WO2001043857A1 - Micromixer - Google Patents

Micromixer Download PDF

Info

Publication number
WO2001043857A1
WO2001043857A1 PCT/EP2000/012736 EP0012736W WO0143857A1 WO 2001043857 A1 WO2001043857 A1 WO 2001043857A1 EP 0012736 W EP0012736 W EP 0012736W WO 0143857 A1 WO0143857 A1 WO 0143857A1
Authority
WO
WIPO (PCT)
Prior art keywords
microchannels
micromixer
feed
fluid
mixing chamber
Prior art date
Application number
PCT/EP2000/012736
Other languages
German (de)
French (fr)
Inventor
Wolfgang Ehrfeld
Volker Hessel
Original Assignee
INSTITUT FüR MIKROTECHNIK MAINZ GMBH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INSTITUT FüR MIKROTECHNIK MAINZ GMBH filed Critical INSTITUT FüR MIKROTECHNIK MAINZ GMBH
Priority to EP00990756A priority Critical patent/EP1242171B1/en
Priority to DE50002879T priority patent/DE50002879D1/en
Priority to AT00990756T priority patent/ATE244596T1/en
Publication of WO2001043857A1 publication Critical patent/WO2001043857A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/301Micromixers using specific means for arranging the streams to be mixed, e.g. channel geometries or dispositions
    • B01F33/3017Mixing chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • B01F25/422Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path between stacked plates, e.g. grooved or perforated plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • B01F33/304Micromixers the mixing being performed in a mixing chamber where the products are brought into contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/717Feed mechanisms characterised by the means for feeding the components to the mixer
    • B01F35/7182Feed mechanisms characterised by the means for feeding the components to the mixer with means for feeding the material with a fractal or tree-type distribution in a surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/41Mixers of the fractal type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00819Materials of construction
    • B01J2219/00835Comprising catalytically active material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00858Aspects relating to the size of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00993Design aspects
    • B01J2219/00995Mathematical modeling

Definitions

  • the invention relates to a static micromixer according to the preamble of claim 1.
  • the invention also relates to a static micromixer according to the preamble of claim 15.
  • Micromixers form a main component of so-called microreactors, which have three-dimensional microstructures in a solid matrix in which chemical reactions are carried out.
  • the microreactors are becoming increasingly important, for example, in combinatorial chemistry for the production of emulsions and gas / liquid dispersions and in gas phase catalysis.
  • At least two fluids from their respective feed chambers are typically divided into spatially separated fluid streams by a respective assigned array of microchannels, which then exit as a fluid jet with the same volume flow for the respective fluid into a mixing or reaction chamber.
  • Each fluid jet is guided adjacent to a jet of another fluid into the mixing and reaction chamber, in which the mixing takes place by diffusion and / or turbulence. It is important that identical volume flows of one fluid each are introduced into the mixing or reaction chamber through the microchannels, because otherwise there would be spatially different mixing ratios in the mixing or reaction chamber, which would falsify the mixing or reaction result. Since the volume flows through pressure drops in the microchannels are influenced, the microchannel systems must be designed in such a way that all microchannel branches have the same - and ideally low pressure loss.
  • a static micromixer is known from WO 95/30476, which provides a mixing chamber and a guide component for the separate supply of the substances to be mixed.
  • the guide component consists of plate-like elements in the form of thin foils, each with a group of parallel, straight-line grooves, these plate-like elements being stacked one on top of the other.
  • the grooves of the foils lying one above the other have a slope alternating with the longitudinal axis of the micro-mixer, so that the openings of the channels adjoining the mixing chamber are aligned one above the other and diverge on the fluid inlet side towards separate inlet chambers.
  • the channels of the guide component each have the same length and thus the same flow resistance. However, since the fluids flow into the mixing chamber on different sides due to the oblique arrangement of the microchannels, the mixing effectiveness at the edge zones is lower than in the center due to the wall friction influence of the mixing chamber.
  • the known microchannel systems have the disadvantage that special supply chambers are required and that all microchannels leaving the respective supply chambers have to be supplied with the respective fluid evenly, i.e. that the jet pressure of the inflowing fluids has to be homogenized.
  • extensive feed chambers have to be provided, which can lead to space problems and increase the fluid retention time.
  • a homogenization of the jet pressure is only guaranteed over a limited pressure range and thus volume flow range.
  • DE 35 46 091 C2 describes a cross-flow microfilter which is preceded or followed by an inflow distributor and a concentrate collector.
  • Such an inflow distributor can be constructed in the form of a bifurcation structure, a number of curved partition walls corresponding to the number of bifurcation cascades being required to form the bifurcation structure.
  • the object of the invention is to provide a micromixer with microchannels at whose outlet there are identical volume flows for each fluid, the micromixer being distinguished by a simple and compact design.
  • the division into partial streams, which are subject to the same conditions as possible succeed in reducing the cross-sections of the microchannels from stage to stage.
  • the cross-sections can be reduced by reducing the width and / or depth or, in the case of round cross-sections, by reducing the radius.
  • the fact that all partial flows of a fluid are also fed from a storage chamber further contributes to the uniformity of the conditions.
  • each bifurcation cascade starts from a single fluid flow (supply channel) which is connected to the storage chamber, so that no spatially extended supply chambers are necessary.
  • the feed channels can be adapted much better to the respective local conditions, so that a compact micromixer can be realized.
  • Storage chambers can be arranged outside the micromixer at any point and in any number, so that the mixing of more than two fluids can also be carried out.
  • the feed elements designed as wedge-shaped plates, which can be assembled to form a ring sector or even a closed ring.
  • the wedge shape can be used optimally.
  • the microchannels with a large channel depth or cross-sectional area are arranged in the thicker area of the wedge-shaped plates and the microchannels with a small channel depth or cross-sectional area are arranged in the thinner area of the plates. In this way, the outlet openings of the microchannels of the last bifurcation stage can be placed close to one another in a complex construction.
  • the mixing chamber can be rotationally symmetrical, preferably zy cylindrical are formed, which promotes the mixing of the fluids introduced into the mixing chamber.
  • Such mixing chambers of cylindrical shape are superior to the mixing chambers hitherto known from the above-cited documents in that the ratio of active to inactive area is greater, and thus the overall throughput and the mixing effectiveness are better.
  • the active area is the area from which fluid flows emerge and the inactive area is the area from which no fluid flows emerge.
  • one of six sides is used for the supply of fluids, while in the cylindrical mixing chamber the entire outer surface can be used.
  • Such bifurcation cascades are called self-similar.
  • a preferred embodiment consists in reducing the dimensions of the microchannels from stage to stage only up to the penultimate stage.
  • the bifurcation cascade can be self-similar up to the penultimate stage.
  • At least one wedge-shaped plate preferably has grooves that form microchannels on at least one wedge surface.
  • the micromixer can be assembled from several identical wedge-shaped plates, so that the manufacturing costs can be reduced.
  • the wedge-shaped plate has a bifurcation cascade on each of the wedge surfaces, the microchannels of the last bifurcation stage opening at the end face of the wedge-shaped plate being arranged offset to one another in the circumferential direction of the mixing chamber, in order to minimize the distance.
  • the wedge-shaped plate has grooves on both wedge surfaces which have a partial cross section of the microchannels.
  • the grooves in the superimposed surfaces of two adjacent feed elements complement each other to form the full cross section of the microchannels.
  • the micromixer can be assembled from several identical wedge-shaped plates, which leads to a reduction in manufacturing costs. In this way, otherwise difficult to manufacture, aerodynamic circular cross sections can be produced.
  • the microchannels are designed in such a way that the width and / or depth and possibly also the length of the nth stage, that is to say the last stage before it flows into the mixing chamber, is greater than in the stage before (stage n -1), ie the penultimate stage.
  • stage n -1 stage before
  • the grooves in the individual feed elements can be arranged offset to one another in such a way that if two fluids A, B were distributed alternately between the individual feed elements, a partial flow of the fluid B upon exiting into the mixing chamber of four Partial flows of the fluid A is surrounded and vice versa.
  • the cross-section of the microchannels in particular the width and / or depth of the microchannels, is enlarged at the nth stage compared to stage n-1, it can be achieved that the exit surfaces of the fluids overlap in the axial or circumferential direction of the mixing chamber. With a sufficiently small distance between the exit surfaces, this increases the mixing contact surface and thus also the mixing effectiveness.
  • the bifurcation cascades for each fluid are preferably connected to a common feed channel. This helps to ensure the uniformity of the external conditions for the fluid flows of a fluid and thus increases the reproducibility of the mixture.
  • the common feed channels are integrated in the form of bores in the feed elements or are introduced as grooves in the housing surrounding the feed elements.
  • Annular plates are particularly preferred as feed elements. Through them one obtains mixing chambers of cylindrical shape, which have the advantage that the ratio of active to inactive area is larger and thus the overall throughput and the mixing effectiveness are better.
  • the microchannels are preferably formed from grooves formed in the plates.
  • the microchannels on one and the other side are advantageously arranged offset from one another. This reduces the distances and thereby increases the mixing effectiveness.
  • the grooves of each feed element have a partial cross section of the microchannels, the grooves located in the superimposed surfaces complementing the full cross section of the microchannels.
  • the feed channels for the individual bifurcation cascades are integrated in the feed elements in the form of openings. It should be noted that openings should be provided in each flat plate for the feed channels, to which no bifurcation cascade is connected in this special plate.
  • the micromixer can be constructed from identical feed elements which are rotated relative to one another in such a way that not only a continuous mixing chamber but also continuous feed channels are formed for each fluid. Exemplary embodiments of the invention are explained in more detail below with reference to the drawings:
  • Figure la is a perspective view of feed elements with grooves forming microchannels on one side;
  • Figure lb is a perspective view of feed elements with grooves forming microchannels on both sides;
  • FIG. 1c shows a further perspective illustration of feed elements with grooves forming microchannels on both sides
  • Figure 2a is a perspective view of inserted into a housing
  • Feed elements with feed channels above and below the feed elements are Feed elements with feed channels above and below the feed elements
  • Figure 2b is a perspective view of inserted into a housing
  • Feed elements with feed channels on the side of the feed elements are Feed elements with feed channels on the side of the feed elements
  • Figure 2c is a perspective view of inserted into a housing
  • 3a shows a plan view of two feed elements which are designed as flat, annular plates
  • FIG. 1 a shows a plurality of feed elements 2 a - d lined up in a ring sector in perspective. This results in a cylindrical mixing chamber 5, the lateral surface being formed by the end faces 23 of the feed elements 2a-d.
  • These feed elements 2a-d are wedge-shaped plates which have grooves 24 serving as microchannels 31-34 on each wedge surface 22.
  • a smooth wedge surface 21 covers the microchannels in the adjacent wedge surface 22.
  • only a groove 24 and a microchannel 31-34 are designated as examples.
  • microchannels 31-34 and the feed channel 4 are designed such that they have different depths with the same width, the cross section being rectangular in FIG. After each bifurcation 36, the depth decreases from the outside towards the mixing chamber 5.
  • the flow direction of the fluids is directed radially from the outside inwards.
  • a coordinate system with the directions 1, b and t is shown for the wedge element 2d.
  • the length of a microchannel is measured in the direction of 1, the width of a microchannel in the direction of b and the depth in the direction of t.
  • the fluid guide structure 3 is designed as a four-stage bifurcation cascade.
  • the fluid flow flows from a storage chamber outside the device into the feed channel 4. This feeds into two microchannels 31 of the first stage, so that the fluid flow is divided into two equal partial flows.
  • Both microchannels 31 of the first stage bifurcate into two microchannels 32 of the second stage, which means that on the second stage the original fluid flow is divided into four partial flows.
  • This symmetrical bifurcation is continued in the example shown up to the fourth stage and results in the division of the fluid stream into 2 ′ partial streams, which pass from the microchannels 34 to the fourth stage Mixing chamber 5 open and can mix there with the partial flows from the other feed elements.
  • the grooves 24 in the feed elements 2a-d are arranged offset such that, assuming fluid A flows in feed elements 2a and c and fluid B in feed elements 2b and d, a partial flow of fluid B exits the mixing chamber 5 is surrounded by four partial flows of fluid A and vice versa. This contributes to the better mixing of the two fluids.
  • FIG. 1b A further example of the configuration of the feed elements 2 is shown in FIG. 1b.
  • grooves 24 are provided on both partial surfaces 21 and 22, which have a partial cross section of the microchannels 30.
  • two wedge surfaces 21 and 22 are placed against one another, two opposite grooves 24 complement each other to form the full cross section of a microchannel 30.
  • the cross section of the microchannels 30 is rounded. Since in this case too the depth of the microchannels 30 decreases towards the inside with a constant width, the microchannels 30 have a round cross section directly in the mixing chamber 5.
  • FIG. 1b only one groove 24 and the microchannels 30 of a partial flow are also designated in FIG. 1b.
  • FIG. 1c shows a further exemplary embodiment of the feed elements 2.
  • both the depth and the length of the microchannels 30 increase from stage i to stage i + 1, but from stage n-1 to stage n, ie the last stage before it flows into the Mixing chamber 5, both dimensions increase again.
  • This is also shown in the enlargement of the cut feed element 2 '.
  • the feed element 2 ' is cut along the cutting surface 25 in such a way that a microchannel 30 is cut to a constant half width.
  • the depth and length of the fourth-stage microchannel 34 are significantly greater than the depth and length of the third-stage microchannel 33.
  • the mixing chamber therefore has a higher ratio of Fluid exit surface to total surface area, which increases the mixing effectiveness.
  • FIG. 1c shows a further exemplary embodiment of the feed elements 2.
  • both the depth and the length of the microchannels 30 increase from stage i to stage i + 1, but from stage n-1 to stage n, ie the last stage before it flows into the Mixing chamber 5, both
  • the individual grooves 24 are arranged with respect to one another such that a partial flow of a fluid can be surrounded by four partial flows of another fluid.
  • the great depth of the fourth stage microchannels 34 results in an overlap of the exit surfaces in the circumferential direction of the mixing chamber. This increases the
  • the feed elements 2 are fitted into the housing 1, the housing 1 consisting of two circular disks into which recesses for inserting the feed elements 2 and for forming the mixing chamber 5 are incorporated, feed channels 4a and b, are above and below the feed elements 2 arranged in a ring around the housing 1 in one of the two circular disks, a fluid discharge channel 6 is arranged such that it opens centrally into the lower end face of the mixing chamber 5.
  • Figure 2b shows another embodiment of the housing 1, in which both supply channels 4a and b are in the same circular disc as the fluid discharge channel 6 and run laterally around the supply elements in the housing 1.
  • Figure 2c shows a further embodiment for both the housing 1 and the feed elements 2.
  • the annular circumferential feed channels 4a and b are not in the circular plates forming the housing 1, but are integrated as holes in the feed elements 2 and run there ring-shaped around.
  • Figure 3a shows two feed elements 2, which are each formed as a flat, annular plate 2a, b.
  • the plate 2b has a circular opening 7 in its center. They are circular on their circumference Openings are arranged, which form the feed channels 4a and 4b for the fluids A and B.
  • the feed channels 4b of the plate 2b are connected to bifurcation cascades 3.
  • a microchannel of first stage 31 emanates from each feed channel 4b and, after a bifurcation 36, is divided into two microchannels of second stage 32, each of which in turn is divided into 2 + 2 microchannels of third stage 33, etc.
  • the lengths of microchannels 31 to 34 take with increasing level.
  • the flat plate 2a is identical to the flat plate 2b.
  • FIGS. 3b to 3d show how the grooves 24 forming microchannels 30a, 30b can be arranged in the top 26 and / or the bottom 27 of a feed element designed as a flat plate 2 or 2a, b.
  • the plates 2, 2 a, 2 b are shown spaced apart in FIGS. 3b to 3d.
  • it can also be considered to introduce additional spacer elements between the feed elements, but which would have openings for forming the mixing chamber and the feed channels but no bifurcation cascades.
  • the grooves are formed on the top 26a and 26b in both the plate 2a and in the plate 2b.
  • the grooves in plate 2a form microchannels 30a for fluid A and the grooves in plate 2b form microchannels 30b for fluid B.
  • the grooves in both plates are arranged such that microchannels 30a and 30b lie exactly one above the other.
  • the groove arrangement in Figure 3c differs from the groove arrangement in Figure 3b only in that the microchannels 30a and 30b to each other are staggered. It is thereby achieved that the microchannel for one fluid is surrounded by four microchannels for the other fluid. This increases the mixing effectiveness.
  • the feed elements 2 from FIG. 3d have grooves 24 on their upper side 26 and on their lower side 27.
  • the grooves 24 each have a partial cross section of the microchannels 30a and 30b and complement each other to form the full cross section of the microchannels 30a, 30b in the superimposed surfaces 26 and 27. Therefore, the grooves on the top 26 are offset from the grooves on the underside 27. If the partial cross sections of the one side are used for one fluid and the partial cross sections of the other side for the other fluid, this again ensures that a microchannel 30a or 30b for the one fluid is surrounded by four microchannels 30b or 30a.
  • Fluid guide structure a, b feed channel A, B

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Gyroscopes (AREA)

Abstract

Micromixers constitute a main component of microreactors that have three-dimensional microstructures in a fixed matrix, in which chemical reactions take place. In said micromixer, fluids from their respective supply chambers are divided into spatially separate fluid streams using a network of microchannels allocated to the respective streams. Said streams then emerge as jets with identical volumetric flows for each fluid into a mixing chamber. The invention aims to ensure that identical volumetric flows are achieved for each fluid at the respective microchannel outflow and to produce a micromixer with a simple, compact construction. Wedge-shaped plates can be used as the supply elements (2a-d). Said plates can be assembled to form at least one ring sector which surrounds the mixing chamber (5) in the form of a curve. Alternatively, planar plates can be used which comprise a cavity in their central region, into which the microchannels (31-34) emerge, in such a way that the stacked plates form the mixing chamber (5). The microchannels (31-34) provided for each fluid form one or more symmetrical bifurcation cascades (3) comprising at least two stages. The micromixer can be used in microreactors, for example in the field of combined chemistry, for creating emulsion and gaseous/liquid dispersions and for gas-phase catalysis.

Description

Mikrovermischer micromixer
Beschreibung:Description:
Die Erfindung betrifft einen statischen Mikrovermischer gemäß dem Oberbegriff des Patentanspruchs 1. Die Erfindung betrifft auch einen statischen Mikrovermischer gemäß dem Oberbegriff des Patentanspruchs 15.The invention relates to a static micromixer according to the preamble of claim 1. The invention also relates to a static micromixer according to the preamble of claim 15.
Mikrovermischer bilden eine Hauptkomponente sogenannter Mikroreaktoren, die über dreidimensionale MikroStrukturen in fester Matrix verfügen, in denen chemische Umsetzungen durchgeführt werden. Wachsende Bedeutung erlangen die Mikroreaktoren beispielsweise in der kombinatorischen Chemie für die Erzeugung von Emulsionen und Gas/flüssig-Dispersionen und in der Gasphasen-Katalyse .Micromixers form a main component of so-called microreactors, which have three-dimensional microstructures in a solid matrix in which chemical reactions are carried out. The microreactors are becoming increasingly important, for example, in combinatorial chemistry for the production of emulsions and gas / liquid dispersions and in gas phase catalysis.
Im Mikrovermischer werden typischerweise mindestens zwei Fluide aus ihren jeweiligen Zuführkammern durch eine jeweils zugeordnete Schar von Mikrokanälen in räumlich getrennte Fluidströme aufgeteilt, die dann als Fluidstrahlen mit für das jeweilige Fluid gleichen Nolumenströmen in eine Misch- oder Reaktionskammer austreten. Jeder Fluidstrahl wird benachbart zu einem Strahl eines anderen Fluids in die Misch- und Reaktionskammer geführt, in der durch Diffusion und/oder Turbulenz die Vermischung stattfindet. Hierbei kommt es darauf an, daß durch die Mikrokanäle identische Nolumenströme je eines Fluids in die Misch- oder Reaktionskammer eingeleitet werden, weil andernfalls in der Misch- oder Reaktionskammer räumlich unterschiedliche Mischverhältnisse herrschen würden, die das Misch- oder Reaktionsergebnis verfälschen. Da die Nolumenströme durch Druckverluste in den Mikrokanälen beeinflußt werden, müssen die Mikrokanalsysteme derart ausgestaltet werden, daß alle Mikrokanalzweige einen gleichen - und idealerweise niedrigen Druckverlust aufweisen.In the micromixer, at least two fluids from their respective feed chambers are typically divided into spatially separated fluid streams by a respective assigned array of microchannels, which then exit as a fluid jet with the same volume flow for the respective fluid into a mixing or reaction chamber. Each fluid jet is guided adjacent to a jet of another fluid into the mixing and reaction chamber, in which the mixing takes place by diffusion and / or turbulence. It is important that identical volume flows of one fluid each are introduced into the mixing or reaction chamber through the microchannels, because otherwise there would be spatially different mixing ratios in the mixing or reaction chamber, which would falsify the mixing or reaction result. Since the volume flows through pressure drops in the microchannels are influenced, the microchannel systems must be designed in such a way that all microchannel branches have the same - and ideally low pressure loss.
Aus der WO 95/30476 ist ein statischer Mikrovermischer bekannt, der eine Mischkammer und ein Führungsbauteil für die getrennte Zufuhr der zu mischenden Stoffe vorsieht. Das Führungsbauteil besteht aus plattenartigen Elementen in Form von dünnen Folien mit jeweils einer Schar paralleler, geradliniger Nuten, wobei diese plattenartigen Elemente übereinandergeschichtet sind. Die Nuten der übereinanderliegenden Folien weisen eine zur Mikro-Vermischer-Längsachse abwechselnde Schräge auf, so daß die an die Mischkammer angrenzenden Öffnungen der Kanäle fluchtend übereinanderliegen und an der Fluideintrittsseite hin zu getrennten Eintrittskammern divergieren. Die Kanäle des Führungsbauteils weisen jeweils die gleiche Länge und damit den gleichen Strömungswiderstand auf. Da die Fluide aber aufgrund der schrägen Anordnung der Mikrokanäle zu unterschiedlichen Seiten gerichtet in die Mischkammer einströmen, ist die Mischungseffektivität an den Randzonen aufgrund des Wandreibungseinflußes der Mischkammer geringer als im Zentrum.A static micromixer is known from WO 95/30476, which provides a mixing chamber and a guide component for the separate supply of the substances to be mixed. The guide component consists of plate-like elements in the form of thin foils, each with a group of parallel, straight-line grooves, these plate-like elements being stacked one on top of the other. The grooves of the foils lying one above the other have a slope alternating with the longitudinal axis of the micro-mixer, so that the openings of the channels adjoining the mixing chamber are aligned one above the other and diverge on the fluid inlet side towards separate inlet chambers. The channels of the guide component each have the same length and thus the same flow resistance. However, since the fluids flow into the mixing chamber on different sides due to the oblique arrangement of the microchannels, the mixing effectiveness at the edge zones is lower than in the center due to the wall friction influence of the mixing chamber.
Zur Erhöhung der örtlichen Effektivität der Vermischung wird in der DE 195 40 292 Cl vorgeschlagen, daß die jeweiligen Scharen von Nuten in den übereinandergeschichteten Folien jeweils bogenförmig gekrümmt und abwechselnd von der Mischkammer zu je einer der beiden Zufuhrkammern verlaufen, so daß alle Nuten parallel zueinander ausgerichtet in die Mischkammer münden. Zur Erzielung gleicher Strömungswiderstände wird angegeben, die Seiten des Führungsbauteils, die an die Zuführkammern grenzen, gegenüber der an die Mischkammer grenzende Seite so zu neigen, daß die Kanäle eine annähernd gleiche Länge aufweisen. Zur Vermeidung gekrümmter Eintrittsflächen wird angegeben, die Flächen entsprechend einer nach einer angegebenen Formel zu bestimmenden Näherungsgerade auszurichten. Diese erlaubt jedoch nur kleine Bogenwinkel der Nuten, so daß eine Anordnung der Zuführkammern an zwei sich gegenüberliegenden Seiten des Führungsbauteils oder eine getrennte Zufuhr von mehr als zwei Fluiden kaum realisierbar ist.To increase the local effectiveness of the mixing, it is proposed in DE 195 40 292 Cl that the respective groups of grooves in the layers stacked on top of each other are curved in an arc and run alternately from the mixing chamber to one of the two feed chambers, so that all grooves are aligned parallel to one another open into the mixing chamber. To achieve equal flow resistances, it is stated that the sides of the guide component, which adjoin the feed chambers, are inclined so that the channels have an approximately equal length relative to the side adjoining the mixing chamber. To avoid curved entry surfaces, it is specified that the surfaces correspond to an approximation line to be determined according to a specified formula align. However, this only allows small arc angles of the grooves, so that an arrangement of the supply chambers on two opposite sides of the guide component or a separate supply of more than two fluids is hardly feasible.
Die bekannten Mikrokanalsysteme haben den Nachteil, daß spezielle Zuführkammern erforderlich sind und daß alle von den jeweiligen Zuführkammern abgehenden Mikrokanäle gleichmäßig mit dem jeweiligen Fluid versorgt werden müssen, d.h., daß eine Homogenisierung des Strahldrucks der einströmenden Fluide erforderlich ist. Hierzu sind ausgedehnte Zuführkammern vorzusehen, was zu Platzproblemen führen kann und die Fluidverweilzeit erhöht. Trotz dieser Zuführ kammern ist eine Homogenisierung des Strahldrucks nur über einen begrenzten Druckbereich und somit Völumenstrombereich gewährleistet.The known microchannel systems have the disadvantage that special supply chambers are required and that all microchannels leaving the respective supply chambers have to be supplied with the respective fluid evenly, i.e. that the jet pressure of the inflowing fluids has to be homogenized. For this purpose, extensive feed chambers have to be provided, which can lead to space problems and increase the fluid retention time. Despite these feed chambers, a homogenization of the jet pressure is only guaranteed over a limited pressure range and thus volume flow range.
In der DE 35 46 091 C2 wird ein Querstrommikrofilter beschrieben, dem ein Zuströmverteiler und ein Konzentratsammler vor- bzw. nachgeschaltet ist. Ein solcher Zuströmverteiler kann in Form einer Bifurkationsstruktur aufgebaut sein, wobei eine der Anzahl der Bifurkationskaskaden entsprechende Anzahl von gekrümmten Trennwänden zur Bildung der Bifurkationsstruktur erforderlich ist.DE 35 46 091 C2 describes a cross-flow microfilter which is preceded or followed by an inflow distributor and a concentrate collector. Such an inflow distributor can be constructed in the form of a bifurcation structure, a number of curved partition walls corresponding to the number of bifurcation cascades being required to form the bifurcation structure.
In "A Microflow Reactor for two Dimensional Investigations of In Vitro- Amplification-Systems" in Microreaction Technology; proceedings of the first international Conference on microreaction technology (Editor: W. Ehrfeld), Springer 1998, wird ein Mikroreaktor vorgestellt, der in einer Zuführschicht eine Sammelkammer aufweist, in die gegenüberliegend zwei Bifurkationskaskaden einmünden, durch die ein Fluid eingeleitet wird. Von dort aus gelangt das Fluid über eine Druckbarriere in eine Reaktionskammer. In Chemische Technik 26, Jg. 1997, Nr. 1, S. 131-134 werden Mikroreaktoren für die Chemie beschrieben, die für die Zufuhr der Reaktanten mehrere übereinanderliegende Platten mit Nutenstruktur aufweisen. Hinter dem Reaktions- und Mischbereich ist nach Durchlaufen einer Wärmetauscherstrecke eine Bifurkationskaskade für den Zusammenfluß der einzelnen Ströme vorgesehen.In "A Microflow Reactor for Two Dimensional Investigations of In Vitro Amplification Systems" in Microreaction Technology; proceedings of the first international Conference on microreaction technology (Editor: W. Ehrfeld), Springer 1998, a microreactor is presented that has a collection chamber in a feed layer, into which two bifurcation cascades open opposite, through which a fluid is introduced. From there, the fluid enters a reaction chamber via a pressure barrier. In Chemische Technik 26, Vol. 1997, No. 1, pp. 131-134, microreactors for chemistry are described, which have a plurality of superimposed plates with a groove structure for the supply of the reactants. After passing through a heat exchanger section, a bifurcation cascade is provided behind the reaction and mixing area for the confluence of the individual streams.
Aufgabe der Erfindung ist es, einen Mikrovermischer mit Mikrokanälen zu schaffen, an deren Ausgang je Fluid identische Vόlumenströme vorliegen, wobei sich der Mikrovermischer durch eine einfache und kompakte Bauweise auszeichnen soll.The object of the invention is to provide a micromixer with microchannels at whose outlet there are identical volume flows for each fluid, the micromixer being distinguished by a simple and compact design.
Diese Aufgabe wird dadurch gelöst, daß die Zufuhrelemente keilförmige Platten sind, die mindestens zu einem Ringsektor zusammensetzbar sind, der die Mischkammer bogenförmig umgibt, und daß die für jedes Fluid vorgesehenen Mikrokanäle eine symmetrische mindestens zwei Stufen i (i = 1 bis n, mit n > 2) umfassende Bifurkationskaskade bilden.This object is achieved in that the feed elements are wedge-shaped plates that can be assembled into at least one ring sector that surrounds the mixing chamber in an arc, and that the microchannels provided for each fluid have a symmetrical at least two stages i (i = 1 to n, with n > 2) Form a comprehensive bifurcation cascade.
Diese Aufgabe wird außerdem dadurch gelöst, daß die Zuführelemente plane Platten sind, die im mittleren Bereich eine Durchbrechung aufweisen, in die die Mikrokanäle einmünden, so daß die übereinander gestapelten Platten die Mischkammer bilden, und daß die für jedes Fluid vorgesehenen Mikrokanäle eine oder mehrere symmetrische, mindestens zwei Stufen i (i = 1 bis n, mit n > 2) umfassende Bifurkationskaskaden bilden.This object is also achieved in that the feed elements are flat plates which have an opening in the central region into which the microchannels open, so that the stacked plates form the mixing chamber, and that the microchannels provided for each fluid have one or more symmetrical ones , form at least two stages i (i = 1 to n, with n> 2) comprising bifurcation cascades.
Die sukzessive Aufteilung eines Fluidstroms in zwei gleiche Teilströme, die ihrerseits in 2 + 2 = 4 gleiche Teilströme aufgeteilt und stufenweise entsprechend weiter aufgeteilt werden, hat zur Folge, daß alle Ströme eines Fluids den gleichen Bedingungen unterworfen sind und somit auch je Fluid identische Volumenströme in die Misch- oder Reaktionskammer austreten. Das Aufteilen in Teilströme, die alle möglichst gleichen Bedingungen unterworfen sind, gelingt über das Verringern der Querschnitte der Mikrokanäle von Stufe zu Stufe. Das Verringern der Querschnitte kann je nach Flächenform über die Reduzierung der Breite und/oder Tiefe erfolgen oder bei runden Querschnitten über die Reduzierung des Radius. Gerade bei keilförmigen Platten als Zuführelementen bietet es sich an, die Tiefe zu variieren, da auf diese Weise das als Zuführelement zur Verfügung stehende Volumen gut genutzt wird. Daß außerdem alle Teilströme eines Fluids aus einer Vorratskammer gespeist werden, trägt noch weiter zur Gleichartigkeit der Bedingungen bei.The successive division of a fluid stream into two equal partial streams, which in turn are divided into 2 + 2 = 4 equal partial streams and gradually further divided accordingly, has the consequence that all streams of a fluid are subjected to the same conditions and thus identical volume flows for each fluid the mixing or reaction chamber emerge. The division into partial streams, which are subject to the same conditions as possible succeed in reducing the cross-sections of the microchannels from stage to stage. Depending on the surface shape, the cross-sections can be reduced by reducing the width and / or depth or, in the case of round cross-sections, by reducing the radius. Especially in the case of wedge-shaped plates as feed elements, it is advisable to vary the depth, since in this way the volume available as the feed element is used well. The fact that all partial flows of a fluid are also fed from a storage chamber further contributes to the uniformity of the conditions.
Ein weiterer Vorteil besteht darin, daß jede Bifurkationskaskade von einem einzigen Fluidstrom (Zuführkanal) ausgeht, der mit der Vorratskammer in Verbindung steht, so daß keine räumlich ausgedehnten Zuführkammern notwendig sind. Die Zuführkanäle können weitaus besser an die jeweiligen örtlichen Bedingungen angepaßt werden, so daß ein kompakter Mikrovermischer realisiert werden kann.Another advantage is that each bifurcation cascade starts from a single fluid flow (supply channel) which is connected to the storage chamber, so that no spatially extended supply chambers are necessary. The feed channels can be adapted much better to the respective local conditions, so that a compact micromixer can be realized.
Vorratskammern können außerhalb des Mikrovermischers an beliebiger Stelle und in beliebiger Anzahl angeordnet werden, so daß auch das Mischen von mehr als zwei Fluiden durchgeführt werden kann.Storage chambers can be arranged outside the micromixer at any point and in any number, so that the mixing of more than two fluids can also be carried out.
Zur kompakten Bauweise tragen auch die als keilförmige Platten ausgebildeten Zuführelemente bei, die zu einem Ringsektor oder gar zu einem geschlossenen Ring zusammengesetzt werden können. Da die Tiefe der Mikrokanäle in Richtung Mischkammer abnimmt, kann die Keilform optimal genutzt werden. Die Mikrokanäle mit großer Kanaltiefe bzw. Querschnittsfläche sind im dickeren Bereich der keilförmigen Platten und die Mikrokanäle mit geringer Kanaltiefe bzw. Querschnittsfläche sind im dünneren Bereich der Platten angeordnet. Dadurch können bei komplexer Bauweise die Austrittsöffhungen der Mikrokanäle der letzten Bifurkationsstufe dicht nebeneinander gelegt werden. Die Mischkammer kann rotationssymmetrisch, vorzugsweise zy linder förmig ausgebildet werden, was die Vermischung der in die Mischkammer eingeleiteten Fluide fördert.Also contributing to the compact design are the feed elements designed as wedge-shaped plates, which can be assembled to form a ring sector or even a closed ring. As the depth of the microchannels decreases towards the mixing chamber, the wedge shape can be used optimally. The microchannels with a large channel depth or cross-sectional area are arranged in the thicker area of the wedge-shaped plates and the microchannels with a small channel depth or cross-sectional area are arranged in the thinner area of the plates. In this way, the outlet openings of the microchannels of the last bifurcation stage can be placed close to one another in a complex construction. The mixing chamber can be rotationally symmetrical, preferably zy cylindrical are formed, which promotes the mixing of the fluids introduced into the mixing chamber.
Solche Mischkammern zylindrischer Form sind den aus den oben zitierten Schriften bisher bekannten Mischkammern darin überlegen, daß das Verhältnis von aktiver zu inaktiver Fläche größer ist und somit der Gesamtdurchsatz und die Mischeffektivität besser ist. Dabei ist mit aktiver Fläche die Fläche gemeint, aus der Fluidströme austreten, und mit inaktiver Fläche die Fläche, aus der keine Fluidströme austreten. Bei den herkömmlichen, rechteckigen Mischkammern wird nämlich eine von sechs Seiten zur Zufuhr von Fluiden genutzt, während bei der zylindrischen Mischkammer die gesamte Mantelfläche genutzt werden kann.Such mixing chambers of cylindrical shape are superior to the mixing chambers hitherto known from the above-cited documents in that the ratio of active to inactive area is greater, and thus the overall throughput and the mixing effectiveness are better. The active area is the area from which fluid flows emerge and the inactive area is the area from which no fluid flows emerge. In the case of the conventional, rectangular mixing chambers, one of six sides is used for the supply of fluids, while in the cylindrical mixing chamber the entire outer surface can be used.
Durch den gleichzeitigen Einsatz von Bifurkationskaskaden als Fluidführungsstruktur und keilförmigen Platten als Zuführelemente ergibt sich ein Mikrovermischer für die Durchführung von Reaktionen, deren Selektivität und Reproduzierbarkeit sensitiv von der Mischgüte abhängen.The simultaneous use of bifurcation cascades as a fluid guide structure and wedge-shaped plates as feed elements results in a micromixer for carrying out reactions, the selectivity and reproducibility of which depend sensitively on the quality of the mixture.
Der Druckverlust innerhalb der Mikrokanäle i-ter Stufe (i = 1 bis n, n > 2) kann weiter minimiert werden, indem man die geometrischen Abmessungen der Mikrokanäle unterschiedlicher Stufe relativ zueinander verändert. Man kann die Länge der Mikrokanäle zur Mischkammer hin verkürzen (L, + , < L, mit L, = Länge der Mikrokanäle der i-ten Stufe), wobei sich als vorteilhaft erwiesen hat, die Längen derart zu wählen, daß das Verhältnis der Längen zweier aufeinanderfolgenden Stufen konstant ist. Solche Bifurkationskaskaden werden als selbstähnlich bezeichnet.The pressure loss within the microchannels of the i-th stage (i = 1 to n, n> 2) can be further minimized by changing the geometric dimensions of the microchannels of different stages relative to one another. The length of the microchannels towards the mixing chamber can be shortened (L, + , <L, with L, = length of the microchannels of the i-th stage), it having proven advantageous to choose the lengths such that the ratio of the lengths two successive stages is constant. Such bifurcation cascades are called self-similar.
Besonders in Fällen, in denen die Anzahl n der Stufen größer oder gleich 3 ist, besteht eine bevorzugte Ausführungsform darin, die Abmessungen der Mikrokanäle nur bis zur vorletzten Stufe von Stufe zu Stufe zu reduzieren. Die Bifurkationskaskade kann dabei bis zur vorletzten Stufe selbstähnlich sein. Vorzugsweise weist mindestens eine keilförmige Platte auf mindestens einer Keilfäche Mikrokanäle bildende Nuten auf. Der Mikrovermischer kann aus mehreren identischen keilförmigen Platten zusammengesetzt werden, so daß die Herstellungskosten gesenkt werden können.Particularly in cases in which the number n of stages is greater than or equal to 3, a preferred embodiment consists in reducing the dimensions of the microchannels from stage to stage only up to the penultimate stage. The bifurcation cascade can be self-similar up to the penultimate stage. At least one wedge-shaped plate preferably has grooves that form microchannels on at least one wedge surface. The micromixer can be assembled from several identical wedge-shaped plates, so that the manufacturing costs can be reduced.
Gemäß einer weiteren Ausführungsform weist die keilförmige Platte auf beiden Keilflächen jeweils eine Bifurkationskaskade auf, wobei die an der Stirnseite der keilförmigen Platte mündenden Mikrokanäle der letzten Bifurkationsstufe möglichst in Umfangrichtung der Mischkammer versetzt zueinander angeordnet sind, um den Abstand zu minimieren.According to a further embodiment, the wedge-shaped plate has a bifurcation cascade on each of the wedge surfaces, the microchannels of the last bifurcation stage opening at the end face of the wedge-shaped plate being arranged offset to one another in the circumferential direction of the mixing chamber, in order to minimize the distance.
Bei einer weiteren bevorzugten Ausführung hat die keilförmige Platte auf beiden Keilflächen Nuten, die einen Teilquerschnitt der Mikrokanäle aufweisen. Dabei ergänzen die in den aufeinanderliegenden Flächen befindlichen Nuten zweier nebeneinander liegender Zuführelementen sich zum Vollquerschnitt der Mikrokanäle. Auch in dieser Ausführung kann der Mikrovermischer aus mehreren identischen keilförmigen Platten zusammengesetzt werden, was zur Senkung der Herstellungskosten führt. Auf diese Weise lassen sich ansonsten schwierig herzustellende, strömungsgünstige Rundquerschnitte erzeugen.In a further preferred embodiment, the wedge-shaped plate has grooves on both wedge surfaces which have a partial cross section of the microchannels. The grooves in the superimposed surfaces of two adjacent feed elements complement each other to form the full cross section of the microchannels. In this embodiment too, the micromixer can be assembled from several identical wedge-shaped plates, which leads to a reduction in manufacturing costs. In this way, otherwise difficult to manufacture, aerodynamic circular cross sections can be produced.
In einer weiteren Ausführungsform sind die Mikrokanäle derart gestaltet, daß die Breite und/oder Tiefe sowie ggf. auch die Länge der n-ten Stufe, d.h. der letzten Stufe vor dem Einmünden in die Mischkammer, größer ist als in der Stufe davor (Stufe n-1), d.h. vorletzten Stufe. Dadurch erreicht man ein höheres Verhältnis von aktiver zu inaktiver Fläche bezogen auf die Mantelfläche der Mischkammer, was zur besseren Vermischung der Fluide beiträgt. Grundsätzlich können die Nuten in den einzelnen Zuführelementen zueinander versetzt angeordnet werden und zwar derart, daß, wenn zwei Fluide A, B alternierend auf die einzelnen Zuführelemente verteilt wären, ein Teilstrom des Fluides B beim Austritt in die Mischkammer von vier Teilströmen des Fluides A umgeben ist und umgekehrt. Vergrößert man nun auf der n-ten Stufe verglichen mit Stufe n - 1 den Querschnitt der Mikrokanäle, insbesondere Breite und/ oder Tiefe der Mikrokanäle, kann erreicht werden, daß die Austrittsflächen der Fluide in axialer oder Umfangsrichtung der Mischkammer überlappen. Dies erhöht bei hinreichend kleinem Abstand der Austrittsflächen zueinander die Vermischungskontaktfläche und damit auch die Vermischungseffektivität.In a further embodiment, the microchannels are designed in such a way that the width and / or depth and possibly also the length of the nth stage, that is to say the last stage before it flows into the mixing chamber, is greater than in the stage before (stage n -1), ie the penultimate stage. This results in a higher ratio of active to inactive area based on the outer surface of the mixing chamber, which contributes to better mixing of the fluids. In principle, the grooves in the individual feed elements can be arranged offset to one another in such a way that if two fluids A, B were distributed alternately between the individual feed elements, a partial flow of the fluid B upon exiting into the mixing chamber of four Partial flows of the fluid A is surrounded and vice versa. If the cross-section of the microchannels, in particular the width and / or depth of the microchannels, is enlarged at the nth stage compared to stage n-1, it can be achieved that the exit surfaces of the fluids overlap in the axial or circumferential direction of the mixing chamber. With a sufficiently small distance between the exit surfaces, this increases the mixing contact surface and thus also the mixing effectiveness.
Vorzugsweise sind die Bifurkationskaskaden für jedes Fluid an einem gemeinsamen Zuführungskanal angeschlossen. Dies hilft, die Gleichartigkeit der äußeren Bedingungen für die Fluidströme eines Fluides zu gewährleisten und erhöht so die Reproduzierbarkeit der Mischung.The bifurcation cascades for each fluid are preferably connected to a common feed channel. This helps to ensure the uniformity of the external conditions for the fluid flows of a fluid and thus increases the reproducibility of the mixture.
Um den Mikrovermischer möglichst kompakt bauen zu können, sind in einer bevorzugten Ausführung die gemeinsamen Zuführkanäle in Form von Bohrungen in die Zuführelemente integriert oder als Nuten in das die Zuführelemente umgebende Gehäuse eingebracht.In order to be able to build the micromixer as compactly as possible, in a preferred embodiment the common feed channels are integrated in the form of bores in the feed elements or are introduced as grooves in the housing surrounding the feed elements.
Die Ausfuhrung der Zuführelemente als plane Platten mit einer Durchbrechung in ihrer Mitte, in die die Mikrokanäle münden, so daß die übereinandergestapelten Platten zusammen das Kernstück des Mikrovermischers ergeben, wobei die übereinanderliegenden Durchbrechungen die Mischkammer bilden, erlauben die Herstellung eines besonders kompakten, stabilen, einfach und kostengünstig zu produzierenden Mikrovermischers. Zu den Vorteilen der Bifurkation der Mikrokanäle wird auf die vorhergehenden Ausführungen verwiesen.The execution of the feed elements as flat plates with an opening in their center into which the microchannels open, so that the stacked plates together form the core of the micromixer, the openings lying one above the other forming the mixing chamber, allow the production of a particularly compact, stable, simple and micro mixer to be produced inexpensively. For the advantages of the bifurcation of the microchannels, reference is made to the previous explanations.
Besonders bevorzugt werden kreisringförmige Platten als Zuführelemente. Durch sie erhält man Mischkammera zylindrischer Form, die den Vorteil aufweisen, daß das Verhältnis von aktiver zu inaktiver Fläche größer ist und somit der Gesamtdurchsatz und die Mischeffektivität besser sind. Der Druckverlust innerhalb der Mikrokanäle i-ter Stufe (i = 1 bis n, n ≥ 2) wird minimiert, indem die Länge der Mikrokanäle zur Mischkammer hin verkürzt wird (L, + , < L, mit L, = Länge der Mikrokanäle der i-ten Stufe). Dabei hat es sich als vorteilhaft erwiesen, die Längen derart zu wählen, daß das Verhältnis der Längen zweier aufeinanderfolgenden Stufen konstant ist. Solche Bifurkationskaskaden werden als selbstähnlich bezeichnet.Annular plates are particularly preferred as feed elements. Through them one obtains mixing chambers of cylindrical shape, which have the advantage that the ratio of active to inactive area is larger and thus the overall throughput and the mixing effectiveness are better. The pressure loss within the microchannels of the i-th stage (i = 1 to n, n ≥ 2) is minimized by shortening the length of the microchannels towards the mixing chamber (L, + , <L, with L, = length of the microchannels of the i -th stage). It has proven to be advantageous to choose the lengths such that the ratio of the lengths of two successive stages is constant. Such bifurcation cascades are called self-similar.
Wie auch bei den keilförmigen Platten werden die Mikrokanäle vorzugsweise aus in den Platten ausgebildeten Nuten gebildet. Vorteilhafterweise sind die Mikrokanäle der einen und der anderen Seite zueinander versetzt angeordnet. Dies reduziert die Abstände und erhöht dadurch die Mischeffektivität.As with the wedge-shaped plates, the microchannels are preferably formed from grooves formed in the plates. The microchannels on one and the other side are advantageously arranged offset from one another. This reduces the distances and thereby increases the mixing effectiveness.
In einer weiteren Ausführungsform weisen die Nuten jedes Zuführelementes einen Teilquerschnitt der Mikrokanäle auf, wobei die in den aufeinanderliegenden Flächen befindlichen Nuten sich zum Völlquerschnitt der Mikrokanäle ergänzen. Durch diese und die vorhergehenden Maßnahmen können die Herstellungskosten gesenkt werden, da der Mikrovermischer aus mehreren identischen planen Platten zusammengesetzt werden kann.In a further embodiment, the grooves of each feed element have a partial cross section of the microchannels, the grooves located in the superimposed surfaces complementing the full cross section of the microchannels. These and the previous measures can reduce the manufacturing costs, since the micromixer can be assembled from several identical flat plates.
Um den Mikrovermischer noch kompakter bauen zu können, sind in einer bevorzugten Ausführungsform die Zuführkanäle für die einzelnen Bifurkationskaskaden in Form von Durchbrechungen in die Zuführelemente integriert. Dabei muß beachtet werden, daß in jeder planen Platte auch für die Zuführkanäle Durchbrechungen vorgesehen sein sollten, an denen in dieser speziellen Platte keine Bifurkationskaskade angeschlossen ist. Der Mikrovermischer kann aus identischen Zuführelementen aufgebaut werden, die gegeneinander derart verdreht sind, daß nicht nur eine durchgehende Mischkammer, sondern auch für jedes Fluid durchgehende Zuführkanäle gebildet werden. Beispielhafte Ausführungsformen der Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert:In order to be able to build the micromixer even more compactly, in a preferred embodiment the feed channels for the individual bifurcation cascades are integrated in the feed elements in the form of openings. It should be noted that openings should be provided in each flat plate for the feed channels, to which no bifurcation cascade is connected in this special plate. The micromixer can be constructed from identical feed elements which are rotated relative to one another in such a way that not only a continuous mixing chamber but also continuous feed channels are formed for each fluid. Exemplary embodiments of the invention are explained in more detail below with reference to the drawings:
Es zeigen:Show it:
Figur la eine perspektivische Darstellung von Zuführelementen mit auf einer Seite Mikrokanäle bildenden Nuten;Figure la is a perspective view of feed elements with grooves forming microchannels on one side;
Figur lb eine perspektivische Darstellung von Zuführelementen mit auf beiden Seiten Mikrokanäle bildenden Nuten;Figure lb is a perspective view of feed elements with grooves forming microchannels on both sides;
Figur lc eine weitere perspektivische Darstellung von Zuführelemnten mit auf beiden Seiten Mikrokanäle bildenden Nuten;FIG. 1c shows a further perspective illustration of feed elements with grooves forming microchannels on both sides;
Figur 2a eine perspektivische Darstellung von in ein Gehäuse eingefügtenFigure 2a is a perspective view of inserted into a housing
Zuführelementen mit Zuführkanälen ober- und unterhalb der Zuführelemente;Feed elements with feed channels above and below the feed elements;
Figur 2b eine perspektivische Darstellung von in ein Gehäuse eingefügtenFigure 2b is a perspective view of inserted into a housing
Zuführelementen mit Zuführkanälen seitlich der Zuführelemente;Feed elements with feed channels on the side of the feed elements;
Figur 2c eine perspektivische Darstellung von in ein Gehäuse eingefügtenFigure 2c is a perspective view of inserted into a housing
Zuführelementen mit Zuführkanälen, die in die Zuführelemente integriert sind;Feed elements with feed channels which are integrated in the feed elements;
Figur 3a eine Draufsicht auf zwei Zuführelemente, die als plane, kreisringförmige Platten ausgebildet sind;3a shows a plan view of two feed elements which are designed as flat, annular plates;
Figur 3b-d unterschiedliche Nutenanordnungen in Zuführelementen, die als plane, kreisringförmige Platten ausgebildet sind. In Figur la sind mehrere zu einem Ringsektor aufgereihte Zuführelemente 2a - d perspektivisch dargestellt. Dadurch ergibt sich eine zylindrische Mischkammer 5, wobei die Mantelfläche durch die Stirnseiten 23 der Zuführelemente 2a-d gebildet werden. Diese Zuführelemente 2a-d sind keilförmige Platten, die auf jeweils einer Keilfläche 22 als Mikrokanäle 31 - 34 dienende Nuten 24 aufweisen. Eine glatte Keilfläche 21 deckt dabei die Mikrokanäle in der benachbarten Keilfläche 22 ab. Der Übersichtlichkeit wegen sind nur eine Nut 24 und ein Mikrokanal 31 - 34 exemplarisch bezeichnet.Figure 3b-d different groove arrangements in feed elements, which are designed as flat, annular plates. FIG. 1 a shows a plurality of feed elements 2 a - d lined up in a ring sector in perspective. This results in a cylindrical mixing chamber 5, the lateral surface being formed by the end faces 23 of the feed elements 2a-d. These feed elements 2a-d are wedge-shaped plates which have grooves 24 serving as microchannels 31-34 on each wedge surface 22. A smooth wedge surface 21 covers the microchannels in the adjacent wedge surface 22. For the sake of clarity, only a groove 24 and a microchannel 31-34 are designated as examples.
Um die Keilform der Zuführelemente 2a - d optimal auszunutzen, sind Mikrokanäle 31 - 34 sowie der Zuführungskanal 4 derart ausgeführt, daß sie bei gleicher Breite unterschiedliche Tiefe vorweisen, wobei in Figur la der Querschnitt rechteckig ist. Nach jeder Bifurkation 36 nimmt die Tiefe von außen nach innen zur Mischkammer 5 hin ab. Die Strömungsrichtung der Fluide ist radial von außen nach innen gerichtet. Für das Keilelement 2d ist ein Koordinatensystem mit den Richtungen 1, b und t eingezeichnet. In Richtung von 1 wird die Länge eines Mikrokanals gemessen, in Richtung von b die Breite und in Richtung von t die Tiefe eines Mikrokanals.In order to optimally utilize the wedge shape of the feed elements 2a-d, microchannels 31-34 and the feed channel 4 are designed such that they have different depths with the same width, the cross section being rectangular in FIG. After each bifurcation 36, the depth decreases from the outside towards the mixing chamber 5. The flow direction of the fluids is directed radially from the outside inwards. A coordinate system with the directions 1, b and t is shown for the wedge element 2d. The length of a microchannel is measured in the direction of 1, the width of a microchannel in the direction of b and the depth in the direction of t.
Die Fluidführungsstruktur 3 ist im in Figur la dargestellten Beispiel als vierstufige Bifurkationskaskade ausgeführt. Aus einer Vorratskammer außerhalb der Vorrichtung fließt der Fluidstrom in den Zuführungskanal 4. Dieser gabelt sich in zwei Mikrokanäle 31 erster Stufe, so daß der Fluidstrom in zwei gleiche Teilströme aufgeteilt wird. Beide Mikrokanäle 31 erster Stufe gabeln sich in jeweils zwei Mikrokanäle 32 zweiter Stufe auf, was zur Folge hat, daß auf der zweiten Stufe der ursprüngliche Fluidstrom in vier Teilströme aufgeteilt ist. Diese symmetrische Bifurkation wird im gezeigten Beispiel bis zur vierten Stufe fortgesetzt und resultiert in der Aufteilung des Fluidstromes in 2'-Teilströme, die von den Mikrokanälen 34 vierter Stufe in die Mischkammer 5 münden und sich dort mit den Teilströmen aus den anderen Zuführelementen vermischen können.In the example shown in FIG. 1 a, the fluid guide structure 3 is designed as a four-stage bifurcation cascade. The fluid flow flows from a storage chamber outside the device into the feed channel 4. This feeds into two microchannels 31 of the first stage, so that the fluid flow is divided into two equal partial flows. Both microchannels 31 of the first stage bifurcate into two microchannels 32 of the second stage, which means that on the second stage the original fluid flow is divided into four partial flows. This symmetrical bifurcation is continued in the example shown up to the fourth stage and results in the division of the fluid stream into 2 ′ partial streams, which pass from the microchannels 34 to the fourth stage Mixing chamber 5 open and can mix there with the partial flows from the other feed elements.
In Figur la sind die Nuten 24 in den Zuführelementen 2a - d versetzt angeordnet und zwar derart, daß, angenommen in den Zuführelementen 2a und c fließe Fluid A und in Zuführelementen 2b und d Fluid B, ein Teilstrom des Fluides B beim Austritt in die Mischkammer 5 von vier Teilströmen des Fluides A umgeben ist und umgekehrt. Dies trägt zur besseren Vermischung beider Fluide bei.In Figure la, the grooves 24 in the feed elements 2a-d are arranged offset such that, assuming fluid A flows in feed elements 2a and c and fluid B in feed elements 2b and d, a partial flow of fluid B exits the mixing chamber 5 is surrounded by four partial flows of fluid A and vice versa. This contributes to the better mixing of the two fluids.
In Figur lb ist ein weiteres Beispiel für die Ausgestaltung der Zuführelemente 2 dargestellt. In diesem Fall sind auf beiden Teilflächen 21 und 22 Nuten 24 angebracht, die einen Teilquerschnitt der Mikrokanäle 30 aufweisen. Beim Aneinanderlegen zweier Keilflächen 21 und 22 ergänzen sich zwei gegenüberliegende Nuten 24 zum Vollquerschnitt eines Mikrokanales 30. Weiterhin ist der Querschnitt der Mikrokanäle 30 abgerundet. Da auch in diesem Fall nach innen hin die Tiefe der Mikrokanäle 30 bei konstanter Breite abnimmt, haben die Mikrokanäle 30 unmittelbar bei der Mischkammer 5 runden Querschnitt. Auch in Figur lb sind wegen besserer Übersichtlichkeit nur eine Nut 24 und die Mikrokanäle 30 eines Teilstromes bezeichnet.A further example of the configuration of the feed elements 2 is shown in FIG. 1b. In this case, grooves 24 are provided on both partial surfaces 21 and 22, which have a partial cross section of the microchannels 30. When two wedge surfaces 21 and 22 are placed against one another, two opposite grooves 24 complement each other to form the full cross section of a microchannel 30. Furthermore, the cross section of the microchannels 30 is rounded. Since in this case too the depth of the microchannels 30 decreases towards the inside with a constant width, the microchannels 30 have a round cross section directly in the mixing chamber 5. For better clarity, only one groove 24 and the microchannels 30 of a partial flow are also designated in FIG. 1b.
Figur lc zeigt ein weiteres Ausführungsbeispiel der Zuführelemente 2. In diesem Fall nehmen sowohl Tiefe als auch Länge der Mikrokanäle 30 von Stufe i auf Stufe i + 1 zu, aber von Stufe n - 1 auf Stufe n, d.h. der letzten Stufe vor Einmünden in die Mischkammer 5, nehmen beide Abmessungen wieder zu. Dies ist auch in der Vergrößerung des aufgeschnittenen Zuführelementes 2' dargestellt. Das Zuführelement 2' ist längs der Schnittfläche 25 derart aufgeschnitten, daß ein Mikrokanal 30 auf konstant halber Breite durchgeschnitten wird. Tiefe und Länge des Mikrokanals vierter Stufe 34 sind deutlich größer als Tiefe und Länge des Mikrokanals dritter Stufe 33. Daher ergibt sich für die Mischkammer ein höheres Verhältnis von Fluidaustrittsfläche zu Gesamtmantelfläche, was die Vermischungseffektivität steigert. Die einzelnen Nuten 24 sind wie in Figur la derart zueinander angeordnet, daß ein Teilstrom eines Fluides von vier Teilströmen eines weiteren Fluides umgeben sein kann. Durch die große Tiefe der Mikrokanäle vierter Stufe 34 ergibt sich ein Überlappen der Austrittsflächen in Umfangsrichtung der Mischkammer. Dies erhöht dieFIG. 1c shows a further exemplary embodiment of the feed elements 2. In this case, both the depth and the length of the microchannels 30 increase from stage i to stage i + 1, but from stage n-1 to stage n, ie the last stage before it flows into the Mixing chamber 5, both dimensions increase again. This is also shown in the enlargement of the cut feed element 2 '. The feed element 2 'is cut along the cutting surface 25 in such a way that a microchannel 30 is cut to a constant half width. The depth and length of the fourth-stage microchannel 34 are significantly greater than the depth and length of the third-stage microchannel 33. The mixing chamber therefore has a higher ratio of Fluid exit surface to total surface area, which increases the mixing effectiveness. As in FIG. 1 a, the individual grooves 24 are arranged with respect to one another such that a partial flow of a fluid can be surrounded by four partial flows of another fluid. The great depth of the fourth stage microchannels 34 results in an overlap of the exit surfaces in the circumferential direction of the mixing chamber. This increases the
Vermischungskontaktfläche der in die Mischkammer 5 austretenden Fluide und damit auch die Vermischungseffektivität.Mixing contact surface of the fluids exiting into the mixing chamber 5 and thus also the mixing effectiveness.
In Figur 2a sind die Zuführelemente 2 in das Gehäuse 1 eingepaßt, wobei das Gehäuse 1 aus zwei Kreisscheiben besteht, in die Aussparungen zum Einsetzen der Zuführelemente 2 und zum Bilden der Mischkammer 5 eingearbeitet sind, Zuführkanäle 4a und b, sind oberhalb und unterhalb der Zuführelemente 2 ringförmig im Gehäuse 1 umlaufend angeordnet in einer der beiden Kreisscheiben ist ein Fluidabführungskanal 6 derart angeordnet, daß er zentral in die untere Stirnseite der Mischkammer 5 mündet.In Figure 2a, the feed elements 2 are fitted into the housing 1, the housing 1 consisting of two circular disks into which recesses for inserting the feed elements 2 and for forming the mixing chamber 5 are incorporated, feed channels 4a and b, are above and below the feed elements 2 arranged in a ring around the housing 1 in one of the two circular disks, a fluid discharge channel 6 is arranged such that it opens centrally into the lower end face of the mixing chamber 5.
Figur 2b zeigt ein anderes Ausführungsbeispiel des Gehäuses 1, bei dem sich beide Zuführkanäle 4a und b in der gleichen Kreisscheibe wie der Fluidabführungskanal 6 befinden und seitlich um die Zuführungselemente herum im Gehäuse 1 umlaufen.Figure 2b shows another embodiment of the housing 1, in which both supply channels 4a and b are in the same circular disc as the fluid discharge channel 6 and run laterally around the supply elements in the housing 1.
Figur 2c zeigt ein weiteres Ausführungsbeispiel für sowohl das Gehäuse 1 als auch die Zuführelemente 2. In diesem Fall befinden sich die ringförmig umlaufenden Zuführkanäle 4a und b nicht in den das Gehäuse 1 bildenden Kreisplatten, sondern sind als Durchbohrungen in die Zuführelemente 2 integriert und laufen dort ringförmig um.Figure 2c shows a further embodiment for both the housing 1 and the feed elements 2. In this case, the annular circumferential feed channels 4a and b are not in the circular plates forming the housing 1, but are integrated as holes in the feed elements 2 and run there ring-shaped around.
Figur 3a zeigt zwei Zuführelemente 2, die als jeweils eine plane, kreisringförmige Platte 2a,b ausgebildet sind. Die Platte 2b weist in ihrer Mitte eine kreisförmige Durchbrechung 7 auf. Auf ihrem Umfang sind kreisförmige Durchbrechungen angeordnet, die die Zuführkanäle 4a und 4b bilden für die Fluide A und B bilden. Die Zuführkanäle 4b der Platte 2b sind an Bifurkationskaskaden 3 angeschlossen. Von jedem Zuführkanal 4b geht ein Mikrokanal erster Stufe 31 ab, der sich nach einer Bifurkation 36 in zwei Mikrokanäle zweiter Stufe 32 aufteilt, die sich jeweils ihrerseits in 2 + 2 Mikrokanäle dritter Stufe 33 aufteilen usw.. Die Längen der Mikrokanäle 31 bis 34 nehmen mit zunehmender Stufe ab. Die plane Platte 2a ist identisch mit der planen Platte 2b. Sie ist allerdings um 45° zur Platte 2b verdreht. Dadurch kommen die Zuführkanäle 4a der Platte 2a und 2b sowie die Zuführkanäle 4b der Platten 2a und 2b aufeinander zu liegen. Von den Zuführkanälen 4a gehen in der Platte 2a Bifurkationskaskaden 3 für das Fluid A ab. Durch ein Übereinanderstapeln einer Vielzahl von Platten 2a und 2b ergibt sich ein zylinderförmiger Mikromischer.Figure 3a shows two feed elements 2, which are each formed as a flat, annular plate 2a, b. The plate 2b has a circular opening 7 in its center. They are circular on their circumference Openings are arranged, which form the feed channels 4a and 4b for the fluids A and B. The feed channels 4b of the plate 2b are connected to bifurcation cascades 3. A microchannel of first stage 31 emanates from each feed channel 4b and, after a bifurcation 36, is divided into two microchannels of second stage 32, each of which in turn is divided into 2 + 2 microchannels of third stage 33, etc. The lengths of microchannels 31 to 34 take with increasing level. The flat plate 2a is identical to the flat plate 2b. However, it is rotated by 45 ° to plate 2b. As a result, the feed channels 4a of the plates 2a and 2b and the feed channels 4b of the plates 2a and 2b come to lie on one another. Bifurcation cascades 3 for the fluid A depart from the feed channels 4a in the plate 2a. Stacking a plurality of plates 2a and 2b on top of one another results in a cylindrical micromixer.
In den Figuren 3b bis 3d ist gezeigt, wie die Mikrokanäle 30a, 30b bildenden Nuten 24 in der Oberseite 26 und/oder der Unterseite 27 einer als plane Platte 2 bzw. 2a,b ausgebildeten Zuführelementes angeordnet sein können. Der Übersichtlichkeit halber sind in den Figuren 3b bis 3d die Platten 2,2a,2b beabstandet zueinander dargestellt. Aus Stabilitätsgründen kann aber auch erwogen werden, zwischen die Zuführelemente zusätzliche Abstandselemente einzuführen, die Durchbrechungen zur Bildung der Mischkammer und der Zuführkanäle aber keine Bifurkationskaskaden aufweisen würden.FIGS. 3b to 3d show how the grooves 24 forming microchannels 30a, 30b can be arranged in the top 26 and / or the bottom 27 of a feed element designed as a flat plate 2 or 2a, b. For the sake of clarity, the plates 2, 2 a, 2 b are shown spaced apart in FIGS. 3b to 3d. For reasons of stability, however, it can also be considered to introduce additional spacer elements between the feed elements, but which would have openings for forming the mixing chamber and the feed channels but no bifurcation cascades.
In Figur 3b sind sowohl in der Platte 2a als auch in der Platte 2b die Nuten auf der Oberseite 26a bzw. 26b ausgebildet. Die Nuten in der Platte 2a bilden Mikrokanäle 30a für das Fluid A und die Nuten in der Platte 2b bilden Mikrokanäle 30b für das Fluid B. Die Nuten in beiden Platten sind derart angeordnet, daß die Mikrokanäle 30a und 30b genau übereinander liegen.In Figure 3b, the grooves are formed on the top 26a and 26b in both the plate 2a and in the plate 2b. The grooves in plate 2a form microchannels 30a for fluid A and the grooves in plate 2b form microchannels 30b for fluid B. The grooves in both plates are arranged such that microchannels 30a and 30b lie exactly one above the other.
Die Nutenanordnung in Figur 3c unterscheidet sich von der Nutenanordnung in Figur 3b lediglich dadurch, daß die Mikrokanäle 30a und 30b zueinander versetzt angeordnet sind. Dadurch wird erreicht, daß der Mikrokanal für das eine Fluid von vier Mikrokanälen für das andere Fluid umgeben ist. Dies erhöht die Mischeffektivität.The groove arrangement in Figure 3c differs from the groove arrangement in Figure 3b only in that the microchannels 30a and 30b to each other are staggered. It is thereby achieved that the microchannel for one fluid is surrounded by four microchannels for the other fluid. This increases the mixing effectiveness.
Die Zuführelemente 2 aus Figur 3d weisen sowohl auf ihrer Oberseite 26 als auch ihrer Unterseite 27 Nuten 24 auf. Die Nuten 24 weisen jeweils einen Teilquerschnitt der Mikrokanäle 30a und 30b auf und ergänzen sich zum Vollquerschnitt der Mikrokanäle 30a, 30b in den aufeinanderliegenden Flächen 26 und 27. Daher sind die Nuten der Oberseite 26 versetzt zu den Nuten der Unterseite 27 angeordnet. Wenn die Teilquerschnitte der einen Seite für das eine Fluid und die Teilquerschnitte der anderen Seite für das andere Fluid genutzt werden, wird dadurch wieder gewährleistet, daß ein Mikrokanal 30a oder 30b für das eine Fluid von vier Mikrokanälen 30b oder 30a umgeben ist. The feed elements 2 from FIG. 3d have grooves 24 on their upper side 26 and on their lower side 27. The grooves 24 each have a partial cross section of the microchannels 30a and 30b and complement each other to form the full cross section of the microchannels 30a, 30b in the superimposed surfaces 26 and 27. Therefore, the grooves on the top 26 are offset from the grooves on the underside 27. If the partial cross sections of the one side are used for one fluid and the partial cross sections of the other side for the other fluid, this again ensures that a microchannel 30a or 30b for the one fluid is surrounded by four microchannels 30b or 30a.
Bezugszeichenreference numeral
Gehäuse a,b,c,d,2' ZuführelementHousing a, b, c, d, 2 'feed element
Fluidführungsstruktur a,b Zuführungskanal A,BFluid guide structure a, b feed channel A, B
Mischkammermixing chamber
FluidabführungskanalFluid discharge passage
Durchbrechungperforation
Keilflächewedge surface
Keilflächewedge surface
Stirnseitefront
Nutgroove
Schnittflächesection
Oberseitetop
Unterseite a,b Mikrokanal A,BBottom a, b microchannel A, B
Mikrokanal erster StufeFirst stage microchannel
Mikrokanal zweiter StufeSecond stage microchannel
Mikrokanal dritter StufeThird stage microchannel
Mikrokanal vierter StufeFourth stage microchannel
Bifurkation bifurcation

Claims

Patentansprüche claims
1. Statischer Mikrovermischer mit Zuführkammern für mindestens zwei zu vermischende Fluide, von denen Mikrokanäle zu einer Mischkammer führen, wobei die Mikrokanäle in mindestens zwei aneinanderliegenden Zuführelementen angeordnet sind, dadurch gekennzeichnet,1. Static micromixer with feed chambers for at least two fluids to be mixed, of which microchannels lead to a mixing chamber, the microchannels being arranged in at least two adjacent feed elements, characterized in that
daß die Zuführelemente (2) keilförmige Platten sind, die mindestens zu einem Ringsektor zusammensetzbar sind, der die Mischkammer (5) bogenförmig umgibt, undthat the feed elements (2) are wedge-shaped plates, which can be assembled into at least one ring sector which surrounds the mixing chamber (5) in an arc, and
daß die für jedes Fluid vorgesehenen Mikrokanäle (30) eine symmetrische mindestens zwei Stufen i (i = 1 bis n, mit n > 2) umfassende Bifurkationskaskade bilden.that the microchannels (30) provided for each fluid form a symmetrical bifurcation cascade comprising at least two stages i (i = 1 to n, with n> 2).
2. Mikrovermischer nach Anspruch 1, dadurch gekennzeichnet, daß der Querschnitt der Mikrokanäle (30) von Stufe zu Stufe abnimmt.2. Micromixer according to claim 1, characterized in that the cross section of the microchannels (30) decreases from stage to stage.
3. Mikrovermischer nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Länge der Mikrokanäle (30) von Stufe zu Stufe abnimmt.3. Micromixer according to claim 1 or 2, characterized in that the length of the microchannels (30) decreases from stage to stage.
4. Mikrovermischer nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Bifurkationskaskade selbstähnlich ist.4. Micromixer according to one of claims 1 to 3, characterized in that the bifurcation cascade is self-similar.
5. Mikrovermischer nach Anspruch 1, dadurch gekennzeichnet, daß der Querschnitt der Mikrokanäle (30) bis zur Stufe n-1 von Stufe zu Stufe abnimmt. 5. Micromixer according to claim 1, characterized in that the cross section of the microchannels (30) decreases up to level n-1 from level to level.
6. Mikrovermischer nach Anspruch 1 oder 5, dadurch gekennzeichnet, daß die Länge der Mikrokanäle (30) bis zur Stufe n-1 von Stufe zu Stufe abnimmt.6. Micromixer according to claim 1 or 5, characterized in that the length of the microchannels (30) decreases from level to level up to level n-1.
7. Mikrovermischer nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß mindestens eine keilförmige Platte auf mindestens einer Keilfläche (21,22) Mikrokanäle (30) bildende Nuten (24) aufweist.7. Micromixer according to one of claims 1 to 6, characterized in that at least one wedge-shaped plate on at least one wedge surface (21, 22) has microchannels (30) forming grooves (24).
8. Mikrovermischer nach Anspruch 7, dadurch gekennzeichnet, daß die keilförmige Platte auf beiden Keilflächen (21,22) jeweils eine Bifurkationskaskade aufweist, wobei die an der Stirnseite der Platte mündenden Mikrokanäle (30) der letzten Bi urkationssrufe versetzt zueinander angeordnet sind.8. Micromixer according to claim 7, characterized in that the wedge-shaped plate on both wedge surfaces (21, 22) each has a bifurcation cascade, with the micro-channels (30) of the last Bi urcation calls opening at the end of the plate being arranged offset to one another.
9. Mikrovermischer nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, daß die Nuten (24) jedes Zuführelementes (2) einen Teilquerschnitt der Mikrokanäle (30) aufweisen und die in den aufeinanderliegenden Flächen befindlichen Nuten (24) sich zum Vollquerschnitt der Mikrokanäle ergänzen.9. Micromixer according to one of claims 7 or 8, characterized in that the grooves (24) of each feed element (2) have a partial cross section of the microchannels (30) and the grooves (24) located in the superimposed surfaces complement each other to the full cross section of the microchannels ,
10. Mikrovermischer nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, daß der Querschnitt und/oder die Länge der Mikrokanäle (30) von Stufe n - 1 auf Stufe n zunimmt.10. Micromixer according to one of claims 5 to 9, characterized in that the cross section and / or the length of the microchannels (30) increases from level n - 1 to level n.
11. Mikrovermischer nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, daß die in die Mischkammer (5) mündenden Mikrokanäle (3 a) in Umfangs- oder axialer Richtung der Mischkammer (5) überlappen. 11. Micromixer according to one of claims 5 to 10, characterized in that the microchannels (3a) opening into the mixing chamber (5) overlap in the circumferential or axial direction of the mixing chamber (5).
12. Mikrovermischer nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß die Bifurkationskaskaden für jedes Fluid an einem gemeinsamen Zuführungskanal (4a,b) angeschlossen sind.12. Micromixer according to one of claims 1 to 11, characterized in that the bifurcation cascades for each fluid are connected to a common feed channel (4a, b).
13. Mikrovermischer nach Anspruch 12, dadurch gekennzeichnet, daß der gemeinsame Zuführungskanal (4a, b) in den Zuführelementen (2) angeordnet ist.13. Micromixer according to claim 12, characterized in that the common feed channel (4a, b) is arranged in the feed elements (2).
14. Mikrovermischer nach Anspruch 12, dadurch gekennzeichnet, daß der gemeinsame Zuführungskanal (4a,b) in einem die Zuführelemente (2) umgebenden Gehäuse (1) angeordnet ist.14. Micromixer according to claim 12, characterized in that the common feed channel (4a, b) is arranged in a housing (1) surrounding the feed elements (2).
15. Statischer Mikrovermischer mit Zuführkammern für mindestens zwei zu vermischende Fluide, von denen Mikrokanäle zu einer Mischkammer führen, wobei die Mikrokanäle in mindestens zwei aufeinanderliegenden oder durch ein oder mehrere Zwischenelement(e) voneinander beabstandeten Zuführelementen angeordnet sind, dadurch gekennzeichnet, daß die Zuführelemente (2) plane Platten sind, die im mittleren Bereich eine Durchbrechung (7) aufweisen, so daß die übereinandergestapelten Platten die Mischkammer (5) bilden, und daß die für jedes Fluid vorgesehenen Mikrokanäle (30) eine oder mehrere symmetrische, mindestens zwei Stufen i (i = 1 bis 1, mit n > 2) umfassende Bifurkationskaskaden bilden.15. Static micromixer with feed chambers for at least two fluids to be mixed, of which microchannels lead to a mixing chamber, the microchannels being arranged in at least two feed elements lying one on top of the other or spaced apart by one or more intermediate element (s), characterized in that the feed elements ( 2) are flat plates which have an opening (7) in the central area, so that the stacked plates form the mixing chamber (5) and that the microchannels (30) provided for each fluid have one or more symmetrical, at least two stages i ( i = 1 to 1, with n> 2) form comprehensive bifurcation cascades.
16. Mikrovermischer nach Anspruch 15, dadurch gekennzeichnet, daß die planen Platten kreisringförmig ausgebildet sind.16. Micro mixer according to claim 15, characterized in that the flat plates are annular.
17. Mikrovermischer nach Anspruch 15 oder 16, dadurch gekennzeichnet, daß die Länge der Mikrokanäle (30) von Stufe i zu Stufe i + 1 abnimmt. 17. Micromixer according to claim 15 or 16, characterized in that the length of the microchannels (30) decreases from stage i to stage i + 1.
18. Mikrovermischer nach einem der Ansprüche 15 bis 17, dadurch gekennzeichnet, daß die Bifurkationskaskade selbstähnlich ist.18. Micromixer according to one of claims 15 to 17, characterized in that the bifurcation cascade is self-similar.
19. Mikrovermischer nach einem der Ansprüche 15 bis 18, dadurch gekennzeichnet, daß mindestens eine plane Platte (2) auf mindestens einer ihrer beiden Seiten (26,27) Mikrokanäle (30) bildende Nuten (24) aufweist.19. Micromixer according to one of claims 15 to 18, characterized in that at least one flat plate (2) on at least one of its two sides (26, 27) has microchannels (30) forming grooves (24).
20. Mikrovermischer nach Anspruch 19, dadurch gekennzeichnet, daß die plane Platte auf beiden Seiten (26,27) jeweils mindestens eine Bifurkationskaskade aufweist, wobei die in die Durchbrechung (7) der Platte mündenden Mikrokanäle (30) der einen und der anderen Seite (26,27) zueinander versetzt angeordnet sind.20. Micro mixer according to claim 19, characterized in that the flat plate on both sides (26, 27) each has at least one bifurcation cascade, the micro-channels (30) opening into the opening (7) of the plate on one and the other side ( 26, 27) are arranged offset to one another.
21. Mikrovermischer nach Anspruch 19 oder 20, dadurch gekennzeichnet, daß die Nuten (24) jedes Zuführelementes (2) einen Teilquerschnitt der Mikrokanäle (30) aufweisen und die in den aufeinanderliegenden Flächen (26,27) befindlichen Nuten (24) sich zum Vollquerschnitt der Mikrokanäle (30) ergänzen.21. Micro mixer according to claim 19 or 20, characterized in that the grooves (24) of each feed element (2) have a partial cross section of the microchannels (30) and the grooves (24) located in the superimposed surfaces (26, 27) are in the full cross section supplement the microchannels (30).
22. Mikrovermischer nach einem der Ansprüche 15 bis 21, dadurch gekennzeichnet, daß die Bifurkationskaskaden jeweils an einem Zuführkanal (4a, b) angeschlossen sind, die in den Zuführelementen (2) angeordnet sind. 22. Micromixer according to one of claims 15 to 21, characterized in that the bifurcation cascades are each connected to a feed channel (4a, b) which are arranged in the feed elements (2).
PCT/EP2000/012736 1999-12-18 2000-12-14 Micromixer WO2001043857A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00990756A EP1242171B1 (en) 1999-12-18 2000-12-14 Micromixer
DE50002879T DE50002879D1 (en) 1999-12-18 2000-12-14 micromixer
AT00990756T ATE244596T1 (en) 1999-12-18 2000-12-14 MICRO MIXER

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19961257.9 1999-12-18
DE19961257A DE19961257C2 (en) 1999-12-18 1999-12-18 micromixer

Publications (1)

Publication Number Publication Date
WO2001043857A1 true WO2001043857A1 (en) 2001-06-21

Family

ID=7933281

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012736 WO2001043857A1 (en) 1999-12-18 2000-12-14 Micromixer

Country Status (5)

Country Link
US (1) US20030039169A1 (en)
EP (1) EP1242171B1 (en)
AT (1) ATE244596T1 (en)
DE (2) DE19961257C2 (en)
WO (1) WO2001043857A1 (en)

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1392419A1 (en) * 2001-05-17 2004-03-03 Amalgamated Research, Inc. Fractal device for mixing and reactor applications
EP1455930A1 (en) * 2001-11-15 2004-09-15 Cellular Process Chemistry Inc. Enhancing fluid flow in a stacked plate microreactor
WO2005018785A1 (en) 2003-07-25 2005-03-03 Wella Aktiengesellschaft Multi-constituent packaging comprising a static micromixer
WO2005018786A1 (en) 2003-07-25 2005-03-03 Wella Aktiengesellschaft Components for static micromixers, micromixers consisting of said components, and the use thereof for mixing, dispersion, or carrying out chemical reactions
US6982064B1 (en) * 1999-06-16 2006-01-03 Institut Fur Mikrotechnik Mainz Gmbh Micromixer
US7192562B1 (en) * 2003-04-17 2007-03-20 Uop Llc Hydrogen-oxygen mixer-sparger
US7252716B2 (en) * 2002-11-15 2007-08-07 Samsung Electronics Co., Ltd. Gas injection apparatus for semiconductor processing system
US7307104B2 (en) 2003-05-16 2007-12-11 Velocys, Inc. Process for forming an emulsion using microchannel process technology
DE102006058026A1 (en) * 2006-12-07 2008-06-12 Wissenschaftliche Gerätebau Dr.-Ing. Herbert Knauer GmbH High performance liquid chromatography unit, has eluent source for producing eluent stream in eluent line, where injection unit is connected to eluent line
WO2008108191A1 (en) * 2007-03-02 2008-09-12 Canon Kabushiki Kaisha Fluid transport channel, fluid processing apparatus and fluid processing system
US7485671B2 (en) 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US7541007B2 (en) * 2002-12-20 2009-06-02 Lehigh University Microreactor and method of use to produce hydrogen by methanol reforming
WO2009155276A1 (en) * 2008-06-18 2009-12-23 E. I. Du Pont De Nemours And Company Mixing device having a corrugated conveying plate
US7816411B2 (en) 2004-10-01 2010-10-19 Velocys, Inc. Multiphase mixing process using microchannel process technology
US8052704B2 (en) 2000-12-20 2011-11-08 Foxhollow Technologies, Inc. High capacity debulking catheter with distal driven cutting wheel
US8192452B2 (en) 2009-05-14 2012-06-05 Tyco Healthcare Group Lp Easily cleaned atherectomy catheters and methods of use
US8226674B2 (en) 2000-12-20 2012-07-24 Tyco Healthcare Group Lp Debulking catheters and methods
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
US8414604B2 (en) 2008-10-13 2013-04-09 Covidien Lp Devices and methods for manipulating a catheter shaft
US8496677B2 (en) 2009-12-02 2013-07-30 Covidien Lp Methods and devices for cutting tissue
US8597315B2 (en) 1999-08-19 2013-12-03 Covidien Lp Atherectomy catheter with first and second imaging devices
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US8808186B2 (en) 2010-11-11 2014-08-19 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US8920450B2 (en) 2010-10-28 2014-12-30 Covidien Lp Material removal device and method of use
US8992717B2 (en) 2011-09-01 2015-03-31 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US8998937B2 (en) 1999-08-19 2015-04-07 Covidien Lp Methods and devices for cutting tissue
US9028512B2 (en) 2009-12-11 2015-05-12 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
WO2015068045A3 (en) * 2013-11-11 2015-11-12 King Abdullah University Of Science And Technology Microfluidic device for high-volume production and processing of monodisperse emulsions
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9687266B2 (en) 2009-04-29 2017-06-27 Covidien Lp Methods and devices for cutting and abrading tissue
EP3217119A4 (en) * 2014-11-06 2017-11-29 Sumitomo Precision Products Co., Ltd. Heat exchanger
WO2019011476A1 (en) * 2017-07-10 2019-01-17 Linde Aktiengesellschaft Fluid-conducting device and method for mixing fluids
US10213224B2 (en) 2014-06-27 2019-02-26 Covidien Lp Cleaning device for catheter and catheter including the same
CN109731512A (en) * 2019-03-07 2019-05-10 湖南中天元环境工程有限公司 A kind of hydrocarbon oil hydrogenation device and technique
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
EP3804703A1 (en) 2019-10-10 2021-04-14 Bayer AG Method for producing a nanoparticulate active agent
EP3804704A1 (en) 2019-10-10 2021-04-14 Bayer AG Method for producing nanoparticulate rivaroxaban
WO2021069344A1 (en) 2019-10-10 2021-04-15 Bayer Aktiengesellschaft Process for the preparation of a nanoparticulate active ingredient

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3694877B2 (en) * 2001-05-28 2005-09-14 株式会社山武 Micro mixer
US7883670B2 (en) * 2002-02-14 2011-02-08 Battelle Memorial Institute Methods of making devices by stacking sheets and processes of conducting unit operations using such devices
DE10218280C1 (en) * 2002-04-19 2003-11-20 Fraunhofer Ges Forschung Integrated mixing and switching system for microreaction technology
JP2006507921A (en) 2002-06-28 2006-03-09 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ Method and apparatus for fluid dispersion
JP3794687B2 (en) * 2002-08-23 2006-07-05 株式会社山武 Micro emulsifier
GB0307403D0 (en) * 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307428D0 (en) * 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
EP3616781A1 (en) 2003-04-10 2020-03-04 President and Fellows of Harvard College Formation and control of fluidic species
US7442350B1 (en) * 2003-04-17 2008-10-28 Uop Llc Plate design for mixer sparger
DE10333921B4 (en) 2003-07-25 2005-10-20 Wella Ag Extraction method using a static micromixer
EP2662136A3 (en) * 2003-08-27 2013-12-25 President and Fellows of Harvard College Method for handling and mixing droplets
US7147364B2 (en) * 2003-09-29 2006-12-12 Hitachi High-Technologies Corporation Mixer and liquid analyzer provided with same
US20050213425A1 (en) * 2004-02-13 2005-09-29 Wanjun Wang Micro-mixer/reactor based on arrays of spatially impinging micro-jets
US20050221339A1 (en) * 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
US9477233B2 (en) 2004-07-02 2016-10-25 The University Of Chicago Microfluidic system with a plurality of sequential T-junctions for performing reactions in microdroplets
US7655470B2 (en) 2004-10-29 2010-02-02 University Of Chicago Method for manipulating a plurality of plugs and performing reactions therein in microfluidic systems
JP2008515551A (en) 2004-10-06 2008-05-15 ステイト オブ オレゴン アクティング バイ アンド スルー ザ ステイト ボード オブ ハイヤー エデュケーション オン ビハーフ オブ オレゴン ステイト ユニバーシティー MECS dialyzer
US7955504B1 (en) 2004-10-06 2011-06-07 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Microfluidic devices, particularly filtration devices comprising polymeric membranes, and method for their manufacture and use
US7968287B2 (en) * 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
DE102004059210A1 (en) * 2004-12-09 2006-06-14 Merck Patent Gmbh Production of oxidic nanoparticles
DE102004062076A1 (en) * 2004-12-23 2006-07-06 Forschungszentrum Karlsruhe Gmbh Static micromixer
US7795359B2 (en) * 2005-03-04 2010-09-14 Novartis Ag Continuous process for production of polymeric materials
US20070054119A1 (en) * 2005-03-04 2007-03-08 Piotr Garstecki Systems and methods of forming particles
AU2006220816A1 (en) 2005-03-04 2006-09-14 President And Fellows Of Harvard College Method and apparatus for forming multiple emulsions
DE102005015433A1 (en) * 2005-04-05 2006-10-12 Forschungszentrum Karlsruhe Gmbh Mixer system, reactor and reactor system
US20060280029A1 (en) * 2005-06-13 2006-12-14 President And Fellows Of Harvard College Microfluidic mixer
EP1930070A4 (en) * 2005-09-29 2012-11-07 Fujifilm Corp Microdevice and method of making fluid merge
EP1984738A2 (en) 2006-01-11 2008-10-29 Raindance Technologies, Inc. Microfluidic devices and methods of use in the formation and control of nanoreactors
US20070195127A1 (en) * 2006-01-27 2007-08-23 President And Fellows Of Harvard College Fluidic droplet coalescence
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
EP2481815B1 (en) * 2006-05-11 2016-01-27 Raindance Technologies, Inc. Microfluidic devices
US20070276419A1 (en) 2006-05-26 2007-11-29 Fox Hollow Technologies, Inc. Methods and devices for rotating an active element and an energy emitter on a catheter
EP3536396B1 (en) 2006-08-07 2022-03-30 The President and Fellows of Harvard College Fluorocarbon emulsion stabilizing surfactants
JP5030520B2 (en) * 2006-09-29 2012-09-19 富士フイルム株式会社 Fluid mixing method and microdevice
WO2008085522A1 (en) * 2007-01-11 2008-07-17 Uop Llc Hydrogen-oxygen mixer-sparger
US8772046B2 (en) * 2007-02-06 2014-07-08 Brandeis University Manipulation of fluids and reactions in microfluidic systems
DE102007013932A1 (en) 2007-03-23 2008-09-25 Forschungszentrum Karlsruhe Gmbh Mixer for two or more liquids, for use in microfluid apparatus for chemical and biochemical analysis, comprises at least three linked T-mixer units, periodic pressure-driven or electroosmotic flow being imposed on basic flow through mixer
US7776927B2 (en) * 2007-03-28 2010-08-17 President And Fellows Of Harvard College Emulsions and techniques for formation
US8592221B2 (en) 2007-04-19 2013-11-26 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
KR101127051B1 (en) * 2007-10-29 2012-03-23 주식회사 엘지화학 Substrate and micro reactor comprising the same
US20090211977A1 (en) * 2008-02-27 2009-08-27 Oregon State University Through-plate microchannel transfer devices
JP2010000428A (en) * 2008-06-19 2010-01-07 Hitachi Plant Technologies Ltd Microreactor
EP4047367A1 (en) 2008-07-18 2022-08-24 Bio-Rad Laboratories, Inc. Method for detecting target analytes with droplet libraries
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
US20100110826A1 (en) * 2008-11-06 2010-05-06 D Herde Eric J Fractal static mixer
FR2938778A1 (en) * 2008-11-26 2010-05-28 Centre Nat Rech Scient Contactor for thermal transfer, mixing and chemical reaction operations between fluids, comprises two arborescent networks of pipes tangled together by interleaving respective pipes, where each networks comprise successive subdivisions
US8528589B2 (en) 2009-03-23 2013-09-10 Raindance Technologies, Inc. Manipulation of microfluidic droplets
US8801922B2 (en) 2009-06-24 2014-08-12 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Dialysis system
JP2012531256A (en) * 2009-06-24 2012-12-10 ステイト オブ オレゴン アクティング バイ アンド スルー ザ ステイト ボード オブ ハイヤー エデュケーション オン ビハーフ オブ オレゴン ステイト ユニバーシティー Microfluidic device for dialysis
US9599407B2 (en) 2009-07-29 2017-03-21 Tokitae Llc System and structure for heating or sterilizing a liquid stream
US9930898B2 (en) * 2009-07-29 2018-04-03 Tokitae Llc Pasteurization system and method
US20120211084A1 (en) 2009-09-02 2012-08-23 President And Fellows Of Harvard College Multiple emulsions created using jetting and other techniques
WO2011042564A1 (en) 2009-10-09 2011-04-14 Universite De Strasbourg Labelled silica-based nanomaterial with enhanced properties and uses thereof
US20110189048A1 (en) * 2009-12-05 2011-08-04 Curtis James R Modular dialysis system
US8753515B2 (en) 2009-12-05 2014-06-17 Home Dialysis Plus, Ltd. Dialysis system with ultrafiltration control
US8757444B2 (en) 2009-12-17 2014-06-24 Actamax Surgical Materials, Llc Dispensing device having an array of laterally spaced tubes
WO2011079176A2 (en) 2009-12-23 2011-06-30 Raindance Technologies, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
US8511889B2 (en) * 2010-02-08 2013-08-20 Agilent Technologies, Inc. Flow distribution mixer
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
WO2011100604A2 (en) 2010-02-12 2011-08-18 Raindance Technologies, Inc. Digital analyte analysis
JP2013525087A (en) * 2010-03-17 2013-06-20 プレジデント アンド フェロウズ オブ ハーバード カレッジ Melt emulsification
JP5558883B2 (en) * 2010-03-30 2014-07-23 畑村 洋太郎 Mixing device, gradation mixture and method for producing mixture
JP5558884B2 (en) * 2010-03-30 2014-07-23 畑村 洋太郎 Mixing device, gradation mixture and method for producing mixture
US8580161B2 (en) 2010-05-04 2013-11-12 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Fluidic devices comprising photocontrollable units
US8501009B2 (en) 2010-06-07 2013-08-06 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Fluid purification system
EP2586521A4 (en) * 2010-06-28 2016-03-02 Dainippon Ink & Chemicals Micro mixer
WO2012045012A2 (en) 2010-09-30 2012-04-05 Raindance Technologies, Inc. Sandwich assays in droplets
JP5712610B2 (en) * 2010-12-24 2015-05-07 Dic株式会社 Microreactor and mixed fluid manufacturing method
WO2012109600A2 (en) 2011-02-11 2012-08-16 Raindance Technologies, Inc. Methods for forming mixed droplets
WO2012112804A1 (en) 2011-02-18 2012-08-23 Raindance Technoligies, Inc. Compositions and methods for molecular labeling
US9079140B2 (en) 2011-04-13 2015-07-14 Microfluidics International Corporation Compact interaction chamber with multiple cross micro impinging jets
US9199209B2 (en) * 2011-04-13 2015-12-01 Microfluidics International Corporation Interaction chamber with flow inlet optimization
KR20140034242A (en) 2011-05-23 2014-03-19 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Control of emulsions, including multiple emulsions
EP3709018A1 (en) 2011-06-02 2020-09-16 Bio-Rad Laboratories, Inc. Microfluidic apparatus for identifying components of a chemical reaction
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
EP3120923A3 (en) 2011-07-06 2017-03-01 President and Fellows of Harvard College Article comprising a particle having a shell and a fluid
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
JP2014533133A (en) 2011-10-07 2014-12-11 ホーム・ダイアリシス・プラス・リミテッドHome DialysisPlus, Ltd. Purification of heat exchange fluids for dialysis systems
US9421315B2 (en) 2012-09-05 2016-08-23 The Charles Stark Draper Laboratory, Inc. Compact hydraulic manifold structure for shear sensitive fluids
US9943329B2 (en) 2012-11-08 2018-04-17 Covidien Lp Tissue-removing catheter with rotatable cutter
US9656212B2 (en) 2013-01-08 2017-05-23 The Charles Stark Draper Laboratory, Inc. Compact hydraulic manifold structure for shear sensitive fluids
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
EP3090063B1 (en) 2013-12-31 2019-11-06 Bio-Rad Laboratories, Inc. Method for detection of latent retrovirus
US9784396B2 (en) 2014-02-17 2017-10-10 The Charles Stark Draper Laboratory, Inc. Microfluidic manifold for shear sensitive fluids
ES2864727T3 (en) 2014-04-29 2021-10-14 Outset Medical Inc Dialysis system and methods
EP2957338A1 (en) * 2014-06-20 2015-12-23 Vrije Universiteit Brussel Mixing of fluids
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
WO2018035520A1 (en) 2016-08-19 2018-02-22 Outset Medical, Inc. Peritoneal dialysis system and methods
KR102633914B1 (en) * 2016-09-30 2024-02-06 (주)아모레퍼시픽 Manufacturing apparatus and method for gradation cosmetics, and gradation cosmetics manufactured by the same
AU2018255490B2 (en) * 2017-04-21 2023-02-02 Commonwealth Scientific And Industrial Research Organisation Flow distribution system
CA3070282A1 (en) * 2017-07-20 2019-01-24 Hydra-Flex Inc. Dilution device for dispensing fluid
CN107323090B (en) * 2017-07-27 2019-01-18 京东方科技集团股份有限公司 A kind of printing head, printing device and Method of printing
US11666874B2 (en) * 2017-12-14 2023-06-06 Glaxosmithkline Intellectual Property Deveelopment Limited Methods and apparatus for variable emulsification
CN108212046B (en) * 2018-04-04 2024-04-12 山东豪迈化工技术有限公司 Honeycomb type channel microreactor
DE102018121323A1 (en) * 2018-08-31 2020-03-05 Hochtechnic GmbH Device for filling molds with reactive resins
TWI672174B (en) 2018-12-24 2019-09-21 財團法人工業技術研究院 Microchannel reaction appratus
US11359864B2 (en) 2019-03-08 2022-06-14 Hamilton Sundstrand Corporation Rectangular helical core geometry for heat exchanger
US11280550B2 (en) 2019-03-08 2022-03-22 Hamilton Sundstrand Corporation Radially layered helical core geometry for heat exchanger
US11274886B2 (en) 2019-03-08 2022-03-15 Hamilton Sundstrand Corporation Heat exchanger header with fractal geometry
CN109925991B (en) * 2019-04-19 2024-04-19 山东豪迈化工技术有限公司 Microchannel reactor
US20210008509A1 (en) * 2019-07-09 2021-01-14 Imagine Tf, Llc Parallel production of emulsification
US11268770B2 (en) * 2019-09-06 2022-03-08 Hamilton Sunstrand Corporation Heat exchanger with radially converging manifold
US11633703B2 (en) 2020-04-10 2023-04-25 Sonny's Hfi Holdings, Llc Insert assembly for foaming device
US11209222B1 (en) 2020-08-20 2021-12-28 Hamilton Sundstrand Corporation Spiral heat exchanger header
US11925953B2 (en) 2021-03-15 2024-03-12 Sonny's Hfi Holdings, Llc Foam generating device
WO2023192186A1 (en) * 2022-03-28 2023-10-05 Microfluidics International Corporation High-shear mixing chamber with wide slot channel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021372A1 (en) * 1993-03-19 1994-09-29 E.I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
US5887977A (en) * 1997-09-30 1999-03-30 Uniflows Co., Ltd. Stationary in-line mixer
EP0928785A1 (en) * 1998-01-09 1999-07-14 Bayer Aktiengesellschaft Process for the phosgenation of amines in the gas phase using microstructure mixers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3546091A1 (en) * 1985-12-24 1987-07-02 Kernforschungsz Karlsruhe CROSS-CURRENT MICROFILTER
DE3709278A1 (en) * 1987-03-20 1988-09-29 Kernforschungsz Karlsruhe METHOD FOR PRODUCING FINE-STRUCTURED BODIES
DK0758918T3 (en) * 1994-05-09 1999-06-07 Bayer Ag Method and apparatus for conducting chemical reactions by mixing with a microstructure
DE19540292C1 (en) * 1995-10-28 1997-01-30 Karlsruhe Forschzent Static micromixer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994021372A1 (en) * 1993-03-19 1994-09-29 E.I. Du Pont De Nemours And Company Integrated chemical processing apparatus and processes for the preparation thereof
US5887977A (en) * 1997-09-30 1999-03-30 Uniflows Co., Ltd. Stationary in-line mixer
EP0928785A1 (en) * 1998-01-09 1999-07-14 Bayer Aktiengesellschaft Process for the phosgenation of amines in the gas phase using microstructure mixers

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHUBERT K: "HIGH POTENTIALS. MIKROSTRUKTURAPPARATE FUER DIE CHEMISCHE UND THERMISCHE VERFAHRENSTECHNIK", CHEMIE. INGENIEUR. TECHNIK,DE,VERLAG CHEMIE GMBH. WEINHEIM, PAGE(S) 124-126,128, ISSN: 0009-286X, XP000700153 *

Cited By (81)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6982064B1 (en) * 1999-06-16 2006-01-03 Institut Fur Mikrotechnik Mainz Gmbh Micromixer
US9615850B2 (en) 1999-08-19 2017-04-11 Covidien Lp Atherectomy catheter with aligned imager
US8911459B2 (en) 1999-08-19 2014-12-16 Covidien Lp Debulking catheters and methods
US8998937B2 (en) 1999-08-19 2015-04-07 Covidien Lp Methods and devices for cutting tissue
US9532799B2 (en) 1999-08-19 2017-01-03 Covidien Lp Method and devices for cutting tissue
US8597315B2 (en) 1999-08-19 2013-12-03 Covidien Lp Atherectomy catheter with first and second imaging devices
US8328829B2 (en) 1999-08-19 2012-12-11 Covidien Lp High capacity debulking catheter with razor edge cutting window
US7241423B2 (en) 2000-02-03 2007-07-10 Cellular Process Chemistry, Inc. Enhancing fluid flow in a stacked plate microreactor
US8226674B2 (en) 2000-12-20 2012-07-24 Tyco Healthcare Group Lp Debulking catheters and methods
US9241733B2 (en) 2000-12-20 2016-01-26 Covidien Lp Debulking catheter
US8469979B2 (en) 2000-12-20 2013-06-25 Covidien Lp High capacity debulking catheter with distal driven cutting wheel
US8052704B2 (en) 2000-12-20 2011-11-08 Foxhollow Technologies, Inc. High capacity debulking catheter with distal driven cutting wheel
EP1392419A4 (en) * 2001-05-17 2006-03-08 Amalgamated Res Inc Fractal device for mixing and reactor applications
EP1392419A1 (en) * 2001-05-17 2004-03-03 Amalgamated Research, Inc. Fractal device for mixing and reactor applications
EP1455930A4 (en) * 2001-11-15 2006-05-31 Cellular Process Chemistry Inc Enhancing fluid flow in a stacked plate microreactor
EP1455930A1 (en) * 2001-11-15 2004-09-15 Cellular Process Chemistry Inc. Enhancing fluid flow in a stacked plate microreactor
CN100336165C (en) * 2002-11-15 2007-09-05 三星电子株式会社 Gas injection apparatus for semiconductor processing system
US7252716B2 (en) * 2002-11-15 2007-08-07 Samsung Electronics Co., Ltd. Gas injection apparatus for semiconductor processing system
US7541007B2 (en) * 2002-12-20 2009-06-02 Lehigh University Microreactor and method of use to produce hydrogen by methanol reforming
US8007626B2 (en) 2002-12-20 2011-08-30 Lehigh University Micro-fluidic interconnector
US7192562B1 (en) * 2003-04-17 2007-03-20 Uop Llc Hydrogen-oxygen mixer-sparger
US9999438B2 (en) 2003-04-22 2018-06-19 Covidien Lp Methods and devices for cutting tissue at a vascular location
US8246640B2 (en) 2003-04-22 2012-08-21 Tyco Healthcare Group Lp Methods and devices for cutting tissue at a vascular location
US8961546B2 (en) 2003-04-22 2015-02-24 Covidien Lp Methods and devices for cutting tissue at a vascular location
US7485671B2 (en) 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
US7307104B2 (en) 2003-05-16 2007-12-11 Velocys, Inc. Process for forming an emulsion using microchannel process technology
WO2005018786A1 (en) 2003-07-25 2005-03-03 Wella Aktiengesellschaft Components for static micromixers, micromixers consisting of said components, and the use thereof for mixing, dispersion, or carrying out chemical reactions
WO2005018785A1 (en) 2003-07-25 2005-03-03 Wella Aktiengesellschaft Multi-constituent packaging comprising a static micromixer
US7816411B2 (en) 2004-10-01 2010-10-19 Velocys, Inc. Multiphase mixing process using microchannel process technology
DE102006058026A1 (en) * 2006-12-07 2008-06-12 Wissenschaftliche Gerätebau Dr.-Ing. Herbert Knauer GmbH High performance liquid chromatography unit, has eluent source for producing eluent stream in eluent line, where injection unit is connected to eluent line
DE102006058026B4 (en) * 2006-12-07 2009-12-24 Wissenschaftliche Gerätebau Dr.-Ing. Herbert Knauer GmbH HPLC system
WO2008108191A1 (en) * 2007-03-02 2008-09-12 Canon Kabushiki Kaisha Fluid transport channel, fluid processing apparatus and fluid processing system
US8784440B2 (en) 2008-02-25 2014-07-22 Covidien Lp Methods and devices for cutting tissue
US9445834B2 (en) 2008-02-25 2016-09-20 Covidien Lp Methods and devices for cutting tissue
US10219824B2 (en) 2008-02-25 2019-03-05 Covidien Lp Methods and devices for cutting tissue
WO2009155276A1 (en) * 2008-06-18 2009-12-23 E. I. Du Pont De Nemours And Company Mixing device having a corrugated conveying plate
US8277113B2 (en) 2008-06-18 2012-10-02 Actamax Surgical Materials, Llc Adhesive dispenser apparatus having a mixing device with a corrugated conveying plate
US8246241B2 (en) 2008-06-18 2012-08-21 Actamax Surgical Materials, Llc Mixing device having a corrugated conveying plate
US9192406B2 (en) 2008-10-13 2015-11-24 Covidien Lp Method for manipulating catheter shaft
US8414604B2 (en) 2008-10-13 2013-04-09 Covidien Lp Devices and methods for manipulating a catheter shaft
US10507037B2 (en) 2008-10-13 2019-12-17 Covidien Lp Method for manipulating catheter shaft
US10555753B2 (en) 2009-04-29 2020-02-11 Covidien Lp Methods and devices for cutting and abrading tissue
US9687266B2 (en) 2009-04-29 2017-06-27 Covidien Lp Methods and devices for cutting and abrading tissue
US9220530B2 (en) 2009-05-14 2015-12-29 Covidien Lp Easily cleaned atherectomy catheters and methods of use
US8192452B2 (en) 2009-05-14 2012-06-05 Tyco Healthcare Group Lp Easily cleaned atherectomy catheters and methods of use
US8574249B2 (en) 2009-05-14 2013-11-05 Covidien Lp Easily cleaned atherectomy catheters and methods of use
US10499947B2 (en) 2009-12-02 2019-12-10 Covidien Lp Device for cutting tissue
US8496677B2 (en) 2009-12-02 2013-07-30 Covidien Lp Methods and devices for cutting tissue
US9687267B2 (en) 2009-12-02 2017-06-27 Covidien Lp Device for cutting tissue
US9028512B2 (en) 2009-12-11 2015-05-12 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US10751082B2 (en) 2009-12-11 2020-08-25 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US9913659B2 (en) 2009-12-11 2018-03-13 Covidien Lp Material removal device having improved material capture efficiency and methods of use
US9119662B2 (en) 2010-06-14 2015-09-01 Covidien Lp Material removal device and method of use
US9855072B2 (en) 2010-06-14 2018-01-02 Covidien Lp Material removal device and method of use
US9717520B2 (en) 2010-10-28 2017-08-01 Covidien Lp Material removal device and method of use
US8920450B2 (en) 2010-10-28 2014-12-30 Covidien Lp Material removal device and method of use
US10952762B2 (en) 2010-10-28 2021-03-23 Covidien Lp Material removal device and method of use
US8808186B2 (en) 2010-11-11 2014-08-19 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US9326789B2 (en) 2010-11-11 2016-05-03 Covidien Lp Flexible debulking catheters with imaging and methods of use and manufacture
US10335188B2 (en) 2011-09-01 2019-07-02 Covidien Lp Methods of manufacture of catheter with helical drive shaft
US9770259B2 (en) 2011-09-01 2017-09-26 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US8992717B2 (en) 2011-09-01 2015-03-31 Covidien Lp Catheter with helical drive shaft and methods of manufacture
US9532844B2 (en) 2012-09-13 2017-01-03 Covidien Lp Cleaning device for medical instrument and method of use
US9579157B2 (en) 2012-09-13 2017-02-28 Covidien Lp Cleaning device for medical instrument and method of use
US10434281B2 (en) 2012-09-13 2019-10-08 Covidien Lp Cleaning device for medical instrument and method of use
US10406316B2 (en) 2012-09-13 2019-09-10 Covidien Lp Cleaning device for medical instrument and method of use
US10159979B2 (en) 2013-11-11 2018-12-25 King Abdullah University Of Science And Technology Microfluidic device for high-volume production of monodisperse emulsions
WO2015068045A3 (en) * 2013-11-11 2015-11-12 King Abdullah University Of Science And Technology Microfluidic device for high-volume production and processing of monodisperse emulsions
CN106132544A (en) * 2013-11-11 2016-11-16 阿卜杜拉国王科技大学 High power capacity manufacture and the micro-fluidic device of process for monodispersed emulsion
US12048453B2 (en) 2014-06-27 2024-07-30 Covidien Lp Cleaning device for catheter and catheter including the same
US10213224B2 (en) 2014-06-27 2019-02-26 Covidien Lp Cleaning device for catheter and catheter including the same
EP3217119A4 (en) * 2014-11-06 2017-11-29 Sumitomo Precision Products Co., Ltd. Heat exchanger
US10314667B2 (en) 2015-03-25 2019-06-11 Covidien Lp Cleaning device for cleaning medical instrument
US10292721B2 (en) 2015-07-20 2019-05-21 Covidien Lp Tissue-removing catheter including movable distal tip
US10314664B2 (en) 2015-10-07 2019-06-11 Covidien Lp Tissue-removing catheter and tissue-removing element with depth stop
WO2019011476A1 (en) * 2017-07-10 2019-01-17 Linde Aktiengesellschaft Fluid-conducting device and method for mixing fluids
CN109731512A (en) * 2019-03-07 2019-05-10 湖南中天元环境工程有限公司 A kind of hydrocarbon oil hydrogenation device and technique
EP3804704A1 (en) 2019-10-10 2021-04-14 Bayer AG Method for producing nanoparticulate rivaroxaban
WO2021069344A1 (en) 2019-10-10 2021-04-15 Bayer Aktiengesellschaft Process for the preparation of a nanoparticulate active ingredient
WO2021069345A1 (en) 2019-10-10 2021-04-15 Bayer Aktiengesellschaft Process for producing nanoparticulate rivaroxaban
EP3804703A1 (en) 2019-10-10 2021-04-14 Bayer AG Method for producing a nanoparticulate active agent

Also Published As

Publication number Publication date
DE50002879D1 (en) 2003-08-14
DE19961257A1 (en) 2001-07-05
EP1242171B1 (en) 2003-07-09
EP1242171A1 (en) 2002-09-25
DE19961257C2 (en) 2002-12-19
ATE244596T1 (en) 2003-07-15
US20030039169A1 (en) 2003-02-27

Similar Documents

Publication Publication Date Title
EP1242171B1 (en) Micromixer
EP1390131B1 (en) Method and static micromixer for mixing at least two fluids
EP1311341B1 (en) Method and statistical micromixer for mixing at least two liquids
DE19536856C2 (en) Micromixer and mixing process
DE10123092B4 (en) Method and static mixer for mixing at least two fluids
DE4416343C2 (en) Static micro mixer
EP0857080B1 (en) Static micromixer
DE19927556C2 (en) Static micromixer and method for statically mixing two or more starting materials
EP1658129B1 (en) Static micromixer
EP1426099B1 (en) Static mixer and method
EP1866066B1 (en) Mixer system, reactor and reactor system
EP1674150B1 (en) Static micromixer
WO2004052518A2 (en) Static lamination micro mixer
EP1243314A2 (en) Method and apparatus for mixing minute amounts of liquid
EP1648581B1 (en) Extraction method using a static micromixer
DE19927554C2 (en) micromixer
EP2090353B1 (en) Reaction mixing system for mixing and chemical reaction of at least two fluids
DE3920123C1 (en)
DE20219871U1 (en) Static micro-mixer has housing around stack of diagonally slotted plates
DE20300556U1 (en) Static lamination micro-mixer, for mixing at least two liquids, has stack of plates or films forming pre-mixing chamber channels to mix liquids thoroughly through multi-lamination

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000990756

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10149994

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000990756

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000990756

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP