooling method of the present invention, the wet wall flow of the cooling water on the inner surface of the downcomer pipe is such that the high temperature generated gas is in direct contact with the cooling water and a part of this cooling water evaporates. In the conventional technology, the effect of cooling the generated gas is the same as in the prior art. However, the wet wall flow is a swirl flow, and the wet wall surface is roughened, so that the conventional wet wall flow (the thin falling film) Compared to the case, the contact area with the gas is increased, and the generated gas can be cooled more effectively.
In addition, when the swirl flow direction of the cooling water is the same as the swirl flow direction of the generated gas, the slag mist can be collected while maintaining the swirl flow of the generated gas, and the wet wall thickness can be kept uniform.
Furthermore, if the swirling flow of the cooling water is reversed to the swirling flow of the generated gas, water droplets can be generated from the surface of the swirling flow of the wetting wall to the entire downcomer, dramatically increasing the contact between the gas and the cooling water. It is possible to increase the collection efficiency of the slag mist.
[Brief description of the drawings]
FIG. 1 is a cross-sectional configuration diagram of a high-temperature swirl furnace used in the present invention having a combustion chamber and a gas quenching chamber.
2 is a horizontal cross-sectional configuration diagram viewed from an arrow A in FIG.
3A is a cross-sectional view of a downcomer pipe of a gas quenching chamber, and FIG. 3B is a cross-sectional view showing an inverted truncated cone shape.
FIGS. 4A and 4B are a cross-sectional view and a plan view of an overflow weir system in a cooling water injection system in a cooling water injection section of a gas quenching chamber.
FIGS. 5A and 5B are a cross-sectional view and a plan view of a collision plate method in a cooling water injection method in a cooling water injection portion of a gas quenching chamber.
FIG. 6 is a schematic sectional view showing an example of a conventional high-temperature syngas cooling apparatus having a quenching chamber and a dip tube.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Combustion chamber 2 Gas quenching chamber 3 Throat part 4 Downcomer pipe 5 Water tank 6 Slag discharge port 7 Gas discharge port 8 Slag water discharge port 9 Cooling water injection part 10 Virtual circle 11 of a swirl flow 11 Partition plate 12 Collision plate 21 Reaction chamber 22 Rapid cooling Chamber 23 Throat section 24 Immersion pipe 25 Quenching bath 26 Slag discharge line 27 Gas discharge pipe 28 Inlet 29 Quenching ring 30 Spray chamber 31 Film chamber a Gasified gas b Oxygen c Steam d Generated gas e Cooling water f Slag particle g Wet wall swirl flow

Claims (4)

燃焼室とガス急冷室を有する高温旋回炉で発生するガス(発生ガス)を冷却するとともに同伴するスラグミスト分を捕集する方法であって、発生ガスをガス急冷室内の下降管頂部に設けた冷却水注入部から冷却水を供給して冷却する際、下降管内面に均一で3〜4mm以上の一定厚み以上の冷却水膜を形成させるために、下降管内面での冷却水の濡壁旋回流れが下降管内の発生ガスの旋回流れに対して同方向あるいは逆方向の旋回流れとなるように下降管の水平断面において接線方向から注入することを特徴とする発生ガスの冷却および同伴スラグミスト分の捕集方法。  A method for cooling a gas (generated gas) generated in a high-temperature swirl furnace having a combustion chamber and a gas quenching chamber and collecting accompanying slag mist, wherein the generated gas is provided at the top of a downcomer in the gas quenching chamber When cooling water is supplied from the cooling water injection section and cooled, the wetting wall swirling of the cooling water on the inner surface of the downcomer pipe is formed in order to form a uniform cooling water film of 3-4 mm or more on the inner surface of the downcomer pipe. The generated gas is cooled and entrained slag mist is injected from the tangential direction in the horizontal section of the downcomer so that the flow is swirling in the same direction or in the opposite direction to the swirl of the generated gas in the downcomer Collection method. 前記冷却水の注入本数は1本もしくは複数本であって、その合計流量が下降管頂部内周の単位浸辺長当たり20m3/h/m以上である請求項1記載の方法。2. The method according to claim 1, wherein the number of cooling water injections is one or more, and the total flow rate is 20 m 3 / h / m or more per unit immersion side length of the inner periphery of the downcomer pipe top. 前記冷却水の旋回方向が下降管内での発生ガスの旋回方向に対して逆方向であって、下降管内部全体に水滴を発生させるための下降管内のガス旋回流速が、常圧系の場合3.0m/s以上である請求項1記載の方法。  When the swirling direction of the cooling water is opposite to the swirling direction of the generated gas in the downcomer, and the gas swirling flow rate in the downcomer for generating water droplets in the entire downcomer is 3 at normal pressure. The method according to claim 1, which is 0.0 m / s or more. 前記下降管の形状が円柱形状もしくは逆円錐台形状である請求項1記載の方法。  The method according to claim 1, wherein the downcomer has a cylindrical shape or an inverted truncated cone shape.
JP17777498A 1998-06-24 1998-06-24 Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist Expired - Lifetime JP3777801B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP17777498A JP3777801B2 (en) 1998-06-24 1998-06-24 Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist
PCT/JP1999/007226 WO2001045824A1 (en) 1998-06-24 1999-12-22 Methods of cooling producer gas from high-temperature swirl furnace and of arresting entrained slag mist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP17777498A JP3777801B2 (en) 1998-06-24 1998-06-24 Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist
PCT/JP1999/007226 WO2001045824A1 (en) 1998-06-24 1999-12-22 Methods of cooling producer gas from high-temperature swirl furnace and of arresting entrained slag mist

Publications (2)

Publication Number Publication Date
JP2000005542A JP2000005542A (en) 2000-01-11
JP3777801B2 true JP3777801B2 (en) 2006-05-24

Family

ID=26440233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17777498A Expired - Lifetime JP3777801B2 (en) 1998-06-24 1998-06-24 Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist

Country Status (2)

Country Link
JP (1) JP3777801B2 (en)
WO (1) WO2001045824A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100405801B1 (en) * 2000-05-01 2003-11-15 한국에너지기술연구원 Pulsation control system in the quencher of the submerged-quench incinerator
US6613127B1 (en) 2000-05-05 2003-09-02 Dow Global Technologies Inc. Quench apparatus and method for the reformation of organic materials
KR100438284B1 (en) * 2001-05-02 2004-07-02 병 도 김 An Industrial Waste Incinerator Using Vortex Tube Theory
JP4522895B2 (en) * 2005-03-16 2010-08-11 日鉱金属株式会社 Exhaust gas cleaning cooling tower
KR101018677B1 (en) 2009-05-15 2011-03-04 차은정 Air cleaner
DE102009032760B3 (en) * 2009-07-11 2011-02-17 Karlsruher Institut für Technologie Combustion plant and process with thermal barrier coating on wet slag remover
KR101049063B1 (en) * 2011-01-31 2011-07-15 차은정 Filter for utilizing water and air cleaner and heat exchanger by using thereof
CN104019460B (en) * 2014-06-20 2016-08-24 航天长征化学工程股份有限公司 A kind of water wall gasifier dross method and apparatus
CN104524906B (en) * 2015-01-26 2016-07-13 绿地环保科技股份有限公司 Gas from oil burning depurator
CN104634102B (en) * 2015-02-13 2016-08-17 阳谷祥光铜业有限公司 A kind of floating method of smelting of reversely rotation, nozzle and metallurgical equipment
JP5855784B1 (en) * 2015-07-30 2016-02-09 新日鉄住金エンジニアリング株式会社 Wet wall structure
CN110319451B (en) * 2019-07-10 2024-07-02 杭州中昊科技有限公司 Quenching device suitable for high-temperature flue gas
CN111234882A (en) * 2020-03-13 2020-06-05 恒力石化(大连)炼化有限公司 Downcomer cooling jacket and gasifier
CN111706872B (en) * 2020-07-01 2021-11-19 湖南捷瑞化工有限公司 Water-soluble type environmental protection chimney based on atmospheric pressure
CN113563931B (en) * 2021-08-03 2024-03-26 山东明泉新材料科技有限公司 Technological method integrating gasification reaction and gas separation
CN114459248B (en) * 2022-01-18 2023-07-18 安徽华铂再生资源科技有限公司 Slag flushing process special for kiln

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512668B2 (en) * 1972-04-07 1976-01-28
JPS5084971A (en) * 1973-11-29 1975-07-09
GB1581728A (en) * 1977-02-21 1980-12-17 Caribbean Properties Countercurrent contakt and separation of liquid and gaseous phases
ES2188974T3 (en) * 1996-09-04 2003-07-01 Ebara Corp WASTE GASIFICATION PROCEDURE USING A ROTATE FUSION OVEN.

Also Published As

Publication number Publication date
JP2000005542A (en) 2000-01-11
WO2001045824A1 (en) 2001-06-28

Similar Documents

Publication Publication Date Title
JP3777801B2 (en) Cooling of gas generated in high-temperature swirling furnace and collection method of entrained slag mist
JP4454045B2 (en) Swivel melting furnace and two-stage gasifier
AU2008300900B2 (en) Gasification reactor and method for entrained-flow gasification
RU2091135C1 (en) Method and installation for cleaning hot gas containing superfine particles
RU2325943C2 (en) Method and installation for ultra scrubbing smokes and gases with complete removal of polluting impurities
SK22995A3 (en) Black liquor gasifier
JP2007045857A (en) Method and apparatus for purifying gasified gas
US20100307392A1 (en) Method and installation for the generation of effective energy by gasifying waste
RU2495913C2 (en) Gasification device with equipment for slag removal
US3951615A (en) Cylindrical pressure reactor for producing a combustible gas
JP4061564B2 (en) Cooling jacket structure of high-temperature gasifier in waste gasifier
JPS5839464B2 (en) Coal gasification method and device
SU986300A3 (en) Method and apparatus for removing slag produced in gasifying solid carbonaceous fuel
EP0156676B1 (en) Apparatus for the gasification of coal
JP4561779B2 (en) Swivel melting furnace and waste gasification method using swirl melting furnace
GB2033563A (en) Removing slag from a gasifier
JP3848619B2 (en) Molten slag cooling device, molten slag cooling method, and gasification melting system using molten slag cooling device
JP2004256657A (en) Produced gas cooling unit for high-temperature gasification furnace
JP5489264B2 (en) Settling separator for gasified combustible gas content
JP2004277574A (en) Cooling and dust removing method of synthesis gas, and its apparatus
JP3883253B2 (en) High temperature oxidation furnace and oxidation treatment method
JP3077756B2 (en) Waste treatment equipment
JP2006188574A (en) Method for gasifying and reforming waste
JP4288186B2 (en) Fluid separation method and apparatus for pyrolysis residue
JPH10140166A (en) Apparatus for utilizing combustible and waste each containing carbon and ash

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20041015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140310

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term