WO2001041942A2 - Procede de depôt d'un revêtement sur la paroi de boitiers metalliques - Google Patents

Procede de depôt d'un revêtement sur la paroi de boitiers metalliques Download PDF

Info

Publication number
WO2001041942A2
WO2001041942A2 PCT/FR2000/003418 FR0003418W WO0141942A2 WO 2001041942 A2 WO2001041942 A2 WO 2001041942A2 FR 0003418 W FR0003418 W FR 0003418W WO 0141942 A2 WO0141942 A2 WO 0141942A2
Authority
WO
WIPO (PCT)
Prior art keywords
coating
plasma
housing
varnish
wall
Prior art date
Application number
PCT/FR2000/003418
Other languages
English (en)
Other versions
WO2001041942A3 (fr
Inventor
Mohamed Benmalek
Alain Jupin
Original Assignee
Cebal S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cebal S.A. filed Critical Cebal S.A.
Priority to AU25234/01A priority Critical patent/AU2523401A/en
Priority to EP00988883A priority patent/EP1244527A2/fr
Publication of WO2001041942A2 publication Critical patent/WO2001041942A2/fr
Publication of WO2001041942A3 publication Critical patent/WO2001041942A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/22Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes
    • B05D7/227Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to internal surfaces, e.g. of tubes of containers, cans or the like
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • the invention relates to a method for depositing a coating protecting the internal or external surface of metal containers.
  • These containers are intended to contain liquid to pasty products such as pharmaceuticals, parapharmaceuticals, cosmetics and food.
  • These can be dispenser boxes for products in the form of an aerosol, foam or gel using pressurized gas.
  • Metal containers protect the products they contain from contamination from the outside or from degradation of their composition by evaporation of one of their constituents.
  • the metal wall is indeed an excellent barrier to diffusion of gases and aromas.
  • the metal wall is generally coated internally with a layer of varnish intended to provide a lasting barrier at around 50 ° C. between the propellant gas, the products and said metal wall.
  • the nature of the varnish and its thickness are chosen according to the products or the propellant contained. These are generally epoxy-phenolic compounds, vinyl organosols, polyesters, polyamide imides, etc.
  • the varnish is deposited on the internal wall of the container by a gun which enters more or less deeply into the housing placed rotating (see Figure 1).
  • the varnish is then dried by heat treatment or polymerized by UV excitation.
  • a layer that is not very ductile is obtained, in general all the less ductile as it has good diffusion barrier properties. Due to this low ductility, it is necessary to limit the plastic deformation subsequently imposed on the container.
  • the varnish is deposited on the inner face of the housing blank, that is to say before the open end is conified and before the bottom is fully formed. If the shrinkage corresponding to the conification is relatively well accepted by the varnish due to the compressive nature of the stresses generated, it is not the same for the operations of t ⁇ mponn ⁇ ge intended to carry out the rolled edge and for the operations of shaping the bottom of the case, these two types of shaping involving tensile stresses and leading fairly quickly to the creation of cracks on the varnish. This results in a loss of the desired barrier properties.
  • WO95 / 22413, DE 43 18 086 or also FR 2 776 540 disclose complex devices making it possible to implement, at very high rates, the deposition of a plasma-assisted coating on the interior surface of a housing.
  • the processes used have the common characteristic of imposing a fairly high vacuum inside the container. To satisfy this double constraint: very high rates and high vacuum, these devices are necessarily very expensive and can only be amortized economically with the production of a considerable quantity of containers thus treated.
  • the Applicant Company has sought a reliable process for obtaining a coating which effectively protects the wall of metal containers, this process having to be economically satisfactory for the manufacture of metal containers which, like the boxes for aerosol dispensers, are produced at rates and in quantities typically ten to one hundred times lower than drink boxes.
  • the object of the invention is a method of depositing a coating on the surface of a metal container, said method being assisted by plasma, characterized in that said method is carried out under a pressure close to atmospheric pressure.
  • this deposition is carried out using a plasma surface treatment reactor.
  • the plasma can be generated under different types of discharges: arc, luminescent discharge, discharge through a dielectric barrier or corona type discharge with different types of excitation: microwave, radio frequency, medium frequency alternating current.
  • the last two types of plasma generation have the advantage of being able to be carried out under a pressure close to atmospheric pressure.
  • the plasma can be generated • either by dielectric barrier discharge or corona type discharge between the housing and an electrode; in this case, the air gap must be fairly narrow, the deposit is preferably made before conification; • - either by using a transferred plasma generation mode: the plasma is formed outside the treatment zone by means of an arc discharge or a microwave or radiofrequency discharge. This plasma is then introduced inside the container by means of a sleeve which ensures the homogeneous distribution of the coating on the surface. interior of said container. The container is thus in a post-discharge position.
  • the coating treatment can be carried out in “batch” on a quantity of cases in relation to the continuous flow of cases coming from the production line. Batch processing can be carried out completely independently of the production line, which includes the lacquering and / or over-varnishing of the outer surface of the boxes. But we can also consider integrating the treatment into the manufacturing cycle.
  • the material to be deposited can be any material which does not react with the products and the propellant intended to be contained in the housing.
  • the carbon with polymer tendency is chosen, that is to say comprising a network of amorphous carbon chains with hydrogen bonds, silica, alumina, any oxide, nitride or carbide or their mixture or their combination d one or more of the following metals (Si, Mg, Al, Ti, Zr, Nb, Ta, Mo, W, V) or a plastic material polymerized under plasma assistance.
  • the aim is a deposit thickness of between 150 ⁇ and 1500 ⁇ , preferably 200 to 500 ⁇ .
  • 100 A / s is targeted as an order of magnitude of the deposition rate. This is around 50 A / s when cold plasma is used (corona or dielectric type discharge); however, it can exceed 300 ⁇ / s with a pl ⁇ sm ⁇ type thermal plasma.
  • the duration of the deposit can be limited to a few seconds, or even a few tenths of a second with plasma of the thermal plasma type. Even if it is necessary to treat several boxes simultaneously, it is possible to introduce into the production line accumulators of size identical to those used in the prior art for drying the varnish. The process allowing a higher deposition speed is preferred if it is a question of introducing a processing device integrated into the production line.
  • a gas chosen from alkanes, alkenes or alkynes or their mixtures is preferably chosen as precursor gas.
  • HMDSO hexamethyl-disiloxane
  • TMDSO trimethyl-disiloxane
  • precursor gas a gas of organometallic compound, such as tributyl aluminum AI (C H9) 3 or triethyl aluminum, is preferably used as precursor gas, which is circulated diluted in an argon mixture and oxygen.
  • tributyl aluminum AI C H9 3
  • triethyl aluminum is preferably used as precursor gas, which is circulated diluted in an argon mixture and oxygen.
  • the chosen precursor acetylene for example
  • one of the abovementioned gases HMDSO, TMDSO, tributyl-aluminum
  • the mixture is determined so that the aluminum or silicon content of the deposit is close to or less than 5%. This is in fact to improve the adhesion of the deposit on the substrate but not to degrade the ductile behavior of the deposit too much, and thus avoid flaking at the time of the subsequent deformation.
  • This process has the advantage of being able to be carried out under a pressure close to atmospheric pressure, preferably between 200 and 760 millimeters of mercury.
  • a slightly lower pressure than atmospheric pressure allows better control of the purity of the gas circulating in the container.
  • a preliminary sweep is carried out with an inert gas, of the argon type, to avoid the formation of impurities (risk of reaction with nitrogen in the air, water vapor, etc.) liable to deteriorate the quality. of the adhesion of the layer thus deposited.
  • the deposition by dielectric discharge is carried out online, preferably in the middle of the production chain, on the blanks of casings not yet conified.
  • An electrode of suitable shape is introduced to the bottom and to the cylindrical wall of the blank.
  • the electrode must in fact be as close as possible to the wall to be coated (distance typically less than a centimeter). This encourages the use of an electrode conforming to the shape of the interior of the housing, which can be introduced into the housing before conification.
  • the electrode is introduced into the interior volume of the housing.
  • the latter, descending fairly low in the housing is preferably hollow, so as to supply the interior of the housing with precursor gas.
  • a coating is chosen comprising carbon with a polymer tendency obtained by decomposition of a precursor 5 comprising a gas of alkene type. It is also possible to deposit a slightly crosslinked varnish obtained by plasma polymerization.
  • the coating obtained much thinner than the layer of varnish of the prior art and better anchored on its substrate, indeed tolerates the compressive subsequent deformation w imposed by the conification without thereby cracking and thus losing the effectiveness of its properties. barriers.
  • the substrate has, just before the deposition treatment, an activated, or at least well-cleaned, surface!
  • This surface preparation can be ensured by the treatment provided in the prior art, where, before interior varnishing, the traces of lubricant (zinc stearate or equivalent) used to facilitate spinning by impact 0 are removed by performing a preferably thermal degreasing, or alternatively a chemical degreasing such as one of those conventionally used, that is to say by using a diluent of the perchlorethylene type or by practicing a hot washing of the inside of the housings with caustic soda followed by bleaching with nitric acid. 5
  • the boxes are taken out of the transfer chain in a manner identical to that used for depositing interior varnish.
  • the cycle having to be 5 to 15 times longer than that of varnishing, it is preferable to place the boxes on one or more rotary plates of larger diameter than that of the turrets 0 used for depositing varnish.
  • the boxes are held by a device similar to that used on coniferous machines.
  • the bottoms are put into their final shape (toroidal foot surrounding a concave dome) for example by dabbing before introducing the shape electrode into the housing.
  • the deposition is carried out with a mode of generation of plasma transferred, either offline or preferably online, at the end of the production line when the housing is conified and the edge rolled is made around the opening.
  • the second example shows a device where the plasma is formed by high frequency arc excitation.
  • the plasma is introduced inside the container by passing through a sleeve, perforated, insulating and refractory. This sleeve is introduced into the interior of the housing and its open end is placed near the bottom so that the plasma must flow from the bottom of the housing to the opening. It is perforated over its entire height to let the plasma circulate throughout the interior volume of the container.
  • provision is made to cool this sleeve by means of a double wall system with a circulation of water between the walls.
  • the deposition by corona discharge is carried out online, preferably at the end of the production line, on the already confined casings.
  • An electrode adapted to the opening is introduced: its orthogonal section has a contour having a large number of convexities and acute angles oriented towards the outside; but its envelope contour has a diameter smaller than that of the opening.
  • the metal electrode can be easily inserted into the already confined housing and has longitudinal convexities and edges oriented towards the internal wall of the housing.
  • the electrode, descending fairly low in the housing is preferably hollow, so as to supply the interior of the housing with precursor gas.
  • FIG. 1 illustrates the gun used for coating a varnish used in the prior art.
  • the gun 60 is introduced into the housing blank 1 (FIG. 1 b), that is to say the housing obtained after spinning but before conformation and shaping of the bottom 5.
  • the blank is rotated R and the gun 60 distributes the varnish 61 on the inner face of said blank.
  • FIG. 2 represents a device making it possible to coat the interior of the housings by excitation of a plasma under a pressure close to atmospheric pressure according to the second variant of the invention.
  • Figure 3 shows schematically a device for coating the inside of the boxes by excitation of a plasma under a pressure close to atmospheric pressure according to the first variant of the invention.
  • Example 1 Depositing an alumina coating on the internal wall of a monobloc aerosol can ( Figure 2)
  • This example corresponds to the second variant of the invention: the method used makes it possible to coat the internal surface of a case 11 already shaped, having a neck 9 and a bottom 15, composed of an O-ring foot 7 surrounding a dome concave 6.
  • the housing 11 is placed in an enclosure 16 in which it is possible to very quickly create a vacuum of the order of 300 mm of mercury.
  • a small electrode 24 located in the center of the enclosure is brought into contact with the bottom 15 and the box is brought to a potential V making it possible to control the quality and the regularity of the deposit obtained.
  • the assembly is moved so that it is placed opposite a transferred plasma generation device 21 secured to a sleeve 22.
  • the sleeve 22 is then introduced into the housing 1 1.
  • the pressure is brought to 300 mm of mercury and argon is injected through the sleeve 22 so that the ambient air stagnating in the housing is evacuated outside the enclosure.
  • the sleeve 22 is generally made of quartz or ceramic. In this case, an alumina - zirconia mixture is used. It has a large number of small diameter perforations 23 (0 ⁇ 0.1 mm) passing through its thickness (of the order of 3 mm). These perforations are made over the entire height of the sleeve 22.
  • the pumping means 17 of the enclosure 16 operate and create a pressure differential between the interior I of the housing and the enclosure E such that the gas injected into the housing flows up towards the neck.
  • a tributyl aluminum (10%) argon (85%) and oxygen (5%) mixture is injected as a precursor gas.
  • the plasma generated by a source excited at 250 kHz at a voltage of 10 kV, is flush with the internal surface of the housing by providing the elements making up the coating which is essentially composed of alumina but includes a little carbon with a polymer tendency. Ten seconds is enough to obtain a 250 A coating.
  • Example 2. Deposition of a mixed carbon coating with a polymeric tendency and silica on the internal wall of an aerosol can blank ( Figure 3)
  • This example illustrates the first variant of the invention. This involves depositing a coating on the internal surface of the boxes in the middle of the production chain, that is to say at a stage when the box is not yet conified. This stage is located in the production chain exactly at the current stage of depositing varnish of the prior art, which this process proposes to replace.
  • the electrode 32 has a shape which conforms to within 2 mm the shape of the internal surface of a drawn spun blank 1. It is coated with a 20 ⁇ layer of polypropylene.
  • the bottom of the blank has already been shaped: it comprises a toroidal foot 7 which surrounds a concave dome 6.
  • the electrode is pierced with a conduit 31 which makes it possible to bring the precursor gas P into the air gap between the electrode and the housing
  • the housing is placed inside a sleeve 30.
  • a cap 33 carrying the electrode 32 is placed above the assembly, inside which primary pumping means are actuated before the cap is put in place. , so that the air is expelled (70) from the interior of the sleeve and the housing and is replaced by the inert gas supplied from the interior of the electrode.
  • a pressure close to 300 mm of mercury is reached inside the enclosure.
  • a contactor 34 is pressed against the bottom 5 'of the housing. This is brought to ground and a score of kV is applied to the electrode.
  • the gas an acetylene - HMDSO -argon mixture, the flow rate of which corresponds respectively to 20 sccm, 10 sccm and 15 sccm (sscm being a unit meaning standard cm3 per minute) is injected and the plasma is generated by an excited source at a frequency of 250 kHz. A few seconds are enough to obtain a regular deposit of around 250 ⁇ .
  • Example 3 Deposition of an alumina coating on the internal wall of an aerosol can blank
  • This example corresponds to the third variant of the invention, where deposition by corona discharge is carried out at the end of the production chain, on the casings already conified.
  • An electrode adapted to the opening is introduced: its orthogonal section has a contour having a large number of convexities and acute angles oriented towards the outside; but its envelope contour has a diameter smaller than that of the opening (25.4 mm).
  • the metal electrode can be easily inserted into the already confined housing (diameter of the cylindrical body of the housing: 45 mm) and has longitudinal convexities and edges oriented towards the internal wall of the housing.
  • the electrode is hollow, which makes it possible to supply the interior of the housing with precursor gas.
  • a tributyl aluminum (10%) argon (85%) and oxygen (5%) mixture is injected as a precursor gas.
  • the housing is the anode, the electrode the cathode.
  • a voltage of 15 kV drawn at 200 kHz is imposed.
  • the plasma is generated between the edges of the electrode and the internal p ⁇ roi of the housing distant from ten mm from these edges and comes flush with the internal surface of the housing by bringing the elements composing the coating which is composed essentially of alumina but includes a little carbon with polymer tendency
  • An insulating sleeve is placed in the upper part of the electrode, which avoids preferential deposition at the neck.

Abstract

Procédé de dépôt d'un revêtement sur la paroi d'un récipient métallique dans lequel on dépose le revêtement à l'aide d'un plasma sous une pression voisine de la pression atmosphérique. Le récipient métallique peut être un boîtier de distributeur aérosol et le revêtement obtenu remplace avantageusement la couche de vernis interne généralement déposée dans de tels récipients.

Description

PROCEDE DE DEPOT D'UN REVETEMENT SUR LA PAROI DE BOITIERS
METALLIQUES
DOMAINE TECHNIQUE
L'invention concerne un procédé permettant de déposer un revêtement protégeant la surface interne ou externe de récipients métalliques. Ces récipients sont destinés à contenir des produits liquides à pâteux tels que des produits pharmaceutiques, parapharmaceutiques, cosmétiques et alimentaires. Il peut s'agir de boîtiers distributeurs de produits sous forme d'aérosol, de mousse ou de gel à l'aide d'un gaz sous pression.
ETAT DE LA TECHNIQUE
Les récipients métalliques mettent les produits qu'ils contiennent à l'abri d'une contamination par l'extérieur ou d'une dégradation de leur composition par évaporation de l'un de leurs constituants. La paroi métallique est en effet une excellente barrière de diffusion aux gaz et aux arômes. Par contre il est souvent préférable d'éviter que cette paroi se trouve en contact direct avec lesdits produits. Ce contact peut en effet être maintenu plusieurs années dans les conditions de températures relativement élevées prévues dans le cadre de l'utilisation de ce type de conditionnement (environ 50°C) et de telles conditions ne permettent pas d'éviter une certaine sensibilité à la corrosion, quel que soit le métal employé. Pour cette raison, la paroi métallique est en général revêtue intérieurement d'une couche de vernis destinée à faire durablement barrière aux environs de 50°C entre le gaz propulseur, les produits et ladite paroi métallique. La nature du vernis et son épaisseur sont choisis en fonction des produits ou du gaz propulseur contenus. Il s'agit en général de composés époxy-phénoliques, d'organosols vinyliques, de polyesters, du polyamides imides, etc.. Le vernis est déposé sur la paroi interne du récipent par un pistolet qui entre plus ou moins profondément dans le boîtier mis en rotation (voir figure 1 ). Le vernis est ensuite séché par traitement thermique ou polymérisé par excitation UV. Mais, quelle que soit la nature du vernis utilisé, on obtient une couche peu ductile, en général d'autant moins ductile qu'elle a de bonnes propriétés de barrière de diffusion. En raison de cette faible ductilité, il est nécessaire de limiter la déformation plastique imposée ultérieurement au récipient.
PROBLEME POSE
Le problème se pose sur tous les types de récipients métalliques dont le goulot entourant l'orifice de distribution a un diamètre inférieur au diamètre (ou à une grande dimension caractéristique) du corps du conteneur. Nous allons illustrer ce problème avec les boîtiers de distributeur aérosols: ceux-ci présentent un fond, un corps sensiblement cylindrique et un col en forme d'épaule reliant le corps cylindrique à une ouverture, de diamètre sensiblement inférieur à celui du corps cylindrique. Cette ouverture est entourée par un bord roulé, sur lequel on vient fixer une coupelle supportant la valve de distribution.
La pose du vernis sur la surface intérieure est surtout délicate lorsqu'il s'agit de boîtiers monoblocs. Dans le cas de boîtiers réalisés avec un fond et/ou un dôme rapporté(s), il est possible de faire le dépôt de vernis sur les parties déjà déformées, l'opération s'effectuant avant l'assemblage de chacune de ces pièces. Par contre, ces boîtiers présentent des qualités esthétiques inférieures à celles des boîtiers monoblocs et présentent plus de risques de perte d'étanchéité. Les boîtiers en alliage d'aluminium présentent l'avantage de pouvoir être réalisés monoblocs: une ébauche avec un fond et une paroi cylindrique est mise en forme par filage par choc (ou emboutissage), suivi éventuellement de passes d'étirage puis l'extrémité ouverte de l'ébauche cylindrique est conifiee (formation du col), rognée et tamponnée pour former un bord roulé destiné à recevoir la coupelle de valve.
Il est difficile de faire le dépôt du vernis lorsque le boîtier multipièces est déjà assemblé ou lorsque le boîtier monobloc est complètement mis en forme. L'accessibilité du pistolet à l'intérieur du boîtier est en effet restreinte en raison du faible diamètre de l'ouverture du col (en général un pouce ou moins) de telle sorte que l'épaisseur du revêtement ne peut pas être régulière à l'intérieur du boîtier.
En effet, si l'on veut vernir l'intérieur du boîtier lorsque celui-ci est complètement mis en forme, il est nécessaire d'avoir un fond de forme suffisamment peu accidentée pour permettre aux pistolets de diffuser le vernis sur la totalité de la paroi du fond. Celui-ci a classiquement la forme d'un pied torique extérieur qui entoure un dôme concave destiné à mieux résister à la pression interne. Pour recouvrir de vernis toute la paroi du fond il faut avoir un pied torique aussi large et peu profond que possible. De plus, même si le dépôt du vernis est effectué avant que l'extrémité ouverte ne soit conifiee, il faut utiliser des buses très minces délicates d'emploi - car elles sont fragiles et se bouchent facilement - et leur imposer un trajet assez long, pour couvrir le plus régulièrement possible l'ensemble de la surface intérieure, ce qui limite fortement les cadences de production.
On fait donc en général le dépôt du vernis sur la face intérieure de l'ébauche de boîtier, c'est-à-dire avant conification de l'extrémité ouverte et avant mise en forme complète du fond. Si le rétreint correspondant à la conification est relativement bien accepté par le vernis en raison de la nature compressive des contraintes engendrées, il n'en est pas de même pour les opérations de tαmponnαge destinées à réaliser le bord roulé et pour les opérations de mise en forme du fond du boîtier, ces deux types de mise en forme faisant intervenir des contraintes de traction et conduisant assez rapidement à la création de craquelures sur le vernis. Il en résulte une perte des propriétés barrières recherchées.
Ainsi, pour éviter la chute de ces propriétés barrières, l'homme du métier en est réduit soit à choisir un vernis plus ductile mais moins efficace soit à limiter au strict nécessaire la déformation ultérieure de l'ébauche de boîtier ce qui limite les conditions d'emploi des boîtiers aérosols ainsi produits (diamètre plus faible donc moindre contenance). L'homme du métier aboutit donc à un compromis rarement satisfaisant.
On connaît par ailleurs des procédés permettant de revêtir la surface interne de récipients métalliques tels que les boîtes-boissons. Ainsi W095/22413, DE 43 18 086 ou encore FR 2 776 540 divulguent des dispositifs complexes permettant de mettre en oeuvre, à très grandes cadences, le dépôt d'un revêtement assisté par plasma sur la surface intérieure d'un boîtier. Les procédés mis en oeuvre ont comme caractéristique commune d'imposer un vide assez poussé à l'intérieur du récipient. Pour satisfaire à cette double contrainte: très forte cadences et vide poussé, ces dispositifs sont nécessairement très coûteux et ne peuvent être amortis économiquement qu'avec la production d'une quantité considérable de récipients ainsi traités.
PROBLEME POSE
La demanderesse a cherché un procédé fiable permettant d'obtenir un revêtement protégeant efficacement la paroi de récipients métalliques, ce procédé devant être économiquement satisfaisant pour la fabrication de récipients métalliques qui, tels les boîtiers pour distributeurs aérosols, sont réalisés à des cadences et en quantités typiquement dix à cent fois plus faibles que les boîtes-boissons.
OBJET DE L'INVENTION
L'objet de l'invention est un procédé de dépôt d'un revêtement sur la surface d'un récipient métallique, ledit procédé étant assisté par plasma, caractérisé en ce que ledit procédé est réalisé sous une pression voisine de la pression atmosphérique.
Selon l'invention, on effectue ce dépôt en utilisant un réacteur plasma de traitement de surface. Le plasma peut être généré sous différents types de décharges: arc, décharge luminescente, décharge au travers d'une barrière diélectrique ou décharge de type corona avec différents types d'excitation: micro-ondes, radiofréquences, courant alternatif de moyenne fréquence. Les deux derniers types de génération de plasma présentent l'avantage de pouvoir être réalisés sous une pression voisine de la pression atmosphérique.
En effectuant un revêtement par condensation après décomposition d'un corps ou d'un composé gazeux, le plasma peut être généré • soit par décharge barrière diélectrique ou décharge de type corona entre le boîtier et une électrode; dans ce cas, l'entrefer devant être assez étroit, le dépôt se fait de préférence avant conification; • -soit en utilisant un mode de génération de plasma transféré: on forme le plasma en dehors de la zone de traitement au moyen d'une décharge à arc ou d'une décharge micro-onde ou radiofréquence. Ce plasma est ensuite introduit à l'intérieur du récipient au moyen d'un manchon qui permet d'assurer la répartition homogène du revêtement sur la surface intérieure dudit récipient. Le récipient se trouve ainsi dans une position de post-décharge.
Avec une pression de travail proche de la pression atmosphérique, le temps du traitement de dépôt est notablement réduit. Intégré dans la ligne de fabrication ou effectué hors ligne (en batch), ce traitement devient économiquement compatible avec des cadences de fabrications de l'ordre de plusieurs centaines d'unités par minute.
Le traitement de revêtement peut être effectué en « batch » sur une quantité de boîtiers en rapport avec le flux continu de boîtiers provenant de la chaîne de fabrication. Le traitement batch peut être effectué de façon totalement indépendante de la chaîne de fabrication qui inclut le laquage et/ou le survernissage de la surface extérieure des boîtiers. Mais on peut également envisager d'intégrer le traitement dans le cycle de fabrication.
Le matériau à déposer peut être tout matériau ne réagissant pas avec les produits et le gaz propulseur destinés à être contenus dans le boîtier. De préférence, on choisit le carbone à tendance polymérique, c'est-à-dire comportant un réseau de chaînes de carbone amorphe avec liaisons hydrogène, la silice, l'alumine, tout oxyde, nitrure ou carbure ou leur mélange ou leur combinaison d'un ou plusieurs des métaux suivants (Si, Mg, Al, Ti, Zr, Nb, Ta, Mo, W, V) ou encore une matière plastique polymérisée sous assistance plasma.
Quel que soit le procédé de génération du plasma choisi, on vise une épaisseur de dépôt comprise entre 150 Â et 1500 A, de préférence 200 à 500 À. On vise 100 Â/s comme ordre de grandeur de la vitesse de dépôt. Celle-ci est de l'ordre de 50 À/s quand on fait appel à un plasma froid (décharge type corona ou diélectrique); par contre, elle peut dépasser 300 Â/s avec un plαsmα type plasma thermique. Ainsi la durée du dépôt peut être limitée à quelques secondes, voire quelques dixièmes de secondes avec le plasma type plasma thermique. Même s'il faut traiter simultanément plusieurs boîtiers, on peut introduire dans la chaîne de fabrication des accumulateurs de taille identique à ceux qui sont employés dans l'art antérieur pour le séchage du vernis. Le procédé permettant une plus grande vitesse de dépôt est préféré s'il s'agit d'introduire un dispositif de traitement intégré dans la chaîne de fabrication.
Pour le dépôt de carbone à tendance polymérique, on choisit de préférence comme gaz précurseur, un gaz choisi parmi les alcanes, les alcènes ou les alcynes ou leur mélanges.
Pour le dépôt de silice, on emploie de préférence comme gaz précurseur de l'HMDSO (hexaméthyle-disiloxane) ou du TMDSO (triméthyle-disiloxane). Pour le dépôt d'alumine, on emploie de préférence comme gaz précurseur un gaz de composé organométallique, tel que le tributyle-aluminium AI(C H9)3 ou le triéthyle-aluminium, que l'on fait circuler dilué dans un mélange argon et oxygène. En jouant sur la proportion d'oxygène, on réalise des dépôts contenant une certaine proportion de carbone pouvant atteindre 20%. La demanderesse a constaté sur de tels dépôts que l'on obtenait un comportement d'autant plus ductile que le dépôt est riche en carbone, sans doute parce le réseau de silice ou d'alumine, dans lequel le carbone doit être incorporé, est plus lâche.
De même, lorsqu'on fait un dépôt de carbone, il est préférable de mélanger le précurseur choisi (de l'acétylène par exemple) avec l'un des gaz précités (HMDSO , TMDSO , tributyle-aluminium) de façon à obtenir des propriétés barrières améliorées. Pour les dépôts effectués sur des ébauches de boîtier devant être par la suite déformées, on détermine le mélange de telle sorte que lα teneur en aluminium ou en silicium du dépôt soit voisine ou inférieure à 5 %. Il s'agit en effet d'améliorer l'adhérence du dépôt sur le substrat mais de ne pas trop dégrader le comportement ductile du dépôt, et éviter ainsi un écaillage au moment de la déformation ultérieure.
Ce procédé présente l'avantage de pouvoir être effectué sous une pression proche de la pression atmosphérique, de préférence entre 200 et 760 millimètres de mercure. Une pression légèrement plus faible que la pression atmosphérique permet de mieux contrôler la pureté du gaz circulant dans le conteneur. On réalise de préférence un balayage préalable avec un gaz inerte, du type argon pour éviter la formation d'impuretés (risque de réaction avec l'azote de l'air, la vapeur d'eau, etc..) susceptibles de détériorer la qualité de l'adhérence de la couche ainsi déposée.
Dans une première variante de l'invention, on réalise en ligne le dépôt par décharge diélectrique, de préférence au milieu de la chaîne de fabrication, sur les ébauches de boîtiers non encore conifiées. On introduit une électrode de forme adaptée au fond et à la paroi cylindrique de l'ébauche. Pour avoir un dépôt régulier, l'électrode doit en effet être aussi proche que possible de la paroi à revêtir (distance typiquement inférieure au centimètre). Ceci incite à employer une électrode épousant la forme de l'intérieur du boîtier, que l'on peut introduire dans le boîtier avant conification. On introduit l'électrode dans le volume intérieur du boîtier. Celle-ci, descendant assez bas dans le boîtier est de préférence creuse, de façon à alimenter l'intérieur du boîtier en gaz précurseur. Elle est enrobée d'une matière plastique de type polypropylene sur une épaisseur au moins égale à 20 μ. L'électrode doit être remplacée (du moins ré-enrobée) régulièrement car le polymère se décompose au cours du traitement. En contrepartie, le carbone ainsi libéré peut servir à la formation du carbone à tendance polymérique du revêtement à déposer, ce qui permet de diminuer la quantité de gaz précurseur consommée. Pour cette première variante, il est préférable de limiter l'épaisseur du dépôt à 300 À. On choisit de préférence un revêtement comportant du carbone à tendance polymérique obtenu par décomposition d'un précurseur 5 comportant un gaz de type alcène. Il est possible également de déposer un vernis peu réticulé obtenu par polymérisation plasma.
Le revêtement obtenu, beaucoup plus fin que la couche de vernis de l'art antérieur et mieux ancré sur son substrat, tolère en effet la déformation w ultérieure compressive imposée par la conification sans pour cela se craqueler et perdre ainsi l'efficacité de ses propriétés barrières.
Afin d'obtenir une bonne adhérence de la couche déposée, il est préférable que le substrat présente, juste avant le traitement de dépôt, une surface !5 activée, ou tout au moins, bien nettoyée.
Cette préparation de la surface peut être assurée par le traitement prévu dans l'art antérieur, où, avant vernissage intérieur, on enlève en effet les traces de lubrifiant (stéarate de zinc ou équivalent) utilisé pour faciliter le filage par choc 0 en effectuant un dégraissage de préférence thermique, ou encore un dégraissage chimique tel que l'un de ceux classiquement employés, c'est-à- dire en utilisant un diluant de type perchloréthylène ou en pratiquant un lavage à chaud de l'intérieur des boîtiers avec de la soude caustique suivi d'un blanchiment avec de l'acide nitrique.. 5
Les boîtiers sont sortis de la chaîne transfert d'une façon identique à celle employée pour le dépôt de vernis intérieur. Le cycle devant être 5 à 15 fois plus long que celui du vernissage, il est préférable de placer les boîtiers sur un ou plusieurs plateaux tournants de plus grand diamètre que celui des tourelles 0 utilisées pour le dépôt de vernis. Le boîtiers sont maintenus par un dispositif semblable à celui employé sur les conifieuses. De préférence, les fonds sont mis à leur forme finale (pied torique entourant un dôme concave) par exemple par tamponnage avant d'introduire l'électrode de forme dans le boîtier.
Dans une deuxième variante de l'invention, on réalise le dépôt avec un mode de génération de plasma transféré, soit hors ligne, soit de préférence en ligne, à la fin de la chaîne de fabrication lorsque le boîtier est conifié et que le bord roulé est réalisé autour de l'ouverture. Le deuxième exemple montre un dispositif où le plasma est formé par excitation à arc haute fréquence. Le plasma est introduit à l'intérieur du récipient en passant à travers un manchon, perforé, isolant et réfractaire. Ce manchon est introduit dans l'intérieur du boîtier et son extrémité ouverte est placée à proximité du fond de telle sorte que le plasma doit circuler du fond du boîtier vers l'ouverture. Il est perforé sur toute sa hauteur pour laisser circuler le plasma dans tout le volume intérieur du récipient. Lorsque des vitesses de dépôt extrêmement élevées sont visées, on prévoit de refroidir ce manchon au moyen d'un système de double paroi avec une circulation d'eau entre les parois.
Dans une troisième variante de l'invention, on réalise en ligne le dépôt par décharge corona, de préférence en fin de chaîne de fabrication, sur les boîtiers déjà conifiés. On introduit une électrode de forme adaptée à l'ouverture: sa section orthogonale a un contour présentant un grand nombre de convexités et d'angles aigus orientés vers l'extérieur; mais son contour enveloppe a un diamètre inférieur à celui de l'ouverture. De la sorte l'électrode, métallique, peut être introduite facilement dans le boîtier déjà conifié et présente des convexités longitudinales et des arêtes orientées vers la paroi interne du boîtier. Une telle géométrie d'électrode favorise les effets de pointe favorables à ce type de décharge. Comme dans les autres variantes, l'électrode, descendant assez bas dans le boîtier, est de préférence creuse, de façon à alimenter l'intérieur du boîtier en gaz précurseur. Evidemment, rien ne s'oppose à ce qu'un dépôt puisse également être effectué à l'extérieur de la paroi du boîtier. De plus, même si la réalisation d'un boîtier métallique pour distributeur de produits sous forme d'aérosols a été décrite pour illustrer l'invention, celle-ci s'applique à la réalisation de tout récipient métallique dont on cherche à isoler la paroi par rapport au produit qu'il est destiné à contenir.
La figure 1 illustre le pistolet utilisé pour le revêtement d'un vernis employé dans l'art antérieur. Le pistolet 60 est introduit dans l'ébauche de boîtier 1 (Figure 1 b), c'est-à-dire le boîtier obtenu après filage mais avant conification et mise en forme du fond 5. L'ébauche est mise en rotation R et le pistolet 60 distribue le vernis 61 sur la face intérieure de ladite ébauche.
La figure 2 représente un dispositif permettant de revêtir l'intérieur des boîtiers par excitation d'un plasma sous une pression proche de la pression atmosphérique selon la deuxième variante de l'invention.
La figure 3 schématise un dispositif permettant de revêtir l'intérieur des boîtiers par excitation d'un plasma sous une pression proche de la pression atmosphérique selon la première variante de l'invention.
MODES DE REALISATION DE L'INVENTION
Exemple 1. Dépôt d'un revêtement d'alumine sur la paroi interne d'un boîtier aérosol monobloc (Figure 2)
Cet exemple correspond à la deuxième variante de l'invention: la méthode employée permet de revêtir la surface interne d'un boîtier 11 déjà mis en forme, présentant un col 9 et un fond 15, composé d'un pied torique 7 entourant un dôme concave 6. Le boîtier 11 est placé dans une enceinte 16 dans laquelle il est possible de faire très rapidement une dépression de l'ordre de 300 mm de mercure. Une petite électrode 24 se trouvant au centre de l'enceinte est amenée au contact du fond 15 et le boîtier est porté à un potentiel V permettant de contrôler la qualité et la régularité du dépôt obtenu.
On déplace l'ensemble de telle sorte qu'il soit mis au regard d'un dispositif de génération de plasma transféré 21 solidaire d'un manchon 22. Le manchon 22 est ensuite introduit dans le boîtier 1 1. Avant que le plasma ne soit formé, la pression est portée à 300 mm de mercure et on injecte de l'argon par le manchon 22 de telle sorte que l'air ambiant stagnant dans le boîtier soit évacué en dehors de l'enceinte.
Le manchon 22 est généralement en quartz ou en céramique. En l'occurrence, on utilise un mélange alumine - zircone. Il possède un grand nombre de perforations 23 de petit diamètre (0 < 0,1 mm ) traversant son épaisseur (de l'ordre de 3 mm). Ces perforations sont réalisées sur toute la hauteur du manchon 22. Avant et pendant la génération du plasma, les moyens de pompage 17 de l'enceinte 16 fonctionnent et créent un différentiel de pression entre l'intérieur I du boîtier et l'enceinte E tel que le gaz injecté dans le boîtier circule en remontant vers le col.
On injecte un mélange tributyle aluminium (10%) argon (85 %) et oxygène (5%) comme gaz précurseur. Le plasma, généré par une source excitée à 250 kHz sous un tension de 10 kV, vient affleurer la surface interne du boîtier en apportant les éléments composant le revêtement qui est composé essentiellement d'alumine mais comprend un peu de carbone à tendance polymérique. Une dizaine de secondes suffit pour obtenir un revêtement de 250 À. Exemple 2. Dépôt d'un revêtement mixte en carbone à tendance polymérique et silice sur la paroi interne d'une ébauche de boîtier aérosol (Figure 3)
Cet exemple illustre la première variante de l'invention. Il s'agit du dépôt d'un revêtement de la surface interne de boîtiers au milieu de la chaîne de fabrication, c'est-à-dire à un stade où le boîtier n'est pas encore conifié. Ce stade se situe dans la chaîne de fabrication exactement à l'étape actuelle du dépôt de vernis de l'art antérieur, que ce procédé propose de remplacer.
L'électrode 32 a une forme qui épouse à 2 mm près la forme de la surface interne d'une ébauche de boîtier 1 filée étirée. Elle est enrobée d'une couche de polypropylene de 20 μ. Le fond de l'ébauche a déjà été mis en forme: il comprend un pied torique 7 qui entoure un dôme concave 6. L'électrode est percée d'un conduit 31 qui permet d'apporter le gaz précurseur P dans l'entrefer entre l'électrode et le boîtier
Le boîtier est placé à l'intérieur d'un manchon 30. Un chapeau 33 portant l'électrode 32 est placé au dessus de l'ensemble, à l'intérieur duquel des moyens de pompage primaire sont actionnés avant la mise en place du chapeau, de telle sorte que l'air est expulsé (70) de l'intérieur du manchon et du boîtier et est remplacé par le gaz inerte amené par l'intérieur de l'électrode. Une pression voisine de 300 mm de mercure est atteinte à l'intérieur de l'enceinte. Dans le fond du manchon, un contacteur 34 est plaqué contre le fond 5' du boîtier. On porte celui-ci à la masse et l'on applique une vingtaine de kV sur l'électrode. Le gaz, un mélange acétylène - HMDSO -argon, dont le débit correspond respectivement à 20 sccm, 10 sccm et 15 sccm (sscm étant une unité signifiant cm3 standard par minute) est injecté et le plasma est généré par une source excitée à une fréquence de 250 kHz. Quelques secondes suffisent pour obtenir un dépôt régulier de l'ordre de 250 Â.
Il est possible de ne pas utiliser d'enceinte et de faire le traitement à pression atmosphérique; dans ce cas, il est préférable de faire un balayage d'argon préalable au traitement plasma de façon à évacuer l'air stagnant. Le dépôt nécessite dans ce cas quelques secondes de plus.
Exemple 3. Dépôt d'un revêtement d'alumine sur la paroi interne d'une ébauche de boîtier aérosol
Cet exemple correspond à la troisième variante de l'invention, où on réalise le dépôt par décharge corona en fin de chaîne de fabrication, sur les boîtiers déjà conifiés.
On introduit une électrode de forme adaptée à l'ouverture: sa section orthogonale a un contour présentant un grand nombre de convexités et d'angles aigus orientés vers l'extérieur; mais son contour enveloppe a un diamètre inférieur à celui de l'ouverture (25, 4 mm). De la sorte l'électrode, métallique, peut être introduite facilement dans le boîtier déjà conifié (diamètre du corps cylindrique du boîtier: 45 mm) et présente des convexités longitudinales et des arêtes orientées vers la paroi interne du boîtier.
L'électrode est creuse, ce qui permet d'alimenter l'intérieur du boîtier en gaz précurseur. On injecte un mélange tributyle aluminium ( 10%) argon (85 %) et oxygène (5%) comme gaz précurseur.
Le boîtier est l'anode, l'électrode la cathode. On impose une tension de 15 kV puisée à 200 kHz. Le plasma est généré entre les arêtes de l'électrode et la pαroi interne du boîtier distante d'une dizaine de mm de ces arêtes et vient affleurer la surface interne du boîtier en apportant les éléments composant le revêtement qui est composé essentiellement d'alumine mais comprend un peu de carbone à tendance polymérique
Un manchon isolant est placé en partie haute de l'électrode, ce qui permet d'éviter un dépôt préférentiel au niveau du col.
AVANTAGES DU PROCEDE SELON L'INVENTION
Avantages concernant plus particulièrement la fabrication de boîtiers pour distributeur aérosols:
* le dépôt est mince et déformable: les propriétés barrières sont maintenues ;
* le dépôt est régulier ; * possibilité de définir des formes de fond plus accidentées, avec notamment un pied torique plus étroit
* il n'est plus nécessaire d'équiper la chaîne de fabrication des enceintes de traitement thermique pour le séchage du vernis.

Claims

REVENDICATIONS
1 ) Procédé de dépôt d'un revêtement sur la surface interne d'un récipient métallique dans lequel on dépose le revêtement à l'aide d'un plasma
5 caractérisé en ce que le plasma est généré sous une pression voisine de la pression atmosphérique
2) Procédé selon la revendication 1 où le plasma est généré sous une pression comprise entre 200 et 760 millimètres de mercure.
JO
3) Procédé selon la revendication 1 ou 2, où le dépôt est précédé par un balayage avec un gaz inerte.
4) Procédé selon l'une quelconque des revendications 1 à 3 où ledit J5 revêtement a une épaisseur comprise entre 150 et 1500 Â et comprend un matériau ou un mélange de matériaux appartenant au groupe suivant: carbone à tendance polymérique, oxydes, nitrures ou carbures ou leur mélange ou leur combinaison d'un ou plusieurs des métaux suivants (Si, Mg, Al, Ti, Zr, Nb, Ta, Mo, W, V). 0
5) Procédé selon l'une quelconque des revendications 1 à 4 où ledit récipient métallique est un boîtier de distributeur aérosol et où sa surface interne est revêtue avant conification.
5
PCT/FR2000/003418 1999-12-06 2000-12-06 Procede de depôt d'un revêtement sur la paroi de boitiers metalliques WO2001041942A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU25234/01A AU2523401A (en) 1999-12-06 2000-12-06 Method for depositing a coating on the wall of metallic containers
EP00988883A EP1244527A2 (fr) 1999-12-06 2000-12-06 Procede de dep t d'un rev tement sur la paroi de boitiers metalliques

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9915376A FR2801814B1 (fr) 1999-12-06 1999-12-06 Procede de depot d'un revetement sur la surface interne des boitiers distributeurs aerosols
FR99/15376 1999-12-06

Publications (2)

Publication Number Publication Date
WO2001041942A2 true WO2001041942A2 (fr) 2001-06-14
WO2001041942A3 WO2001041942A3 (fr) 2001-12-13

Family

ID=9552943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003418 WO2001041942A2 (fr) 1999-12-06 2000-12-06 Procede de depôt d'un revêtement sur la paroi de boitiers metalliques

Country Status (5)

Country Link
US (1) US20020182319A1 (fr)
EP (1) EP1244527A2 (fr)
AU (1) AU2523401A (fr)
FR (1) FR2801814B1 (fr)
WO (1) WO2001041942A2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002028548A2 (fr) * 2000-10-04 2002-04-11 Dow Corning Ireland Limited Procede et appareil pour former un revetement
US7678429B2 (en) 2002-04-10 2010-03-16 Dow Corning Corporation Protective coating composition
US8859056B2 (en) 2005-05-12 2014-10-14 Dow Corning Ireland, Ltd. Bonding an adherent to a substrate via a primer

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7303789B2 (en) * 2003-02-17 2007-12-04 Ngk Insulators, Ltd. Methods for producing thin films on substrates by plasma CVD
JP4233085B2 (ja) * 2003-02-17 2009-03-04 日本碍子株式会社 薄膜作製方法および装置
ITTO20030985A1 (it) * 2003-12-09 2005-06-10 Metlac S P A Metodo per il trattamento superficiale di un supporto metallico, in particolare per l'imballaggio alimentare, e prodotto relativo.
EP1582270A1 (fr) * 2004-03-31 2005-10-05 Vlaamse Instelling voor Technologisch Onderzoek Procédé et appareil pour revêtir un substrat par une décharge à barrière diélectrique
EP1722006A1 (fr) * 2005-05-10 2006-11-15 S.I.C.C. Societa' Per Azioni Procédé de traitement anticorrosion de récipients de fluides, récipient obtenu selon le procédé er dispositif pour la mise en oeuvre
FR2902422B1 (fr) * 2006-06-16 2008-07-25 Saint Gobain Procede de depot par plasma atmopherique d'un revetement hydrophobe/oleophobe a durabilite amelioree
EP2427921A1 (fr) 2009-05-05 2012-03-14 3M Innovative Properties Company Dispositifs semi-conducteurs formés sur un substrat de croissance contenant de l'indium, utilisant des mécanismes d'appauvrissement en indium
KR20120015337A (ko) 2009-05-05 2012-02-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Led에서 사용하기 위한 재방출 반도체 캐리어 디바이스 및 제조 방법
US10410838B2 (en) * 2009-05-06 2019-09-10 3M Innovative Properties Company Apparatus and method for plasma treatment of containers
KR20120094463A (ko) 2009-06-30 2012-08-24 쓰리엠 이노베이티브 프로퍼티즈 컴파니 무-카드뮴 재방출 반도체 구조체
CN102473816B (zh) 2009-06-30 2015-03-11 3M创新有限公司 基于电流拥挤调节颜色的电致发光装置
KR20120092549A (ko) 2009-06-30 2012-08-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 조정가능 색 온도를 갖는 백색광 전계발광 디바이스
GB2476004B (en) * 2011-02-23 2011-12-28 Portal Medical Ltd Medicament Dispenser Device
US11814239B2 (en) * 2011-05-16 2023-11-14 The Procter & Gamble Company Heating of products in an aerosol dispenser and aerosol dispenser containing such heated products

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859489A (en) * 1988-07-18 1989-08-22 Vapor Technologies Inc. Method of coating a metal gas-pressure bottle or tank
US5194304A (en) * 1992-07-07 1993-03-16 Ford Motor Company Thermally spraying metal/solid libricant composites using wire feedstock
US5296667A (en) * 1990-08-31 1994-03-22 Flame-Spray Industries, Inc. High velocity electric-arc spray apparatus and method of forming materials
DE4318086A1 (de) * 1993-06-01 1994-12-08 Kautex Werke Gmbh Verfahren und Einrichtung zum Herstellen einer polymeren Deckschicht in Kunststoff-Hohlkörpern
WO1995021948A1 (fr) * 1994-02-09 1995-08-17 The Coca-Cola Company Recipients creux comportant une surface interne inerte ou impermeable, obtenue par depot au plasma d'une substance principalement inorganique
WO1995022413A1 (fr) * 1994-02-16 1995-08-24 The Coca-Cola Company Recipients creux a revetement interieur inerte ou impermeable applique par reaction superficielle au plasma ou polymerisation superficielle
EP0716156A1 (fr) * 1994-12-09 1996-06-12 Ford Motor Company Limited Bloc moteur avec chemises de cylindre revêtus
GB2324539A (en) * 1997-04-26 1998-10-28 Daimler Benz Ag Aluminium nitride coating of cylinder running surface
DE19742691C1 (de) * 1997-09-26 1999-01-28 Siemens Ag Verfahren und Vorrichtung zur Beschichtung von Substraten
EP0896073A1 (fr) * 1997-08-01 1999-02-10 Daimler-Benz Aktiengesellschaft Revêtement pour partie d'usure d'un cylindre d'un moteur à pistons
FR2776540A1 (fr) * 1998-03-27 1999-10-01 Sidel Sa Recipient en matiere a effet barriere et procede et appareil pour sa fabrication

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179774A (ja) * 1984-09-28 1986-04-23 Mitsubishi Heavy Ind Ltd 容器内面のコ−テイング方法
US5250465A (en) * 1991-01-28 1993-10-05 Fujitsu Limited Method of manufacturing semiconductor devices
EP0705149B1 (fr) * 1993-06-01 1998-06-03 Kautex Textron GmbH & Co. KG. Procede d'application d'un revetement polymere sur la surface interieure de corps creux en matiere plastique
US6149982A (en) * 1994-02-16 2000-11-21 The Coca-Cola Company Method of forming a coating on an inner surface
US5824365A (en) * 1996-06-24 1998-10-20 Micron Technology, Inc. Method of inhibiting deposition of material on an internal wall of a chemical vapor deposition reactor
JP3624628B2 (ja) * 1997-05-20 2005-03-02 東京エレクトロン株式会社 成膜方法及び成膜装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859489A (en) * 1988-07-18 1989-08-22 Vapor Technologies Inc. Method of coating a metal gas-pressure bottle or tank
US5296667A (en) * 1990-08-31 1994-03-22 Flame-Spray Industries, Inc. High velocity electric-arc spray apparatus and method of forming materials
US5194304A (en) * 1992-07-07 1993-03-16 Ford Motor Company Thermally spraying metal/solid libricant composites using wire feedstock
DE4318086A1 (de) * 1993-06-01 1994-12-08 Kautex Werke Gmbh Verfahren und Einrichtung zum Herstellen einer polymeren Deckschicht in Kunststoff-Hohlkörpern
WO1995021948A1 (fr) * 1994-02-09 1995-08-17 The Coca-Cola Company Recipients creux comportant une surface interne inerte ou impermeable, obtenue par depot au plasma d'une substance principalement inorganique
WO1995022413A1 (fr) * 1994-02-16 1995-08-24 The Coca-Cola Company Recipients creux a revetement interieur inerte ou impermeable applique par reaction superficielle au plasma ou polymerisation superficielle
EP0716156A1 (fr) * 1994-12-09 1996-06-12 Ford Motor Company Limited Bloc moteur avec chemises de cylindre revêtus
GB2324539A (en) * 1997-04-26 1998-10-28 Daimler Benz Ag Aluminium nitride coating of cylinder running surface
EP0896073A1 (fr) * 1997-08-01 1999-02-10 Daimler-Benz Aktiengesellschaft Revêtement pour partie d'usure d'un cylindre d'un moteur à pistons
DE19742691C1 (de) * 1997-09-26 1999-01-28 Siemens Ag Verfahren und Vorrichtung zur Beschichtung von Substraten
FR2776540A1 (fr) * 1998-03-27 1999-10-01 Sidel Sa Recipient en matiere a effet barriere et procede et appareil pour sa fabrication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MCCUNE R C: "THERMAL SPRAYING OF CYLINDER BORE SURFACES FOR ALUMINUM ENGINE BLOCKS" WELDING JOURNAL,US,AMERICAN WELDING SOCIETY. MIAMI, vol. 74, no. 8, 1 août 1995 (1995-08-01), pages 41-47, XP000542818 ISSN: 0043-2296 *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 252 (C-369), 29 août 1986 (1986-08-29) & JP 61 079774 A (MITSUBISHI HEAVY IND LTD), 23 avril 1986 (1986-04-23) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002028548A2 (fr) * 2000-10-04 2002-04-11 Dow Corning Ireland Limited Procede et appareil pour former un revetement
WO2002028548A3 (fr) * 2000-10-04 2002-10-17 Dow Corning Procede et appareil pour former un revetement
US7455892B2 (en) 2000-10-04 2008-11-25 Dow Corning Ireland Limited Method and apparatus for forming a coating
US7678429B2 (en) 2002-04-10 2010-03-16 Dow Corning Corporation Protective coating composition
US8859056B2 (en) 2005-05-12 2014-10-14 Dow Corning Ireland, Ltd. Bonding an adherent to a substrate via a primer

Also Published As

Publication number Publication date
FR2801814A1 (fr) 2001-06-08
AU2523401A (en) 2001-06-18
EP1244527A2 (fr) 2002-10-02
FR2801814B1 (fr) 2002-04-19
WO2001041942A3 (fr) 2001-12-13
US20020182319A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
WO2001041942A2 (fr) Procede de depôt d&#39;un revêtement sur la paroi de boitiers metalliques
EP1068032B1 (fr) Recipient avec un revetement en matiere a effet barriere et procede et appareil pour sa fabrication
EP1907601B1 (fr) Appareil pour le depot pecvd d&#39;une couche barriere interne sur un recipient
FR2812568A1 (fr) Revetement barriere depose par plasma comprenant une couche d&#39;interface, procede d&#39;obtention d&#39;un tel revetement et recipient revetu d&#39;un tel revetement
EP1307606B1 (fr) Revetement barriere
FR2493348A1 (fr) Procede et dispositif de depot physique par vapeur de produits de revetement durs, notamment pour outils
FR2918301A1 (fr) Revetement barriere depose par plasma comprenant au moins trois couches, procede d&#39;obtention d&#39;un tel revetement et recipient revetu d&#39;un tel revetement
FR2929295A1 (fr) Appareil pour le traitement par plasma de corps creux
FR2662182A1 (fr) Depot par projection de plasma a radiofrequence.
WO2020148487A1 (fr) Procede et dispositif de traitement pour le depot d&#39;un revetement a effet barriere
FR2812665A1 (fr) Procede de depot de revetement par plasma, dispositif de mise en oeuvre du procede et revetement obtenu par un tel procede
EP1250268B1 (fr) Tube souple revetu d&#39;une couche a effet barriere de diffusion aux gaz et aux aromes
FR2596775A1 (fr) Revetement dur multicouches elabore par depot ionique de nitrure de titane, carbonitrure de titane et i-carbone
FR2814382A1 (fr) Procede de depot d&#39;un revetement interne dans un recipient en matiere plastique
EP1230425A1 (fr) Procede et dispositif d&#39;application d&#39;un revetement anti-corrosion
WO2006070136A1 (fr) Procede de traitement d&#39;un materiau polymere, dispositif pour ia mise en œuvre de ce procede et utilisation de ce dispositif au traitement de corps creux
JP2003213422A (ja) 薄膜の形成装置及びその形成方法
EP1040175B1 (fr) Revetements anti-cokage
WO1995019456A1 (fr) Procede pour deposer, une couche de metal ou de semi-metal et de leur oxyde
FR2929294A1 (fr) Appareil pour le traitement par plasma de corps creux
EP1313648A1 (fr) Emballage souple ayant une couche protectrice
FR2584098A1 (fr) Procede de depot d&#39;un revetement de silicium sur une piece metallique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10148180

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PV2002-1979

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 2000988883

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000988883

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: PV2002-1979

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 2000988883

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: PV2002-1979

Country of ref document: CZ

NENP Non-entry into the national phase

Ref country code: JP