WO2001043715A1 - Verfahren zur kosmetischen behandlung der menschlichen haut - Google Patents

Verfahren zur kosmetischen behandlung der menschlichen haut Download PDF

Info

Publication number
WO2001043715A1
WO2001043715A1 PCT/EP2000/012369 EP0012369W WO0143715A1 WO 2001043715 A1 WO2001043715 A1 WO 2001043715A1 EP 0012369 W EP0012369 W EP 0012369W WO 0143715 A1 WO0143715 A1 WO 0143715A1
Authority
WO
WIPO (PCT)
Prior art keywords
alcohols
acid
esters
fatty
carbon atoms
Prior art date
Application number
PCT/EP2000/012369
Other languages
English (en)
French (fr)
Inventor
Guido BAUMÖLLER
Roland Spörer
Petra Biehl
Original Assignee
Cognis Deutschland Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh & Co. Kg filed Critical Cognis Deutschland Gmbh & Co. Kg
Priority to AU25098/01A priority Critical patent/AU2509801A/en
Publication of WO2001043715A1 publication Critical patent/WO2001043715A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0208Tissues; Wipes; Patches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/34Alcohols
    • A61K8/342Alcohols having more than seven atoms in an unbroken chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/14Preparations for removing make-up
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations

Definitions

  • the invention relates to a method for the cosmetic treatment of human skin, in which tissue papers and / or tissue are treated with cosmetic formulations, these are then heated and brought into contact with skin areas.
  • paper is understood to mean approximately 3000 different types and articles, some of which can differ considerably in their areas of application and their nature. A number of additives are required for their production, of which fillers (eg chalk or kaolin) and Binders (eg starch) are among the most important ones.
  • fillers eg chalk or kaolin
  • Binders eg starch
  • tissue and hygiene papers which are brought into closer contact with human skin, there is a particular need for a pleasant soft feel, which is usually achieved by carefully selecting the fibers and in particular, a high proportion of fresh wood pulp or celiosis is given. In the past, there has been no lack of attempts to treat tissue papers in such a way that a more pleasant softness results.
  • tissue papers containing finishing agents coated which one what contain a water-free emulsifier (for example petrolatum), a carrier (fatty alcohols, fatty acids or fatty alcohol ethoxylates each with 12 to 22 carbon atoms in the fat residue) and surfactants with an HLB value of 4 to 20.
  • a water-free emulsifier for example petrolatum
  • a carrier fatty alcohols, fatty acids or fatty alcohol ethoxylates each with 12 to 22 carbon atoms in the fat residue
  • surfactants with an HLB value of 4 to 20.
  • the international patent application WO 95/35412 discloses similar tissue papers, water-free mixtures of (a) mineral oils, (b) fatty alcohols or fatty acids and (c) fatty alcohol ethoxylates being used as softeners.
  • the international patent application WO 95/16824 relates to finishing agents for tissue papers, the mineral oil, fatty alcohol ethoxylates and nonionic surfactants (sorbitan esters, glucamides). Furthermore, in the international patent application WO 97/30216, softening agents for paper handkerchiefs are described which contain (a) long-chain fatty alcohols, (b) wax esters, (c) nonionic emulsifiers and (d) mineral oil, but there is still a need for the mode of action of tissue papers and thus the accessibility of cosmetic preparations to improve their application. From the point of view of application technology, the soft feel and the sensor technology of the tissue papers are still in need of improvement.
  • the object of the invention was to provide a method for the use of tissue papers by which the accessibility and thus the effectiveness of cosmetic preparations when used on human skin is significantly improved. This process is also intended to ensure a more homogeneous distribution of the preparations on the tissues and a more uniform application. In addition, the soft feel and the caring properties are to be improved in comparison to tissue papers from the prior art.
  • the subject of is a method for the cosmetic treatment of human skin, which is characterized in that
  • tissue papers and or tissues which have been treated with cosmetic preparations and have a temperature above 25 ° C. are particularly suitable for use on human skin.
  • the distribution of the cosmetic preparations on the tissue papers and thus their more uniform application is ensured.
  • the effectiveness of oil bodies at this temperature and the softness of the tissue papers are increased.
  • the accessibility of active ingredients, which may still be present in the preparations, is also accelerated, thus improving their effectiveness.
  • Another advantage is that the practically odorless preparations are ecotoxicologically safe and, in particular, are easily biodegradable.
  • the cosmetic preparations may contain oil bodies, such as Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms, esters of branched C6-Ci3-carboxylic acids with linear C6-C22 fatty alcohols, esters of linear C6-C 2 2 Fatty acids with branched alcohols, in particular 2-ethylhexanol, esters of hydroxycarboxylic acids with linear or branched C6-C22 fatty alcohols, in particular dioctyl malates, esters of linear and / or branched ten fatty acids with polyhydric alcohols (such as propylene glycol, dimer diol or trimer triol) and / or Guerbet alcohols, liquid mono- / di- / triglyceride mixtures based on C ⁇ -Ci ⁇ fatty acids, esters of C6-C22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids , in particular be
  • silicone compounds such as, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds which are both liquid and at room temperature can also be resinous.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976).
  • the cosmetic preparations can contain the oil particles - based on the non-aqueous portion - in amounts of 10 to 100, preferably 30 to 80 and in particular 40 to 50% by weight.
  • the cosmetic preparations can contain emulsifiers.
  • emulsifiers for example, nonionic surfactants from at least one of the following groups are suitable:
  • alkyl mono- and oligoglycosides with 8 to 22 carbon atoms in the alkyl radical and their ethoxylated analogs
  • polyglycerol esters such as, for example, polyglycerol polyricin oleate, polyglycerol poly-12-hydroxystearate or polyglycerol dimer isostearate. Mixtures of compounds from several of these classes of substances are also suitable; (6) partial esters based on linear, branched, unsaturated or saturated C6 / 22 fatty acids, ricinoleic acid and 12-hydroxystearic acid and glycerin, polyglycerin, sugar alcohols (e.g. sorbitol), alkyl glucosides (e.g. methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucoside (e.g. polyglucoside) );
  • sugar alcohols e.g. sorbitol
  • alkyl glucosides e.g. methyl glucoside, butyl glucoside, lauryl glucoside
  • polyglucoside e.g. polygluco
  • the adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols, glycerol mono- and diesters as well as sorbitan mono- and diesters with fatty acids or with castor oil are known, commercially available products. These are products Homolog mixtures whose average degree of alkoxylation corresponds to the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate with which the addition reaction is carried out.
  • C12 / 18 fatty acid monoesters and diesters of adducts of ethylene oxide with glycerol are known from DE 2024051 PS as refatting agents for cosmetic preparations.
  • C ⁇ / i ⁇ alkyl mono- and oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • the cosmetic preparations can also contain emulsifiers, such as zwitterionic surfactants.
  • Zwitterionic surfactants are surface-active compounds that carry at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example the cocoacylaminopropyldimethylammonium glycinate, and 2-alkyl-3-carboxylate -hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the cocoalkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for
  • fatty acid amide derivative known under the CTFA name Cocamidopropyl Betaine is particularly preferred.
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C ⁇ -alkyl or -acyl group, have at least one free amino group and at least one -COOH- or - Contain S ⁇ 3H group and are capable of forming inner salts.
  • ampholytic surfactants are N-alkylglycine, N-alkylpropionic acid, N-alkylaminobutyric acid, N-alkylimino dipropionic acid, N-hydroxyethyl-N-alkylamidopropylglycine, N-alkyltaurine, N-alkyl sarcosine, 2-alkylaminopropionic acid and alkylaminoacetic acid, each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocosacylaminoethylaminopropionate and Ci2 / i8-acylsarcosine.
  • cationic surfactants are also suitable as emulsifiers, those of the esterquat type, preferably methylquaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • the cosmetic preparations can contain the emulsifiers, based on the non-aqueous portion, in amounts of 0 to 90, preferably 30 to 80 and in particular 50 to 70% by weight.
  • tissue papers and / or tissue tissue can be constructed in one or more layers.
  • the papers have a weight per square meter of 10 to 65, preferably 15 to 30 g and a density of 0.6 g / cm 3 and less.
  • tissue papers to which the use according to the invention may extend include toilet paper, paper handkerchiefs, facial cleaning wipes, make-up wipes, refreshing wipes, household towels and the like.
  • the wipes can contain special active ingredients, for example moisturizers, insect repellents (after-sun wipes), dihydroxyacetone, deodorant active ingredients, surfactants, nourishing oils, anti-inflammatory active ingredients (baby wipes) and the like.
  • appropriate tissue fabrics made from fiber or fleece are also suitable.
  • the tissue papers can be treated with the cosmetic preparations in a manner known per se, the solution being applied to at least one side of the papers.
  • all relevant known methods are suitable for this, with the aid of which liquids or melts can be applied to more or less solid surfaces, such as spraying, printing (eg flexographic printing), coating (gravure coating), extrusion and combinations of these processes. It is also possible to soak the cloths with the preparations. After applying the preparations, a short drying step can follow.
  • Methods for treating tissue papers with cosmetic preparations are described in detail in the documents WO 95/35411 and WO 97/30216 already mentioned at the outset, to which reference is hereby expressly made.
  • Tissue papers can be heated by any type of heat source.
  • the heating is preferably carried out by means of microwaves, water vapor and / or hot air.
  • the tissue papers are heated to temperatures of 40 to 60, preferably 45 to 55 and in particular 50 ° C.
  • the heated tissue papers are then brought into contact with skin areas.
  • the cosmetic preparations contain - based on the non-aqueous portion -
  • the non-aqueous fraction of the cosmetic preparations can be between 5 and 100, preferably 10 to 80 and particularly preferably 15 to 60 and in particular 20 to 50% by weight.
  • this method can be used in many ways for the treatment of human skin. Possible areas of application of this method are face masks, make-up removers, cleaning agents, preferably in the baby area, anti-acne agents, anti-cellulite preparations, relaxation agents, for example in the sauna area or for foot care.
  • the cosmetic preparations can contain active substances, such as mild surfactants, superfatting agents, pearlescent agents, consistency agents, thickeners, polymers, silicone compounds, fats, waxes, stabilizers, biogenic active substances, deodorant substances, film formers, UV, as further auxiliaries and additives -Light protection factors, antioxidants, hydrotropes, preservatives, insect repellents, self-tanners, solubilizers, perfume oils, dyes, germ-inhibiting agents and the like contain.
  • active substances such as mild surfactants, superfatting agents, pearlescent agents, consistency agents, thickeners, polymers, silicone compounds, fats, waxes, stabilizers, biogenic active substances, deodorant substances, film formers, UV, as further auxiliaries and additives -Light protection factors, antioxidants, hydrotropes, preservatives, insect repellents, self-tanners, solubilizers, perfume oils, dyes, germ-inhibiting agents and the like contain.
  • Suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid taurides, fatty acid glutamates, ⁇ -olefin sulfonates, ether carboxylic acids, Alkyl oligoglucosides, fatty acid glucamides, alkyl amido betaines and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • Substances such as, for example, lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Pearlescent waxes are: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15 carbon atoms
  • Suitable consistency agents are primarily fatty alcohols or hydroxyfatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxyfatty acids. A combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, and also higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates , (eg Carbopole® and Pemulen types from Goodrich; Synthalene® from Sigma; Keltrol types from Kelco; Sepigel types from Seppic; Salcare types from Allied Colloids), polyacrylamides, polymers, polyvinyl alcohol and polyvinylpyrrolidone, surfactants such as, for example, ethoxylated fatty acid glycerides, esters of fatty acids with polyols such as, for example, pentaerythritol or trimethylolpropane, fatty alcohol ethoxylates with a narrow homolog distribution or alky
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as, for example, a quaternized hydroxyethyl cellulose, which is available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallylammonium salts and acrylamides, quaternized vinylpyrrolidone / vinylimidazole polymers, such as, for example, Luviquat® (BASF) Condensation products of polyglycols and amines, quaternized collagen polypeptides such as lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®L / Grünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, such as, for example, amodimethicones, copolymers of adipic acid and dimethylaaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers
  • Suitable anionic, zwitterionic, amphoteric and nonionic polymers are, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and esters thereof, uncrosslinked and polyol-crosslinked polyacrylic acids, acrylamidopropyl / Acrylate copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxyproyl methacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers, vinylpyrrolidone / dimethylaminoethyl methacrylate / vinylcaprolactam terpolymer and optionally der
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and / or alkyl-modified silicone compounds, which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976).
  • Typical examples of fats are glycerides, ie solid or liquid vegetable or animal products, which essentially consist of mixed glycerol esters of higher fatty acids
  • waxes include natural waxes, such as candelilla wax, camauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice - Germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walrus, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin waxes, micro waxes; chemically modified waxes (hard waxes), such as montan ester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as polyalkylene waxes and polyethylene glycol waxes.
  • natural waxes such as candelilla wax, camauba wax, Japanese wax, espart
  • lecithins In addition to fats, fat-like substances such as lecithins and phospholipids can also be used as additives.
  • lecithins is understood by the person skilled in the art to mean those glycerophospholipids which are composed of fatty acids, glycerol, Form phosphoric acid and choline by esterification. Lecithins are therefore often referred to in the art as phosphatidylcholines (PC) and follow the general formula
  • R typically represents linear aliphatic hydrocarbon radicals with 15 to 17 carbon atoms and up to 4 cis double bonds.
  • lecithins are the cephalins, which are also referred to as phosphatidic acids and are derivatives of 1,2-diacyl-sn-glycerol-3-phosphoric acids.
  • phospholipids are usually understood to be mono- and preferably diesters of phosphoric acid with glycerol (glycerol phosphates), which are generally classed as fats.
  • sphingosines or sphingolipids are also suitable.
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate are used.
  • Biogenic active substances are, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, essential oils, plant extracts and vitamin complexes.
  • Cosmetic deodorants counteract, mask or eliminate body odors.
  • Body odors arise from the action of skin bacteria on apocrine sweat, whereby unpleasant smelling breakdown products are formed. Accordingly, deodorants contain active ingredients which act as germ-inhibiting agents, enzyme inhibitors, odor absorbers or odor maskers.
  • germ-inhibiting agents such as.
  • Esterase inhibitors are suitable as enzyme inhibitors. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Cognis GmbH, Düsseldorf / FRG). The substances inhibit enzyme activity and thereby reduce odor.
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesteric, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, glutaric acid monoethyl ester, glutaric acid diethyl ester, adipic acid, Monoethyl adipate, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as citric acid, malic acid, tartaric acid or tartaric acid diethyl ester and zinc glycinate.
  • sterol sulfates or phosphates such as, for example, lanosterol, cholesterol, campesteric, stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters such as, for example, glutaric acid,
  • Suitable odor absorbers are substances that absorb odor-forming compounds and can retain them to a large extent. They lower the partial pressure of the individual components and thus also reduce their speed of propagation. It is important that perfumes must remain unaffected. Odor absorbers are not effective against bacteria. They contain, for example, a complex zinc salt of ricinoleic acid or special, largely odorless fragrances, which are known to the person skilled in the art as "fixators", such as, for example, the main component. B. extracts of Labdanum or Styrax or certain abietic acid derivatives. Fragrance agents or perfume oils act as odor maskers, which, in addition to their function as odor maskers, give the deodorants their respective fragrance.
  • Perfume oils are, for example, mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers, stems and leaves, fruits, fruit peels, roots, woods, herbs and grasses, needles and branches as well as resins and balms. Animal raw materials, such as civet and castoreum, are also suitable. Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type.
  • Fragrance compounds of the ester type are, for example, benzyl acetate, p-tert-butylcyclohexyl acetate, linalyl acetate, phenylethyl acetate, linalyl benzoate, benzyl formate, allyl cyclohexyl propionate, styrallyl propionate and benzyl salicylate.
  • the ethers include, for example, benzyl ethyl ether
  • the aldehydes include, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal
  • the ketones include, for example, the jonones and methylcedryl ketone
  • the alcohols are anethole, citronellellone Eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol
  • the hydrocarbons mainly include the terpenes and balsams.
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labdanum oil and lavandin oil.
  • Antiperspirants reduce sweat formation by influencing the activity of the eccrine sweat glands and thus counteract armpit wetness and body odor.
  • Aqueous or anhydrous formulations of antiperspirants typically contain the following ingredients:
  • non-aqueous solvents such as As ethanol, propylene glycol and / or glycerin.
  • Salts of aluminum, zirconium or zinc are particularly suitable as astringent antiperspirant active ingredients.
  • suitable antiperspirant active ingredients are e.g. Aluminum chloride, aluminum chlorohydrate, aluminum dichlorohydrate, aluminum sesquichlorohydrate and their complex compounds e.g. B. with propylene glycol-1, 2nd Aluminum hydroxyallantoinate, aluminum chloride tartrate, aluminum zirconium trichlorohydrate, aluminum zirconium tetrachlorohydrate, aluminum zirconium pentachlorohydrate and their complex compounds, for. B. with amino acids such as glycine.
  • customary oil-soluble and water-soluble auxiliaries can be present in smaller amounts in antiperspirants.
  • Such oil soluble aids can e.g. his:
  • water-soluble additives are e.g. Preservatives, water-soluble fragrances, pH adjusters, e.g. Buffer mixtures, water soluble thickeners, e.g. water-soluble natural or synthetic polymers such as e.g. Xanthan gum, hydroxyethyl cellulose, polyvinyl pyrrolidone or high molecular weight polyethylene oxides.
  • Common film formers are, for example, chitosan, microcrystalline chitosan, quaternized chitosan, polyvinylpyrrolidone, vinylpyrrolidone-vinyl acetate copolymers, polymers of acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds.
  • Montmorillonites, clay minerals, pemules and alkyl-modified carbopol types can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and absorb the energy absorbed in the form of longer-wave radiation, e.g. To give off heat again.
  • UVB filters can be oil-soluble or water-soluble. As oil-soluble substances e.g. to call:
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • Esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate;
  • Triazine derivatives e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-1 '-hexyloxy) -1, 3,5-triazine and octyl triazone as described in EP 0818450 A1 or dioctyl butamido triazone (Uvasorb ® HEB);
  • UV-A filters -4'-methoxydibenzoyl-methane (Parsol 1789), 1-P enyl-3- (4'-isopropylphenyl) propane-1, 3-dione and enamine compounds as described in DE 19712033 A1 (BASF).
  • the UV-A and UV-B filters can of course also be used in mixtures.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts, are also suitable for this purpose.
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or a shape which differs from the spherical shape in some other way.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized.
  • Typical examples are coated titanium dioxides such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW Journal 122, 543 (1996) and Perfumery and Cosmetics 3 (1999), page 11ff.
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-carnosine, D-carnosine, L-camosine and their derivatives (e.g. anserine) , Carotenoids, carotenes (e.g.
  • ⁇ -carotene, ⁇ -carotene, lycopene and their derivatives, chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g. dihydroliponic acid), aurothioglucose, propylthiouracil and other thiols (e.g.
  • thioredoxin glutathione, cysteine, Cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl, amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts , Dilauryl thiodipropionate, distearyl thiodipropionate, thiodipropionic acid and its derivatives (esters, ethers, peptides, lipids, nucleotides, nucleosides and salts) as well as sulfoximine compounds (eg buthioninsulfoximines, homocysteine sulfoximine, butioninsulfones, penta-, hexa-, heptathioninsulfoxinsulfoxinsulfoxinsulfoxinsulfoxins) n compatible dosages (eg pmol to
  • ⁇ -linolenic acid linoleic acid, oleic acid
  • folic acid and its derivatives ubiquinone and ubiquinol and their derivatives
  • vitamin C and derivatives e.g. ascorbyl palmitate, Mg ascorbyl phosphate, ascorbyl acetate
  • tocopherols and derivatives e.g.
  • vitamin E acetate
  • Vitamin A and derivatives vitamin A palmitate
  • Hydrotropes such as ethanol, isopropyl alcohol, or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Sugar alcohols with 5 to 12 carbon atoms such as sorbitol or mannitol,
  • Aminosugars such as glucamine; Dialcohol amines, such as diethanolamine or 2-amino-1,3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • N, N-diethyl-m-toluamide, 1, 2-pentanediol or ethyl butylacetylaminopropionate are suitable as insect repellents, and dihydroxyacetone is suitable as a self-tanning agent.
  • tyrosine inhibitors that prevent the formation of melanin and use in depigment Finding agents for example arbutin, kojic acid, coumaric acid and ascorbic acid (vitamin C) come into question.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are e.g.
  • the ethers include, for example, benzyl ethyl ether, the aldehydes e.g.
  • the linear alkanals with 8 to 18 carbon atoms citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, to the ketones e.g. the Jonone, ⁇ -isomethyl ionone and methyl cedryl ketone, the alcohols anethole, citronellol, eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams. However, preference is given to using mixtures of different fragrances which together produce an appealing fragrance.
  • Essential oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, e.g. Sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • perfume oils e.g. Sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil, juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil.
  • bergamot oil dihydromyrcenol, lilial, lyral, citronellol, phenylethyl alcohol, ⁇ -hexylcinnamaldehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, Boisambrene Forte, Ambroxan, indole, hedione, Sandelice, lemon oil, mandarin oil, orange oil, allyl amyl glycolate, Cyclovertal, lavandin oil, muscatel Sage oil, ß-damascone, geranium oil bourbon,
  • Cyclohexyl salicylate, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, phenylacetic acid, geranyl acetate, benzyl acetate, rose oxide, romilllate, irotyl and floramate are used alone or in mixtures.
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • the total proportion of auxiliaries and additives can be 1 to 50, preferably 5 to 40,% by weight, based on the composition.
  • the agents can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cosmetics (AREA)

Abstract

Vorgeschlagen wird ein Verfahren zur kosmetischen Behandlung der menschlichen Haut, welches sich dadurch auszeichnet, daß man (a) Tissuepapiere und/oder -gewebe mit kosmetischen Formulierungen behandelt, (b) diese anschließend auf eine Temperatur oberhalb von 25 °C erwärmt und (c) danach mit Hautflächen in Kontakt bringt.

Description

Verfahren zur kosmetischen Behandlung der menschlichen Haut
Gebiet der Erfindung
Die Erfindung befindet ein Verfahren zur kosmetischen Behandlung der menschlichen Haut, bei dem man Tissuepapiere und/oder -gewebe mit kosmetischen Formulierungen behandelt, diese anschließend erwärmt und mit Hautflächen in Kontakt bringt.
Stand der Technik
Unter dem Oberbegriff „Papier" werden ca. 3000 verschiedene Sorten und Artikel verstanden, die sich in ihren Anwendungsgebieten und ihrer Beschaffenheit zum Teil erheblich unterscheiden können. Zu ihrer Herstellung werden eine Reihe von Zusatzstoffen benötigt, von denen Füllstoffe (z.B. Kreide oder Kaolin) und Bindemittel (z.B. Stärke) zu den wichtigsten zählen. Für den Bereich der Tissue- und Hygienepapiere, die in engeren Kontakt mit der menschlichen Haut gebracht werden, besteht ein besonderes Bedürfnis nach einem angenehmen Weichgriff, der dem Papier üblicherweise durch eine sorgfältige Auswahl der Faserstoffe und insbesondere einen hohen Anteil an frischem Holzschliff oder Celiulo- se verliehen wird. In der Vergangenheit hat es daher nicht an Versuchen gemangelt, Tissuepapiere so zu behandeln, daß ein angenehmerer Weichgriff resultiert. Gegenstand der internationalen Patentanmeldung WO 95/35411 sind Tissuepapiere, die mit Avivagemitteln beschichtet werden, welche einen wasserfreien Emulgator (beispielweise Petrolatum), einen Trägers (Fettalkohole, Fettsäuren oder Fet- talkoholeth-oxylate mit jeweils 12 bis 22 Kohlenstoffatomen im Fettrest) sowie Tenside mit einem HLB- Wert von 4 bis 20 enthalten. Die internationale Patentanmeldung WO 95/35412 offenbart ähnliche Tissuepapiere, wobei als Softener wasserfreie Mischungen von (a) Mineralölen, (b) Fettalkoholen oder Fettsäuren und (c) Fettalkoholethoxylaten zum Einsatz kommen. Gegenstand der intenationalen Patentanmeldung WO 95/16824 sind Avivagemittel für Tissuepapiere, die Mineralöl, Fettalkoholethoxylate und nichtionische Tenside (Sorbitanester, Glucamide). Des weiteren werden in der internationalen Patentanmeldung WO 97/30216 Avivagemittel für Papiertaschentücher beschrieben, die (a) langkettige Fettalkohole, (b) Wachsester, (c) nichtionische Emulgatoren und (d) Mineralöl enthalten, es besteht jedoch weiterhin das Bedürfnis die Wirkungsweise von Tissuepapieren und damit die Zugänglichkeit von kosmetischen Zubereitungen bei ihrer Anwendung zu verbessern. Vom anwendungstechnischen Standpunkt sind weiterhin der Weichgriff und die Sensorik der Tissuepapiere verbesserungswürdig.
Die Aufgabe der Erfindung hat darin bestanden, ein Verfahren zur Anwendung von Tissuepapieren zur Verfügung zu stellen, durch das die Zugänglichkeit und damit die Wirksamkeit von kosmetischen Zubereitungen bei der Anwendung an menschlicher Haut deutlich verbessert wird. Weiterhin soll durch dieses Verfahren eine homogenere Verteilung der Zubereitungen auf den Tissues und eine gleichmäßigere Anwendung gewährleistet sein. Darüber hinaus soll der Weichgriff und die pflegenden Eigenschaften im Vergleich zu Tissuepapieren aus dem Stand der Technik verbessert werden.
Beschreibung der Erfindung
Gegenstand der ist ein Verfahren zur kosmetischen Behandlung der menschlichen Haut, welches sich dadurch auszeichnet, daß man
(a) Tissuepapiere und/oder -gewebe mit kosmetischen Formulierungen behandelt,
(b) diese anschließend auf eine Temperatur oberhalb von 25 °C erwärmt und
(c) danach mit Hautflächen in Kontakt bringt.
Überraschenderweise wurde gefunden, daß sich Tissuepapiere und oder -gewebe, welche mit kosmetischen Zubereitungen behandelt wurden und eine Temperatur oberhalb von 25 °C aufweisen, besonders für die Anwendung an menschlicher Haut eignen. Infolge der erhöhten Temperatur ist die Verteilung der kosmetischen Zubereitungen auf den Tissuepapieren und damit deren gleichmäßigere Anwendung gewährleistet. Weiterhin ist die Wirksamkeit von Ölkörpern bei dieser Temperatur und der Weichgriff der Tissuepapiere erhöht. Ebenfalls wird die Zugänglichkeit von Wirkstoffen, welche weiterhin in den Zubereitungen enthalten sein können, beschleunigt und damit deren Wirkung verbessert. Ein weiterer Vorteil besteht ferner darin, daß die praktisch geruchsfreien Zubereitungen ökotoxikologisch unbedenklich sind und insbesondere leicht biologisch abgebaut werden können.
Ölkörper
Die kosmetischen Zubereitungen können Ölkörper enthalten, wie beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweig- ten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Cδ-Ciδ-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbo- nate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen in Betracht.
Als Ölkomponenten eignen sich weiterhin Siliconverbindungen, wie beispielsweise Dimethylpolysiloxa- ne, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan- Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976).
Die kosmetischen Zubereitungen können die Ölkörper - bezogen auf den nicht-wäßrigen Anteil - in Mengen von 10 bis 100, vorzugsweise 30 bis 80 und insbesondere 40 bis 50 Gew.-% enthalten.
Emulgatoren
Die kosmetischen Zubereitungen können Emulgatoren enthalten. Es kommen beispielsweise nichtiono- gene Tenside aus mindestens einer der folgenden Gruppen in Frage:
(1) Anlagerungsprodukte von 2 bis 100 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphe- nole mit 8 bis 15 C-Atomen in der Alkylgruppe;
(2) Ci2/i8-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
(3) Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
(4) Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxy- lierte Analoga;
(5) Polyglycerinester, wie z.B. Polyglycerinpolyricinoleat, Polyglycerinpoly-12-hydroxystearat oder Polyglycerindimeratisostearat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen; (6) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Zuckeralkohole (z.B. Sorbit), Alkylglucoside (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucoside (z.B. Cellulose);
(7) Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salze;
(8) Wollwachsalkohole;
(9) Polyalkylenglycole sowie
(10) Glycerincarbonat.
Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Al- kylphenole, Glycerinmono- und -diester sowie Sorbitanmono- und -diester von Fettsäuren oder an Rici- nusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht. C12/18- Fettsäuremono- und -diester von Anlagerungsprodukten von Ethylenoxid an Glycerin sind aus DE 2024051 PS als Rückfettungsmittel für kosmetische Zubereitungen bekannt.
Cβ/iβ-Alkylmono- und -oligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosac- chariden mit primären Alkoholen mit 8 bis 18 C-Atomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Weiterhin können die kosmetischen Zubereitungen Emulgatoren, wie zwitterionische Tenside enthalten. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfo- natgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammoniumglycinat, N- Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethyl- arnmoniumglycinat, und 2-Alkyl-3-carboxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäu- reamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cβ -Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder - Sθ3H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete am- pholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyl- iminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N-Alkylsarcosine, 2- Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Ko- kosacylaminoethylaminopropionat und das Ci2/i8-Acylsarcosin. Neben den ampholytischen kommen auch Kationtenside als Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretriethanolaminester-Salze, besonders bevorzugt sind. Die kosmetischen Zubereitungen können die Emulgatoren - bezogen auf den nicht-wäßrigen Anteil- in Mengen von 0 bis 90, vorzugsweise 30 bis 80 und insbesondere 50 bis 70 Gew.-% enthalten.
Tissuepapiere und/oder Tissueqewebe
Tissupapiere und/oder Tissuegewebe (im weiteren mit Tissuepapieren bezeichnet), auf die sich die vorliegende Erfindung bezieht, können ein- oder mehrlagig aufgebaut sein. In der Regel weisen die Papiere ein Quadratmetergewicht von 10 bis 65, vorzugsweise 15 bis 30 g und eine Dichte von 0,6 g/cm3 und weniger auf. Beispiele für Tissuepapiere, auf sich die erfindungsgemäße Verwendung erstrecken kann, sind Toilettenpapiere, Papiertaschentücher, Gesichtsreinigungstücher, Abschminktücher, Erfrischungstücher, Haushaltstücher und dergleichen. Je nach Anwendung können die Tücher besondere Wirkstoffe enthalten, beispielsweise Feuchtigkeitsspender, Insektenrepellents (After-Sun- Tücher), Dihydroxyaceton, Deowirkstoffe, Tenside, pflegende Öle, antiinflammatorische Wirkstoffe (Babytücher) und dergleichen. Neben den papierbasierten Tissues kommen auch entsprechende Tissuegewebe in Frage, die aus Faser- oder Fleecestoff hergestellt werden.
Behandlung der Tissuepapiere mit den kosmetischen Zubereitungen
Die Behandlung der Tissuepapiere mit den kosmetischen Zubereitungen kann in an sich bekannter Weise erfolgen, wobei die Lösung mindestens auf eine Seite der Papiere aufgetragen wird. Hierzu eignen sich grundsätzlich alle einschlägig bekannten Methoden, mit deren Hilfe man Flüssigkeiten oder Schmelzen auf mehr oder weniger feste Oberflächen auftragen kann, wie z.B. Versprühen, Drucken (z.B. Flexodruck), Beschichten (Gravurbeschichtung), Extrusion sowie Kombinationen dieser Verfahren. Es ist ebenso möglich, die Tücher mit den Zubereitungen zu tränken. Nach dem Auftragen der Zubereitungen kann sich ein kurzer Trockenschritt anschließen. Ausführlich werden Verfahren zum Behandeln von Tissuepapieren mit kosmetischen Zubereitungen in der schon eingangs genannten Schriften WO 95/35411 und WO 97/30216 beschrieben, auf die hiermit ausdrücklich Bezug genommen wird. Die Erwärmung der Tissuepapiere kann durch jegliche Art von Wärmequellen erfolgen. Vorzugsweise erfolgt die Erwärmung durch Mikrowellen, Wasserdampf und/oder Heißluft. In einer besonderen Ausführungsform der Erfindung werden die Tissuepapiere auf Temperaturen von 40 bis 60, vorzugsweise 45 bis 55 und insbesondere 50 °C erwärmt. Im Anschluß werden die erwärmten Tissuepapiere mit Hautflächen in Kontakt gebracht.
Gewerbliche Anwendbarbeit
In einer bevorzugten Ausführungsform der Erfindung enthalten die kosmetischen Zubereitungen - bezogen auf den nicht-wäßrigen Anteil -
(a) 10 bis 100, vorzugsweise 30 bis 80 und insbesondere 40 bis 50 Gew.-% Ölkörper und
(b) 0 bis 90, vorzugsweise 30 bis 80 und insbesondere 50 bis 70 Gew.-% Emulgatoren
behandelt, mit der Maßgabe, daß sich die Mengenangaben gegebenenfalls mit weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% ergänzen. Der nicht-wäßrige Anteil der kosmetischen Zubereitungen kann je nach Anwendungszweck zwischen 5 und 100, vorzugsweise 10 bis 80 und besonders bevorzugt 15 bis 60 und insbesondere 20 bis 50 Gew.-% liegen.
Aufgrund der besseren Zugänglichkeit und homogeneren Verteilung der kosmetischen Zubereitungen in der Wärme kann dieses Verfahren zur Behandlung der menschlichen Haut vielfach angewendet werden. Mögliche Anwendungsgebiete dieses Verfahrens sind Gesichtsmasken, Make-Up-Remover, Reinigungsmittel, vorzugsweise im Babybereich, Anti-Aknemittel, Anti-Cellulite-Zubereitungen, Entspannungsmittel, beispielsweise im Saunabereich oder zur Fußpflege.
Wirkstoffe
In einer besonderen Ausführungsform der Erfindung können die kosmetischen Zubereitungen als weitere Hilfs- und Zusatzstoffe Wirkstoffe enthalten, wie beispielsweise milde Tenside, Überfettungsmittel, Perlglanzmittel, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Deowirkstoffe, Filmbildner, UV-Lichtschutzfaktoren, Antioxidantien, Hydrotrope, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöle, Farbstoffe, keimhemmende Mittel und dergleichen enthalten.
Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpoly- glycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxy- lierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäureal- kanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldi- stearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stea- rinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensaure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalkohole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfett- säuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N-methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydroxystearaten.
Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysac- charide, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginate und Tylosen, Carboxymethyl- cellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® und Pemulen-Typen von Goodrich; Synthalene® von Sig- ma; Keltrol-Typen von Kelco; Sepigel-Typen von Seppic; Salcare-Typen von Allied Colloids), Polyacry- lamide, Polymere, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglyceride, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethy- lolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/ Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Poly- glycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium Hydroxy- propyl Hydrolyzed Collagen (Lamequat®L/Grünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethyla- minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl- diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1 ,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, un- vernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacrylat/tert.Butylaminoethylmethacrylat/2-Hydroxyproyl- methacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage. Weitere geeignete Polymere und Verdickungsmittel sind in Cos- metics & Toiletries Vol. 108, Mai 1993, Seite 95ff aufgeführt.
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder al- kylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethico- nen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91, 27 (1976).
Typische Beispiele für Fette sind Glyceride, d.h. feste oder flüssige pflanzliche oder tierische Produkte, die im wesentlichen aus gemischten Glycerinestern höherer Fettsäuren bestehen, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Camaubawachs, Japanwachs, Espartogras- wachs, Korkwachs, Guarumawachs, Reis-keimölwachs, Zuckerrohrwachs, Ouricurywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage. Neben den Fetten kommen als Zusatzstoffe auch fettähnliche Substanzen, wie Lecithine und Phospholipide in Frage. Unter der Bezeichnung Lecithine versteht der Fachmann diejenigen Glycero-Phospholipide, die sich aus Fettsäuren, Glycerin, Phosphorsäure und Cholin durch Veresterung bilden. Lecithine werden in der Fachwelt daher auch häufig als Phosphatidylcholine (PC) bezeichnet und folgen der allgemeinen Formel
Figure imgf000010_0001
wobei R typischerweise für lineare aliphatische Kohlenwasserstoffreste mit 15 bis 17 Kohlenstoffatomen und bis zu 4 cis-Doppelbindungen steht. Als Beispiele für natürliche Lecithine seien die Kephaline genannt, die auch als Phosphatidsäuren bezeichnet werden und Derivate der 1 ,2-Diacyl-sn-glycerin-3- phosphorsäuren darstellen. Dem gegenüber versteht man unter Phospholipiden gewöhnlich Mono- und vorzugsweise Diester der Phosphorsäure mit Glycerin (Glycerinphosphate), die allgemein zu den Fetten gerechnet werden. Daneben kommen auch Sphingosine bzw. Sphingolipide in Frage.
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säu- ren, Aminosäuren, Ceramide, Pseudoceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Kosmetische Deodorantien (Desodorantien) wirken Körpergerüchen entgegen, überdecken oder beseitigen sie. Körpergerüche entstehen durch die Einwirkung von Hautbakterien auf apokrinen Schweiß, wobei unangenehm riechende Abbauprodukte gebildet werden. Dementsprechend enthalten Deodorantien Wirkstoffe, die als keimhemmende Mittel, Enzyminhibitoren, Geruchsabsorber oder Ge- ruchsüberdecker fungieren.
Als keimhemmende Mittel sind grundsätzlich alle gegen grampositive Bakterien wirksamen Stoffe geeignet, wie z. B. 4-Hydroxybenzoesäure und ihre Salze und Ester, N-(4-Chlorphenyl)-N'-(3,4 dichlor- phenyl)harnstoff, 2,4,4'-Trichlor-2'-hydroxydiphenylether (Triclosan), 4-Chlor-3,5-dimethylphenol, 2,2'- Methylen-bis(6-brom-4-chlorphenol), 3-Methyl-4-(1-methylethyl)phenol, 2-Benzyl-4-chlorphenol, 3-(4- Chlorphenoxy)-1 ,2-propandiol, 3-lod-2-propinylbutylcarbamat, Chlorhexidin, 3,4,4'-Trichlorcarbanilid (TTC), antibakterielle Riechstoffe, Thymol, Thymianöl, Eugenol, Nelkenöl, Menthol, Minzöl, Famesol, Phenoxyethanol, Glycerinmonolaurat (GML), Diglycerinmonocaprinat (DMC), Salicylsäure-N-alkylamide wie z. B. Salicylsäure-n-octylamid oder Salicylsäure-n-decylamid. Als Enzyminhibitoren sind beispielsweise Esteraseinhibitoren geeignet. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Cognis GmbH, Düsseldorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterinsulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glutarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adipin- säuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäurediethylester, Hydroxycarb- nonsäuren und deren Ester wie beispielsweise Citronensäure, Äpfelsäure, Weinsäure oder Weinsäure- diethylester, sowie Zinkglycinat.
Als Geruchsabsorber eignen sich Stoffe, die geruchsbildende Verbindungen aufnehmen und weitgehend festhalten können. Sie senken den Partialdruck der einzelnen Komponenten und verringern so auch ihre Ausbreitungsgeschwindigkeit. Wichtig ist, daß dabei Parfüms unbeeinträchtigt bleiben müssen. Geruchsabsorber haben keine Wirksamkeit gegen Bakterien. Sie enthalten beispielsweise als Hauptbestandteil ein komplexes Zinksalz der Ricinolsäure oder spezielle, weitgehend geruchsneutrale Duftstoffe, die dem Fachmann als "Fixateure" bekannt sind, wie z. B. Extrakte von Labdanum bzw. Styrax oder bestimmte Abietinsäurederivate. Als Geruchsüberdecker fungieren Riechstoffe oder Parfümöle, die zusätzlich zu ihrer Funktion als Geruchsüberdecker den Deodorantien ihre jeweilige Duftnote verleihen. Als Parfümöle seien beispielsweise genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten, Stengeln und Blättern, Früchten, Fruchtschalen, Wurzeln, Hölzern, Kräutern und Gräsern, Nadeln und Zweigen sowie Harzen und Balsamen. Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Keto- ne, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Ben- zylacetat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labdanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzyl- aceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citro- nenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-
Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP,
Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Antitranspirantien (Antiperspirantien) reduzieren durch Beeinflussung der Aktivität der ekkrinen Schweißdrüsen die Schweißbildung, und wirken somit Achselnässe und Körpergeruch entgegen. Wässrige oder wasserfreie Formulierungen von Antitranspirantien enthalten typischerweise folgende Inhaltsstoffe:
> adstringierende Wirkstoffe,
> Ölkomponenten,
> nichtionische Emulgatoren,
> Coemulgatoren,
> Konsistenzgeber,
> Hilfsstoffe wie z. B. Verdicker oder Komplexierungsmittel und/oder
> nichtwässrige Lösungsmittel wie z. B. Ethanol, Propylenglykol und/oder Glycerin.
Als adstringierende Antitranspirant-Wirkstoffe eignen sich vor allem Salze des Aluminiums, Zirkoniums oder des Zinks. Solche geeigneten antihydrotisch wirksamen Wirkstoffe sind z.B. Aluminiumchlorid, Aluminiumchlorhydrat, Aluminiumdichlorhydrat, Aluminiumsesquichlorhydrat und deren Komplexverbindungen z. B. mit Propylenglycol-1 ,2. Aluminiumhydroxyallantoinat, Aluminiumchloridtartrat, Aluminium- Zirkonium-Trichlorohydrat, Aluminium-Zirkonium-tetrachlorohydrat, Aluminium-Zirkonium-pentachlo- rohydrat und deren Komplexverbindungen z. B. mit Aminosäuren wie Glycin. Daneben können in Antitranspirantien übliche öllösliche und wasserlösliche Hilfsmittel in geringeren Mengen enthalten sein. Solche öllöslichen Hilfsmittel können z.B. sein:
> entzündungshemmende, hautschützende oder wohlriechende ätherische Öle,
> synthetische hautschützende Wirkstoffe und/oder
> öllösliche Parfümöle.
Übliche wasserlösliche Zusätze sind z.B. Konservierungsmittel, wasserlösliche Duftstoffe, pH-Wert- Stellmittel, z.B. Puffergemische, wasserlösliche Verdickungsmittel, z.B. wasserlösliche natürliche oder synthetische Polymere wie z.B. Xanthan-Gum, Hydroxyethylcellulose, Polyvinylpyrrolidon oder hochmolekulare Polyethylenoxide.
Gebräuchliche Filmbildner sind beispielsweise Chitosan, mikrokristallines Chitosan, quaterniertes Chitosan, Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäure- reihe, quatemäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen.
Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkyl- modifizierte Carbopoltypen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden.
Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
> 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzy- liden)campher wie in der EP 0693471 B1 beschrieben;
> 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure-2-ethylhexylester, 4- (Dimethylamino)benzoesäure-2-octylester und 4-(Dimethylamino)benzoesäureamylester;
> Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4-Methoxyzimtsäurepro- pylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3-phenylzimtsäure-2-ethylhexylester (Octo- crylene);
> Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylben- zylester, Salicylsäurehomomenthylester;
> Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon, 2-Hydroxy-4-me- thoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon; Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2-ethylhexylester;
> Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1 '-hexyloxy)-1 ,3,5-triazin und Octyl Tria- zon, wie in der EP 0818450 A1 beschrieben oder Dioctyl Butamido Triazone (Uvasorb® HEB);
> Propan-1 ,3-dione, wie z.B. 1 -{4-tert.Butyiphenyl)-3-(4'methoxyphenyl)propan-1 ,3-dion; Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
> 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium-, Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
> Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4-methoxybenzophenon-5- sulfonsäure und ihre Salze;
> Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3-bomylidenmethyl)benzol- sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze. Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3-dion, 4-tert.-Butyl-4'-methoxydibenzoyl- methan (Parsol 1789), 1 -P enyl-3-(4'-isopropylphenyl)-propan-1 ,3-dion sowie Enaminverbindungen, wie beschrieben in der DE 19712033 A1 (BASF). Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trial- koxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mi- kro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) sowie Parfümerie und Kosmetik 3 (1999), Seite 11ff zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Carnosin, D-Carnosin, L-Camosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Auro- thioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl-, Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ- Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodipro- pionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butionin- sulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lac- toferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Äpfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und de- ren Derivate (z.B. γ-Linolensäure, Linolsäure, Ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A- palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α-Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajak- harzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Man- nose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnS0 ) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stil- benoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nu- kleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopro- pylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktionelle Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
> Glycerin;
> Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton;
> technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Digiyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
> Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
> Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
> Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
> Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
> Aminozucker, wie beispielsweise Glucamin; Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formaldehydlösung, Para- bene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1 ,2- Pentandiol oder Ethyl Butylacetylaminopropionate in Frage, als Selbstbräuner eignet sich Dihydroxy- aceton. Als Tyrosinhinbitoren, die die Bildung von Melanin verhindern und Anwendung in Depigmen- tierungsmitteln finden, kommen beispielsweise Arbutin, Kojisäure, Cumarinsäure und Ascorbinsäure (Vitamin C) in Frage.
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Bu- tylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsa- licylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-lsomethylionon und Me- thylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanu- möl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon,
Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt. Der Gesamtanteil der Hilfs- und Zusatzstoffe kann 1 bis 50, vorzugsweise 5 bis 40 Gew.-% - bezogen auf die Mittel - betragen. Die Herstellung der Mittel kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur-Methode.
Beispiele
Zur Prüfung der anwendungstechnischen Eigenschaften wurden handelsübliche dreilagige Tissuepapiere mit einem Gewicht von 18 g/m2 mit den erfindungsgemäßen Zubereitungen 1 bis 5 sowie den beiden Vergleichszubereitungen V1 und V2 in Mengen von jeweils 2,5 g/m2 behandelt. Die erfindungsgemäßen Papiere 1 bis 5 wurden anschließend in der Mikrowelle (Beispiele 1 bis 3) oder im Backofen (Beispiele 4 und 5) auf 50 °C erwärmt und anschließend der Weichgriff bei der Anwendung im Gesicht von einem Panel bestehend aus 6 erfahrenen Testern auf einer Skala von (+) sehr weich bis (+++) hart beurteilt, die kalten Vergleichspapiere V1 und V2 wurden ebenfalls beurteilt. Des weiteren wurde das sensorische Gefühl bei der Anwendung auf der Haut beurteilt. Die Ergebnisse, die Mittelwerte von drei Versuchsreihen darstellen, sind in Tabelle 1 wiedergegeben.
Tabelle 1
Weichgriff von Tissuepapieren mit kosmetischen Zubereitungen in der Wärme
Figure imgf000018_0001

Claims

Patentansprüche
1. Verfahren zur kosmetischen Behandlung von menschlicher Haut, dadurch gekennzeichnet, daß man
(a) Tissuepapiere und/oder -gewebe mit kosmetischen Formulierungen behandelt,
(b) diese anschließend auf eine Temperatur oberhalb von 25 °C erwärmt und
(c) danach mit Hautflächen in Kontakt bringt.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man die Tissuepapiere und/oder -gewebe mit kosmetischen Zubereitungen aus Ölkörpern und gegebenenfalls Emulgatoren behandelt.
3. Verfahren nach den Ansprüchen 1 und/oder 2, dadurch gekennzeichnet, daß die kosmetischen Zubereitungen Ölkörper enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Guerbetalkoholen auf Basis von Fettalkoholen mit 6 bis 18 Kohlenstoffatomen, Estern von verzweigten C6-Cι3-Carbonsäuren mit linearen C6-C22-Fettalkoholen, Estern von linearen Ce-C22-Fett- säuren mit verzweigten Alkoholen, Estern von Hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, Estern von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen und/oder Guerbetalkoholen, flüssigen Mono-/Di-/Triglyceridmischungen auf Basis von CQ- Ciβ-Fettsäuren, Estern von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, Estern von C2-Ci2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, verzweigten primären Alkoholen, substituierten Cyclohexanen, linearen und verzweigten C6- C22-Fettalkoholcarbonaten, Guerbetcarbonaten, Estern der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen, linearen oder verzweigten, symmetrischen oder unsymmetrischen Dialkylethem mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe sowie Ringöffnungsprodukten von epoxidierten Fettsäureestern mit Polyolen.
4. Verfahren nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die kosmetischen Zubereitungen nichtionische Emulgatoren enthalten, die ausgewählt sind aus der Gruppe, die gebildet wird von Anlagerungsprodukten von 2 bis 100 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C- Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe; Ci2/ιs-Fettsäuremono- und -diestern von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin; Sorbitanmono- und -diestern von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukten; Alkylmono- und -oligoglycosiden mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga; Polyglycerinestem, Partialestern auf Basis li- nearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie 12- Hydroxystearinsäure und Glycerin, Polyglycerin, Zuckeralkoholen, Alkylglucosiden sowie Polyglu- cosiden; Mono-, Di- und Trialkylphosphaten sowie Mono-, Di- und/oder Tri-PEG-alkylphosphate und deren Salzen; Wollwachsalkoholen; Polyalkylenglycolen sowie Glycerincarbonat.
5. Verfahren nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die kosmetischen Zubereitungen anionische, kationische und/oder zwitterionische Emulgatoren enthalten.
6. Verfahren nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß man zur Erwärmung der Tissuepapiere und/oder -gewebe Mikrowellen, Wasserdampf und/oder Heißluft verwendet.
7. Verfahren nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß man die Tissuepapiere und/oder -gewebe auf Temperaturen von 40 bis 60 °C erwärmt.
8. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß man die Tissuepapiere und/oder -gewebe mit kosmetischen Zubereitungen aus - bezogen auf den nichtwäßrigen Anteil -
(a) 10 bis 100 Gew.-% Ölkörper und
(b) 0 bis 90 Gew.-% Emulgator
behandelt, mit der Maßgabe, daß sich die Mengenangaben mit weiteren Hilfs- und Zusatzstoffen zu 100 Gew.-% ergänzen.
9. Verfahren nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die kosmetischen Zubereitungen weiterhin als Hilfs- und Zusatzstoffe Wirkstoffe enthalten.
PCT/EP2000/012369 1999-12-17 2000-12-08 Verfahren zur kosmetischen behandlung der menschlichen haut WO2001043715A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU25098/01A AU2509801A (en) 1999-12-17 2000-12-08 Method for the cosmetic treatment of human skin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999161358 DE19961358A1 (de) 1999-12-17 1999-12-17 Verfahren zur kosmetischen Behandlung der menschlichen Haut
DE19961358.3 1999-12-17

Publications (1)

Publication Number Publication Date
WO2001043715A1 true WO2001043715A1 (de) 2001-06-21

Family

ID=7933355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012369 WO2001043715A1 (de) 1999-12-17 2000-12-08 Verfahren zur kosmetischen behandlung der menschlichen haut

Country Status (3)

Country Link
AU (1) AU2509801A (de)
DE (1) DE19961358A1 (de)
WO (1) WO2001043715A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622021B1 (en) * 1999-02-13 2009-11-24 Cognis Ip Management Gmbh Process for paper substrates using an emulsion and products produced thereby
CN106860049A (zh) * 2017-02-24 2017-06-20 长沙协浩吉生物工程有限公司 一种酵素祛痘面膜的配制方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1275370A1 (de) * 2001-07-13 2003-01-15 Johnson and Johnson GmbH Eine Folie und eine Lipid- und eine Wasserphase enthaltende, Produkte
DE10157543A1 (de) * 2001-11-23 2003-06-12 Beiersdorf Ag Emulsionsgetränkte Tücher
DE10230412A1 (de) * 2002-07-06 2004-01-22 Beiersdorf Ag Gleitmittelhaltiges Substrat
DE10258394A1 (de) * 2002-12-12 2004-06-24 Henkel Kgaa Tücher zur Pflege keratinischer Fasern

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685911A (en) * 1984-02-21 1987-08-11 Yamanouchi Pharmaceutical Co., Ltd. Patch
US4700048A (en) * 1986-04-30 1987-10-13 Nathan Levy Heating attachment for towelettes
US5972325A (en) * 1999-06-07 1999-10-26 Rachman; Paul Method for skin treatment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685911A (en) * 1984-02-21 1987-08-11 Yamanouchi Pharmaceutical Co., Ltd. Patch
US4700048A (en) * 1986-04-30 1987-10-13 Nathan Levy Heating attachment for towelettes
US5972325A (en) * 1999-06-07 1999-10-26 Rachman; Paul Method for skin treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622021B1 (en) * 1999-02-13 2009-11-24 Cognis Ip Management Gmbh Process for paper substrates using an emulsion and products produced thereby
CN106860049A (zh) * 2017-02-24 2017-06-20 长沙协浩吉生物工程有限公司 一种酵素祛痘面膜的配制方法

Also Published As

Publication number Publication date
AU2509801A (en) 2001-06-25
DE19961358A1 (de) 2001-06-21

Similar Documents

Publication Publication Date Title
WO2001052806A1 (de) Desodorierende zubereitungen
WO2003033634A1 (de) Aniontensidfreie niedrigviskose trübungsmittel
WO2000047818A1 (de) Verwendung von emulsionen als imprägnier- und avivagemittel
WO2001072264A2 (de) Pro-liposomal verkapselte zubereitungen (iv)
DE19910704B4 (de) Kosmetische Zubereitungen und deren Verwendung
EP1239814A2 (de) Kosmetische verwendung von ruckstanden aus der weinherstellung
EP1472211B1 (de) Weichmacher und kosmetische zusammensetzungen
WO2001074302A1 (de) Pro-liposomal verkapselte zubereitungen
EP1200043B1 (de) Sonnenschutzmittel enthaltend alkoxylierte carbonsäureester
EP1235546A1 (de) Verwendung von nanoskaligen wachsen
WO2001074303A1 (de) Pro-liposomal verkapselte zubereitung
DE19916208B4 (de) Sonnenschutzmittel
WO2001043715A1 (de) Verfahren zur kosmetischen behandlung der menschlichen haut
WO2001010391A2 (de) Verwendung von alkoxylierten carbonsäureestern als schaumbooster
WO2001052809A1 (de) Kosmetische und/oder pharmazeutische zubereitungen enthaltend eine wirksame menge eines extraktes von arrabidaea chica
DE19945578B4 (de) Kosmetische und/oder pharmazeutische Zubereitungen und deren Verwendung
DE19945577B4 (de) Kosmetische und/oder pharmazeutische Zubereitungen und deren Verwendung
EP1620067A1 (de) Kosmetische und/oder pharmazeutische zubereitungen
DE19950497A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
WO2002013778A2 (de) Kosmetische zubereitungen die dicarbonsäuren enthalten
EP1083217A2 (de) Verdickungsmittel
WO2001039734A1 (de) Kosmetische und/oder pharmazeutische zubereitungen aminosäuren und organische stickstoffverbindungen enthaltend
WO2001051011A2 (de) Kondensationsprodukte von proteinen mit azelainsäure
DE19949281A1 (de) Verwendung von Emulgatormischungen
WO2001074304A1 (de) Pro-liposomal verkapselte zubereitungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AU AZ BA BB BG BR BY BZ CA CN CR CU CZ DM DZ EE GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LV MA MD MG MK MN MW MX MZ NO NZ PL RO RU SD SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP